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ABSTRACT

Fast and stable fluid simulations are an essential prerequisite for applications
ranging from computer-generated imagery to computer-aided design in research
and development. However, solving the partial differential equations
of incompressible fluids is a challenging task and traditional numerical
approximation schemes come at high computational costs. Recent deep learning
based approaches promise vast speed-ups but do not generalize to new fluid
domains, require fluid simulation data for training, or rely on complex pipelines
that outsource major parts of the fluid simulation to traditional methods.
In this work, we propose a novel physics-constrained training approach that
generalizes to new fluid domains, requires no fluid simulation data, and allows
convolutional neural networks to map a fluid state from time-point t to a
subsequent state at time t + dt in a single forward pass. This simplifies the
pipeline to train and evaluate neural fluid models. After training, the framework
yields models that are capable of fast fluid simulations and can handle various fluid
phenomena including the Magnus effect and Kármán vortex streets. We present
an interactive real-time demo to show the speed and generalization capabilities
of our trained models. Moreover, the trained neural networks are efficient
differentiable fluid solvers as they offer a differentiable update step to advance
the fluid simulation in time. We exploit this fact in a proof-of-concept optimal
control experiment. Our models significantly outperform a recent differentiable
fluid solver in terms of computational speed and accuracy.

1 INTRODUCTION

Simulating the behavior of fluids by solving the incompressible Navier-Stokes equations is of great
importance for a wide range of applications and accurate as well as fast fluid simulations are a
long-standing research goal. On top of simulating the behavior of fluids, several applications such
as sensitivity analysis of fluids or gradient-based control algorithms rely on differentiable fluid
simulators that allow to propagate gradients throughout the simulation (Holl et al. (2020)).

Recent advances in deep learning aim for fast and accurate fluid simulations but rely on vast datasets
and / or do not generalize to new fluid domains. Kim et al. (2019) present a framework to learn
parameterized fluid simulations and allow to interpolate efficiently in between such simulations.
However, their work does not generalize to new domain geometries that lay outside the training
data. Kim & Lee (2020) train a RNN-GAN that produces turbulent flow fields within a pipe
domain, but do not show generalization results beyond pipe domains. Xie et al. (2018) introduce a
tempoGAN to perform temporally consistent superresolution of smoke simulations. This allows to
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produce plausible high-resolution smoke-density fields for arbitrary low-resolution inputs, but our
fluid model should output a complete fluid state description consisting of a velocity and a pressure
field. Tompson et al. (2017) present how a Helmholtz projection step can be learned to accelerate
Eulerian fluid simulations. This method generalizes to new domain geometries, but a particle tracer
is needed to deal with the advection term of the Navier-Stokes equations. Furthermore, as Eulerian
fluids do not model viscosity, effects like e.g. the Magnus effect or Kármán vortex streets cannot
be simulated. Geneva & Zabaras (2020) propose a physics-informed framework to learn the entire
update step for the Burgers equations in 1D and 2D, but no generalization results for new domain
geometries are demonstrated. All of the aforementioned methods rely on the availability of vast
amounts of data from fluid-solvers such as FEniCS, OpenFOAM or Mantaflow. Most of these
methods do not generalize well or outsource a major part of the fluid simulation to traditional
methods such as low-resolution fluid solvers or a particle tracer.

In this work, we propose a novel unsupervised training framework to learn incompressible fluid
dynamics from scratch. It does not require any simulated fluid-data (neither as ground truth
data, nor to train an adversarial network, nor to initialize frames for a physics-constrained loss)
and generalizes to fluid domains unseen during training. It allows CNNs to learn the entire
update-step of mapping a fluid domain from time-point t to t + dt without having to rely on
low resolution fluid-solvers or a particle-tracer. In fact, we will demonstrate that a physics-
constrained loss function combined with a simple strategy to recycle fluid-data generated by the
neural network at training time suffices to teach CNNs fluid dynamics on increasingly realistic
statistics of fluid states. This drastically simplifies the training pipeline. Fluid simulations
get efficiently unrolled in time by recurrently applying the trained model on a fluid state.
Furthermore, the fluid models include viscous friction and handle effects such as the Magnus
effect and Kármán vortex streets. On top of that, we show by a gradient-based optimal control
example how backpropagation through time can be used to differentiate the fluid simulation.
Code and pretrained models are publicly available at https://github.com/aschethor/
Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics/.

2 RELATED WORK

In literature, several different approaches can be found that aim to approximate the dynamics of
PDEs in general and fluids in particular with efficient, learning-based surrogate models.

Lagrangian methods such as smoothed particle hydrodynamcs (SPH) Gingold & Monaghan (1977)
handle fluids from the perspective of many individual particles that move with the velocity field.
Following this approach, learning-based methods using regression forests by Ladický et al. (2015),
graph neural networks by Mrowca et al. (2018); Li et al. (2019) and continuous convolutions by
Ummenhofer et al. (2020) have been developed. In addition, Smooth Particle Networks (SP-Nets)
by Schenck & Fox (2018) allow for differentiable fluid simulations within the Lagrangian frame of
reference. These Lagrangian methods are particularly suitable when a fluid domain exhibits large,
dynamic surfaces (e.g. waves or droplets). However, to simulate the dynamics within a fluid domain
accurately, Eulerian methods, that treat the Navier-Stokes equations in a fixed frame of reference,
are usually better suited.

Continuous Eulerian methods allow for mesh-free solutions by mapping domain coordinates (e.g.
x,y,t) directly onto field values (e.g. velocity ~v / pressure p) (Sirignano & Spiliopoulos (2018);
Grohs et al. (2018); Khoo et al. (2019)). Recent applications focused on flow through porous
media (Zhu & Zabaras (2018); Zhu et al. (2019); Tripathy & Bilionis (2018)), fluid modeling
(Yang et al. (2016); Raissi et al. (2018)), turbulence modeling (Geneva & Zabaras (2019); Ling
et al. (2016)) and modeling of molecular dynamics (Schöberl et al. (2019)). Training is usually
based on physics-constrained loss functions that penalize residuals of the underlying PDEs. Similar
to our approach, Raissi et al. (2019) uses vector potentials to obtain continuous divergence-free
velocity fields to approximate the incompressible Navier-Stokes equations. Continuous methods
return smooth, accurate results and can overcome the curse of dimensionality of discrete techniques
in high-dimensional PDEs (Grohs et al. (2018)). However, these networks are trained on a specific
domain and cannot generalize to new environments or be used in interactive scenarios.
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Discrete Eulerian methods, on the other hand, aim to solve the underlying PDEs on a grid and early
work dates back to Harlow & Welch (1965) and Stam (1999). Accelerating such traditional works
with deep learning techniques is a major field of research and all of the methods mentioned in the
introduction fall into this category. Further methods include the approach by Thuerey et al. (2019)
to learn solutions of the Reynolds-averaged Navier-Stokes equations for airfoil flows, but requires
large amounts of training data and does not generalize beyond airfoil flows. In the work by Um
et al. (2020), a correction step is learned that brings solutions of a low-resolution differentiable fluid
solver closer to solutions of a high-resolution fluid simulation. However, generalization results for
new domain geometries were not presented. The works of Mohan et al. (2020) and Kim et al. (2019)
show that vector potentials are suitable to enforce the incompressibility constraint in fluids but do
not generalize to new fluid domains beyond their training data.

3 METHOD

In this section, we briefly review the incompressible Navier-Stokes equations, which are to be solved
by the neural network. Then, we explain how the Helmholtz decomposition can be exploited to
ensure incompressibility within the fluid domain. Furthermore, we provide details of our discrete
spatio-temporal fluid representation and introduce the fluid model. Afterwards, we formulate a
physics-constrained loss function based on residuals of the Navier-Stokes equations and introduce a
pressure regularization term for very high Reynolds numbers. Finally, we explain the unsupervised
training strategy.

3.1 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Most fluids can be modeled with the incompressible Navier-Stokes equations - a set of non-linear
equations that describe the interplay of a velocity field ~v and a pressure field p within a fluid domain
Ω:

∇ · ~v = 0 incompressibility on Ω (1)

ρ~̇v = ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆~v + ~f conservation of momentum on Ω (2)

Here, ρ describes the fluid density and µ the viscosity. Equation 1 states that the fluid is
incompressible and thus ~v is divergence-free. Equation 2 states that the change in momentum of
fluid particles must correspond to the sum of forces that arise from the pressure gradient, viscous
friction and external forces. Here, external forces on the fluid (such as e.g. gravity) can be neglected,
so we set ~f = 0.

These incompressible Navier-Stokes equations shall be solved by a CNN given initial conditions
~v0 and p0 at the beginning of the simulation and Dirichlet boundary conditions which constrain the
velocity field at the domain boundary ∂Ω:

~v = ~vd Dirichlet boundary condition on ∂Ω (3)

3.2 HELMHOLTZ DECOMPOSITION

A common method to ensure incompressibility of a fluid (see Equation 1) is to project the flow field
onto the divergence-free part of its Helmholtz decomposition. The Helmholtz theorem states that
every vector field ~v can be decomposed into a curl-free part (∇q) and a divergence-free part (∇×~a):

~v = ∇q +∇× ~a (4)

Note, that ∇ × (∇q) = ~0 and ∇ · (∇ × ~a) = 0. The Helmholtz projection consists of solving
the Poisson problem ∇ · ~v = ∆q for q, followed by substracting ∇q from the original flow field.
However, solving the Poisson equation on arbitrary domains comes at high computational costs for
classical methods and one has to rely e.g. on conjugate gradient methods to approximate its solution.

Here, we propose a different approach and directly try to learn a vector potential ~a with ~v = ∇×~a.
This ensures that the network outputs a divergence-free velocity field within the domain Ω and
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automatically solves Equation 1. In this work, we consider 2D fluid simulations, so only the z-
component of ~a, az , is of interest since vz and all derivatives with respect to the z-axis are zero:

∇× ~a =

(
∂yaz − ∂zay
∂zax − ∂xaz
∂xay − ∂yax

)
=

(
∂yaz
−∂xaz

0

)
=

(
vx
vy
0

)
= ~v (5)

3.3 DISCRETE SPATIO-TEMPORAL FLUID REPRESENTATION

Marker-And-Cell (MAC) grid To solve the Navier-Stokes equations, we represent the relation
between az, vx, vy, p on a 2D staggered marker-and-cell (MAC) grid (see Figure 1a). Therefore, we
discretise time and space as follows:

~a(x, y, t) =

 0
0

(az)
t
i,j

 ; ~v(x, y, t) =

(
(vx)

t
i,j

(vy)
t
i,j

)
; p(x, y, t) = pti,j (6)

Obtaining gradient, divergence, Laplace and curl operations on this grid with finite differences is
straight forward and can be efficiently implemented with convolutions (see appendix A).

(a) Layout of Staggered Marker-
And-Cell (MAC) grid in 2D.

(b) Diagram of the fluid model. By recurrently applying the
model on the fluid state (pt and at), we can unroll the fluid
simulation in time.

Figure 1: MAC grid and diagram of the fluid model.

Explicit, Implicit, Implicit-Explicit (IMEX) time integration methods The discretization of the
time domain is needed to deal with the time-derivative of the velocity field ∂~v

∂t in Equation 2, which
becomes:

ρ

(
~vt+dt − ~vt

dt
+
(
~vt
′
· ∇
)
~vt
′
)

= −∇pt+dt + µ∆~vt
′
+ ~f (7)

The goal is to take as large as possible timesteps dt while maintaining stable and accurate solutions.
Stability and accuracy largely depend on the definition of vt

′
. In literature, choosing vt

′
= vt is

often referred to as explicit integration methods and frequently leads to unstable behavior. Choosing
vt
′

= vt+dt is usually associated with implicit integration methods and gives stable solutions at the
cost of numerical dissipation. Implicit-Explicit (IMEX) methods, which set vt

′
= (vt + vt+dt)/2

are a compromise between both methods and considered to be more accurate but less stable than
implicit methods.
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3.4 FLUID MODEL

We represent the fluid dynamics by a recurrent model that maps the fluid state pt,~at for timestep t
and the domain description Ωt+dt, ~vt+dt

d to the fluid state pt+dt,~at+dt of the next timestep. Here,
pt describes the pressure field and ~at describes the vector potential of ~vt. For t = 0, we consider
initial states p0 = 0 and ~a0 = ~0, however, other initial conditions could be considered as well.
Ωt+dt is a binary mask that contains the domain geometry and is 1 for the fluid domain and 0
everywhere else. For the boundary of the domain, we simply take the inverse of Ω: ∂Ω = 1 − Ω.
~vt+dt
d represents the Dirichlet boundary conditions and contains a velocity field that must be

matched by ~vt+dt at the domain boundaries. Figure 1b shows a diagram of the fluid model.
First,

(
pt,~at,Ωt+dt, ~vt+dt

d

)
are taken to derive a slightly more meaningful feature representation

that comprises
(
pt, at,∇× at,Ωt+dt, ∂Ωt+dt,Ωt+dt · ∇ × at,Ωt+dt · pt, ∂Ωt+dt · ~vt+dt

d

)
. These

features can be very efficiently computed with convolutions and are then fed into a U-Net
(Ronneberger et al. (2015)) with a reduced number of channels (the exact network configuration
can be found in appendix B). The mean of the U-Net output is set to 0 in order to keep p and ~a well
defined and prevent drifting offset values. Finally, the output is added to pt and ~at to obtain the
updated fluid state pt+dt and ~at+dt.

3.5 PHYSICS-CONSTRAINED LOSS FUNCTION

Using the residuals of the Navier-Stokes equations (Equations 1 and 2), we can formulate the
following loss terms on Ω and ∂Ω:

Ld = ‖∇ · ~v‖2 divergence loss on Ω (8)

Lp =

∥∥∥∥ρ(∂~v∂t + (~v · ∇)~v

)
+∇p− µ∆~v − ~f

∥∥∥∥2 momentum loss on Ω (9)

Lb = ‖~v − ~vd‖2 boundary loss on ∂Ω (10)

Combining the described loss terms, we obtain the following loss function:

L = αLd + βLp + γLb (11)

where α, β, γ are hyperparameters that weight the contributions of the different loss terms. Note
that if we use a vector potential ~v = ∇×~a, Ld = 0 is automatically fulfilled and we can set α = 0.
This loss function can be computed very efficiently with convolutions in O(N) (where N = number
of grid cells), whereas solving the Navier-Stokes equations explicitly would be computationally a
lot more expensive. For detailed descriptions regarding the fully discretized loss-function, we refer
to appendix A.

3.6 PRESSURE REGULARIZATION

For very high Reynolds numbers (see Equation 13) and inviscid flows, training becomes unstable as
viscous friction cannot dissipate enough energy out of the system. This leads to unrealistic gradients
in ~v and p. For such cases, we introduce an additional regularization term for the loss function (11)
that can be traded off with Lp to stabilize training:

Lr = ‖∇p‖2 (12)

The intuition behind this regularization term is, that we want to penalize unrealistically high energies
in the pressure field.
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3.7 TRAINING STRATEGY

Training starts with initializing a pool {Ω0
k, (vd)0k, (az)0k, p

0
k} of randomized domains Ω0

k and
boundary conditions (vd)0k as well as initial conditions for the vector potential and pressure fields
that we both set to zero ((az)0k = 0 and p0k = 0). The resolution of our training domains is 100x300
grid cells and example-domains of the training pool are shown in appendix C. Note that our training
pool does not rely on any previously simulated fluid-data.

At each training step, a random mini-batch {Ωt
k, (vd)tk, (az)tk, p

t
k}{k∈minibatch} is drawn from the pool

and fed into the neural network which is designed to predict the velocity (~vt+dt
k = ∇× ~at+dt

k ) and
pressure (pt+dt

k ) fields of the next time step. Based on a physics-constrained loss-function (Equation
11), we update the weights of the network using the Adam optimizer (Kingma & Ba (2015)). At the
end of each training step, the pool is updated by replacing the old vector potential and pressure fields
(az)tk, p

t
k by the newly predicted ones (az)t+dt

k , pt+dt
k . This recycling strategy fills the training pool

with more and more realistic fluid states as the model becomes better at simulating fluid dynamics.

From time to time, old environments of the training pool are replaced by new randomized
environments and the vector potential as well as the pressure fields are reset to 0. This increases
the variance of the training pool and helps the neural network to learn "cold starts" from ~0-velocity
and 0-pressure fields.

Besides the fluid model described above, which we denote as ~a-Net in the following, we also trained
an ablation model, ~v-Net, that directly learns to predict the velocity field without a vector potential.
For the implementation of both models, we used the popular machine learning framework Pytorch
and trained the models on a NVidia GeForce RTX 2080 Ti. Training converged after about 1 day.
The hyperparameters in the loss-function for the ~a-Net were β = 1 and γ = 20. The reason
for choosing a higher weight for the loss term Lb than for Lp was the observation, that errors in
Lb can lead to unrealistic flows leaking through boundaries. For the ablation study (~v-Net), we
used α = 100, β = 1, γ = 0.001. Here, we had to choose a very high weight for Ld to ensure
incompressibility of the fluid, otherwise unrealistic source and sink effects start to appear. For Lb,
on the other hand, we used a very low weight as the boundary conditions can be trivially learned by
the ~v-Net. We used these parameter settings for all experiments.

4 RESULTS

To evaluate the potential of our method, we assess its ability to reproduce physical effects such
as Kármán vortex streets and the Magnus effect. In addition, we demonstrate its generalization
capability and real-time performance. Finally, we test the fluid models quantitatively.

4.1 QUALITATIVE EVALUATION

Qualitative analysis of wake dynamics Qualitative effects in fluid dynamics such as the wake
dynamics behind an obstacle are closely related to the Reynolds number. It is a dimensionless
quantity defined by:

Re =
ρ ‖~v‖D

µ
(13)

Here, ρ is the fluid density, ‖~v‖ is the fluid speed, D is the diameter of the obstacle, and µ is the
viscosity. (We use the units of the grid).

We retrained models for different values of µ and ρ to compare the fluid behavior for a wide range
of Reynolds numbers. Figure 2 shows, that the trained models are able to predict the wake dynamics
behind an obstacle in good accordance with qualitative expectations from fluid dynamics. As a rule
of thumb, for Re � 1, the flow becomes time-reversible. This can be noticed in Figure 2a by the
symmetry of the flow before and after the obstacle and the nearly constant pressure gradient within
the pipe. Starting from Re ≈ 10, the flow is still laminar but a static wake is forming behind the
obstacle (see Figure 2b). For Reynolds numbers Re >≈ 90, Kármán vortex streets start to appear
(see Figure 2c). A Kármán vortex street consists of clock and counterclockwise spinning vortices
that are generated at the obstacle and then start moving in a regularly oscillating pattern with the
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flow. For very large Reynolds numbers or inviscid flows, the flow field becomes turbulent, which
can be recognized by the irregular patterns behind the obstacle in Fig 2d.

(a) Re=0.6, µ = 5, ρ = 0.2 (b) Re=30, µ = 0.5, ρ = 1

(c) Re=600, µ = 0.1, ρ = 4 (d) Re→ ∞, µ = 0, ρ = 1
(obtained with regularization on ∇p)

Figure 2: After training, our models are able to show correct wake flow dynamics for a wide range of different
Reynolds numbers. (D = 30, ‖~v‖ = 0.5). Streamlines indicate flow direction, linewidth indicates speed and
colors represent the pressure field (blue: low pressure / yellow: high pressure).

Magnus effect The Magnus effect appears when a flow interacts with a rotating body. It is widely
known e.g. in sports such as soccer or tennis where spin is used to deflect the path of a ball. The
reason for the deflection stems from a low pressure field where the surface of the object moves along
flow direction and a high pressure field where the object surface moves against the flow. Figure 3a
shows, that our models are able to reproduce the Magnus effect around a rotating cylinder.

(a) Magnus effect on a clock-wise turning cylinder.(b) Generalization example: Note that the fluid
model has never been confronted with wing-
profiles during training.

Figure 3: Our models feature the Magnus effect and generalize to new fluid domains. Further examples are
presented in appendix D and the video.

Analysis of generalization capability We tested the networks capability to generalize to objects
not seen during training. Figure 3b shows the networks capability to meet boundary conditions of an
airfoil and return a plausible pressure field that produces lift (see low pressure on top of wing). Note
that in contrast to the approach by Thuerey et al. (2019), which learns simplified, time-averaged
solutions of the Navier-Stokes equations, our method is able to simulate the full incompressible
Navier-Stokes equations for an airfoil without relying on any ground truth data or having seen airfoil-
geometries during training. In fact, the network was only trained on simple randomized domains as
highlighted in appendix C and Figure 7. Possible reasons for the networks generalization capabilities
are:

• During training, the network gets confronted with an infinite number of different flow-
fields and randomized domain configurations because the training pool gets updated at
every training step. This prevents the network from over-fitting.
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• The dynamics of a fluid-particle are mostly determined by its local neighborhood /
surrounding particles. This means, the update step for a certain cell on the MAC grid is
mostly determined by close / neighboring MAC-grid cells. Since more complicated shapes
can be seen locally as a composition of basic shapes (e.g. the front of the wing can be
locally regarded as a cylinder), it suffices to train on basic shapes that provide the network
with enough examples to generalize to more complicated shapes.

Further generalization examples are provided in appendix D.

Real-time capability The fluid simulation can be easily parallelized and takes low computational
costs as one time-integration step consists just of a single forward pass through a convolutional
neural network. This enables for example interactive real-time simulations. We implemented a
demo that allows to interact with a fluid by moving obstacles, rotating spheres and changing the
flow speed within a pipe (see video in supplementary material and source code). Our method runs
at 250 timesteps per second on a 100x300 grid. In the respective experiments, we used a NVidia
GeForce RTX 2080 Ti consuming about 860 MB of GPU memory.

4.2 QUANTITATIVE EVALUATION

We compare our method (~a-Net) quantitatively with PhiFlow by Holl et al. (2020). Phiflow is a
recent, open source, differentiable fluid simulator based on a MAC grid data structure. Furthermore,
we provide an ablation study (~v-Net) that does not make use of the Helmholtz decomposition but
directly works on the velocity field ~v.

Quantitative comparison of different fluid solvers is challenging, as their performance is highly
dependent on factors like the geometry of the domain, fluid parameters such as viscosity or density,
flow speed or the timestep of the integrator. As benchmarks for fluid simulations on MAC grids are
not yet available, we built a simple toy domain on a 100 x 100 grid which simulates a flow around
an obstacle within a pipe (more details are provided in appendix E).

First, we compared the computational speed on a CPU and GPU by comparing the integration
time-steps per second (see Table 1). The ~v-Net as well as the ~a-Net are significantly faster than
PhiFlow (11x on CPU and 40x on GPU) as they do not rely on an iterative conjugate gradient solver
but instead use a single forward pass through a convolutional neural network that can be easily
parallelized on a GPU. To provide a fair comparison onLd, we set the velocity field at the boundaries
equal to ~vd. This enables us to compute Ld for the ~a-Net architecture on the domain boundaries
which would otherwise have zero divergence everywhere. This way, Ld can be interpreted as a
metric on how well the orthogonal components of the Dirichlet boundary conditions are met (i.e.
no flow leaks through the boundaries). For dt = 4, we outperformed Phiflow by several orders of
magnitude. For both, Ld and Lp, the ~a-Net architecture significantly outperformed the more naive
~v-Net approach.

Furthermore, we investigated stability by evaluating the evolution of Lp and Ld for the ~a-Net over
time (see Figure 4). As the fluid state is initialized with az = 0 and p = 0, the ~a-Net has to perform
a cold-start which is the reason for high Lp and Ld during the first circa 70 steps. Afterwards, the
~a-Net continues an accurate and stable fluid simulation.

Method CPU [TPS] GPU [TPS] Ld Lp

PhiFlow 7 - 6.2e-4 -
~v-Net (ours) 82 311 8.66e-7 4.87e-5
~a-Net (ours) 82 311 5.44e-7 1.56e-5

Table 1: Quantitative comparison of timesteps per second (TPS)
on CPU / GPU as well as divergence loss and momentum loss for
differentiable fluid solvers on a 100x100 grid for viscosity µ =
0.1, density ρ = 4 and timesteps of size dt = 4.

Figure 4: Long term stability of fluid
simulations performed by the ~a-Net
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4.3 OPTIMAL CONTROL OF VORTEX SHEDDING FREQUENCY

In this section, we present a proof-of-concept experiment that aims at controlling the shedding
frequency of a Kármán vortex street behind an obstacle by changing the flow speed (see Figure
5a). To this end, we exploit our previously trained differentiable fluid models.

(a) control setup (domain size:
200x100 grid cells)

(b) frequency distribution before reaching
convergence

(c) optimization curve

Figure 5: The frequency of vortex streets can be controlled using our differentiable fluid models.

First, we measure the y-component of the velocity field vy(t) behind an obstacle (see white box in
Figure 5a) over 200 time steps. Then, we compute the frequency spectrum Vy(f) of vy(t) using
the fast Fourier transform (see Figure 5b). Now, we want to adjust the inflow / outflow boundary
conditions in ~vd such that E[|Vy(f)|2] = f̂ . Here, f̂ is the target frequency. To optimize ~vd, we
define a loss function L = (E[|Vy(f)|2]− f̂)2 and compute the gradients ∂L

∂~vd
with backpropagation

through time. This is possible since all parts of the loss function including the fluid simulation that is
performed by our trained neural fluid model as well as the fast Fourier transform are differentiable.
Computing the gradients with a standard automatic differentiation library (Pytorch) took 3.5 seconds
for all 200 time steps on our 200x100 domain setup. This is considerably faster than the current
state-of-the-art differentiable fluid solver by Takahashi et al. (2021) which takes 5.42 seconds for
only 30 time steps on a smaller 128x128 grid. The update steps of ~vd are done using the ADAM-
optimizer and converge after approximately 70 iterations (see Figure 5c). We want to emphasize
that differentiable fluid simulations are limited to scenarios with low Reynolds numbers as in the
presence of turbulences, chaotic behavior will lead to exploding gradients.

5 DISCUSSION AND OUTLOOK

In this work, we present an unsupervised learning scheme for the incompressible Navier-Stokes
equations and introduce a fluid model that uses a vector potential to output divergence-free velocity
fields. Qualitative results of our trained fluid models are in good accordance with expectations from
fluid dynamics for a wide range of Reynolds numbers and generalize to unknown fluid domains.
Quantitative assessment showed superior performance in terms of accuracy and speed compared to
Phiflow and an ablation study that directly predicts the velocity field. We present a real-time demo
and demonstrate how differentiability can be used in a proof-of-concept fluid control scenario. We
believe that our fluid models can significantly speed up more sophisticated fluid control pipelines
such as described by Holl et al. (2020).

First experiments of extending this approach to 3D deliver encouraging results and are topic of future
research. Furthermore, on top of Dirichlet boundary conditions, Neumann boundary conditions and
multi-phase domains could be incorporated in future fluid models as well.
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A PHYSICS-CONSTRAINED LOSS ON A MAC GRID

As mentioned in Section 3.3 of the paper, our method relies on a staggered marker-and-cell grid
representation for the vector potential as well as the velocity and pressure fields. In the following, we
provide further details on how to apply this representation to learn incompressible fluid dynamics.

To calculate the velocity field ~v = ∇ × ~a of a vector potential ~a on a MAC grid in 2D, we have to
compute the curl as follows:

(vx)i,j = (az)i+1,j − (az)i,j

(vy)i,j = (az)i,j − (az)i,j+1
(14)

If this vector potential is inserted into the divergence operator on a MAC grid, we can show that
∇ · ~vi,j = 0 is indeed fulfilled:

∇ · ~vi,j = (vx)i,j+1 − (vx)i,j + (vy)i+1,j − (vy)i,j (15)

=
((az)i+1,j+1 − (az)i,j+1)− ((az)i+1,j − (az)i,j)

+ ((az)i+1,j − (az)i+1,j+1)− ((az)i,j − (az)i,j+1)
(16)

=0 (17)

Thus, for the ~a-Net, the incompressibility equation is automatically fulfilled and no further training
on the divergence loss Ld is required. However, for the ~v-Net, the residuals of the divergence are
still of importance:

(Rd)t+dt
i,j = ∇ · ~vt+dt

i,j (= 0 for ~a-Net) (18)

The residuals of the momentum equation in x-direction can be computed as follows:

(Rpx)t+dt
i,j =ρ

(
(vx)t+dt

i,j − (vx)ti,j
dt

+ (vx)t
′

i,j ·
(vx)t

′

i,j+1 − (vx)t
′

i,j−1

2

+

(vy)
t′
i,j−1+(vy)

t′
i,j

2 ·
(

(vx)t
′

i,j − (vx)t
′

i−1,j

)
+

(vy)
t′
i+1,j−1+(vy)

t′
i+1,j

2 ·
(

(vx)t
′

i+1,j − (vx)t
′

i,j

)
2


+
(
pt+dt
i,j − pt+dt

i,j−1
)
− µ ·∆(vx)t

′

i,j

(19)

Here, we use the following isotropic Laplace operator:

∆si,j =
1

4
(1 ∗ si−1,j−1 + 2 ∗ si−1,j + 1 ∗ si−1,j+1

+2 ∗ si,j−1 − 12 ∗ si,j + 2 ∗ si,j+1

+1 ∗ si+1,j−1 + 2 ∗ si+1,j + 1 ∗ si+1,j+1)

(20)

The derivation of the advection term for Rpx is a bit more complex since on a MAC grid, vx and
vy are displaced by half a pixel in x-direction and y-direction. To obtain the residuals of the
momentum equation in y-direction, (Rpy

)i,j , one has to take (Rpx
)i,j and swap x and y and the

indices respectively.

Now, the discretized loss terms can be written as follows:

Lt+dt
d =

∑
i,j

Ωt+dt
i,j ((Rd)t+dt

i,j )2 (21)

Lt+dt
p =

∑
i,j

Ωt+dt
i,j

(
((Rpx

)t+dt
i,j )2 + ((Rpy

)t+dt
i,j )2

)
(22)

Lt+dt
b =

∑
i,j

∂Ωt+dt
i,j

∥∥~vt+dt
d − ~vt+dt

∥∥2 (23)
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Note, that all mentioned operations can be efficiently implemented with convolutions. To obtain the
final velocities on a square grid, we project the velocity fields of the MAC grid back onto the ~a-grid
using linear interpolation:

~v =
1

2

(
(vx)i−1,j + (vx)i,j
(vy)i,j−1 + (vy)i,j

)
(24)

B NETWORK ARCHITECTURE

Our fluid model is based on the U-Net architecture (Ronneberger et al. (2015)) with fewer channels
(see Figure 6). As the pressure field and vector potential can have an arbitrary offset, we always
normalize the mean of the pressure (∆p) and vector potential (∆az) to 0 to keep these fields well-
defined and prevent drifting offset values.

Figure 6: U-Net architecture with fewer channels.

C EXAMPLES OF TRAINING DOMAINS

The domains we used for training consist of 100 × 300 grids. We used 3 different randomized
domains as exemplary depicted in Figure 7. First, we have boxes with randomized height and width
that float on randomized paths inspired by Brownian motion in a pipe with randomized flow speed.
Second, we have the same setup but replaced the boxes by cylinders with randomized radii and
angular velocities in order to learn the Magnus effect. Finally, we have a folded pipe system with
randomized flow speed, that is randomly flipped along the x-axis.

D FURTHER EXAMPLES OF GENERALIZATION

Note that the network was only trained on simple domain geometries as presented in appendix C.
Still, as can be seen in Figure 8, the network is capable of generalizing to far more complicated
domain geometries (e.g. shark, car). Figure 8c shows that it can generalize to multiple objects in the
scene, although the training set contained at most one object per scene. And Figure 8d shows that
we can alter the outer boundary conditions as well. For real-time simulations, please have a look at
our source code and the supplementary video.

E QUANTITATIVE ANALYSIS: THE BENCHMARK PROBLEM

Figure 9 shows the domain Ω and vd on a 100×100 grid which was used as the benchmark problem
for quantitative analysis. The flow speed for the inlet and outlet was set to 0.5. The timestep of
the integrator was set to dt = 4 and the viscosity and fluid density were set to µ = 0.1 and ρ = 4
respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: The left column shows Ω (in white) / ∂Ω (in black) and the right column shows ~vd for three examples
of training domains. (Colors indicate the direction and magnitude of ~vd as depicted in Figure 9a)

(a) Shark (b) Car

(c) Smiley (d) Smiley in cave

Figure 8: Our models generalize to various domain geometries, although being trained only on simple shapes
(see Figure 7)

F QUALITATIVE COMPARISON OF ~a-NET AND ~v-NET

We give a qualitative example to show the benefits of using a vector potential. Figure 10
demonstrates that the~a-Net finds plausible solutions for a folded pipe domain while the ~v-Net looses
most of the flow in the center of the domain. This is in good accordance with quantitative results
shown in section 1. The folded pipe domain is particularly difficult to learn as the flow field contains
long range dependencies to the inlet and outlet (as shown in the bottom row in Figure 7).

G TRAINING WITHOUT RESETTING ENVIRONMENTS

We performed an ablation study to investigate what happens if we do not reset old environments from
time to time and, thus, do not continuously present the fluid model with cold starts during training.
Figure 11 shows that in this case, large error spikes appear in the validation curve. These error spikes
appear since the model has troubles to perform a cold start as can be seen in Figure 11b: compared
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(a) (b) (c)

Figure 9: a) shows legend for ~vd; b) shows Ω (in white) / ∂Ω (in black) for the benchmark problem; c) shows
~vd for the benchmark problem. (Colors indicate the direction of ~vd as depicted in a)

(a) ~a-Net (b) ~v-Net

Figure 10: Qualitative comparison of ~a-Net and ~v-Net in a folded pipe domain

to a properly trained model (see Figure 4) the model takes longer to perform a cold start (ca 100
steps) and converges to a solution with high Lp- and Ld- losses. By resetting the environments from
time to time during training, we can prevent these error spikes as shown in Figure 11c.

(a) (b) (c)

Figure 11: a) ablation study without resetting environments: validation curve shows large error spikes during
training; b) error spike: the fluid model takes longer to perform a cold start and converges to a solution with
high losses; c) original training with resetting environments: validation curve is stable
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