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ABSTRACT

Machine unlearning has emerged as a crucial area due to increasing privacy and
security concerns. However, most existing methods focus on batch unlearning,
processing requests in a batch manner, which is impractical for real-world scenar-
ios where unlearning requests can occur at any time. This paper explores a more
practical approach, i.e., sequential unlearning, where requests must be processed
instantly as they arise. We identify two main challenges with current methods
when applied to sequential unlearning, i.e., failure to ensure life-long forgetting,
and inefficiency in processing sequential requests. To overcome these challenges,
we propose a novel unlearning method tailored for sequential unlearning. Firstly,
we incorporate an additional life-long forgetting term into the unlearning objec-
tive, and transform risk maximization into minimization to stabilize optimization.
Secondly, we establish a source-free optimization by leveraging the loss bound
and model parameters. This approach not only avoids the considerable computa-
tional costs on retain set, but also eliminates the need for data from past unlearning
rounds. Extensive experiments on benchmark datasets demonstrate that our pro-
posed method 1) effectively ensures life-long forgetting, ii) maintains the model
functionality on the retain set, and iii) exhibits a significant efficiency advantage.

1 INTRODUCTION

Machine Learning (ML) models have demonstrated significant power, leading to widespread appli-
cation in various fields (Jumper et al., 2021; |OpenAl, 2023). However, concerns about privacy and
security have emerged in ML models. On the one hand, privacy regulations, e.g., right to be for-
gotten, mandate that models must be capable of withdrawing individual data upon request (Voigt &
Von dem Bussche, [2017)). On the other hand, the training data can sometimes contain inaccuracies,
harmful content, or biases (Mehrabi et al 2021)). In such cases, it becomes necessary to remove
this data to maintain integrity and fairness. These concerns have spurred increasing research into
Machine Unlearning (MU) (Bourtoule et al., 2021), where the goal is to enable models to forget
specific data (i.e., unlearning target) while retaining the overall model functionality.

Most existing studies on MU assume that all unlearning requests are processed simultaneously or
in batches. However, this approach is impractical for real-world applications, where unlearning is a
continuous task due to the ever-changing environment and the need to update data content regularly.
Consequently, current batch unlearning methods are not suitable for real-world scenarios. In this
paper, we focus on the problem of sequential unlearning, which processes a sequence of unlearning
requests instantly as they arise in each round. To ensure broad applicability, we assume that no prior
information about the requests is available to the unlearning algorithm.

Directly applying batch unlearning methods to sequential unlearning poses two significant chal-
lenges. Firstly, sequential unlearning necessitates life-long forgetting, which means ensuring that
the data forgotten in any past round remains forgotten throughout the entire sequence. This
requirement cannot be met by batch unlearning methods, which focus on unlearning in a sin-
gle round. As shown in Figure our empirical study demonstrates that data unlearned in
earlier rounds can be re-memorized in subsequent rounds. To make matters worse, once data
is unlearned, it is permanently deleted from both the model and the database. This means
that previously unlearned data cannot be reused to improve the quality of forgetting in subse-
quent rounds. Secondly, processing each sequential unlearning request individually is inefficient.
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To address these two challenges, we propose a novel unlearning method tailored for sequential un-
learning. Firstly, we incorporate a life-long forgetting term into the unlearning objective to ensure
the consistent forgetting of all past data throughout the following rounds. To stabilize the optimiza-
tion process, we further transform the loss maximization problem into the minimization problem
with pseudo labels. Secondly, we propose a source-free optimization scheme to eliminate the use of
both retain set and past unlearned data. As the retain set comprises a large portion of the training
data, the repeated computation on retain set in each round costs considerable overhead. Thus, our
proposed approach can significantly reduce the computational overhead. Moreover, this approach
satisfies the requirement of inaccessible past data. Specifically, our source-free approach utilizes a
derived loss bound and the model parameters in previous rounds for optimization. The main contri-
butions of this paper are summarized as follows:

* This paper studies the limitations of batch unlearning in real-world applications. We identify two
key challenges and introduce sequential unlearning to address them.

* To address the life-long forgetting challenge, we incorporate an additional term to ensure consis-
tent forgetting of all past data. We further transform this loss maximization term into minimization
to stabilize the optimization.

* To address the sequential inefficiency challenge, we propose a source-free optimization scheme
that avoids using both the retain set and past unlearned data.

* Extensive experiments on benchmark datasets show that our proposed method i) effectively en-
sures life-long forgetting, ii) maintains the model functionality on the retain set, and iii) exhibits
significant efficiency advantage.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

In the problem of sequential unlearning, the unlearning requests are raised in chronological order.
For conciseness and generality, we assume that the unlearning algorithm has no prior knowledge
about unlearning requests, such as the number of data points in each request, the distribution and
interdependence of data in requests, and the time intervals between rounds. Thus, the unlearning
algorithm treated all requests equally. The arrival time of each request is denoted as ¢-th round with
t € R™*. At the beginning of the unlearning process (i.e., when ¢t = 0), the forget set Fy = 0 (i.e.,
the set of data to be unlearned), while the retain set Ry (i.e., the set of remaining data) is the entire
training dataset. At this round, the original model is well-trained on the entire training dataset, de-
noted as fgo, where 6 represents the parameters. At subsequent ¢-th round, a new unlearning request
is received, which specifies the forget set F;. Each round of unlearning operates independently, with
previous unlearning requests being received and processed instantly. Consequently, the forget set
from prior rounds is removed from the dataset, rendering it inaccessible in subsequent rounds, and
its memory is considered forgotten. Note that this makes sequential unlearning different from batch
unlearning, presenting unique challenges in achieving effective unlearning. After the ¢-th round of
unlearning, the model parameters will be updated to 8%, and the prediction empirical loss of 8% given
data point (x, y) is denoted as £( fg: (), y).
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Figure 2: Overview of the sequential unlearning framework. At 7'-th round, we receive an unlearn-
ing request F, where the total training dataset is divided into three parts: the retrain set Rz, the
forget set Fr, and the combination of forget sets from past rounds (i.e., UZ:f F;). Among these
three parts, only Fr is available to us. With the help of Fr, we can compute V/¢L(6°) and ég
Furthermore, under the condition of the state ngg_l and the optimal model parameters 7 ~! from
the previous 7" — 1-th round, we sequentially update the state Vg% at the current 7'-th round, thereby
obtaining the optimal model parameters 87

2.2 UNLEARNING OBJECTIVE

Following the active unlearning approach (Cha et al., 2024} |Kurmanji et al., |2024), the unlearning
objective is maximizing the loss on the forget set while minimizing the loss on the retain set. Thus,
for sequential unlearning, at 7T'-th round, the objective of current unlearning can be formulated as a
bi-objective optimization problem:

meax Z g(f@(x)vy)7m01n Z g(fO(x)vy) (1)
(z,y)eFT (z,y)ERT
According to our empirical results in Figure [I] in the context of sequential unlearning, optimizing
Eq. cannot ensure life-long forgetting. In fact, the completeness of unlearning (the quality of
forgetting) achieved in previous rounds deteriorates in subsequent rounds.

To ensure life-long forgetting, we need to minimize the cumulative empirical risk in sequential
unlearning. Thus, Eq. (I)) can be reformulated as the following form:

max Y Ufe(x).y)+ Y U(fe(x),y), )

(z,y)€UL Ly (z,y)EFT

min > ((fo(x),y). (3)

(z,y)€ERT

However, this objective function cannot be directly optimized due to three main issues:

* Issue 1 (Unstable Optimization): For Eq. (Z), unlearning through maximizing the empirical
risk on forget set is not stable, as it fails to converge to a fixed solution. Thus, while it reduces
performance on the forget set (i.e., achieving unlearning), it may also significantly diminish the
overall utility of the model (Halimi et al.| 2022).

* Issue 2 (Data Inaccessibility): In the context of sequential unlearning, at 7'-th round, we cannot
access to the forget sets from previous rounds 1 to 7" — 1, thus making it impossible to directly
compute Eq. ().

* Issue 3 (Prohibitive Computation): Eq. (3) relies on the retain set. In the context of unlearning,
the size of retain set typically significantly exceeds that of the forget set, leading to consider-
able computational costs. Moreover, legal and regulatory constraints may further restrict frequent
access to the retain set in each round.

2.3 SOURCE-FREE SEQUENTIAL UNLEARNING FRAMEWORK

To address the aforementioned issues, we propose a source-free sequential unlearning framework.
For issue 1, we transform loss maximization into minimization by introducing pseudo labels. As
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shown in Figure [2] our proposed sequential unlearning framework requires only the use of current
forget set F}, being source-free regarding the previous forget sets Uf;%Fi and retrain set R;. There-
fore, our approach effectively addresses issues 2 and 3. In the remainder of this section, we describe
our proposed framework in details.

Issue 1. To address the unstable optimization, we avoid maximizing the model’s empirical risk on
the forget set. Instead, we create pseudo labels y and transform the problem into minimizing the
cross-entropy loss between the model’s output on the forget set and §. The method for selecting
pseudo-labels is not fixed; we will compare different selection strategies in subsequent experiments.
Therefore, we rewrite Eq. @]) as:

min Y fe(@).9)+ D Afe(w),9): &)
(z,y)EUI Ry (z,y)€Fr
To facilitate optimization, adhering to the setup of (Li et al., 2024), we further transform this

bi-objective problem into a single-objective problem through weighted addition. Let ¢%.(0) =

2 (eyyer, L fo(x), §) and 04,(0) = > (e.y)er, {(fo(z),y), the unlearning objective can be rewrit-
ten as:

T-1
min ) (5:(8) + (5(0) + alf(8), )
t=1

where « is a weight that controls the trade-off between unlearning completeness and model utility.

Issue 2. The objective of Eq. () is to find a 87 = argming 3, £4,(8) + (L(0) + al’(8).
However, since we cannot access the forget sets from the 1-st to 7'-th rounds, the direct calculation
of Eq. (3)) becomes infeasible. Following (Mirzadeh et al., [2020), we approximate each empirical
risk term in Eq. by second-order Taylor expansion. Taking ¢%.(67) as an example, it can be
approximated as

. . . 1 . . .
Cp(07) = L (0F) + (0 — 05) VIR (0%) + 505 - 0}) " V2U5(65) (0, — 67%)
A 1 A2
< lp(0F) + SAR67 - 0%, (©6)
where é} represents the optimal parameters that the model should satisfy for only unlearning the
forget set in ¢-th round (i.e., 6% = argmin ¢%.(0)), with A%, and A\, being the maximum eigen-
value of V2/%,(6%,) and V(% (0%) respectively (He et al.l 2015; Ghorbani et al.l 2019). Follwo-
ing (Koh & Liang, [2017; [Koh et al., 2019), since the optimal value is taken at point 8%, then we
have V/¢%.(6%.) ~ 0. Sum up the expanded items in Eq. , we can obtain:
T-1

Lp(07) =" 5(67) + (1(0]) + alf;(67)

t=1
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where A0 = max()\}p, )\%, R )\57 )\E). It is noted that the right-hand side of Eq. equationis a
quadratic term w.r.t. 87'; therefore, the weighted linear combination of 8%, and 0£ can be regarded
as an optimal choice for the upper bound of the target loss function L (81 in Eq. equation (7| as
shown in Eq. equation

o

T
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Assuming that the optimal model parameter 87 ! has been obtained at 7' — 1-th round, then based
on Eq. (8), the optimal model parameter at 7-th round can be represented as
T 1 T—1 AT _ pT—1
0, =(1 T—i—a)o* +T+a T+a(0R 0r ). 9
It can be observed that Eq. (9) does not require the forget set from the 1-st to 7" — 1-th rounds; it
only necessitates having the optimal model parameter from the 7" — 1-th round. As a result, we can
address the data inaccessibility issue by directly solving Eq. (9).

6L +
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Issue 3. Due to the size (i.e., data volume) of Ry significantly exceeding that of F'r in the unlearn-
ing scenarios, the computational costs required to explicitly obtain 8% on Ry are extremely large.
This makes calculating the last term (0£ - 017%_1) in Eq. @) challenging. To address this issue,

we transform this term into the following two parts: (8% — °) — (§L~1 — @°), where 6° are the
parameters of the original model fgo.

Previous research estimates the impact of data points on model parameters using influence func-
tions (Koh & Liang| [2017} |Koh et al., 2019). Inspired by this, we utilize influence functions to
calculate the impact of the missing data points on the original model parameters as an approxima-
tion for each term:

- Ry \ R
N AL (A (10)
| Ro|
where | Ry| represents the number of data points in the initial dataset Rg, Hgo = ‘R—IOIVQK%(BO)

is the Hessian matrix, and g%(8°) = > (z)ero\ry {(foo(2),y). Since Ry \ Ry = UL | Fy, the
approximation formulas for these two terms combined can be expressed as (proof in Appendix [C)):

T
[Vt Fil Ft'H;(}wlTp(eo) + @H;,1Vg£‘1(9°). (11)
| Ro| | Rol

Eq. (TI) significantly enhances computational efficiency. First, Hgo represents the Hessian matrix
of all data in the original model fgo, which is independent of unlearning round 7". This means that
we only need to compute Hgo once at the initial round, store it in memory, and retrieve it directly
in the following rounds without recalculating. Secondly, we only need to calculate the gradient of
the loss for the forget set Fr in the original model fgo at the T-th round, because Vggfl(eo) has
already been computed in the previous 7' — 1-th round.

AT  AT—1 .

Putting Together. Based on the analysis above, we can conclude that the optimal model parame-
ters @7 at T-th round should satisfy

|Fr| r7—1w T—1 U Fel g7 =1 yT
0T~ L ygr e Vo (8 1 g TR e VIR
* T+a " T+« T+a ¥ T+«

)

12)

where both 87! and Vg7, !(8°) originate from the previous 7' — 1-th round. Specifically, as

shown in Figure at the T-th round, we only need to compute the gradient V/%(6°), and 8% which
is obtained by tuning 6%0n a small amount of data, i.e., Fip. We summarize our proposed framework
in Appendix and the computational implementation in Appendix [D.2]

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets and Models. We select three benchmark image classification datasets, i.e., CIFAR-10,
CIFAR-100 (Krizhevsky et al., [2009), and Fashion-MNISTXiao et al.| (2017), for evaluation. We
choose three mainstream image classification models, i.e., ResNet-18 (He et al., [2016), VGG (Si-
monyan & Zisserman, 2014), and VIT (Dosovitskiy et al., 2020). These models are representative
in the field of image processing, embodying both convolutional networks and transformer networks.

Baselines. We compare our proposed method with four representative baselines that can comply
with the constraints of sequential unlearning scenarios, i.e., the inaccessibility of past forget sets
and the current retain set. These baseline methods include (implementation details of these methods
are provided in Appendix [E.I): Retrain: Retraining from scratch is a naive method that retrains
a new model on the retain set. SISA (Bourtoule et al.| 2021): SISA is a well-acknowledged exact
unlearning method. INF (Sekhari et al.|[2021)): INF representative approximate (reverse) unlearning
method based on influence functions. IUPC (Cha et al., [2024): TUPC is the state-of-the-art method
belonging to the approximate (active) approach.

Evaluation Metrics. We employ the following five metrics to evaluate the effectiveness and ef-
ficiency of compared unlearning methods. i) Current forgetting: Accuracy on the forget set of
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Table 1: Results w.r.t. the effectiveness of sequential unlearning. Except for Original and Retrain,
the best results are highlighted in bold, and secondary results are highlighted with underline.

Model | Method | CIFAR-10 \ CIFAR-100 | Fashion-MNIST
‘ ‘A(*CF(,L) Acep(l)  Accr(t)  Acer(1) ‘ Accp(l)  Acep(l)  Accr(t)  Acer(?) ‘ Accp(y)  Acep(l)  Accr(t)  Acer(t)

Original 95.77 95.15 96.18 90.56 96.26 95.07 96.02 88.16 97.67 97.06 98.44 90.67

Retrain 62.12 58.27 95.76 82.56 31.60 27.45 70.97 63.87 73.81 66.15 94.68 83.17

ResNet-18 SISA 76.02 77.44 87.57 74.13 55.27 57.61 68.33 56.59 77.85 78.70 82.87 73.19
INF 91.73 91.86 92.85 75.37 65.07 66.32 68.06 61.71 90.31 90.60 92.51 81.79

TUPC 69.87 72.86 85.72 75.88 52.03 54.42 67.39 57.48 75.76 77.56 77.46 69.92

Ours 65.60 64.71 88.79 76.61 46.80 43.62 69.66 61.92 74.18 73.31 83.5 74.54

Original 95.77 94.15 95.73 85.56 96.26 95.07 94.57 87.16 97.67 98.06 97.14 90.67

Retrain 5241 50.35 96.13 78.14 45.40 41.49 78.84 67.81 77.47 75.89 97.03 86.25

VGG SISA 66.91 78.20 86.34 65.13 61.87 62.41 67.02 63.18 82.31 83.30 85.04 70.14
INF 73.53 75.67 77.28 62.79 75.33 76.08 76.36 65.69 83.11 85.63 86.08 71.16

TUPC 58.65 61.57 73.33 60.09 55.18 5837 61.04 56.91 80.07 78.12 70.95 56.97

Ours 53.84 51.74 78.61 64.60 48.37 46.46 71.34 59.87 78.68 76.59 87.49 72.05

Original 95.65 94.71 96.34 85.47 84.93 84.96 78.70 69.90 97.67 98.06 98.44 9251

Retrain 68.03 66.09 94.01 78.64 28.17 25.28 72.39 64.10 73.02 71.89 95.11 87.24

ViT SISA 76.57 79.61 87.67 74.15 46.79 47.24 67.25 58.68 82.96 84.37 93.73 82.30
INF 81.72 83.67 91.88 76.54 54.99 56.28 68.06 60.95 81.74 83.01 94.61 85.35

TUPC 76.88 77.93 88.25 74.71 50.85 53.67 67.33 59.64 76.85 78.92 89.07 81.25

Ours 71.07 70.11 89.98 75.43 31.59 29.86 69.45 61.24 74.77 71.36 91.18 83.52

current 7-th round Accp. ii) Life-long forgetting: Average accuracy on the forget set of past 7' — 1
rounds Accp. iii) Model utility: Accuracy on the retain set of current 7-th round Accg. iv) Gen-
eralization: Accuracy on the testing set Accr. v) Time efficiency: Average running time of one
unlearning round.

Please refer to Appendix for more details of experimental settings.

3.2 MAIN RESULTS

Results on Various Datasets. We include 5 consecutive rounds of unlearning requests to simulate
real-world scenarios. We report the average performance of 5 rounds in Table[I] Due to the space
limit, detailed results of each round are provided in Appendix |F As shown in Table|l} our proposed
method significantly outperforms compared baselines in terms of overall performance after handling
sequential unlearning requests. Specifically, i) our method ensures life-long forgetting throughout
all unlearning rounds while maintaining model performance on retain set (Accgr) and testing set
(Accr). We observe that some classic unlearning methods, such as SISA and INF, perform poorly in
life-long forgetting, which is reflected by Accp on the past forget set. After consecutive unlearning
rounds, the performance on the Accp metric of these methods is even higher than the Accp metric
of previous rounds, indicating a significant flaw in life-long forgetting. This is because, although
these methods do not explicitly utilize the retain set, the knowledge of the retain set still resides in
the sub-models of SISA and the Hessian matrix of INF. However, there are samples in the retain
set that are similar to those in past forget sets. This similarity causes the decision boundaries of
the unlearned model to lack clear distinctions between previously forgotten samples and similar
samples in the retain set, thereby hindering effective life-long forgetting. Our method maintains
a lower value on Accp because it considers past forget sets in design, thus dynamically adjusting
the decision boundaries of the unlearned model. In other words, the model’s decision boundaries
post-unlearning create a separation between the current retain set and past forget sets, even if they
are similar. On Accp, we improve by 9.05% compared to the best baseline (IUPC), and on Accp,
we are only 8.00% behind retraining, indicating that our unlearning method is effective. On Accr,
we are 3.1% lower than the best baseline (INF). However, the high generalization performance of
INF comes at the cost of sacrificing some degree of unlearning. INF does not completely erase each
data point, but instead weakens the model’s overfitting to specific data points through local weight
adjustments. This makes the model’s dependence on the learned data smoother, thereby preserving
its generalization ability. For this reason, INF only reduces the influence of certain data points rather
than completely removing them, and its unlearning effect is relatively limited. ii) Experiments on
larger datasets and models in Appendix and Additionally, the experimental results for
special unlearning subset selection, such as unlearning an entire class in each round, can be found

in Appendix [F.6]

Different Numbers of Unlearning Rounds. We further investigate different numbers of unlearn-
ing rounds. Prior work (Wichert & Sikdar, 2024; |Georgiev et al. 2024} [Koloskova et al.[2025) has
shown that when the retain set is too small (i.e., a larger portion of data is unlearned), model per-
formance degrades significantly. In such cases, retraining the model becomes a more viable option,

6
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as the computational cost is no longer ~ Rounds | Method | Accr(l) Accp(l) Accr(t) Acer(1)
prohibitive. Accordingly, we impose Retrain 60.26 5521 94.17 81.15
a limit on the number of samples SISA 76.46 78.54 93.85 81.13
to be unlearned, ensuring that after ~ 7'=5 | INF 87.93 87.97 95.25 75.37
multiple unlearning rounds, the re- IUPC 70.73 72.82 84.28 74.95

inine dataset si X thi Ours 63.39 61.43 88.78 76.61
maining dataset size remains within Retrain | 56.30 53.87 90.43 78.40

a reasonable range. Then, we ad- SISA | 7215 7393 9103 7698
just the number of unlearning rounds  7=10 | INF 85.25 86.21 93.03 73.37
to 5, 10, 15, and 20. We con- IUPC 67.86 69.41 79.11 70.09
duct experiments using ResNet-18 on Ours | 57.59 55.71 84.05 74.75
CIFAR-10 and report the results in Retrain | 50.11 49.93 81.75 76.60

. SISA 69.93 70.57 85.68 70.67
Table @ The average results (with T =15 INE 8219 8579 88.30 70.12

detailed data in Appendix [F) indi- [UPC | 62.53 65.74 73.17 65.31
cate that our method, when han- Ours 53.27 50.38 81.84 71.01
d]ing a ]arger number of unlearn- Retrain 47.30 45.93 82.25 70.87
ing rounds, outperforms the existing SISA | 61.15 63.97 76.61 65.84

. . T =20 INF 77.52 79.73 83.49 67.87
compared baselines across various [UPC 5751 63.36 67.95 60.18

performance metrics. These results Ours 50.78 48.24 78.19 70.53
sufficiently demonstrate the effec-
tiveness and stability of our method
in sequential unlearning. Further-
more, we observe that as unlearning
rounds increase, some traditional methods such as SISA and IUPC exhibit significant fluctuations in
model performance. This is primarily because these methods conduct single-round unlearning, and
multiple rounds lead to instability in model performance. In contrast, our method reduces instability
by fine-tuning the original model on forget set in each unlearning round and establishing connections
between them to obtain the optimal model, thereby ensuring a smooth transition in performance.

Table 2: Effect of different numbers of unlearning rounds.
Except for Retrain, the best results are highlighted in bold.

Time Efficiency. When studying l = J J
the issue of sequential unlearning, as- %, : - -
sessing the efficiency of the method 2 R [
18 ?Xtremely CruCIal' We eva.luate. ef_ ! Retrain SISA  INF IUPC Ours ! Retrain SISA INF IUPC Ours
ficiency by the average running time

@T=>5 (b) T =10

of each round. Specifically, we con-
duct experiments using ResNet-18 on
CIFAR10 when handling 5, 10, 15, _ J- = J

400
» . =
= =

and 20 unlearning rounds. It is evi- 2 . g .

dent from Figure[3|that IUPC exhibits = = =

a significant disadvantage in terms of *Retrain SISA INF_IUPC_Ours " Retrain SISA INF IUPC Ous
unlearning efficiency. This is because ©T=15 @ T = 20

IUPC needs to generate adversarial . o ]

samples in each round, and the run- Figure 3: Average running time of one unlearning round.
ning time of this process is greatly influenced by the number of adversarial samples generated. Since
increasing unlearning rounds reduces the size of the forget set in each round, thereby reducing the
number of adversarial samples, the efficiency of IUPC is enhanced with larger unlearning rounds.
Although SISA shows some improvement over retraining, its time overhead remains substantial.
This is mainly because unlearning requests from multiple rounds are scattered in multiple shards,
which increases the retraining overhead of SISA. INF needs to compute the Hessian matrix of the
current unlearning dataset relative to the previous round’s optimal model at each unlearning round,
which is time-consuming. Our method, because it pre-computes and stores the Hessian matrix dur-
ing initialization, only requires fine-tuning the original model on the forget set, greatly reducing the
computational load. This makes our method significantly more efficient in sequential unlearning.
Additionally, the sensitivity of our method’s unlearning efficiency to dataset size and model scale is
relatively low, making it more broadly applicable in practical settings.

Membership Inference Attack. Following previous research, we validate the unlearning ef-
fectiveness of our proposed method using Membership Inference Attack (MIA). We report
the detailed settings of MIA in Appendix As observed from Table under the MIA
evaluation, the retraining method exhibits the best unlearning performance, approaching O.
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Our proposed method significantly Model | Method | CIFAR-10 CIFAR-100 Fashion-MNIST
outperforms the baseline methods, Original | 0.8608 09168 07858
nearing the performance of retrain- Retrain | 0.0005 0.0154 0.0019
ing, indicating that our approach pos- ResNet-1g | SISA 0.6876 0.6268 0.7419
sesses sufficient unlearning effective- ‘ INF 0.2328 0.2096 0.0667
ness. Additionally, it is observed that I([)J:z(s: gg;zg g' (])gg gggé?
the SISA method demonstrates lim- Original | 0.8226 03778 07764
ited unlearning effectiveness in this Retrain | 0.0106 0.0164 0.0224
sequential unlearning setting, which VGG SISA 0.5238 0.7001 0.5342
we attribute to the ensemble charac- I{JNPFC g'})igg g' é;gé 8'8?‘;2
teristics of SISA that confer it with Ours 0.0215 0.0436 0.0064

stronger generalization capabilities;
even if one sub-model is retrained,
the remaining ensemble retains some
generalization ability.

Table 3: MIA on various datasets. Except for Original and
Retrain, the best results are highlighted in bold, and sec-
ondary results are highlighted with underline.

3.3 MORE RESULTS

Pseudo Label Selection. The method for selecting pseudo-labels is not fixed. A natural choice
is to maximize confusion by assigning pseudo-labels based on the closest misclassified label at the
start of training, which we refer to as Misclassified. The motivation is to minimize the performance
degradation of the model, as this setup helps to reduce changes in the model’s decision boundary to
the greatest extent. In addition, following the setup in prior work (Golatkar et al.,[2021; |Cha et al.,
2024;|L1 et al.} 2025)), another popular method is to define the pseudo-label as a uniformly weighted
vector that matches the length of the model’s softmax output layer. Specifically, each element of the
pseudo-label is set to 1/n, where n is the length of the vector; we refer to this method as Uniform.
We compare these strategies on ResNet-18 and VGG, with results presented in Table [d] It can be
observed that in most cases, the Uniform setting leads to better unlearning performance. Although
this stricter approach may reduce model generalization compared to Misclassified, the trade-off
remains acceptable. Therefore, we adopt the Uniform strategy throughout this work.

Table 4: Choice of pseudo-labels. Except for Retrain, the best results are highlighted in bold.

iy \ \ CIFAR-10 \ CIFAR-100 \ Fashion-MNIST
odel Method
| | Acep(l)  Acep(l)  Accr(t)  Acer(1) | Accr(l)  Accp(l)  Acer(t)  Acer(t) | Accr()  Acep(d)  Accr(t)  Acer(T)
Original 95.77 95.15 96.18 90.56 96.26 95.07 96.02 88.16 97.67 97.06 98.44 90.67
ResNet-18 Retrain 62.12 58.27 95.76 82.56 31.60 27.45 70.97 63.87 73.81 66.15 94.68 83.17
Misclassified 72.50 70.23 88.19 77.96 52.73 51.33 67.72 63.35 79.60 78.90 85.84 75.79
Uniform 65.60 64.71 88.79 76.61 46.80 43.62 69.66 61.92 74.18 73.31 83.50 74.54
Original 95.77 94.15 95.73 85.56 96.26 95.07 94.57 87.16 97.67 98.06 97.14 90.67
VGG Retrain 5241 50.35 96.13 78.14 45.40 41.49 78.84 67.81 77.47 75.89 97.03 86.25
Misclassified 58.03 55.61 77.21 63.82 50.08 47.17 72.85 61.47 82.00 79.31 87.32 72.74
Uniform 53.84 51.74 78.61 64.60 48.37 46.46 71.34 59.87 78.68 76.59 87.49 72.05

Ablation Study. Table |5| presents IstTerm 2nd Term  3rd Term | Accp()) Accp(d) Accp(f)  Acer(?)

the results of ablation studies con- v v v 65.60 64.71 88.79 76.61

. X v v 5857 6628 7100  69.51
ducted using ResNet-lS on CI- v v X 3918 3761 5664  53.96
FAR10. We sequentially remove the X v X 0.08 4078 50.17  48.68

Ist term loss >, £4(0) on the
past forget sets and the 3rd term loss ~ Table 5: Results of ablation studies on each term in Eq. .

¢%.(8) on the current retain set to assess their impact on the overall unlearning performance. Initially,
when we remove the loss on the past forget sets (1st term), a significant increase in the life-long for-
getting performance metric Accp is observed. This indicates that without proper handling of earlier
forgotten data, the model regains its memory of earlier forgotten data, resulting in reduced life-long
forgetting performance. Subsequently, when we remove the loss on the current retain set (3rd term),
although the model still performs well on metrics Accr and Accp, there is a noticeable decline in
performance on metrics Accg and Accp. This suggests that removing this component of loss, while
allowing the model to handle unlearning requests, significantly compromises its adaptability to test-
ing data and performance on non-forgotten data. These results from the ablation studies clearly
demonstrate that the loss on the past forget sets and the loss on the current retain set play crucial
roles in our sequential unlearning method. The former primarily affects the effectiveness of life-long
forgetting, while the latter ensures that the model maintains good performance and generalization
ability when processing new unlearning requests.
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Hyperparameter. We use ResNet- —m— Accr L Current forgetting

18 to explore the effect of hyperpa- <7 i Accp U Life-long forgetting

rameter o on unlearning performance £ 50 I Accp 1 Utility
=i Accr T Generalization

(Accp and Accp), utility (Accp), == |
and generalization ability (Accr). As 1e01edeted e et sed )

shown in Figure [d] when the value of a

a is low, the model exhibits reduced Figure 4: Effect of hyperparameter o w.r.t. effectiveness of
utility and generalization ability af- unlearning on CIFAR10. We report more results on other
ter unlearning. As the value of o in- datasets in Appendix [F}

creases, both the utility and generalization ability of the model gradually improve, approaching the
levels achieved through retraining. However, the unlearning performance of the model decreases
with an increase in a. At a« = 0.5, the experimental results show that the model achieves an
ideal balance between unlearning performance and utility/generalization ability. This suggests that
a = 0.5 is an appropriate setting that ensures both effective unlearning of the forget set and reliable
utility performance on the retain set.

Qualitative Analysis. To conduct a deeper analysis, we examine the differences in parameters of
unlearned models between baseline methods and those obtained through retraining. Figure[6]in Ap-
pendix [F]displays a heatmap of the CKA correlations between the unlearned model and the retrained
model. The results indicate that our method is most closely aligned with retraining from scratch at
the parameter level. This insight is consistent with the theoretically optimal results described in
Section[C| where the theoretically optimal model denotes the one obtained through retraining.

Sequential Unlearning vs. Batch Rounds | Method | Accp() Accr(t) Acer(T)
nlearning. o further clari € atch Unlearning . . .
Unl To further clarify th CIFAR-10 Batch Unl 44.64 55.72 48.16
differences between sequential and Sequential Unlearning | 4160 7104 6148

. Batch Unlearning 57.70 65.51 49.59
batch unlearning, we conduct a val-  CIFAR-I00 | g0 v enia) Unleaning | 40.60  67.88 5131
1daation experiment. eciiically, we s Batch Unlearnin 1 79.77 .
dat p t. Specifically. Fashion-MNIST h Unlearning 64.16 9 69.52
first evaluate the performance of our Sequential Unlearning 54.67 95.83 86.39

proposed method after 1" rounds of ) i )
unlearning, then assume that all un- Table 6: Comparison of sequential unlearning and batch un-

learning requests arrive simultane- learning with ResNet-18 on the same unlearning task.

ously, i.e., setting 7" = 1, to compare the results. The experimental results are reported in Table [6]
The results indicate that, compared to batch unlearning, sequential unlearning generally yields a
lower Accp, suggesting that sequential unlearning is superior in terms of unlearning efficacy. We
hypothesize that this may be due to the larger volume of unlearning samples processed during batch
unlearning, which can easily conflict with preserving model performance, leading to suboptimal un-
learning outcomes. Meanwhile, batch unlearning methods process a large number of samples simul-
taneously, which can make the unlearning step difficult to control, often resulting in over-unlearning,
instability, and significant performance degradation. In contrast, sequential unlearning proceeds in-
crementally, removing fewer samples per round and allowing the model to adapt gradually. This
controlled approach helps mitigate over-unlearning and promotes more stable outcomes.

4 CONCLUSION

In this paper, we focus on sequential unlearning, a practical problem that MU faces in real-world
scenarios. In these situations, unlearning requests are received sequentially and must be processed
instantly upon arrival. Existing unlearning methods cannot be directly applied to sequential un-
learning due to two main challenges, i.e., the incapacity for lifelong forgetting and inefficiency in
handling sequential unlearning requests. To address these challenges, we follow the idea of contin-
ual learning and propose a novel method tailored for sequential unlearning. Firstly, we introduce a
lifelong forgetting term into the unlearning objective to ensure that the unlearned data will not be
re-memorized in subsequent rounds. Secondly, we establish a source-free optimization to eliminate
the need for the retain set and past forget sets, thereby greatly enhancing efficiency. We conducted
extensive experiments to demonstrate the effectiveness and efficiency of our proposed method. Al-
though MU has gained popularity and has been extensively studied in recent years, it has not been
widely applied in practice due to unresolved practical issues. This paper addresses the issue of the
instant processing requirement of sequentially received requests, bridging the gap in practical use,
and offering valuable insights for the application of MU.
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A RELATED WORK

Based on the level of unlearning completeness, i.e., the quality of forgetting, unlearning methods
can be categorized into two main approaches: exact unlearning and approximate unlearning.

A.1 EXACT UNLEARNING

This approach aims to achieve full completeness by efficient retraining, i.e., to mimic retraining from
scratch using the updated dataset excluding the unlearned data points. SISA pioneers exact unlearn-
ing through a shard-aggregation approach, i.e., dividing the data into shards, retraining each shard,
and aggregating the sub-models (Bourtoule et al., [2021). However, due to the nature of retraining,
exact unlearning encounters significant computational challenges in sequential unlearning.

A.2 APPROXIMATE UNLEARNING

This approach aims to approximate the parameters or the output of the ground truth model, i.e., re-
training from scratch using the updated dataset that excludes the unlearning target. There are two dis-
tinct lines of research, i.e., reverse unlearning and active unlearning. Reverse Unlearning estimates
the influence of target data and directly removes it through reverse gradient operations (Sekhari et al.,
20215 |[Wu et al., [2022; Mehta et al., [2022} Jang et al., |2023). However, accurately estimating influ-
ence remains an ongoing challenge for deep learning models (Basu et al., 2021} |Guo et al., [2021).
Inaccurate estimation can accumulate and become even more problematic in sequential unlearning.
Active Unlearning follows the idea of continual learning (i.e., learning to unlearn), continuously
training the model to overwrite the memory of target data (Ma et al.,2022;|Li et al.,|2023b};|Cha et al.,
2024). However, similar to the issue of catastrophic forgetting faced in continual learning, active
unlearning cannot meet the lifelong forgetting requirements in the context of sequential unlearning
(as demonstrated by our empirical study in Figure[T).

A.3 SEQUENTIAL UNLEARNING

Sequential unlearning, also known as stream removal, is a challenging problem that existing un-
learning methods cannot adequately address (Nguyen et al., 2022)). As mentioned above, existing
methods face challenges such as the incapability of life-long forgetting, inaccurate estimation, and
inefficiency. (Gupta et al.| (2021) studies the adaptive MU problem, where requests are sequential
and interdependent (i.e., adaptive). This paper focuses on the non-adaptive setting, where there is
no prior knowledge about unlearning requests and no interdependence among them.

B MORE DISCUSSION

B.1 FURTHER EXPLANATION OF MOTIVATION

We conduct a further analysis of the experimental results presented in Figure [T} Specifically, we
focus on the underperformance of SISA, as one would reasonably expect its modular nature to
offer advantages in sequential unlearning scenarios. However, its actual performance in Figure I]is
suboptimal. We attribute this to the following reasons. Although SISA is defined as exact unlearning
at the algorithmic level, its practical performance often falls short of expectations. This is primarily
due to its distributed aggregation design: during each forgetting operation, only one sub-model is
updated, while the remaining sub-models may still retain the relevant knowledge. As a result, there is
a gap between its unlearning performance and the ideal state. This phenomenon has been highlighted
in previous studies (Wu et al., 2022; (Chen et al., 2024). In sequential unlearning scenarios, such
deviations progressively accumulate with each round of unlearning operations, thereby exacerbating
the severity of the problem.

B.2 DISCUSSION ON THE ASSUMPTIONS’ RATIONALITY AND ERROR ACCUMULATION
The errors introduced by our method primarily arise from a set of well-established assumptions, i.e.,

the Taylor expansion (Koh & Liang| |2017; [Mirzadeh et al., 2020), the vanishing-gradient assump-
tion (He et al., 2015} Koh et al.,2019), and the Hessian approximation (Ghorbani et al.,2019). These
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assumptions have been extensively validated in prior work and are likewise applicable in the experi-
mental settings employed in our study. As demonstrated in Table[TT] our empirical results show that
error does not accumulate appreciably across successive unlearning rounds, and the framework’s
performance remains stable through all rounds.

B.3 DISCUSSION ON APPLICATION SCENARIOS

Since existing research on unlearning in classification models mainly focuses on visual tasks, we
have simply followed the setup from previous work in our experiments. However, our framework
does not assume a specific model structure and can be easily extended to other classification tasks,
such as text classification, graph node classification, or subgraph classification. In these tasks, the
setup for pseudo-labels is the same as in visual tasks. Additionally, unlearning for generative models
is also theoretically feasible, as our method essentially addresses an optimization problem that can
be adapted to the unlearning scenario in generative models. The main difference between the two
lies in the setup of pseudo-labels. For example, in image generation models (Li et al., |2024)), pseudo-
labels could be set as Gaussian noise; in text generation models (Wang et al.| [2024; J1 et al., |2024),
pseudo-labels could be set as a uniform distribution or involve rejecting certain content (such as “I
don’t know™).

C DERIVATION OF EQ. EQUATION[LI] VIA INFLUENCE FUNCTIONS

In this appendix, we provide the detailed derivation of Eq. equation which approximates the
difference between the model parameters trained on successive retain sets, using classical influence
function theory (Koh & Liang| [2017; Koh et al.,[2019).

We aim to estimate the following term: 0% — égfl. According to the decomposition already intro-
duced in the main text: . . ) .
0% — 0L ~ (0% —0°) — (651 — 0°).

Since Ro\ Ry = Uthl Fi,1i.e., the set of all unlearned samples up to round 7', we apply the influence

function approximation:
_|Ro\ Rr|

| Ro
where we define Vg% (6°) = X @yero\ry Vo0 (2),).

Similarly, we have:

0 —0° ~ Hg,' Vgi(6°),

T—1
) F,
6Lt — 9" ~ U B UtRl | t‘H;}W}C—l(OO).
0

Subtracting these two terms, we can get

6% 67! =

T—-1
1V€£ _ _|Ut:1 Ft|H&,1V££71 )
| Rol

Note that:

Therefore, we have:

T-1

. F, F

0L - 0L ~ Uy B Hy' VR 1(6°) + [Fr] Ho, ' VIE(6°).
|Ro| |Ro|

D ALGORITHM PROCEDURE AND COMPUTATIONAL IMPLEMENTATION

D.1 ALGORITHM PROCEDURE.

We summarize our proposed framework in Algorithm [I]
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Algorithm 1 Sequential unlearning algorithm

Input: Original model fgo, initial retain set Ry, the number of unlearning rounds 7', the adjustable
parameter o, learning rate 7). Procedure:

1: Initialize t = 0, for = fgo, Vg% (6") =0

2: Compute and save Hessian: Hgo
3: Lett =1
4: whilet < T do
5: Receive the unlearning request F;
6: Create a copy f4. of the original model
F
7: while Not Converged do
8: Compute loss: (7(0%) = 30, er, U(fg (2),9)
9: Update parameter: 8%, = 8%, — nV(4,(8%)

10: end while

11:  Compute gradient: V/¢%,(6°)

12: Update parameter: 8% according to Eq.
13:  Update: Vgh(8°) = Vgl 1(6°) + V1t.(6°)
14: end while

15: return The unlearned model for

D.2 COMPUTATIONAL IMPLEMENTATION (HESSIAN MATRIX)

In our framework, the Hessian only needs to be computed once before conducting unlearning. For
models with a smaller parameter scale, we use a diagonal approximation (Elsayed et al. [2024)
to compute the Hessian matrix, rather than calculating it exactly. We validate the approximation
on different models. To measure the error between the approximated Hessian matrix and the true
Hessian matrix, we used the Frobenius norm to compute the square root of the sum of squared
differences between the corresponding matrix elements. The experimental results are shown in
Table As can be seen, traditional convolutional neural networks with simpler structures, such
as ResNet-18 and VGG, have relatively small errors. Models with higher complexity, such as ViT
and Swin Transformer, exhibit larger errors in their diagonal approximations, but the errors are still
within a reasonable range.

Table 7: Hessian matrix computation errors on different datasets and models.

| Dataset

Model
| CIFAR-10 CIFAR-100 Fashion-MNIST ImageNet-1K
ResNet-18 1.26 x 1074 ~3.07x 1074 231 x 1074 ~4.15x 107*  1.18 x 1074 ~ 1.79 x 107*  3.06 x 107 ~ 6.44 x 10~
VGG 268 x 1074~ 531 x107%  357x107* ~6.11 x 107*  1.86x 107* ~2.77 x 107*  4.83 x 107% ~ 8.27 x 10~*
VIT 518 x 1074 ~9.42 x 107%  6.37x 1074 ~ 12,53 x 107*  4.21 x 107 ~7.39 x 107*  6.48 x 10~* ~ 13.91 x 10~*

Swin Transormer | 6.65 x 107% ~12.73 x 10*  7.82 x 107* ~ 13.07 x 10~* 5.57 x 107* ~ 8.05 x 10~*  8.09 x 10~* ~ 15.37 x 10~*

For ultra-large-scale models, the computational cost of the diagonal approximation becomes sub-
stantial. Therefore, we employ the Hessian-Free assumption to substitute the full Hessian with a
scaled identity matrix, which is both simple and effective in large-scale classification models as
demonstrated by (Zhang et al.l [2022)) and (Fan et al., [2023)), and in LLM settings as shown by (Jia
et al.,|2024). Empirical results indicate that this approximation achieves strong performance with
minimal computational overhead.

E EXPERIMENTAL SETTINGS

E.1 BASELINE IMPLEMENTATION DETAILS
In our experiments, the implementation details for each baseline method compared are as follows:

* Retrain: Upon receiving an unlearning request, the model is directly retrained on the retain set
corresponding to the current round until optimal performance is achieved on the retain set.

15



Under review as a conference paper at ICLR 2026

» SISA (Bourtoule et al., 2021): The dataset is divided into multiple subsets, with each subset
training an independent sub-model. The final model output is an aggregation of these sub-model
outputs. When specific data needs to be unlearned, only the sub-model containing this data is
retrained. In this paper, we opt to divide the dataset into 10 subsets, with each subset independently
training a sub-model.

* INF (Sekhari et al., 2021): This method is based on influence functions, directly calculating
the impact of removing a specific forget set on the parameters of the previous round’s optimal
model, and updating the model parameters based on this impact. Constrained by GPU memory
constraints, we employ the Hessian-vector product (HVP) technique for computing the Hessian
matrix.

* IUPC (Cha et al.| 2024)): This method employs unlearning through adversarial samples. Initially,
adversarial samples are generated using the unlearning set and PGD (Madry et al., [2017) attack,
which assist in maintaining the original model’s decision boundary. The unlearning process in-
cludes three loss terms, i.e. classification loss on the forget set with mixed classes, classification
loss on adversarial samples, and a parameter regularization term. The parameter regularization
term is formed by calculating the importance of parameters for predictions on the forget set with
MAS (Aljundi et al.| [2018)) and the squared difference between the updated model parameters and
the original model parameters. In implementing the [UPC baseline, we employ L2-PGD (llyas
et al., |2019) attacks to generate adversarial examples, with specific parameters including a learn-
ing rate of le — 1, attack iterations of 100, and perturbation bound e set at 0.4, with each forget
set sample correspondingly generating 20 adversarial examples.

E.2 EXPERIMENTAL DETAILS

In our experiments, we segment the sequential unlearning process into 7' rounds to simulate the
continuous unlearning demands that arise in real-world applications. Specifically, we unlearn 5000
samples in total. The number of samples in each unlearning is determined by the number of total
rounds. During each unlearning round, we randomly sample the corresponding number of samples
from the previous round’s retain set to ensure the randomness and practicality of the unlearning
process. For unlearning, we use an SGD optimizer with a learning rate of le — 3, weight decay of
le — 5, and momentum of 0.9 across all experiments. These parameters are chosen based on best
practices observed in preliminary experiments. All experiments can be conducted on a single Nvidia
4090 GPU.

E.3 MIA DETAILS

Based on previous research (Choi & Na, |2023), we employ a Membership Inference Attack (MIA)
to evaluate the unlearning performance of MU algorithms. During the evaluation phase, we train
a binary classifier ¢(+) to simulate the attacker’s behavior, aiming to distinguish between the loss
values of the unlearned data x; and unseen data x, (i.e., not in the training set). The attacker
aims to determine whether data x; were used during training. Ideally, the performance of this
binary classifier () should be as follows: ¢(z) = 1if z € x; and Y(z) = 0if = € x,,. If the
prediction accuracy of ¢ (-) is 0.5, it indicates that the MU algorithm performs well, suggesting that
1(+) is unable to distinguish between unlearned sample ¢ and unseen samples @,,. Furthermore,
we denote M as the accuracy of (-) and define the unlearning score as 2 x |M — 0.5] to assess the
unlearning effectiveness on data ¢, where a lower score is preferable.

F EMPIRICAL RESULTS

F.1 RESULTS ON VARIOUS DATASETS

We present the detailed unlearning performance of different models on three real-world datasets.
The number of unlearning rounds is set to 5. The experimental results using ResNet-18, VGG, and
ViT are reported in Tables[8] 0] and[I0] respectively.
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Table 8: The relationship between the results on different datasets and the effects of sequential
unlearning when the model is ResNet-18.

Method | Round (1) | CIFAR-10 \ CIFAR-100 \ Fashion-MNIST
| | Accr(l) Accp(l) Accr(t) Accr(1) | Accr(l) Accp(l) Acca(1) Acer(1) | Acer(l) Accp(l) Acca(t) Acer(1)

Original | - | 9577 95.15 96.18 90.56 | 96.26 95.07 96.02 88.16 | 97.67 97.06 98.44 90.67
1 65.56 - 98.62 85.17 36.38 - 91.63 79.47 78.75 - 97.50 85.95

2 64.30 58.38 96.33 84.77 32.94 65.65 89.36 77.24 74.18 67.79 95.01 83.66

Retrain 3 63.57 58.20 95.64 82.42 31.82 64.07 88.91 76.19 73.87 65.52 94.88 82.89
4 59.98 57.68 94.55 81.20 30.30 64.06 88.16 75.99 71.92 64.71 94.31 82.77

5 57.19 57.19 93.65 79.25 26.55 61.47 85.88 74.17 70.32 63.85 91.70 80.58

1 78.02 - 95.41 83.06 58.26 - 86.90 79.42 80.14 - 84.91 75.47

2 71.72 78.17 95.08 81.92 56.47 57.97 85.02 76.62 78.85 78.64 83.53 73.58

SISA 3 75.82 77.64 92.98 81.50 55.14 57.07 84.12 76.45 78.10 78.56 83.53 73.33
4 75.63 76.87 92.80 80.34 54.58 56.96 83.86 76.16 77.33 77.60 8233 72.65

5 72.91 75.86 91.58 78.82 51.90 55.67 81.76 74.30 74.83 77.09 80.05 70.92

1 95.15 - 97.10 78.18 66.30 - 71.97 63.42 91.70 - 94.46 83.20

2 91.71 92.08 96.90 75.69 65.51 66.96 70.36 62.13 91.43 90.91 92.68 82.33

INF 3 91.21 91.64 96.51 75.53 65.44 66.53 70.01 61.42 90.72 90.84 92.51 81.75
4 91.05 91.60 94.73 74.52 65.40 65.55 69.59 61.32 89.48 90.03 91.97 80.96

5 89.53 90.71 94.01 72.92 62.70 64.63 68.37 60.25 88.22 88.99 90.92 80.70

1 75.25 - 88.39 78.28 56.81 - 70.68 61.26 79.90 - 79.62 72.35

2 70.14 73.50 86.35 76.32 52.56 55.13 68.23 57.38 76.77 78.36 78.75 71.54

IUPC 3 69.90 73.09 85.71 75.79 51.93 55.02 66.80 57.15 75.91 77.36 77.44 69.69
4 67.65 71.84 85.42 75.51 51.54 53.91 66.69 57.08 74.78 77.16 76.81 68.39

5 66.41 69.14 82.73 73.50 47.31 50.57 64.55 54.53 71.43 74.94 74.69 67.63

1 67.68 - 90.05 78.60 49.81 - 71.75 63.49 76.22 - 84.92 76.08

2 66.39 65.97 89.22 77.08 48.00 44.14 71.48 61.93 75.67 74.02 83.93 74.69

Ours 3 65.90 63.52 88.78 76.60 46.50 43.75 70.58 61.73 74.84 73.04 83.61 74.46
4 64.79 63.29 88.16 76.03 46.17 43.35 69.89 61.70 73.78 7291 82.95 74.31

5 63.24 63.21 87.74 74.74 43.52 41.63 69.60 60.74 70.38 71.31 82.09 73.15

Table 9: The relationship between the results on different datasets and the effects of sequential
unlearning when the model is VGG.

Method | Round (1) | CIFAR-10 \ CIFAR-100 \ Fashion-MNIST
| | Accp(})  Acep()  Accr(f)  Acer(t) | Acecr(l) Accp(l)  Accr(f) Acer(t) | Acep()  Accp(l)  Accn(t)  Acer(?)

Original | - | 9577 94.15 95.73 8556 | 96.26 95.07 94.57 87.16 | 97.67 98.06 97.14 90.67
1 57.33 - 99.07 80.99 48.50 - 81.03 69.89 82.60 - 99.14 88.98

2 52.22 51.63 96.76 78.53 46.76 41.55 79.30 68.67 77.96 77.34 97.32 86.39

Retrain 3 52.20 50.69 95.97 78.45 46.62 41.36 79.08 67.80 77.45 75.71 96.97 86.38
4 51.69 50.03 95.49 77.48 44.18 40.39 78.38 67.63 75.37 75.68 96.89 85.87

5 48.61 46.96 93.35 75.25 40.93 38.97 76.41 65.05 73.97 72.83 94.83 83.63

1 69.75 - 89.08 67.20 64.95 - 69.03 65.90 85.41 - 87.96 73.08

2 66.99 78.51 86.62 65.89 62.69 63.25 67.80 63.30 83.04 83.89 85.52 70.30

SISA 3 66.67 77.92 86.57 65.27 61.73 62.35 67.07 63.07 81.52 83.32 84.48 69.93
4 66.35 77.90 85.82 64.30 60.32 62.34 66.77 62.69 81.45 83.01 84.48 69.67

5 64.79 76.82 83.61 62.99 59.67 60.02 64.43 60.95 80.13 80.82 82.76 67.73

1 75.30 - 90.48 69.99 78.25 - 80.45 67.33 82.75 - 87.25 75.16

2 75.23 75.74 89.63 69.32 75.81 76.35 79.69 65.97 80.88 78.40 86.48 73.29

INF 3 73.05 75.73 89.45 68.98 74.99 76.33 79.62 65.63 79.66 78.24 86.30 73.16
4 72.45 75.29 89.39 68.41 74.95 75.72 79.49 65.41 78.80 78.14 86.16 72.93

5 71.62 74.00 87.45 67.26 72.64 74.51 77.55 64.11 78.26 76.52 84.20 71.26

1 62.25 - 76.37 62.52 58.78 - 63.29 59.08 88.04 - 74.24 59.80

2 60.03 62.00 74.42 61.06 56.24 59.24 61.77 57.81 83.49 86.29 71.80 57.03

IUPC 3 58.65 61.96 73.37 60.42 55.82 58.88 61.55 57.56 82.75 85.37 70.89 56.95
4 57.84 61.39 72.69 59.32 54.68 57.68 61.24 55.85 81.36 85.10 70.63 56.92

5 54.48 58.50 69.79 57.12 50.39 55.26 57.36 54.25 79.92 82.64 67.20 54.15

1 57.38 - 79.91 65.66 52.05 - 73.28 61.50 81.41 - 89.22 73.51

2 54.29 52.34 79.19 64.81 48.58 46.63 71.55 60.16 79.50 77.20 87.90 72.38

Ours 3 53.89 51.85 78.62 64.79 48.01 46.42 70.98 60.02 78.35 76.43 87.49 72.13
4 52.78 51.70 78.42 64.60 47.28 45.65 70.55 58.97 78.03 76.06 87.16 71.88

5 50.87 50.00 76.91 63.14 45.94 45.29 70.33 58.70 76.10 75.59 85.68 70.35
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Table 10: The relationship between the results on different datasets and the effects of sequential
unlearning when the model is ViT.

Method | Round (7) | CIFAR-10 \ CIFAR-100 \ Fashion-MNIST
| | Acep(l)  Accp(l)  Accr(t)  Acer(1) | Acer())  Accp(l)  Accr(t)  Acer(t) | Accp(l)  Acep(l)  Accr()  Accr(1)

Original | - | 95.65 94.71 96.34 8547 | 8493 84.96 78.70 69.90 | 97.67 98.07 98.44 9251
1 73.55 - 96.13 80.89 33.84 - 74.66 66.55 71.72 - 97.46 90.04

2 70.58 67.14 94.51 79.15 29.62 27.10 73.04 64.47 75.38 72.54 95.22 87.44

Retrain 3 65.97 66.31 93.88 78.51 28.55 25.04 72.45 64.14 73.19 71.83 94.94 86.85
4 65.61 65.50 93.80 78.48 26.51 24.68 72.15 63.67 71.53 71.43 94.83 86.24

5 64.44 62.65 91.73 76.17 22.32 21.95 69.63 61.68 67.29 68.56 93.09 85.04

1 79.70 - 94.10 76.48 49.60 - 69.94 60.72 85.41 - 96.47 84.36

2 77.90 79.99 92.10 74.57 47.20 47.95 67.63 59.66 83.00 85.42 94.16 82.47

SISA 3 76.14 79.42 91.73 74.36 47.03 47.22 67.29 58.65 83.00 85.26 93.75 82.47
4 75.94 79.19 91.44 73.50 47.03 46.20 66.92 58.59 82.80 82.73 93.24 82.04

5 73.17 77.64 88.97 71.84 43.10 45.94 64.48 55.79 80.59 82.25 91.03 80.17

1 84.39 - 93.25 77.55 57.32 - 73.92 62.37 84.58 - 96.30 87.41

2 83.26 83.84 92.08 76.94 56.22 56.27 72.29 61.10 83.12 83.22 95.22 87.26

INF 3 81.84 83.75 91.93 76.91 55.28 56.26 72.18 60.96 80.55 82.74 94.38 86.33
4 80.15 83.66 91.57 76.68 53.68 55.73 71.40 60.65 80.29 82.44 94.19 86.06

5 78.97 81.91 90.57 74.62 52.45 55.15 70.50 59.67 80.16 81.91 92.96 84.69

1 80.00 - 92.15 78.66 54.02 - 70.73 61.83 80.83 - 93.59 85.09

2 71.77 79.28 89.04 76.01 52.28 54.88 67.42 60.66 77.45 79.54 91.33 82.34

IUPC 3 77.74 78.84 87.88 74.91 51.31 53.69 67.35 59.84 76.70 79.00 91.22 81.58
4 76.81 76.39 86.99 72.82 49.80 52.19 66.26 59.76 76.56 78.51 91.16 79.55

5 72.08 74.15 85.19 71.15 46.82 50.38 64.89 56.11 72.71 75.44 88.05 77.68

1 74.65 - 91.68 77.03 34.53 - 70.72 62.62 77.45 - 90.77 84.72

2 72.45 70.26 90.39 75.65 33.09 29.88 69.86 61.56 75.57 72.15 89.53 84.22

Ours 3 71.56 69.95 89.91 75.58 31.73 29.87 69.83 61.48 75.15 71.58 89.41 84.02
4 69.54 69.81 89.59 74.89 30.79 29.72 69.30 60.70 73.04 71.16 88.91 82.76

5 67.16 68.78 88.32 74.01 27.80 28.01 67.55 59.85 72.63 69.55 87.28 81.87

Table 11: Detailed experimental performance of different methods under varying numbers of un-
learning request rounds, where the recommendation model is ResNet-18 and the dataset is CIFAR-
10.

Rounds (T) | Retrain | SISA | INF 1UPC Ours

Accp(l) Accp(l)  Accp(t) Acer(t) | Acer(l) Acep() Accp(t) Acer(t) | Acer() Accp(}) Accp(t) Acer(t) | Acer(l) Accp(l) Accn(t) Acer(t) | Acer(l) Accp(l) Accn(t) Acer(t)
1 6078 5557 9447 8145 | 7761 7900 9461 8191 | 8902 8838 9590 7602 | 7326 7658 8790 7611 | 6425 6228 8961 7754
2 6044 5534 9422 8123 | 7676 7873 9409 8145 | 8804 8813 9537 7553 | 7143 7367 8587 7603 | 6422 6157 8873 7652
3 6030 5515 9416  8LI3 | 7641 7853 9363 8106 | 8793 8808 9521 7522 | 7TLI6 7350 8455 7591 | 6358 6124 8870 7650
4 6024 5509 9410 8107 | 7619 7835 9360  8L.O2 | 8786 8788 9510 7520 | 7108 7283 8170 7560 | 6291  6L17 8855 7642
5 5954 5490 9390 8087 | 7533 7800 9333 8022 | 8679 8738 9468 7488 | 6966 7077 8139 7217 | 6199 6088 8831 7607
6 5700 5417 9082 7880 | 7328 7473 9176 7791 | 8641 8683 9367 7395 | 6871 7026 8070 7109 | 5951 5659 8490 7534
7 5666 5398 9053 7843 | 7260 7396 9103 7700 | 8526 8642 9303 7339 | 6844 7009 8054 7102 | 5834 5617 841l 7526
8 5631 5391 9052 7842 | 7245 7393 9096 7690 | 8526 8633 9293 7331 | 6815 6911 7973 7093 | 5741 5578 8383 7483
9 5613 5389 9023 7837 | 7214 7360 9095 7687 | 8525 8613 9284 7323 | 6683 6893 7752 6885 | 5681 5525 8375 7453
10 5539 5341 9005 7797 | 7LI9 7342 9046 7622 | 8407 8610 9268 7297 | 6641 6853 7706  68.16 | 5588 5476 8366 7379
1 5075 5025 8807 7701 | 7039 7125 8659 7135 | 8318 8604 8881 7065 | 6466 6659 7450 6748 | 5420 5127 8233 7200
12 5042 5000 8778 7674 | 7028 7101 8594 7084 | 8237 8566 8847 7022 | 6313 6643 7439 6662 | 5415 5091 8209 7147
13 5015 4997 8774 7658 | 6997 7042 8572 7070 | 8230 8566 8835 6999 | 6138 6625 7435 6554 | 5307 5033 8193 7137
14 4997 4993 8761 7657 | 6925 7033 8529  70.60 | 8191 8558 8817 6999 | 6094 6598 7192 6385 | 5254 4988 8174 7103
15 4927 4951 8746 7610 | 6884 6984 8487 G985 | 8LI9 8526 8770 6975 | 6063 6515 7060 6278 | 5228 4950  8L1l 7084
16 4817 4630 8262 7122 | 6249 6489 7722 6670 | 7864 8004 8387 6837 | 6037 6383 7025 6237 | 5204 4910 7915 7044
17 4746 4595 8233 7103 | 6180 6404 7686 6606 | 77.84 7992 8365 6797 | 5837  63.07  69.11 6088 | 5148 4846 7812 7040
18 473 4594 8227 7093 | 6169 6388 7659 6582 | 7742 7977 8361 6784 | 5776 6183 6815 6065 | 5085 4815 7808 7029
19 4703 4593 8207 7074 | 6021 6371 7659 6573 | 7726 7958 8343 6776 | 5738 6163 6798 5978 | 5039 4810 7798  70.09
20 4671 4553 8195 7043 | 5956 6333 7579 6489 | 7645 7925 8290 6741 | 5341 6159 6427 5681 | 4914 4138 762 69.77
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Table 12: Performance on ImageNet-1K, the best results are highlighted in bold.

Dataset | Method ‘ VGG | Swin Transformer

| Accp()  Acep(l)  Accr(t)  Acer(t) | Acep(l)  Acep(l)  Acer(t)  Acer(t)

Original 98.02 91.43 97.89 96.60 98.15 98.43 97.18 95.38
Retrain 54.77 51.37 82.82 79.25 61.48 60.51 92.14 90.47
INF 85.42 87.23 83.74 80.35 80.57 76.13 89.24 87.51
Ours 57.38 53.71 86.61 75.34 65.28 63.43 89.29 88.42

ImageNet-1K

Table 13: Performance on Swin Transformer, the best results are highlighted in bold.

Model | Method | CIFAR-100 | ImageNet-1K
| | Accr(l)  Accp(d)  Accr(t)  Acer(t) | Accr(l)  Accp())  Accr(t)  Acer(t)
Original 87.58 85.32 89.25 86.09 98.15 98.43 97.18 95.38
Retrain 66.83 64.73 82.66 79.99 61.48 60.51 92.14 90.47

INF 79.52 80.77 81.32 78.42 80.57 76.13 89.24 87.51
QOurs 68.35 68.93 79.36 73.72 65.28 63.43 89.29 88.42

Swin Transformer

F.2 EXPERIMENTS ON LARGER DATASETS AND MODELS

We have conducted additional experiments on the larger ImageNet-1K dataset (Deng et al., 2009)
and a transformer-based classification model, Swin Transformer (Liu et al.l 2021)). The results are
presented in Table[I2]and Table[I3] respectively. These results demonstrate that our method exhibits
good applicability across large-scale datasets and diverse model architectures.

F.3 DIFFERENT UNLEARNING ROUNDS

To comprehensively evaluate the effectiveness of our proposed method, we report the performance
of each round in Table[TT] with the total unlearning rounds 7" = 20.

F.4 HYPERPARAMTER

We evaluate the performance of ResNet-18 with various hyperparameter settings on CIFAR-10,
CIFAR-100, and Fashion-MNIST to explore the effect of hyperparameter . The results of the
hyperparameter experiments on CIFAR-10 are depicted in Figure [ in the main text. For CIFAR-
100 and Fashion-MNIST, the hyperparameter experiments are illustrated in Figures 3]

_ 759 —s— Accr L Current forgetting = — —=— Accr ! Current forgetting
5 501 Accp | Life-long forgetting Q\i 75 / Accp 1 Life-long forgetting
o o
2 Accg T Utility 2 50 k‘-/_/./ Accg T Utility
251 Accr T Generalization Accr T Generalization
1e01e-5 1M ed et e ge) eOred1e-be3 e 2 eV ge )
a a
(a) CIFAR-100 (ResNet-18) (b) Fashion-MNIST (ResNet-18)

Figure 5: Effect of hyperparameter o w.r.t. effectiveness of unlearning on CIFAR-100 and Fashion-
MNIST.

In general, we have consistent observations across all three datasets. At o = 0.5, the results show
that the model achieves an ideal balance between unlearning performance and utility/generalization
ability. This suggests that o = 0.5 is an appropriate setting that ensures both effective unlearning of
the forget set and reliable utility performance on the retain set.

F.5 QUALITATIVE ANALYSIS

We utilize Centered Kernal Alignment (CKA) (Kornblith et al., [2019) to measure the similarity be-
tween the parameters of each layer in two different models. CKA enjoys invariance to invertible
linear transformation, orthogonal transformation, and isotropic scaling. This property helps elimi-
nate the randomness and stochastic variations of parameters in deep learning models. Specifically,
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CKA takes as input the representation of each layer. Figure [f]displays a heatmap of the CKA cor-
relations between the unlearned model and the retrained model, offering a clear visual comparison.
The results indicate that our method is most closely aligned with retraining from scratch at the pa-
rameter level. This insight is consistent with the theoretically optimal results described in Section[C}
where the theoretically optimal model denotes the one obtained through retraining.

10 10 10 10
I 1 | 1
09 0.9 09 09
3 3 3 3
_ 08 0.8 08 . 08
g & é
gs 07 =3 0.7 s 0.7 s 0.7
7 06 7 0.6 7 0.6 7 0.6
05 0.5 05 05
| 3 5 7 | 3 5 7

1 3 5 7 1 3 5 7
Retrain Retrain Retrain Retrain

(a) Retrain vs Retrain (b) INF vs Retrain (c) IUPC vs Retrain (d) Ours vs Retrain

uPC

Figure 6: Parameter similarity between unlearned model and Retrain, where the recommendation
model is ResNet-18, and the dataset is CIFAR-10. SISA is omitted because it outputs an ensemble
system instead of a single model.

F.6 UNLEARN ALL CLASS SAMPLES IN A SINGLE ROUND

We have supplemented our ResNet-18 experiments with a scenario in which the user selects and
unlearns all class samples in a single round. We set the number of unlearning rounds to three, and
the unlearning performance at each round is summarized in Table[T4] It can be seen that unlearning
one class at a time produces a more pronounced and effective unlearning outcome. This is because,
in Eq. equation[9] their gradients are highly aligned when the unlearning set comprises samples from
only one category. Consequently, the influence-function term accumulates along that category’s dis-
criminative direction, rapidly diminishing the model’s ability to distinguish that class. Moreover,
since the retain set contains no samples of the forgotten class, its gradient contributions toward other
categories remain minimal, rendering performance degradation on the remaining classes more con-
trollable. By contrast, a randomly sampled unlearning set typically mixes multiple classes, causing
gradient directions to partially cancel out and hindering the complete removal of any single class’s
discriminative information.

Table 14: Unlearn all class samples in a single round.

Round | CIFAR-10 \ CIFAR-100 \ Fashion-MNIST |
| Accp(l)  Acep(l)  Acer(t)  Acer(t) | Accp(d)  Acep(l)  Accr(t)  Acer(t) | Acer(l)  Acep(l)  Accr(t)  Acer(T)
T=1 10.71 - 92.71 82.61 7.14 - 93.61 85.92 14.19 - 93.74 85.11
T=2 8.93 10.12 90.39 80.61 7.02 6.81 91.73 83.93 12.49 13.47 93.01 83.54
T=3 8.87 9.37 89.12 79.61 6.79 6.35 90.26 81.92 12.31 13.08 92.16 81.32
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