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Abstract001

Mental health remains a critical global chal-002
lenge, with increasing demand for accessible,003
effective interventions. Large language mod-004
els (LLMs) offer promising solutions in psy-005
chotherapy by enhancing the assessment, di-006
agnosis, and treatment of mental health condi-007
tions through dynamic, context-aware interac-008
tions. This survey provides a comprehensive009
overview of the current landscape of LLM ap-010
plications in psychotherapy, highlighting the011
roles of LLMs in symptom detection, severity012
estimation, cognitive assessment, and therapeu-013
tic interventions. We present a novel concep-014
tual taxonomy to organize the psychotherapy015
process into three core components: assess-016
ment, diagnosis, and treatment, and examine017
the challenges and advancements in each area.018
The survey also addresses key research gaps, in-019
cluding linguistic biases, limited disorder cover-020
age, and underrepresented therapeutic models.021
Finally, we discuss future directions to integrate022
LLMs into a holistic, end-to-end psychother-023
apy framework, addressing the evolving nature024
of mental health conditions and fostering more025
inclusive, personalized care.026

1 Introduction027

Mental health plays an increasingly critical role028

in current healthcare and social well-being. The029

high prevalence of common psychological disor-030

ders, such as depression and anxiety, has led to a031

growing demand for accessible and effective psy-032

chological interventions. However, the core of psy-033

chotherapy resides in dynamic, contextual inter-034

personal interactions—therapists should continu-035

ously assess and adjust their intervention strate-036

gies (Wampold and Imel, 2015) based on the pa-037

tient’s emotional fluctuations, verbal expressions,038

and social background, fostering a strong thera-039

peutic alliance (Stubbe, 2018) to achieve symptom040

resilience. This deep and flexible process contrasts041
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Figure 1: The dynamic and interrelated network among
assessment, diagnosis, and treatment in psychotherapy.

sharply with traditional NLP, which is typically 042

limited to static or single-task settings. 043

Large language models (LLMs) offer a new per- 044

spective to addressing this challenge. By leverag- 045

ing their capability to model extensive context and 046

perform multi-turn reasoning (Wang et al., 2024e; 047

Li et al., 2024b), LLMs can capture rich seman- 048

tics and emotional signals in dialogues (Ma et al., 049

2025), enabling end-to-end language understand- 050

ing and generation. In assessment, LLMs can ex- 051

tract potential symptom cues from vague and frag- 052

mented expressions (Tu et al., 2024; Qiu et al., 053

2024). During diagnosis, they integrate subjective 054

and objective patient information across multiple 055

utterances (Chen et al., 2023a; Ren et al., 2024). In 056

therapeutic interventions, they adapt conversational 057

strategies based on patients’ real-time feedback, en- 058

abling more flexible and human-like interactions 059

compared to traditional scripted systems (Lee et al., 060

2024b,d). As a result, LLMs have the potential to 061

surpass the conventional “discrete label recogni- 062

tion” paradigm, evolving toward a model of con- 063

tinuous, progressive clinical reasoning, enabling 064

seamless connections across assessment, diagnosis, 065

and treatment, aligning more closely with thera- 066

pists’ cognitive process and interaction flow. 067

However, existing research on applying LLMs 068
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Figure 2: Taxonomy of Research on Large Language Models in Psychotherapy.

in this field remains somewhat disjointed. Many069

studies have utilized LLMs for isolated tasks, such070

as depression detection (Yang et al., 2023; Souto071

et al., 2023) or diagnosis (Jiang et al., 2024b), re-072

garding them as superior feature extractors. An-073

other research line has focused on developing men-074

tal health counseling chatbots (Chen et al., 2023b;075

Zhang et al., 2024a); however, these systems re-076

main limited to partial assistance due to insufficient077

integration with clinical workflows. In other words,078

although LLMs hold the potential to span the entire079

continuum from assessment to intervention, they080

remain limited by the fragmented paradigms of081

traditional NLP, preventing them from fully lever-082

aging their dynamic, contextual capabilities.083

To address these gaps, we introduce the first084

taxonomy that divides the psychotherapy process085

into three essential dimensions: Assessment, Di-086

agnosis, and Treatment and provides a systematic087

review of the recent advancements and challenges088

of LLMs in each stage. We further examine the089

current landscape from various perspectives, in-090

cluding the coverage of mental disorders, diversity091

of linguistic resources, alignment with psychother-092

apy theories, and the types of techniques employed,093

thereby sketching the overall distribution and char-094

acteristics of existing research. Building on this095

foundation, we discuss key challenges for the fu-096

ture, including issues of technical coherence, re-097

source and language imbalances, and the discon-098

nect between LLM-based approaches and estab-099

lished psychological practices. Through this com-100

prehensive review and framework, we aim to offer101

methodological insights to inform future research102

and facilitate the practical integration of intelligent 103

systems across the entire psychotherapy process. 104

Organization of This Survey. We present the 105

first comprehensive survey of recent advancements 106

in applying LLMs to psychotherapy. We introduce 107

a conceptual taxonomy that organizes psychother- 108

apy into three core components—Assessment, Di- 109

agnosis, and Treatment—and details their dynamic 110

interrelations (Section §2). We review how LLMs 111

are applied within these components, highlighting 112

their roles in facilitating assessments, refining di- 113

agnostic processes, and enhancing treatment strate- 114

gies (Section §3). We examine current research 115

trends, including symptom and language coverage 116

as well as the distribution of various models and 117

techniques (Section §4). Finally, we discuss open 118

challenges and outline promising directions for fu- 119

ture work (Section §5). 120

2 Conceptual Taxonomy 121

To establish a standardized framework for under- 122

standing psychotherapy, we propose a hierarchical 123

taxonomy aligned with the American Psychologi- 124

cal Association’s tripartite model of psychother- 125

apeutic processes1. As illustrated in Figure 1, 126

this taxonomy organizes psychotherapy into three 127

core components: (1) Assessment, (2) Diagnosis, 128

and (3) Treatment, with dynamic interconnections2. 129

Each component is detailed below. 130

1https://www.apa.org/topics/psychotherapy
2Throughout this taxonomy, the terms Assessment, Di-

agnosis, and Treatment specifically refer to the three core
components of psychotherapy.
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2.1 Assessment131

Definition. Psychological assessment constitutes132

the systematic collection and interpretation of data133

regarding an individual’s cognitive, emotional, and134

behavioral functioning (Cohen et al., 1996; Ka-135

plan and Saccuzzo, 2001). This process employs136

psychometric tests, structured clinical interviews,137

behavioral observations, and collateral information138

to establish a multidimensional profile of psycho-139

logical states (Groth-Marnat, 2009).140

Significance. As the foundational stage of psy-141

chotherapy, assessment provides the empirical ba-142

sis for understanding a client’s unique psycholog-143

ical landscape. It enables therapists to identify144

symptom patterns (Phillips et al., 2007), track tem-145

poral changes (Barkham et al., 1993), and con-146

textualize subjective experiences within objective147

frameworks (Groth-Marnat, 2009). The contin-148

uous nature of psychological assessment allows149

for real-time adjustments to therapeutic strate-150

gies (Schiepek et al., 2016), ensuring interventions151

remain responsive to evolving client needs.152

2.2 Diagnosis153

Definition. Diagnosis represents the analytical154

process of categorizing psychological distress us-155

ing established nosological systems such as the156

DSM-5 (American Psychiatric Association, 2022)157

and ICD-11 (World Health Organization, 2019).158

This involves differentiating normative emotional159

responses from pathological conditions while con-160

sidering cultural (Teo, 2010) and developmen-161

tal (Kawa and Giordano, 2012) variables that influ-162

ence symptom manifestation.163

Significance. Diagnosis serves as the conceptual164

bridge between assessment and treatment, provid-165

ing a structured framework for intervention plan-166

ning (Jensen-Doss and Hawley, 2011). By align-167

ing clinical observations with standardized crite-168

ria, it enhances communication among profession-169

als (Craddock and Mynors-Wallis, 2014) and facil-170

itates evidence-based decision-making (American171

Psychiatric Association, 2006).172

2.3 Treatment173

Definition. Treatment includes evidence-based174

interventions designed to reduce psychological175

distress and improve functioning (American Psy-176

chiatric Association, 2006). These interventions177

work by building a therapeutic alliance (Elvins and178

Green, 2008), restructuring cognition (Ezawa and 179

Hollon, 2023), and modifying behavior (Martin 180

and Pear, 2019), all typically grounded in well- 181

established theoretical orientations. 182

Significance. Treatment transforms the theories 183

and information gleaned from assessment and di- 184

agnosis into practical interventions (Prochaska and 185

Norcross, 2018) that directly address the client’s 186

psychological distress (Barlow, 2021) and foster 187

personal growth (Lambert, 2013). 188

2.4 Interrelations 189

The taxonomy’s components interact through three 190

dynamic processes that define psychotherapy as a 191

complex adaptive system: 192

Synthesizing (Assessment → Diagnosis) The 193

dialectical integration of observational data with 194

nosological frameworks enables diagnostic classifi- 195

cations to contextualize assessment findings, syn- 196

thesizing the patient’s various symptoms and be- 197

havioral patterns into a diagnostic result (Rencic 198

et al., 2016). 199

Framing (Diagnosis → Treatment) Diagnosis 200

functions as a framing mechanism, integrating com- 201

plex and diverse symptoms into a coherent classi- 202

fication that establishes a clear blueprint for treat- 203

ment (American Psychiatric Association, 2022). 204

Customization (Assessment → Treatment) A 205

process where treatment plans are continuously 206

refined based on assessment results, considering 207

individual differences without being constrained 208

by diagnostic labels, to enhance therapeutic effec- 209

tivenesss (Waszczuk et al., 2017). 210

3 LLMs in Psychotherapy 211

3.1 Assessment 212

Symptom Detection leverages LLMs to iden- 213

tify mental health conditions including depression, 214

anxiety, PTSD, and suicidal ideation, demonstrat- 215

ing robust performance and multidimensional ap- 216

plicability across diverse scenarios. Yang et al. 217

(2023) systematically evaluated GPT-3.5, Instruct- 218

GPT3, and LLaMA models across 11 datasets, re- 219

vealing that emotion-enhanced chain-of-thought 220

prompting improves interpretability yet remains in- 221

ferior to specialized supervised methods. hee So 222

et al. (2024) achieved 70.8% zero-shot symptom 223

retrieval accuracy in Korean psychiatric interviews 224

using GPT-4 Turbo, while their fine-tuned GPT-3.5 225
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Study Text Granularity Best Technique NLP Task Assessment Focus

Symptom Detection

Yang et al. (2023) Single Post Emotion Prompting BC/MCC/EG Multiple Symptoms
hee So et al. (2024) Multi-turn Dialogue Fine-Tuning MLC/IE/SUM Multiple Symptoms

Tu et al. (2024) Multi-turn Dialogue Few-Shot Prompting MLC/IE/SUM PTSD
Souto et al. (2023) Single Post Fine-Tuning MLC/EG Depression
Raihan et al. (2024) Single Post Few-Shot Prompting MCC Multiple Symptoms

Gyanendro Singh et al. (2024) Posts From One User Chain-of-Thought IE/SUM Suicidal Ideation
Uluslu et al. (2024) Posts From One User Role Prompting IE/SUM Suicidal Ideation
Yang et al. (2024a) Single Post Fine-Tuning BC/MCC/EG Multiple Symptoms

Xu et al. (2024) Single Post Fine-Tuning BC/EG Multiple Symptoms
Mohammadi et al. (2024) Single Post Few-Shot Prompting MLC Multiple Symptoms

Qiu et al. (2024) Single Post Fine-Tuning MLC Suicidal Ideation
Schirmer et al. (2024) Single Post Zero-Shot Prompting BC PTSD

Symptom Severity

Galatzer-Levy et al. (2023) Multi-turn Dialogue Zero-Shot Prompting TR Depression/PTSD
Arcan et al. (2024) Multi-turn Dialogue Zero-Shot Prompting TR Depression/Anxiety

Aragon et al. (2024) Posts From One User Zero-Shot Prompting TR Depression
Wang et al. (2024d) Posts From One User Zero-Shot Prompting TR Depression
Skianis et al. (2024) Single Post Zero-Shot Prompting TR/MCC Depression/Suicide

Cognition

Maddela et al. (2023) Single Sentence Few-Shot Prompting MLC Cognitive Distortions
Qi et al. (2024) Single Post Fine-Tuning MLC Cognitive Distortions

Wang et al. (2023) Single Sentence Few-Shot Prompting MCC Cognitive Distortions
Chen et al. (2023c) Single-turn Dialogue Zero-Shot Prompting BC/MCC/EG Cognitive Distortions

Gollapalli et al. (2023) Single Post Zero-Shot Prompting MLC Maladaptive Schemas
Jiang et al. (2024a) Single Post Zero-Shot Prompting MCC/SUM Cognitive Pathways
Lim et al. (2024) Single-turn Dialogue Multi-Agent Debate MCC Cognitive Distortions

Behavior

Li et al. (2024c) Single Post Zero-Shot Prompting MLC/EG Interpersonal Risk
Hoang et al. (2024) Sentence From Dialogue Few-Shot Prompting MCC MI-Adherent Behaviors

Sun et al. (2024) Sentence From Dialogue Zero-Shot Prompting MCC MI-Adherent Behaviors
Cohen et al. (2024) Sentence From Dialogue Zero-Shot Prompting MCC MI-Adherent Behaviors

Table 1: Comparison of Psychological Assessment Studies by Input Characteristics and Methodology. MLC:
Multi-Label Classification, IE: Information Extraction, SUM: Summarization, MCC: Multi-Class Classification,
BC: Binary Classification, TR: Text Regression, EG: Explanation Generation. Studies are categorized through text
granularity, optimal technical approach (Best Technique), NLP task formulation, and specific assessment focus.

attained 0.817 multi-label classification accuracy.226

Clinical applications show particular promise, as227

Tu et al. (2024) leveraged GPT-4 and Llama-2 to228

automate PTSD assessments through information229

extraction from 411 interviews, significantly en-230

hancing diagnostic practicality.231

Social media analysis benefits from approaches232

like Souto et al. (2023)’s interpretable depression233

detection framework, which demonstrated strong234

performance across Vicuna-13B and GPT-3.5 envi-235

ronments. Resource development advances include236

Raihan et al. (2024)’s MentalHelp dataset with237

14 million instances, validated through GPT-3.5238

zero-shot evaluations. For suicidal ideation moni-239

toring, Gyanendro Singh et al. (2024) and Uluslu240

et al. (2024) achieved state-of-the-art evidence ex-241

traction in the CLPsych 2024 shared task through242

innovative prompting strategies. Open-source ini-243

tiatives like MentaLLaMA by Yang et al. (2024a) 244

and Mental-LLM by Xu et al. (2024) enable multi- 245

symptom detection via instruction-tuned LLaMA 246

variants, though Mohammadi et al. (2024)’s Well- 247

Dunn framework reveals persistent gaps in GPT- 248

family models’ explanation consistency. 249

Cross-lingual adaptations include Qiu et al. 250

(2024)’s PsyGUARD system based on fine-tuned 251

CHATGLM2-6B for Chinese suicide risk assess- 252

ment, while Schirmer et al. (2024) demonstrated 253

domain-specific RoBERTa models outperforming 254

GPT-4 in cross-domain PTSD pattern analysis, 255

highlighting the critical balance between model 256

specialization and interpretability. 257

Symptom Severity focuses on estimating the 258

level of mental health condition intensity, partic- 259

ularly for depression, anxiety, and PTSD. Clini- 260
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cal evaluations reveal Med-PaLM 2’s zero-shot de-261

pression scoring attains clinician-level alignment262

on interview data (Galatzer-Levy et al., 2023),263

though with limited PTSD generalizability. When264

benchmarked against specialized Transformers on265

DAIC-WOZ dataset (Gratch et al., 2014), Chat-266

GPT and Llama-2 exhibit moderate efficacy (Arcan267

et al., 2024), suggesting domain-specific architec-268

tures retain advantages in structured assessments.269

Shifting attention to social media data, Aragon270

et al. (2024) proposed a pipeline that retrieves271

depression-relevant text, summarizes it according272

to the Beck Depression Inventory (BDI) (Jackson-273

Koku, 2016), and then utilizes LLMs to predict274

symptom severity, achieving performance similar275

to expert evaluations on certain measures. In a276

similar vein, Wang et al. (2024d) introduced an277

explainable depression detection system that lever-278

ages multiple open-source LLMs to generate BDI-279

based answers, reporting near state-of-the-art per-280

formance without additional training data. Cross-281

lingual extensions emerge through Skianis et al.282

(2024)’s framework enabling severity prediction283

across 6 languages and 2 mental conditions.284

Cognition centers on identifying and understand-285

ing maladaptive thinking patterns, such as cognitive286

distortions and early maladaptive schemas, using287

LLMs. Maddela et al. (2023) introduced a cog-288

nitive distortion dataset and employed a few-shot289

strategy with GPT-3.5 to generate, classify, and290

reframe them, while Qi et al. (2024) constructed291

two Chinese social media benchmarks for cognitive292

distortion detection and suicidal risk assessment,293

demonstrating that fine-tuned LLMs are more294

closely than zero-/few-shot methods to supervised295

baselines. In a related effort, Wang et al. (2023) re-296

leased the C2D2 dataset containing 7,500 Chinese297

sentences with distorted thinking patterns. Expand-298

ing on detection methods, Chen et al. (2023c) pro-299

posed a Diagnosis of Thought prompting approach300

for GPT-4 and ChatGPT, which breaks down pa-301

tient utterances into factual versus subjective con-302

tent and supports the generation of interpretable303

diagnostic reasoning. Beyond cognitive distortions,304

Gollapalli et al. (2023) investigated zero-shot ap-305

proaches with GPT-3.5 to identify early maladap-306

tive schemas in mental health forums, highlight-307

ing challenges in label interpretability and prompt308

sensitivity. Complementarily, Jiang et al. (2024a)309

presented a hierarchical classification and summa-310

rization pipeline to extract cognitive pathways from311

Chinese social media text, underscoring GPT-4’s 312

strong performance albeit with occasional hallu- 313

cinations. Finally, Lim et al. (2024) introduced a 314

multi-agent debate framework for cognitive distor- 315

tion classification, reporting substantial gains in 316

both accuracy and specificity by synthesizing mul- 317

tiple LLM opinions before forming a final verdict. 318

Behavior highlights how user actions—or in the 319

case of Motivational Interviewing (MI), language 320

itself—can serve as a measurable indicator of one’s 321

readiness for change. For instance, Li et al. (2024c) 322

introduced the MAIMS framework, employing 323

mental scales in a zero-shot setting to identify in- 324

terpersonal risk factors on social media, thereby en- 325

hancing both interpretability and accuracy. In clin- 326

ical dialogues, Hoang et al. (2024) demonstrated 327

how LLMs can automatically detect a client’s moti- 328

vational direction (e.g., change versus sustain talk) 329

and commitment level, offering valuable insights 330

for MI-based interventions. Extending such analy- 331

ses to bilingual settings, Sun et al. (2024) proposed 332

the BiMISC dataset and prompt strategies that en- 333

able LLMs to code MI behaviors across multiple 334

languages with expert-level performance. Lastly, 335

Cohen et al. (2024) presented MI-TAGS for auto- 336

mated annotation of global MI scores, illustrating 337

how context-sensitive modeling can approximate 338

human annotations in psychotherapy transcripts. 339

Advanced research has evolved beyond founda- 340

tional assessment tasks to emphasize novel method- 341

ological paradigms, bias mitigation, and domain- 342

specific summarization frameworks. For instance, 343

Yang et al. (2024b) introduced PsychoGAT—an 344

interactive, game-based approach that transforms 345

standardized psychometric instruments into engag- 346

ing narrative experiences, improving psychomet- 347

ric reliability, construct validity, and user satisfac- 348

tion when measuring constructs such as depres- 349

sion, cognitive distortions, and personality traits. 350

In parallel, Wang et al. (2024c) systematically in- 351

vestigated potential biases in various LLMs across 352

multiple mental health datasets, revealing that even 353

high-performing models exhibit unfairness related 354

to demographic factors. The authors proposed 355

fairness-aware prompts to substantially reduce such 356

biases without sacrificing predictive accuracy. Fur- 357

thermore, Srivastava et al. (2024) presented the 358

PIECE framework, which adopts a planning-based 359

approach to domain-aligned counseling summariza- 360

tion, structuring and filtering conversation content 361

before integrating domain knowledge. 362
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3.2 Diagnosis363

Static Diagnosis is based on a fixed set of data,364

typically derived from complete dialogues or so-365

cial media posts. Galatzer-Levy et al. (2023) high-366

lighted the effectiveness of Med-PaLM 2 in psy-367

chiatric condition assessment from patient inter-368

views and clinical descriptions without special-369

ized training. Similarly, Jiang et al. (2024b) show-370

cased LLMs’ superior performance on depression371

and anxiety detection on Russian datasets, partic-372

ularly with noisy or small datasets. Hengle et al.373

(2024) evaluated PLMs and LLMs on multi-label374

classification in depression and anxiety, underscor-375

ing the ongoing challenges in applying LMs to376

mental health diagnostics. Besides, Lan et al.377

(2024c) introduced DORIS, a depression detection378

system integrating text embeddings with LLMs,379

utilizing symptom features, post-history, and mood380

course representations to make diagnostic predic-381

tions and generate explanatory outputs. Kuzmin382

et al. (2024) developed ADOS-Copilot for ASD383

diagnosis through diagnostic dialogues, employing384

In-context Enhancement, Interpretability Augmen-385

tation, and Adaptive Fusion based on real-world386

ADOS-2 clinic scenarios.387

Dynamic Diagnosis involves real-time evalua-388

tion based on ongoing, interactive conversations389

between the patient and LLM, enabling more per-390

sonalized and contextually relevant insights. Chen391

et al. (2023a) simulated psychiatrist-patient inter-392

actions with ChatGPT, in which the doctor chatbot393

focused on role, tasks, empathy, and questioning394

strategies, while the patient chatbot emphasized395

symptoms, language style, emotions, and resis-396

tance behaviors. Lan et al. (2024b) introduced the397

Symptom-related and Empathy-related Ontology398

(SEO), grounded in DSM-5 and Helping Skills The-399

ory, for depression diagnosis dialogues. Ren et al.400

(2024) dissected the doctor-patient relationship into401

psychologist’s empathy and proactive guidance and402

introduced WundtGPT that integrated these ele-403

ments. Lan et al. (2024a) further presented the404

AMC, a self-improving conversational agent sys-405

tem for depression diagnosis through simulated406

dialogues between patient and psychiatrist agents.407

3.3 Treatment408

LLM as a Virtual Therapist centers on lever-409

aging LLMs to directly engage in therapeutic con-410

versations, often adopting multi-turn dialogues that411

incorporate recognized psychotherapeutic frame-412

works. For instance, Xiao et al. (2024) proposed 413

HealMe to facilitate cognitive reframing and empa- 414

thetic support in line with established psychother- 415

apy principles. Likewise, Nie et al. (2024) intro- 416

duced CaiTI, a system embedded in everyday smart 417

devices that conducts assessments of users’ daily 418

functioning and delivers psychotherapeutic inter- 419

ventions through adaptive dialogue flows. In a 420

similar vein, Lee et al. (2024b) presented CoCoA, 421

specializing in identifying and resolving cognitive 422

distortions via dynamic memory mechanisms and 423

CBT-based strategies, while Sharma et al. (2024) 424

proposed a step-by-step approach guiding users to 425

execute self-guided cognitive restructuring through 426

multiple interactive sessions. Beyond standard 427

CBT protocols, Kim et al. (2024) focused on aiding 428

psychiatric patients in journaling their experiences, 429

thereby offering richer clinical insights, whereas 430

Lee et al. (2024c) developed a multi-round CBT 431

dataset to refine LLMs for direct counseling-like 432

interactions. Additionally, multi-agent frameworks 433

like MentalAgora (Lee et al., 2024d) highlighted 434

personalized mental health support by integrating 435

multiple specialized agents, and Chen et al. (2024) 436

further explored “mixed chain-of-psychotherapies” 437

to combine various therapeutic methods, aiming to 438

enhance the emotional support and customization 439

delivered by chatbot interactions. 440

LLM as an Assistive Tool refrains from provid- 441

ing a holistic therapy role but instead offers targeted 442

support such as rewriting suboptimal counselor re- 443

sponses, generating controlled reappraisal prompts, 444

or aiding clinicians in specific tasks. For exam- 445

ple, Welivita and Pu (2023) proposed to rewrite re- 446

sponses that violate MI principles into MI-adherent 447

forms, ensuring more consistent therapeutic dia- 448

logue. Meanwhile, Sharma et al. (2023) and Mad- 449

dela et al. (2023) focused on generating single-turn 450

reframes of negative thoughts—often anchored in 451

cognitive distortions—through controlled language 452

attributes. On the detection side, Moon and Bhat- 453

tacharyya (2024) built a multimodal pipeline to 454

identify depression and provide CBT-style replies, 455

albeit with an emphasis on technological assistance 456

rather than full-fledged therapy. In the Chinese con- 457

text, Lin et al. (2024) combined cognitive distortion 458

detection with “positive reconstruction,” demon- 459

strating a single-round rewrite approach for nega- 460

tive or distorted statements, while Na (2024) show- 461

cased a structured Q&A format that offers profes- 462

sional yet succinct CBT-based responses. From a 463
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knowledge-distillation angle, Brown et al. (2024)464

demonstrated how smaller models could replicate465

GPT-4’s MI-style reflective statements, and Zhan466

et al. (2024) introduced a lighter-weight frame-467

work RESORT to guide smaller LLMs toward ef-468

fective cognitive reappraisal prompts, thus enabling469

broader accessibility of self-help tools.470

LLM as Simulated Patients for Clinician Edu-471

cation pivots toward generating synthetic yet re-472

alistic patient behaviors or multi-level feedback to473

train or support mental health practitioners. For in-474

stance, Chaszczewicz et al. (2024) leveraged LLMs475

to deliver multi-tier feedback on novice peer coun-476

selors’ conversational skills, significantly reducing477

the need for continuous expert oversight. Simi-478

larly, Wang et al. (2024b) using LLM-driven pa-479

tient simulations that help trainees practice CBT480

core skills in a controlled, repeatable setup. In481

the realm of assessing therapy quality, Yosef et al.482

(2024) showcased a digital patient system to eval-483

uate MI sessions, employing AI-generated tran-484

scripts to differentiate novice, intermediate, and485

expert therapeutic skill levels. Complementarily,486

Louie et al. (2024) offered Roleplay-doh, a pipeline487

wherein domain experts craft specialized principles488

that guide LLM-based role-playing agents, thereby489

providing customizable training for new therapists.490

LLM for Evaluation and Quality Analysis tar-491

gets the appraisal of therapy dialogue, counselor492

techniques, and treatment processes, typically with-493

out delivering direct interventions to clients. For494

instance, Lee et al. (2024e) augmented crisis coun-495

seling outcome prediction by fusing annotated496

counseling strategies with LLM-derived features,497

achieving substantially improved accuracy. In the498

Chinese context, Zhang et al. (2024a) introduced499

CPsyCoun, employing reports-based dialogue re-500

construction and automated evaluation to verify501

counseling realism and professionalism. Beyond502

single-session analyses, Wang et al. (2024a) used503

simulated clients to assess perceived therapy out-504

comes, while Chiu et al. (2024) created the BOLT505

framework for systematically comparing LLM-506

based therapy behaviors with high- and low-quality507

human sessions. Further extending to online coun-508

seling, Li et al. (2024a) proposed an LLM-based509

approach to measure therapeutic alliance, whereas510

Shapira and Alfi-Yogev (2024) delineated therapist511

self-disclosure classification as a new NLP task.512

In the MI domain, Sun et al. (2024) and Cohen513

et al. (2024) collected bilingual transcripts to sys-514

tematically annotate therapist–client exchanges for 515

behavior coding and global scores, respectively. 516

Additionally, multi-session perspectives emerge in 517

Na et al. (2024), who proposed IPAEval to track 518

long-term progress from the client’s viewpoint, and 519

Nguyen et al. (2024) analyzed conversation redi- 520

rection and its impact on patient–therapist alliance 521

over multiple sessions. Finally, Iftikhar et al. (2024) 522

and Zhang et al. (2024b) explored the disparities 523

between LLM- and human-led CBT sessions, high- 524

lighting gaps such as empathy and cultural nuance 525

while also introducing CBT-Bench to probe LLMs’ 526

deeper psychotherapeutic competencies. 527

4 Current Landscape 528

Our survey encompasses a total of 69 studies in 529

the field of LLMs in psychotherapy. Specifically, 530

33 studies address assessment, 9 focus on diag- 531

nosis, and 32 concentrate on treatment, with 5 532

studies overlapping across these dimensions. Ap- 533

proximately 74% of the studies employed com- 534

mercial large language models, while about 77% 535

used prompt-based techniques. This distribution 536

highlights an imbalance in research focus across 537

different stages of the psychotherapy process and 538

reflects a heavy reliance on commercial models and 539

prompt technologies. 540

Figure 3 presents a comprehensive analysis of 541

the current research landscape in this field. Panel 542

(a) reveals a significant linguistic bias in existing 543

studies, with English-language corpora dominates. 544

While there are limited studies involving Korean 545

and Dutch languages, this highlights a substantial 546

gap in multilingual research approaches. Panel (b) 547

quantitatively demonstrates the distribution of men- 548

tal health research focuses. Mental disorder-related 549

studies constitute 32% of the total research cor- 550

pus (represented by the orange outer ring). Within 551

this subset, depression-focused research accounts 552

for 50% of mental disorder studies, followed by 553

anxiety-related research. This distribution indicates 554

a concerning imbalance, where common conditions 555

receive disproportionate attention while more com- 556

plex disorders, such as bipolar disorder, remain 557

understudied. The analysis of psychotherapy the- 558

ories in panel (c) uncovers another critical gap in 559

the field. Only 32.8% of the studies incorporate 560

psychotherapy theories in their methodological ap- 561

proach. Notably, emerging therapeutic frameworks, 562

such as humanistic therapy, are particularly under- 563

represented in current research applications. 564
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English
70%

Dutch
2.9%

Chinese
24.2%

Korean
2.9%

(a) The Proportion of Language Coverage

29.2%

4.2%

4.2%

58.2%

4.2%

Theory
32.8%

(c) The Proportion of Psychotherapy Theories

Motivational interviewing

Person-Centered Therapy

Humanistic Therapy

Cognitive Behaviorial Therapy

Solution-Focused Brief Therapy

28.1%

6.3%

3.1%
9.4%

3.1%

50%

Mental 
Disordor 32%

(b) The Proportion of Mental Disorder

Anxiety

Schizophrenia

Bipolar Disorder

PTSD

Substance Use Disorder

Depression

Figure 3: Distribution analysis of the current landscape.

5 Future Directions565

Integrative Psychotherapy Framework. While566

many existing studies focus on a single dimension567

of psychotherapy, real-world practice involves a568

continuous process that spans assessment, diagno-569

sis, and intervention (Waszczuk et al., 2017). More-570

over, these stages typically unfold over multiple571

sessions, necessitating iterative, multi-turn interac-572

tions that incorporate the evolving context of each573

patient. Future work could therefore aim to develop574

an end-to-end conversational framework that seam-575

lessly spans from initial evaluation to personalized576

intervention. By maintaining a system grounded577

on ongoing, context-sensitive engagement, models578

could dynamically update assessments and diag-579

noses over time, ultimately providing more respon-580

sive and individualized care.581

Addressing Evolving and Multifaceted Nature582

of Psychotherapy. Psychotherapy commonly in-583

volves shifting symptoms, comorbidities, and nu-584

anced patient experiences, making static or single-585

label predictions insufficient. Models should in-586

tegrate multi-label and temporal data to capture587

how symptoms and emotional states evolve, while588

avoiding the pitfalls of incomplete symptom de-589

tection. For instance, focusing solely on the de-590

pressive features of a bipolar patient could lead to591

an inaccurate diagnosis if the manic phase is over-592

looked (Lee et al., 2024a). Furthermore, current593

research suggests that LLMs often struggle with594

multi-label tasks (hee So et al., 2024; Mohammadi595

et al., 2024), highlighting the need for improved596

model architectures and algorithms that can better597

account for these complexities.598

Resource Infrastructure and Open-Source Tools.599

Current research heavily relies on commercial600

closed-source models, lacking reproducible open-601

source evaluation methods and multilingual data.602

Notably, developing multilingual datasets should603

not solely rely on translating English resources, as 604

psychological research indicates that cultural con- 605

text plays a critical role in mental health. English- 606

based translations cannot fully substitute for cul- 607

turally specific data from other languages (Watters, 608

2010; Abdelkadir et al., 2024). 609

Broadening Scope of Disorders and Therapeutic 610

Approaches. Most studies to date have concen- 611

trated on prevalent conditions such as depression 612

and anxiety, leaving complex or less common dis- 613

orders underexplored. Additionally, research tends 614

to focus on a limited range of therapeutic modali- 615

ties—primarily cognitive behavioral therapy. Fu- 616

ture work could broaden both the range of disorders 617

and the variety of therapeutic approaches, such as 618

humanistic (Schneider and Krug, 2010) and dialec- 619

tical behavior therapy (Lynch et al., 2006), to bet- 620

ter reflect clinical realities (Norcross et al., 2022). 621

Such an expansion could deepen the theoretical 622

underpinnings of LLM-based psychotherapy tools 623

and enhance the quality and relevance of digital 624

interventions. 625

6 Conclusion 626

LLMs hold significant promise for revolutionizing 627

psychotherapy by enhancing assessment, diagnosis, 628

and treatment processes through dynamic, context- 629

sensitive interactions. Despite the progress made, 630

key challenges such as linguistic biases, limited 631

disorder coverage, and underrepresented therapeu- 632

tic models persist. Future research should focus on 633

creating integrative, multi-turn systems that span 634

the entire psychotherapy process while addressing 635

the evolving nature of mental health conditions. 636

Expanding resources, embracing diverse therapeu- 637

tic approaches, and improving model architectures 638

will be crucial in making LLM-driven psychother- 639

apy tools more effective, inclusive, and adaptable. 640
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Limitations641

This survey paper, while comprehensive for LLMs642

in psychotherapy, has several limitations: 1) The643

studies reviewed primarily focus on the applica-644

tion of LLMs in psychotherapy, and there may be645

relevant research in adjacent fields or interdisci-646

plinary domains that was not included. 2) Due to647

the rapidly evolving nature of this area, some re-648

cent advancements may not be captured. The scope649

of this survey is limited to the available literature650

and may overlook emerging trends or unpublished651

findings. 3) The review primarily examines studies652

in English, which could introduce a bias towards653

research from English-speaking countries, poten-654

tially overlooking important cultural perspectives.655

4) While we provide a taxonomy of LLM appli-656

cations in psychotherapy, this framework may not657

fully encompass the complexity of real-world clin-658

ical settings or the diverse range of therapeutic659

approaches currently in practice.660
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