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Abstract
Text-to-Image (T2I) models have raised security
concerns due to their potential to generate inap-
propriate or harmful images. In this paper, we pro-
pose UPAM, a novel framework that investigates
the robustness of T2I models from the attack per-
spective. Unlike most existing attack methods that
focus on deceiving textual defenses, UPAM aims
to deceive both textual and visual defenses in T2I
models. UPAM enables gradient-based optimiza-
tion, offering greater effectiveness and efficiency
than previous methods. Given that T2I models
might not return results due to defense mecha-
nisms, we introduce a Sphere-Probing Learning
(SPL) scheme to support gradient optimization
even when no results are returned. Additionally,
we devise a Semantic-Enhancing Learning (SEL)
scheme to finetune UPAM for generating target-
aligned images. Our framework also ensures at-
tack stealthiness. Extensive experiments demon-
strate UPAM’s effectiveness and efficiency.

1. Introduction
Text-to-Image (T2I) models have garnered widespread at-
tention in the research community for their ability to create
high-quality images from text prompts (Xu et al., 2018;
Zhang et al., 2017; 2018). Particularly with the advent of
diffusion generation techniques (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2020; Peng et al., 2023a;b;
Dhariwal & Nichol, 2021), the quality of images produced
by T2I models has further improved. However, there is a
growing concern that such technologies might be misused
(Millière, 2022; Saharia et al., 2022; Yu et al., 2022). This is
because text-to-image models become more integrated into
various online services, greatly increasing the potential for
generating inappropriate or harmful content, e.g., creating
fake images of individuals (Chesney & Citron, 2019) or pro-
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Figure 1. T2I APIs could incorporate both textual filters and visual
checkers for double defenses, which can deny the forward propa-
gation of data when harmful information is detected (Schramowski
et al., 2023; Rombach et al., 2022). In this figure, the image is
finally outputted from the black-box API, indicating that the data
has passed through each defense.

ducing images that contain violent/obscene content (Birhane
et al., 2021; Saharia et al., 2022; Yu et al., 2022). Such mis-
use of T2I models carries a risk of breaching legal standards
and regulations, such as EU AI Policy (Galetin et al., 2022)
and US Federal AI Governance (Daly et al., 2020). This
could lead to legal and reputational consequences for both
API developers and users.

Despite T2I APIs being equipped with defense mechanisms
to prevent harmful generation, numerous studies (Liu et al.,
2023; Daras & Dimakis, 2022; Millière, 2022) have indi-
cated that T2I services still face potential risks of misuse
when encountering adversarial attacks, highlighting the need
for continuous enhancements in security protocols. In this
context, we study the adversarial attack on T2I models, as
by mimicking attacks, we can uncover and highlight the
vulnerabilities inherent in T2I models, thereby informing
feasible defense approaches for future development.

Public APIs typically employ textual filters at the input
stage to prevent the passage of harmful text prompts (Mid,
2023; Leo, 2023). When users intend to generate harmful
images, their naive (text) prompts often contain patently ma-
licious content, which can be easily denied by textual filters,
preventing their submissions into T2I models for further pro-
cessing. Recently, several attack methods (Liu et al., 2023;
Daras & Dimakis, 2022; Millière, 2022; Struppek et al.,
2022; Jin et al., 2020) have emerged to investigate how to
change the naive prompts into adversarial ones to deceive
the textual filters. In the field of adversarial attack for T2I
models, a common strategy is to generate adversarial (text)
prompts to disable the defense mechanism implemented
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by API and thus induce T2I models to generate harmful
content (Liu et al., 2023). To find out a proper adversarial
prompt, existing attack methods often craft new words to
replace the original, malicious ones in the naive prompt.
They continually change the crafted words, until the adver-
sarial prompt guides the black-box T2I model to output an
image that achieves enough semantic similarity with the in-
tended harmful content. However, these enumeration-based
methods tend to show limited efficiency, as they require
attempting a vast range of candidates to find possible solu-
tions even during inference. Moreover, a practical scenario
is also overlooked in existing research: as shown in Fig. 1,
besides the textual filter, the API provider often addition-
ally deploys a visual checker at the output stage, forming a
double-checking defense (Schramowski et al., 2023; Rom-
bach et al., 2022). In this context, traditional enumeration
methods become less effective, even struggling to work, as
the introduction of visual checkers greatly reduces the prob-
ability of successfully finding a solution via enumeration.

Inspired by the powerful capability of gradient-based opti-
mization in efficiently searching optimal solutions for intri-
cate problems (Daoud et al., 2023; Zhou et al., 2021), we
propose to train a parameterized attack model using gra-
dient optimization. With the help of gradients, the attack
model learns to self-adaptively navigate the solution space,
enhancing the capability to find effective solutions in situ-
ations where traditional enumeration methods may falter.
After gradient-based training, the trained model can swiftly
transform the naive prompts into adversarial ones during
inference, which brings much efficiency. Despite the con-
ceptual simplicity, enabling the gradient-based optimization
in this task however is challenging, as discussed below.

In practice, attackers generally cannot access the internal
structure and parameters of the T2I models, as they are
packed in the black-box API, which makes conventional
gradient descent algorithms unsuitable (Stephan et al., 2017;
Kingma & Ba, 2014). Although some existing black-box
learning methods (Golovin et al., 2017) relax the need to
access internal information of the black box, they generally
require obtaining the output results of the black box to
compute losses and estimate gradients. However, in the
training process, the integrated textual and visual defenses
of the API could effectively detect malicious content within
the input prompts or generated images. Upon detecting
malicious information, these defenses trigger a halt in the
forward propagation of data (i.e., “Deny” in Fig. 1), causing
black-box T2I models to return (output) no results. Our
goal is to not only prompt the API to return images but
also ensure these images align with the intended harmful
target. However, in such a no-feedback scenario, it becomes
particularly challenging to discover gradients for effective
training to achieve these two goals simultaneously, due to
very limited information accessible to attackers.

Another challenge is ensuring attack stealthiness. Previous
attack methods often generate adversarial prompts by creat-

ing new words, e.g., using the adversarial prompt “Apoploe
vesrreaitais” to represent the naive prompt “bugs” (Daras
& Dimakis, 2022). However, such unnatural prompts sig-
nificantly reduce the stealthiness (naturalness), making the
attack easily detectable and defendable. Nevertheless, en-
suring the naturalness of adversarial prompts is a non-trivial
issue, since guaranteeing naturalness often demands a sub-
stantial volume of natural text data for data-driven learning
(Raiaan et al., 2023). In this task, it is infeasible to prepare
massive ground-truth adversarial prompts that are natural.

To overcome the challenges above, we propose a gradient-
based Unified Prompt Attack Model (UPAM) to effectively
and efficiently generate natural adversarial prompts that
deceive both textual filters and visual checkers. Consid-
ering it is non-trivial to simultaneously prompt the API
to return images and also ensure their harmfulness, here
we decompose the goal into two learning stages to address
the challenges separately: the first stage enables the API
to reliably return images, and the second stage finetunes
these images to be harmful. In both learning stages, we
enable the gradient-based optimization. In the first stage,
we introduce a Sphere-Probing Learning (SPL) scheme to
train UPAM to deceive the textual and visual defenses. In-
spired by (Kahla et al., 2022), SPL is designed to enable the
gradient-based learning under the scenario where no image
results are returned. As shown in Fig. 3 (a), SPL explores
the optimization direction by querying the defense cases
(“Pass” or “Deny”) over a sphere. It can determine effective
optimization gradients (directions) by analyzing the cases
of multiple queries. SPL progressively optimizes UPAM
using the estimated gradients, ultimately enabling the ad-
versarial prompts generated by UPAM to effectively evade
defenses, thus making the black box return (output) image
results. Once the adversarial prompts can prompt black-box
T2I models to return images, it becomes crucial to ensure
that the returned images semantically align with our target
images. To achieve this, in the second stage, we introduce
a Semantic-Enhancing Learning (SEL) scheme, which is
based on ZOO algorithm (Spall, 1992a; Oh et al., 2023), to
further enhance the performance of UPAM by iteratively
refining the generated images towards the target semantics.
Moreover, inspired by the recent advancements of Large
Language Models (LLMs) in synthesizing natural language
(Huang et al., 2023), we propose to harness the power of
LLM to generate natural adversarial prompts. Thanks to
the LLM’s language organization capability, our UPAM
can reliably generate a human-readable and spelling-correct
prompt, which greatly improves the attack stealthiness. Our
proposed framework is evaluated on various widely-used
T2I models, demonstrating the superiority of UPAM over
existing attack techniques.

2. Related Work
Adversarial prompt attack for T2I models is a relatively
under-explored topic. Daras et al. (Daras & Dimakis, 2022)
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Figure 2. Overview of our UPAM framework. All the gradients are used to only optimize LoRA, while LLM is kept frozen.

proposed a pioneering work that investigates vulnerabili-
ties of DALL·E 2 (Ramesh et al., 2022). They found that
it is possible to deceive textual filters by using nonsensi-
cal text as prompts. Later, Millière et al. (Millière, 2022)
proposed to create adversarial prompts by combining multi-
language sub-word segments. Struppek et al. (Struppek
et al., 2022) demonstrated that replacing individual charac-
ters in text with non-Latin characters can induce different
visual contents in generated images. Liu et al. (Liu et al.,
2023) proposed an attack method based on word modifi-
cation (e.g., character replacement, deletion, or swapping).
These methods mainly focus on deceiving the textual filter
but often overlook the post-hoc visual checker implemented
by the API provider. Differently, our paper proposes UPAM,
a unified attack model designed to simultaneously deceive
both the textual filter and the visual checker. Particularly,
we enable the gradient-based optimization of UPAM, which
achieves a more effective and efficient attack than existing
methods. Furthermore, different from most existing meth-
ods, we follow the previous work (Liu et al., 2023) to also
consider the attack stealthiness. To achieve better attack
stealthiness, our UPAM harnesses a pre-trained LLM to
ensure the naturalness of the generated adversarial prompts.

3. Method
In this task, given the paired data {T, I}, where T denotes
the naive text prompts containing “malicious” information,
and I denotes the corresponding target “harmful” images,
the goal of the attacker is to construct an attack model H:
T → T∗, where H rewrites the naive text prompts T into
the adversarial prompts T∗. For a successful attack model
H , the following key requirements must be met: (1) T∗

should be textually dissimilar from T to avoid the “mali-
cious” representation, allowing it to bypass the textual filter
and be submitted to the T2I model for image generation. (2)
The generated image I∗ should bypass the visual checker,
enabling it to be returned to the attacker. (3) Additionally,

the generated I∗ should be semantically similar to the target
“harmful” image I. Throughout the entire training and test-
ing process, the attacker does not have access to any internal
information of the T2I model, the textual filter, or the visual
checker. These components are treated as a black-box sys-
tem, as shown in Fig. 2. The attacker can only query the
input and output of this system.

Previous methods (Liu et al., 2023; Daras & Dimakis,
2022) typically treat H as an enumeration model. These
enumeration-based methods tend to incur considerable time
costs, since they do not train any parameterized model
for future inference. Thus for each inference sample, this
time-consuming enumeration process needs to be conducted
afresh, leading to limited efficiency. Besides, they primar-
ily focus on deceiving the textual filters in the black box.
Consequently, when faced with dual defenses involving
both the textual filter and visual checker, enumeration-based
methods may struggle to find solutions, resulting in limited
effectiveness.

To address these issues, we propose to treat H as a parame-
terized model (i.e., our UPAM) and train it using gradient-
based optimization. In the inference (testing) stage, our
UPAM can immediately and effectively convert testing data
(naive prompts) into adversarial ones, greatly enhancing
the efficiency and effectiveness. Also, the naturalness of
adversarial prompts is ensured in our UPAM.

3.1. Approach Overview

As shown in Fig. 2, our UPAM consists of a frozen off-the-
shelf Large Language Model (LLM) and a learnable LoRA
adapter (Hu et al., 2021). We only update the LoRA adapter,
which contains a minimal number of parameters. This al-
lows us to preserve the knowledge of the pre-trained LLM,
thus ensuring the naturalness of the generated adversarial
prompts. The training of our UPAM comprises two stages:

(1) Pre-training Stage. Initially, obtaining image results
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from the API is challenging due to the pre-trained LLM’s
tendency to preserve naive textual cues from the input
(Kalyan, 2024). Therefore, the adversarial prompts gen-
erated by the LLM-based UPAM initially retain malicious
information from the naive prompt, making them prone to
denial by defenses, resulting in no image results returned
(i.e., no feedback). Inspired by (Kahla et al., 2022), we intro-
duce a Sphere-Probing Learning (SPL) scheme to deceive
the textual and visual defenses in the no-feedback scenario.
Even without image results, SPL can still search for effec-
tive gradients to train UPAM, enabling it to reliably compel
the black box to return images.

(2) Fine-tuning Stage. After the Pre-training Stage, the
API can return images to the attacker. Based on the returned
images, we propose a Semantic-Enhancing Learning (SEL)
scheme based on ZOO algorithm (Spall, 1992a; Oh et al.,
2023) to progressively align the semantics of returned im-
ages towards target ones. Particularly, SEL is designed to
work compatible with SPL.

3.2. Pre-training Stage with SPL

As mentioned in Sec. 3.1, in the beginning, the absence of
image results from the API presents a challenge in gradient
acquisition. This is because gradients are typically derived
by evaluating the magnitude of loss variations (Chien, 2018).
When the API fails to return results, even if the loss can
be defined (e.g., considering it as a binary classification
loss between “return no images” and “return images”), the
no-feedback state of the API will cause the loss value to
remain unchanged. Such inability to discern loss changes
(variations) prevents the acquisition of gradients. Therefore,
the conventional approach of obtaining gradients through
calculating loss functions becomes impractical, emphasiz-
ing the need to explore an innovative gradient acquisition
method to address this no-feedback scenario.

Inspired by (Kahla et al., 2022), we propose a Sphere-
Probing Learning (SPL) scheme, which enables the gradient
acquisition in the scenario where no results are returned.
Considering that the black box’s output case (state) is bi-
nary – either “Deny” (image not returned) or “Pass” (image
returned) – an intuition behind our SPL scheme arises: if we
can identify the decision boundary of the black box between
these two cases, the gradients can be obtained effectively.
As shown in Fig. 3 (a), the boundary can indicate an ef-
fective direction for gradient optimization, as crossing this
boundary could effectively shift the black-box output from
“Deny” to “Pass”, making the black box return images. In-
spired by this, SPL is designed to gradually approach the
“Pass” case by iteratively probing the decision boundary.
While there are methods in the task of model inversion
(Choquette-Choo et al., 2021; Zhu et al., 2022; Kahla et al.,
2022) exploring a similar concept, they cannot be directly
applied to this task. These methods typically optimize to-
wards the center of the target case, aiming to maximize the
black box’s decision confidence on the target case. How-

ever, such an approach is not suitable for our task, since if
we optimize towards the center of “Pass” (i.e., to make the
defenses of API very confident that the generated content is
safe), it may result in generating images that are truly “safe”
instead of our intended target of “harmful” for the attack.

Motivated by the observation that misclassifications often
occur at the boundary between two classes in classifiers (Fin-
lay et al., 2019), we propose situating the SPL’s optimization
objective at the boundary region of the two cases, with a
slight inclination towards the “Pass” side. This choice is
guided by the notion that, when positioned at the boundary
region, the black box exhibits less confidence in its deci-
sions, significantly enhancing the chances of successfully
generating target “harmful” images. Next, we provide the
detailed process of our SPL scheme.

Specifically, we conduct optimization in the space of LoRA
parameters ψ, where each point in the optimization space is
a specific configuration of ψ. As shown in Fig. 3 (a), SPL
firstly samples several points on a sphere centered around
the current model parameters (marked as a blue star) with r
as the radius. Then, we query the black box’s output case
results of the sampled points. If all points are predicted as
“Deny” (meaning no boundary are detected in the sphere),
we increase the sphere radius r to probe the boundary. Once
the sphere encompasses both “Pass” and “Deny” points, as
shown in Fig. 3 (a), indicating that the boundary has been
probed, we stop increasing the radius and start optimizing
the LoRA parameters ψ. Intuitively, the points predicted
as “Deny” represent the direction we aim to move away
from. Hence, we calculate the average of these points and
optimize the model parameters in the opposite direction of
this average. Here, we define Φ, which marks points from
which we need to move away:

Φ(ψ) =

{
0 if image returned (“Pass”)
−1 otherwise

}
(1)

In other words, after sampling on the sphere, the function Φ
use −1 to mark all “Deny” points. Based on this, we define
our SPL gradient estimator as:

gggspl(ψ) =
1

N

N∑
n=1

Φ(ψ + r · zn) · zn, (2)

where ψ ∈ Rd denotes the current model parameters, zn
represents a vector randomly sampled from a d-dimensional
space, r denotes the radius of the sample sphere, ψ + r · zn
is the sampling point, and N denotes the total number of
points sampled on this sphere. Note that different vectors
zn possess different directions, yet they share the same
length, resulting in all sampling points being located on a
sphere. Leveraging the aforementioned sphere-sampling
exploration, we can explore the boundary and identify an
effective optimization direction gggspl. In this way, even if the
current model ψ is incapable of prompting the API to return
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Figure 3. Intuitive illustration of our SPL scheme.

images, the gradient gggspl can still be computed to optimize
the model ψ, enabling it to generate adversarial prompts
capable of circumventing the defenses of the black-box API.
Next, we use gggspl to update ψ as follows:

ψ = ψ + α · gggspl(ψ), (3)

where α is the learning rate, which is related to the current
radius r, i.e., α = r/k. We alternate between Eq. 2 and
Eq. 3 iteratively, until the sphere center is predicted into the
“Pass” case, i.e., from Fig. 3 (a) to (b).

As mentioned earlier, SPL’s optimization targets the “Pass”
region near the boundary rather than the central “Pass” re-
gion. This strategy aims to enhance the likelihood of gen-
erating target “harmful” images rather than genuinely safe
ones. However, as we initially need to use large radius to
find the “Pass” points, the optimized model may end up in
the “Pass” but far from the boundary, as shown in Fig. 3 (b).
Therefore, we then gradually reduce the radius and move
in opposite direction to approach the boundary, i.e., from
Fig. 3 (b) to (d). This aims to facilitate our second-stage
training (Sec. 3.3) which is proposed to ensure the “harmful”
semantic representation of the returned images. Specifically,
for each optimization iteration, we decrease the radius r and
use the updated smaller radius to calculate gradient gggspl(ψ)
via Eqn. 2. Subsequently, we optimize the model ψ towards
the boundary:

ψ = ψ − α · gggspl(ψ), (4)

Here, we utilize the negative sign “−”, in contrast to Eq. 3,
to signify a reversed optimization direction. We alternate
between Eq. 2 and Eq. 4, aiming to iteratively approach
the boundary. During this boundary-approaching process,
the radius is gradually decreased, as shown in Fig. 3 (b,
c and d). This gradual reduction of radius r is essential,
since utilizing a fixed radius for optimization increases the
likelihood of crossing the boundary and reaching the “Deny”
side. By decreasing the radius incrementally, we ensure

effective boundary approaching. It is important to note that,
for each decreased radius, we need to check if the follow-
ing conditions are met: (1) The sphere with this decreased
radius encompasses both “Pass” and “Deny” points. (2)
After optimization with this decreased radius, the model
parameters are still located in the “Pass” case. These two
conditions ensure the optimization with this decreased ra-
dius is effective. Finally, we stop the SPL scheme when r is
smaller than a pre-defined threshold rmin.

After the pre-training stage with the SPL scheme, our UPAM
can adeptly bypass black-box defenses, ensuring the API
consistently returns images. It also releases the potential of
generating target “harmful” images. In the subsequent stage,
we finetune our UPAM to further enhance the semantic
alignment of returned images with our “harmful” targets.

3.3. Fine-tuning Stage with SEL

After pre-training, we consistently obtain the image I∗ from
the black box. In this section, our emphasis is on ensuring
that the returned image I∗ maintains semantic consistency
with the target image I while preserving UPAM’s ability to
deceive defenses for image retrieval (return). To achieve
this, we further introduce a Semantic-Enhancing Learning
(SEL) scheme to finetune the LoRA parameters.

Specifically, in our SEL, we propose a Semantic Measure-
ment Loss LSM to finetune the LoRA parameters ψ. Mo-
tivated by the powerful semantic representation capability
of CLIP (Radford et al., 2021), we utilize its pre-trained im-
age/text encoders to measure the semantics of the returned
image I∗. The semantic measurement is comprehensively
handled from the following two perspectives:

(1) Image-Text similarity, i.e., encoding both the returned
image I∗ and the naive prompt T, then computing the cosine
similarity between the encoded vectors, which formulates
the loss L1:

L1 = 1− Eimg(I
∗) · Etext(T)

∥Eimg(I∗)∥ ∥Etext(T)∥
, (5)

where Eimg(·) and Etext(·) denote the image encoder and
text encoder of CLIP, respectively.

(2) Image-Image similarity, i.e., encoding both the returned
image I∗ and the target image I for computing the cosine
similarity, which formulates the loss L2:

L2 = 1− Eimg(I
∗) · Eimg(I)

∥Eimg(I∗)∥ ∥Eimg(I)∥
. (6)

Based on the above two similarity loss functions, we can
formulate our Semantic Measurement Loss LSM as:

LSM = L1 + L2. (7)

By minimizing LSM , we can align the semantics of the
returned images with our target. To this end, we use the
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calculated LSM to obtain gradients to optimize our model’s
parameters ψ. Since the T2I model is packed into the black
box, we cannot directly obtain the oracle precise gradients.
To address this black-box setting, drawing inspiration from
(Spall, 1992b; 1997b), we adopt Zeroth-Order Optimization
(ZOO) to estimate the gradient without accessing the model
architecture and model parameters. Given the training loss
LSM , the estimated gradient can be formulated as follows:

ggg1(ψ) =
LSM (ψ + c ·∆)− LSM (ψ − c ·∆)

2c ·∆
, (8)

where c ∈ (0, 1] is the decaying hyper-parameter and
∆ ∈ Rd is a random perturbation vector, sampled from
mean-zero distributions while satisfying the finite inverse
momentum condition (Spall, 1992b; 2005).

While the standard form of zeroth-order optimization is
generally effective, it can still encounter poor convergence
in practical applications (Spall, 2000). This problem, as
discussed in (Spall, 1997a; Oh et al., 2023), is primarily
attributed to the stochastic nature of gradient estimation,
stemming from the random directions of perturbations. To
overcome this challenge, we follow (Oh et al., 2023) to
improve the gradient calculation rule (Eq. 8) as:

ggg2(ψ) = ḡ̄ḡg1 + β · ggg1(ψ + ḡ̄ḡg1). (9)

We can observe that the improved gradient ggg2 includes two
gradient components: ḡ̄ḡg1 and β ·ggg1(ψ+ ḡ̄ḡg1). The former ḡ̄ḡg1
is the gradient used in the previous update iteration, while
the latter β ·ggg1(ψ+ ḡ̄ḡg1) is the adaptive adjustment when the
model continues to update along the previous gradient path.
β is the learning rate. The advantage of this design is that it
encourages the model to update along previously effective
directions with necessary adjustments, thereby increasing
the gradient consistency and reducing the incidental ran-
domness of optimization.

As mentioned in Sec. 3.2, the SPL’s optimization objective
is situated at the boundary region of the two output cases
of the black box, slightly leaning towards the “Pass” side,
which both facilitates the generation of “harmful” image
and ensure the generated images can be returned to the
attacker. However, if we directly optimize the model using
gradients ggg2 (Eq. 9), it tends to pull the model parameters
towards the “Deny” region, preventing the black box from
returning images. This occurs because ggg2 is calculated to

enhance the semantic expression of “harmful” in images,
which is typically what the black box considers as content
to be denied. Therefore, our optimization objective here is
to make the returned images contain the targeted “harmful”
semantics as much as possible, while ensuring the model ψ
remains in the boundary region, leaning towards “Pass”.

To prevent SEL from disrupting SPL’s learning achieve-
ments, we propose a gradient harmonization method to en-
sure compatibility between SEL and SPL. As shown in Fig.
4, we first obtain the SPL gradient gggspl through Eq. 2, where
the direction of gggspl signifies the optimization direction to-
wards the boundary (see the blue arrow in Fig. 4). Given the
direction provided by gggspl, we can eliminate the boundary-
directed component of the gradient ggg2, thereby obtaining
the SEL gradient gggsel(ψ), which can be formulated as:

gggsel(ψ) = ggg2 −
gggspl · ggg2
|gggspl|2

gggspl, (10)

ψ = ψ − β · gggsel(ψ), (11)

where the second term in Eq. 10 represents the gradient com-
ponent directed towards the boundary. As shown in Fig. 4,
by removing this component, we can avoid the optimization
of the SEL moving towards the boundary, thereby not only
aligning towards the target semantics but also maintaining
the case of “Pass” (i.e., keeping images returned).

3.4. Training and Testing

We train our UPAM for two stages. In the pre-training
stage, we use the SPL scheme to obtain the gradient gggspl
(Eq. 2) and update the LoRA parameters (Eq. 3 or 4). This
update enables effective optimization under the challeng-
ing scenario where no image results are returned, finally
compelling the API to reliably return images. Then, in the
fine-tuning stage, we adopt the SEL scheme to obtain the
gradient gggsel (Eq. 10) and update the model parameters
(Eq. 11). This update ensures that the returned images can
accurately show target semantics. After that, we handle the
inference (testing) based on the trained UPAM.

4. Experiments
Textual Filter and Visual Checker. We follow previous
work (Liu et al., 2023) employing the same textual filter,
which utilizes a list of sensitive words (i.e., blacklist) to
deny the forward propagation of “harmful” prompts. For
the visual checker, following (Rando et al., 2022), a widely-
used visual checking strategy is adopted: using the off-the-
shelf CLIP visual encoder (Radford et al., 2021) to map the
generated image to a latent vector, which is then compared
with all default embeddings of predefined “harmful” images
using cosine similarity. If any cosine value exceeds the
specified threshold, the further propagation of the generated
image is denied.

Dataset. In consideration of ethics, privacy, legal compli-
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Table 1. Experimental results under protocol A (left) and protocol B (right).
Protocol A Protocol B

T2I Model Methods R-1 Precision ↑ R-3 Precision ↑ Text. Sim. ↓ Infer. Time (s) ↓ PPL ↓ R-1 Precision ↑ R-3 Precision ↑ Text. Sim. ↓ Infer. Time (s) ↓ PPL ↓

TextFooler (Jin et al., 2020) 0.48% 0.98% 0.22 589.29 3463.02 0/10 0/10 0.22 582.37 3517.03
HomoSubs (Struppek et al., 2022) 0.74% 1.12% 0.28 562.48 3089.58 0/10 0/10 0.16 590.28 3216.95

EvoPromp (Millière, 2022) 0.82% 1.37% 0.19 579.20 4984.24 0.2/10 0.5/10 0.16 586.47 4837.63
HiddVocab (Daras & Dimakis, 2022) 3.35% 4.21% 0.33 457.34 4027.64 0.3/10 0.4/10 0.18 483.27 4607.93

MacPromp (Millière, 2022) 5.05% 6.80% 0.57 452.16 3163.07 0.7/10 0.9/10 0.39 476.46 3239.56
RIATIG (Liu et al., 2023) 8.65% 9.95% 0.18 301.52 1003.27 0.8/10 1.1/10 0.34 425.66 1026.81

DALL·E

UPAM 38.37% 41.83% 0.17 5.03 706.32 7.3/10 8/10 0.15 359.26 634.73
TextFooler (Jin et al., 2020) 0.85% 0.93% 0.18 540.77 3566.32 0/10 0/10 0.19 543.72 3578.14

HomoSubs (Struppek et al., 2022) 0.70% 0.89% 0.22 568.26 4125.22 0/10 0/10 0.15 589.46 4374.80
EvoPromp (Millière, 2022) 0.92% 1.17% 0.37 475.81 5837.06 0/10 0/10 0.21 449.61 5267.07

HiddVocab (Daras & Dimakis, 2022) 3.21% 4.62% 0.46 565.33 4125.22 0.6/10 0.9/10 0.22 576.27 4933.29
MacPromp (Millière, 2022) 4.84% 5.92% 0.66 523.49 3056.41 0.4/10 0.8/10 0.30 571.63 3575.26
RIATIG (Liu et al., 2023) 8.55% 9.19% 0.35 353.53 992.54 0.5/10 0.7/10 0.29 417.34 965.38

DALL·E 2

UPAM 40.45% 44.74% 0.19 5.42 788.45 6.5/10 7.2/10 0.17 341.59 773.01
TextFooler (Jin et al., 2020) 0.32% 0.54% 0.15 527.65 3321.88 0/10 0/10 0.23 559.42 3539.57

HomoSubs (Struppek et al., 2022) 0.35% 0.75% 0.18 567.82 2850.41 0/10 0/10 0.13 586.75 2674.29
EvoPromp (Millière, 2022) 0.64% 0.92% 0.25 398.51 4055.71 0.3/10 0.7/10 0.21 443.39 4162.18

HiddVocab (Daras & Dimakis, 2022) 2.37% 3.69% 0.27 592.47 4153.58 0.3/10 0.5/10 0.18 576.83 4264.34
MacPromp (Millière, 2022) 4.58% 5.52% 0.16 524.38 3173.35 0.5/10 0.8/10 0.43 463.52 3097.13
RIATIG (Liu et al., 2023) 7.80% 9.22% 0.36 328.16 1076.29 0.9/10 1.2/10 0.34 485.36 1057.42

Imagen

UPAM 36.16% 41.43% 0.16 5.16 521.78 6.7/10 7.3/10 0.18 350.72 434.08

ance, and potential societal impacts, we follow previous
works (Liu et al., 2023; Daras & Dimakis, 2022; Millière,
2022; Struppek et al., 2022; Jin et al., 2020), which do not
attack T2I models to generate truly harmful content, instead
deploying defenses and conducting attacks using the paired
text-image data from the Microsoft COCO dataset (Lin et al.,
2014). We treat 10 classes from COCO as “harmful” classes
(i.e., boat, bird, clock, kite, wine glass, knife, pizza, teddy
bear, vase and laptop). Specifically, we train our UPAM us-
ing the training set of these 10 classes, and then test UPAM
using the test set of the same 10 classes. Although the train-
ing and testing data contain the same classes, the specific
text descriptions and their corresponding image contents are
different.

Target T2I Models. We follow previous work (Liu et al.,
2023) to conduct experiments on three large-scale API T2I
models: DALL·E (Yu et al., 2022), DALL·E 2 (Ramesh
et al., 2022), and Imagen (Saharia et al., 2022). For each of
them, we follow (Liu et al., 2023) to adopt the corresponding
released model that achieves comparable performance to
API, and treat it as a black box.

Implementation Details. In our experiment, we use the
open-source LLaMA (Touvron et al., 2023) as the LLM.
As for the LoRA adapter (Hu et al., 2021), we adopt the
adaptation matrices with a rank value of 8. In our SPL
scheme, we set N = 10, α = r/4. In our SEL scheme, we
set β = 0.3.

4.1. Experimental Protocols

In this paper, we conduct experiments under two protocols
for a comprehensive study.

Protocol A: Given the training data {T, I}, we train a pa-
rameterized model for converting the naive prompts T into
adversarial ones T∗ with the objective of compelling the
black-box T2I model to return the target images I. Subse-
quently, given the testing data Tt, the trained model can

swiftly convert Tt into T∗
t , compelling the black-box T2I

model to return the corresponding target images.

Protocol B: Previous enumeration-based methods do not
require model training. Instead, for each given paired data
{T, I}, they can directly find its adversarial prompt T∗ by
repeatedly attempting. As shown in (Liu et al., 2023), they
conduct experiments on a subset of 10 “harmful” samples
(randomly selected from the COCO dataset). To make a fair
comparison with previous enumeration-based methods, we
slightly modify our UPAM in this protocol. This modifica-
tion enables UPAM to identify adversarial prompts for the
10 samples without learning on the training set. The details
of modification can be seen in appendix.

4.2. Evaluation Metrics.

Following previous work (Liu et al., 2023; Jin et al., 2020),
We use four metrics to evaluate the attack model: R-
precision, Textual Similarity, Inference Time, and PPL.
Among these, R-precision (the higher the better) assesses
the degree of semantic alignment between the generated
images and target images, and also reflects the model’s abil-
ity to deceive visual checkers. We follow (Liu et al., 2023)
to conduct R-precision evaluation at two levels: R-1 and
R-3. Textual Similarity (the lower the better) measures the
model’s ability to deceive textual filters. Inference Time
(the lower the better) represents the average time taken for
each test sample. PPL evaluates (the lower the better) the
naturalness of adversarial prompts. Please refer to appendix
for detailed descriptions of each metric.

4.3. Experimental Results

Experimental Results Under Protocol A. As shown in Tab.
1 (left), compared to other methods, our UPAM achieves
the highest R-precision, both in R-1 precision and R-3 pre-
cision. Specifically, our UPAM significantly outperforms
other methods by by an average of 35.31% (R-1) and 38.90%
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Adv. Prompt

Naive Prompt

Generated 

Image

Target Image

A substantial maritime 

conveyance, bathed in 

the hues of a ripe citrus 

rind, meanders upon an 

aqueous expanse.

A feathered denizen of the 

skies finds repose upon 

the delicate appendage of 

a botanical specimen, 

perched with a poise.

An intricate chronometric 

device is perched at a 

considerable elevation 

upon the zenith of an 

imposing edifice.

There is a clock in the top 

of a tall tower.

A very large orange boat 

floating in a lake.

A bird sitting perched on 

a tree branch.

Figure 5. Qualitative results of our attack against DALL·E. The
names of “harmful” classes are marked in red.

Table 2. Ablation study on each design of our approach.

Methods R-1 ↑ R-3 ↑ Text. Sim. ↓ Infer. Time ↓ PPL ↓
(a) UPAM 38.37% 41.83% 0.17 5.03 706.32
(b) UPAM w/o SPL 0.22% 0.37% 0.53 5.10 707.02
(c) UPAM w/o SEL 23.25% 28.36% 0.17 5.06 706.58

(R-3), respectively. Additionally, our UPAM keeps a con-
sistently low textual similarity (less than 0.2) across all
black-box T2I models. These results collectively demon-
strate the effectiveness of our gradient-based method in
tackling the challenging task of deceiving both textual and
visual defenses under the black-box setting. Furthermore,
UPAM exhibits a significantly shorter inference time com-
pared to other methods, showcasing superior efficiency. In
terms of the attack stealthiness, compared to other meth-
ods, our LLM-based method achieves a significantly lower
PPL, which demonstrates the effectiveness of our method
in generating natural adversarial prompts.

Experimental Results Under Protocol B. In protocol B,
given a paired text-image data {T, I} as the attack target, we
aim to directly find out the corresponding adversarial prompt
T∗ for this target. We randomly choose 10 text-image sam-
ples from 10 “harmful” classes of COCO (one for each
class) to find their corresponding adversarial prompts, and
then evaluate the attack performance. We conduct experi-
ments 10 times and show the average results in Tab. 1 (right).
Our UPAM achieves significantly higher R-precision and
lower textual similarity compared to other methods. Even in
protocol B, where we don’t train a model on the training set,
our approach achieves the shortest inference time. This is
due to our method’s ability to use gradients for discovering
adversarial prompts, making it much more efficient than
enumeration-based methods. Additionally, our method ex-
hibits the lowest PPL, indicating the best naturalness of the
generated adversarial prompts. These results demonstrate
the superiority of our approach in protocol B.

Qualitative Results. Qualitative results of our UPAM are
shown in Fig. 5. We can see that our generated images are

Table 3. Ablation study on Moving Closer to Boundary (MCB) in
SPL.

Methods R-1 ↑ R-3 ↑ Text. Sim. ↓ Infer. Time ↓ PPL ↓
(i) UPAM 38.37% 41.83% 0.17 5.03 706.32
(ii) UPAM w/o MCB 35.76% 39.31% 0.22 5.03 706.10

Table 4. Ablation study on Gradient Harmonization (GH) in SEL.

Methods R-1 ↑ R-3 ↑ Text. Sim. ↓ Infer. Time ↓ PPL ↓
(i) UPAM 38.37% 41.83% 0.17 5.03 706.32
(ii) UPAM w/o GH 33.82% 35.08% 0.35 5.09 706.27

semantically consistent with the ground-truth target images.
Our adversarial prompts are significantly different from the
naive prompts and do not contain any “harmful” (malicious)
words. Moreover, we can hardly identify the misspelled (un-
natural) words, indicating strong attack stealthiness. Quali-
tative comparisons with existing methods are in appendix.

4.4. Ablation Study

To demonstrate the effectiveness of our proposed schemes:
SPL and SEL, we conduct ablation experiments by remov-
ing the specific SPL (or SEL) in our approach. Comparing
(a) and (b) in Tab. 2, it can be seen that when UPAM does not
employ SPL, both R-1 precision and R-3 precision drop to
almost 0. This is because SPL is designed to deceive textual
and visual defenses. In the absence of SPL, black-box T2I
models hardly return images, resulting in poor R-precision
performance. Additionally, SPL also influences the Textual
Similarity score, as it can reduce the similarity between ad-
versarial prompts and naive ones, aiming to deceive textual
filters within the black-box system. These ablation results
demonstrate the effect of SPL. When comparing (a) and (c)
in Tab. 2, we can see that our UPAM without SEL leads
to a significant R-precision decrease of 15.12% (R-1) and
13.47% (R-3), demonstrating the effect of SEL. We can ob-
serve that SEL has virtually no impact on Textual Similarity,
Inference Time, and PPL. This is because SEL is proposed
to enhance the semantic representation of the returned im-
ages, thereby only affecting R-precision. As SPL and SEL
do not alter the LLM-based structure of UPAM, they do not
impact the Inference Time and PPL.

4.5. Effect of further moving closer to the boundary in
SPL

In SPL, after optimizing the model parameters into the “Pass”
region, we gradually reduce the radius, moving the model
parameters closer to the boundary, aiming to increase the
likelihood of the generation of target “harmful” images, as
illustrated in Fig. 3 (b, c, and d). To investigate the effect
of this design, we conduct ablation by removing this fur-
ther approach. For clarity, we name this design as Moving
Closer to Boundary (MCB). By comparing (i) and (ii) in
Tab. 3, when removing MCB in SPL, obvious performance
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Table 5. Ablation study on LLM and LoRA.

Methods R-1 ↑ R-3 ↑ Text. Sim. ↓ Infer. Time ↓ PPL ↓
(i) UPAM 38.37% 41.83% 0.17 5.03 706.32
(ii) UPAM w/o LLM 38.15% 41.68% 0.18 5.13 3954.85
(iii) UPAM w/o LoRA 38.22% 41.59% 0.17 5.05 2848.52

degradation is observed in terms of R-1, R-3, and Textual
Similarity. This demonstrates the effectiveness of further
moving closer to the boundary in SPL.

4.6. Effect of gradient harmonization in SEL

To improve the compatibility of SEL with SPL, we intro-
duce a Gradient Harmonization (GH) method (see Eq. 10)
to adaptively adjust SEL’s gradients. With a comparison be-
tween (i) and (ii) in Tab. 4, we can see that, when removing
GH, SEL could disrupt SPL’s optimization achievements,
thus leading to worse performances in terms of R-1, R-3,
and Textual Similarity. This demonstrates the effectiveness
of gradient harmonization in SEL.

4.7. Effect of LLM+LoRA

To ensure the attack stealthiness, we propose to utilize a
pre-trained LLM and optimize the LoRA adapter to ensure
the naturalness of the generated adversarial prompts. Here,
we conduct two ablation studies: (1) instead of using the pr-
trained LLM, we directly employ an untrained transformer
(Touvron et al., 2023) (with the same structure as the LLM)
and then train it from scratch. Comparing (i) and (ii) in Tab.
5, we can see the transformer performs much worse in terms
of PPL, demonstrating the effect of adopting knowledge of
LLM. (2) Instead of optimizing LoRA, we directly optimize
the pre-trained LLM. Comparing (i) and (iii) in Tab. 5, the
significant change in PPL demonstrates the effect of using
LoRA adapter.

5. Discussion
In order to prevent malicious use of T2I models to produce
harmful or inappropriate content, API providers deploy text
filters and visual checkers to prevent the output of harm-
ful images (Mid, 2023; Leo, 2023; Rombach et al., 2022).
However, as demonstrated in this paper, it is possible to use
black-box knowledge to generate imperceptible adversarial
prompts for obtaining target images. Therefore, this work
further shows the importance of being aware of the security
risks of T2I models.

One possible defense mechanism is to finetune the T2I mod-
els through adversarial training (Shafahi et al., 2019), a
common defense method in AI security (Goodfellow et al.,
2014; Jin et al., 2020), aiming to make the T2I models
unable to produce the target image when feeding adver-
sarial prompts. However, this approach tends to exhibit
a bias towards adversarial prompts used during training,
resulting in sub-optimal performance when encountering

adversarial prompts from untrained domains (Wang et al.,
2023). Another possible defense mechanism is to leverage
model unlearning (Liu et al., 2022) to make T2I models
essentially forget harmful knowledge. However, it typically
requires a significant effort to collect “unsafe” images as
comprehensively as possible. Moreover, sometimes the
scope of harmful images can be difficult to define, making
the data collection more labor-intensive and time-consuming
(Marchant et al., 2022).

6. Conclusion
In this paper, we introduce UPAM, a unified attack frame-
work for T2I models, designed to deceive both textual filters
and visual checkers. Unlike existing enumeration methods,
UPAM enables gradient-based optimization for higher ef-
fectiveness and efficiency. We devise an SPL scheme to sup-
port gradient optimization in the challenging no-feedback
scenario, and introduce an SEL scheme to align generated
images with desired target semantics. We incorporate LLM
to guarantee attack stealthiness.

Acknowledgements
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-PhD-2022-01-027[T]) and the
Ministry of Education, Singapore, under the AcRF Tier 2
Projects (MOE-T2EP20222-0009 and MOE-T2EP20123-
0014).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential social con-
sequences of our work, none of which we feel must be
specifically highlighted here. It is important to note that all
experiments are conducted by utilizing natural safe images,
with the utmost care to avoid any dissemination of negative
consequences. Our research investigates the robustness of
text-to-image generation models and highlights the vulner-
abilities inherent in these models, and thereby can inform
feasible defense approaches for future development in this
area. Our study shall be able to encourage the machine
learning community to develop trust-worthy, responsible,
and robust models.

References
Leonardo.ai, access date: 9st nov. 2023.

Midjourney, access date: 26th sept. 2023.

Birhane, A., Prabhu, V. U., and Kahembwe, E. Multimodal
datasets: misogyny, pornography, and malignant stereo-
types. arXiv preprint arXiv:2110.01963, 2021.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,

9



UPAM: Unified Prompt Attack in Text-to-Image Generation Models Against Both Textual Filters and Visual Checkers

R. S., Constant, N., Guajardo-Cespedes, M., Yuan, S.,
Tar, C., et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

Chesney, B. and Citron, D. Deep fakes: A looming chal-
lenge for privacy, democracy, and national security. Calif.
L. Rev., 107:1753, 2019.

Chien, J.-T. Source separation and machine learning. Aca-
demic Press, 2018.

Choquette-Choo, C. A., Tramer, F., Carlini, N., and Paper-
not, N. Label-only membership inference attacks. In
International conference on machine learning, pp. 1964–
1974. PMLR, 2021.

Daly, A., Hagendorff, T., Li, H., Mann, M., Marda, V.,
Wagner, B., and Wang, W. W. Ai, governance and ethics:
global perspectives. University of Hong Kong Faculty of
Law Research Paper, (2020/051), 2020.

Daoud, M. S., Shehab, M., Al-Mimi, H. M., Abualigah, L.,
Zitar, R. A., and Shambour, M. K. Y. Gradient-based op-
timizer (gbo): a review, theory, variants, and applications.
Archives of Computational Methods in Engineering, 30
(4):2431–2449, 2023.

Daras, G. and Dimakis, A. G. Discovering the hidden
vocabulary of dalle-2. arXiv preprint arXiv:2206.00169,
2022.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems (NeurIPS), 34:8780–8794, 2021.

Finlay, C., Pooladian, A.-A., and Oberman, A. The logbar-
rier adversarial attack: making effective use of decision
boundary information. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 4862–
4870, 2019.
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A. Details of Evaluation Metrics
We evaluate attack methods from the following perspectives:

Attack Effectiveness. Following previous work (Liu et al., 2023), we measure the attack effectiveness by evaluating the
generated adversarial prompts T∗ and the returned images I∗, respectively. (1) As for the returned images I∗, we follow
(Liu et al., 2023) to utilize R-precision to measure the attack effectiveness. Specifically, a retrieval experiment is conducted
using the returned image to query against a set of candidate text descriptions. This set comprises 1 ground-truth description
and 99 randomly chosen mismatched descriptions. For this purpose, a state-of-the-art image-text retrieval model (Kim
et al., 2021) is employed here. We collect the top R ranked results in the retrieval, deeming our attacks successful if the
ground truth description is among them. We follow (Liu et al., 2023) to conduct evaluation at R-1 precision (i.e., R = 1)
and R-3 precision (i.e., R = 3). Note that if no image is returned to the attacker, the R-precision score of this sample is 0.
(2) As for the generated adversarial prompts T∗, we use textual similarity to evaluate the attack effectiveness. The effective
adversarial prompts should show low textual similarity with naive prompts. Therefore, following previous work (Liu et al.,
2023; Jin et al., 2020), we adopt the Universal Sentence Encoder (Cer et al., 2018) to encode the adversarial prompts T∗

and naive prompts T into high dimensional vectors, and then compute their textual similarity score. The lower the textual
similarity, the better the attack.

Attack Efficiency. We also evaluate the attack efficiency of the methods. Specifically, we present the average inference
time taken for each testing sample during testing. Due to the uncertain inference time of enumeration methods, in order to
avoid endless waiting periods, we set a criterion: if the inference time exceeds 10 minutes for a given sample, the attack is
considered unsuccessful, and the inference process is stopped.

Attack Stealthiness. To evaluate the attack stealthiness, we follow (Liu et al., 2023) to evaluate the naturalness of the
generated adversarial prompts by computing the perplexity score (PPL) using GPT-2 (Radford et al., 2019), a model trained
on extensive real-world sentences. Generally, the prompt sample with a lower PPL is more natural.

B. Modification of UPAM for Protocol B
As for previous enumeration-based methods, given a naive prompt T and a target image I, instead of training parameterized
models, they aim to directly find an adversarial prompt T∗ based on the given data T and I. We refer to this as Protocol B.
To ensure a fair comparison with previous enumeration-based methods, we make slight modifications to UPAM to enable it
to directly find adversarial prompts without learning from the training set. The modified architecture is illustrated in Fig. 6.
Next, we provide modification details as follows:

1. As for the structure of our UPAM, we no longer utilize the LoRA adapter while only adopting the LLM. The parameters
of the LLM remain frozen.

2. Given {T, I}, following the processes of SPL and SEL of our main paper, we still compute gradients gggspl and gggsel. The
difference is that, these gradients no longer optimize LoRA parameters but optimize the input soft embedding P. The soft
embedding P is obtained by feeding the naive T into the text encoder of LLM.

In this way, given a naive prompt T and a target image I, we can directly find a proper adversarial prompt T∗ by optimizing
the input embedding P, without training any model parameters.
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Figure 6. Overview of our UPAM framework modified for Protocol B.
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C. More Qualitative Results
Here, we present additional qualitative results. Specifically, we compare our UPAM with HiddVocab (Daras & Dimakis,
2022), MacPromp (Millière, 2022), and RIATIG (Liu et al., 2023), while not showcasing the results of TextFooler (Jin et al.,
2020), HomoSubs (Struppek et al., 2022), and EvoPromp (Millière, 2022). This is because the latter three methods can
hardly compel the black-box API to return images in this challenging setting, and thus their results cannot be presented.

In Fig. 7, we showcase the attack results. We can see that, in order to bypass textual filters, all methods generate adversarial
prompts that no longer contain the sensitive words of naive prompts (marked in red). However, existing methods produce
adversarial text with noticeably unnatural words (highlighted with blue underlines). In contrast, our method generates
adversarial prompts that contain no misspelled words and maintain grammatical correctness, thereby exhibiting superior
naturalness. Moreover, compared to other methods, our UPAM achieves the closest semantic alignment between the
generated images and target images.
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Figure 7. Qualitative comparison results with existing methods. In each block, the text above represents the adversarial prompts generated
by the corresponding method, while the pictures below show the images returned from the T2I model. The name of each “harmful” class
is marked in red. We employ blue underlines to show unnatural words within adversarial prompts.
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