
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS EFFICIENT OPTIMIZER DESIGN FOR LLM
VIA STRUCTURED FISHER APPROXIMATION WITH A
LOW-RANK EXTENSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing efficient optimizers for large language models (LLMs) with low-memory
requirements and fast convergence is an important and challenging problem. This
paper makes a step towards the systematic design of such optimizers through the
lens of structured Fisher information matrix (FIM) approximation. We show that
many state-of-the-art efficient optimizers can be viewed as solutions to FIM approx-
imation (under the Frobenius norm) with specific structural assumptions. Building
on these insights, we propose two design recommendations of practical efficient
optimizers for LLMs, involving the careful selection of structural assumptions to
balance generality and efficiency, and enhancing memory efficiency of optimiz-
ers with general structures through a novel low-rank extension framework. We
demonstrate how to use each design approach by deriving new memory-efficient
optimizers: Row and Column Scaled SGD (RACS) and Adaptive low-dimensional
subspace estimation (Alice). Experiments on LLaMA pre-training (up to 1B pa-
rameters) validate the effectiveness, showing faster and better convergence than
existing memory-efficient baselines and Adam with little memory overhead. No-
tably, Alice achieves better than 2× faster convergence over Adam, while RACS
delivers strong performance on the 1B model with SGD-like memory.

1 INTRODUCTION

Adaptive optimizers are critical in training large language models (LLMs). Yet, as models and datasets
continue to grow, it brings several implications for training, including increased GPU requirements or
reduced per-device batch size, which lowers overall training throughput. Adam, for instance, triples
memory requirements due to the storage of two internal exponential moving average (EMA) states,
while other optimizers (Gupta et al., 2018; Vyas et al., 2024) with faster convergence (in terms of
training steps) can further inflate the total memory. Meanwhile, some memory efficient optimizers,
like stochastic gradient descent (SGD), fail to train the LLMs effectively. Thus, designing efficient
optimizers has become increasingly important.

There are several promising lines of research that have advanced one or more of these aspects of
efficiency: (1) removing the optimizer state (Ma et al., 2024; Jordan et al., 2024; Zhang et al., 2024;
Xu et al., 2024; Zhu et al., 2024), or (2) using ad-hoc low-rank design to reduce memory (Hu et al.,
2021; Lialin et al., 2023; Zhao et al., 2024a; Chen et al., 2024a; Si et al., 2024). However, developing
new efficient optimizers remains challenging. This paper explores structured FIM approximation as a
potential framework for this task.

To demonstrate the effectiveness of this framework, we begin by showing that many existing opti-
mizers and gradient operators, including Adam, Shampoo, gradient normalization and whitening
(Zhang et al., 2024; Gupta et al., 2018; Vyas et al., 2024; You et al., 2019; Ma et al., 2024; Jordan
et al., 2024), can be recast under structured FIM approximation. We then go on to show how to derive
two generalizations of Adam1 with more relaxed structural assumptions, named Generalized Adam
(Gadam) and SOAP/AdaDiag++ (Vyas et al., 2024; Nguyen et al., 2025). Although this framework

1Generality of structural assumption defines how relaxed this assumption is. We say structure A is more
general than B iff. B can be recovered by applying further constraints on A. The general structures tend to give
better approximations to FIM than the less general one.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

provides a clear link between structures and optimizers, working with more general structures can
come at the cost of efficiency. For example, SOAP can require 7 times more memory than SGD.

Building on these insights, our first design recommendation proposes to choose structural assumptions
that balance generality with practical efficiency. We demonstrate this by choosing a structure that
generalizes gradient normalization, leading to a new efficient optimizer, Row and Column Scaled
SGD (RACS), with SGD-like memory requirements.

For optimizers with more general structures it may not be always possible to achieve such a balance.
Instead of rejecting their potentials, our second design recommendation proposes to apply a novel
low-rank extension framework to improve their efficiency. This framework consists of three steps
that can convert full-rank optimizers into their low-rank approximations with reduced memory
and computational costs. We demonstrate this by deriving a low-rank extension of Gadam, called
Adaptive low-dimensional subspace estimation (Alice). We also prove its convergence under the
continuous-time setup.

We emphasize that the main contribution is the unifying viewpoint that allows a systematic design for
efficient optimizers. RACS and Alice are two examples. More novel optimizers can be derived by
(1) designing new structural approximations; or (2) adapting existing optimizers with our low-rank
extension. This allows one to go beyond the ad hoc design and focus on a well grounded strategy.

With pre-training LLaMA (Touvron et al., 2023) with C4 dataset (Raffel et al., 2020), we demonstrate
that RACS and Alice outperform Adam and several memory-efficient baselines. Alice achieves better
than 2× speed-ups compared to Adam, and RACS performs strongly on pre-training the 1B LLaMA.

To summarize, our contributions are:

• We propose structured FIM approximation as a practical framework for optimizer design and
show that several existing optimizers can be viewed as special cases within this framework.

• We propose to design optimizers by choosing structures that balance generality and efficiency
and demonstrate it with a new optimizer, RACS.

• We present a low-rank extension framework to convert full-rank optimizers and demonstrate
it with a new optimizer Alice. We also prove its convergence property.

• We demonstrate the effectiveness of RACS and Alice on LLaMa pre-training tasks when
compared to Adam and other baselines.

Scope of this paper We want to emphasize and clearly define the scope of this paper. Specifically,
we DO NOT aim to provide the definitive and complete answers on how to design an optimizer for
LLM and their theoretical properties. Instead, our primary contribution is to establish that structured
FIM approximation is a potential candidate as a unifying design principle for LLM optimizers,
followed by two design guidelines with exampled efficient optimizers. In summary, we aim to provide
a potential direction for future LLM optimizer research.

2 PRELIMINARIES

2.1 BASIC NOTATIONS AND SETUP

Throughout the paper we consider 2D matrix parameters W (i.e. layer weights) of size m× n and
m ≤ n; the operation Vec(·) vectorizes the input matrix by stacking its columns; Mat(·) is the
inverse of Vec(·) and reshapes the vector back into a matrix. We use Lθ as the loss function where
θ = Vec(W ). G = ∇WL is the matrix gradient and g⃗ is the vectorized gradient, i.e. g⃗ = Vec(G).
gi denotes the ith column of G. In the paper, we assume W are parameters of one layer. ⊗
indicates the Kronecker product. By default, M2 and

√
M indicates the elementwise multiplication

and square-root. EVD(M , r) performs the eigen-value decomposition (EVD) and keeps the top
r eigenvectors ordered by the descending eigenvalues. If r is omitted, we keep all eigenvectors.
QR(M) with orthonormal M ∈ Rm×r obtains the remaining m− r basis via QR decomposition.

We also introduce the following diagonal operations: Diag(M) will extract the diagonals of M
to a vector. DiagB(M1, . . . ,Mn) will stack the input sequence of matrices to form a larger block
diagonal matrix. Diagv(v) will expand the input vector v to a pure diagonal matrix. DiagM(M) will

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: The summary of underlying structure assumptions of existing and newly proposed optimizers,
along with practical efficiency. “Generalizes" refers to the optimizer whose structure is generalized,
e.g. Gadam’s structure generalizes Adam (see Sec. I.1 for further details). Optimizers in blue color
are new. The “Computation" is the cost of per-step of the optimizer update. We assume n ≥ m≫ r.

Adam Shampoo Gadam/AdaDiag SOAP/AdaDiag++ GaLore RACS Alice

Stucture Diagv(v) R
1
2
n ⊗L

1
2
m DiagB({UfDiU

T
f }i) (UR ⊗UL)D̃(UR ⊗UL)

T Approx. Alice S ⊗Q Low-rank to Gadam
Generalizes N/A N/A Adam Gadam + Shampoo N/A Normalization GaLore
Computation O(mn) O(m3 + n3) O(m3) O(m3 + n3) O(mnr +m2n/K) O(mn) O(mnr +m2r/K)
Memory 3mn mn+m2 + n2 3mn+ 2m2 3mn+ 2m2 + 2n2 mn+ 2nr +mr mn+m+ n+ 1 mn+ 2nr +mr + n+ r2

Full-rank update ✓ ✓ ✓ ✓ ✗ ✓ ✓
Section Sec. 3.1 Sec. 3.2 Sec. 3.4 Sec. E Sec. D.11 Sec. 4 Sec. 5.4

expand the input M to a larger pure diagonal matrix by stacking the element of M in a column-wise
order. We demonstrate the above operations with examples in Sec. C. Note that results in this paper
may involve the expectation E[·], we assume the use of an EMA as its practical estimation.

2.2 FISHER INFORMATION AND NATURAL GRADIENT DESCENT

Fisher information is a fundamental concept in statistics that measures the amount of information a
random variable carries about a parameter of interest. In this paper, we ignore dependence between
layers and treat each layer independently. Under the context of LLMs, with the vectorized mini-
batched gradient of one layer g⃗, we define the empirical FIM for that layer as F = E[g⃗g⃗T ]. Natural
gradient descent (NGD) leverages the inverse of FIM to smooth the local geometry to improve
convergence and stabilize training (Martens, 2020). In practice, the square-root inverse of FIM may
be preferred due to its properties and improved performance on certain optimization problems (Yang
& Laaksonen, 2008; Lin et al., 2024; Loshchilov & Hutter, 2016; Bergstra & Bengio, 2012; Choi,
2019). The corresponding update of W is:

W ←W − λMat(F− 1
2∇θL). (1)

Due to the large size of F ∈ Rmn×mn, computing its inverse is a significant impediment to applying
this update rule in practice. One way to address this is to enforce certain structures to approximate
FIM. In this paper, we consider two main classes of structures: block diagonal and Kronecker product
matrices. They possess favorable properties that can significantly reduce computational complexity.
Sec. D.2 provides a brief introduction and summary of their key properties. We also include a
comprehensive background in Sec. D to be more self-contained.

3 STRUCTURAL APPROXIMATION TO FIM

The structured FIM approximation framework consists of three steps: first, choose a structure to
approximate FIM; second, find the solution F̃ by minimizing the following objective:

min
F̃∈H

∥F̃ − F ∥2F , (2)

where F is the empirical FIM, H is the matrix family corresponding to the structural assumption;
third, derive the square-root NGD update with approximated F̃ . In this section, we show that many
existing optimizers and gradient operators can be reformulated within this framework by varying
structural assumptions, thereby establishing connections between the structure and optimizers.

3.1 ADAM: PURELY DIAGONAL STRUCTURE

When Adam was originally proposed, it was argued that the purpose of the second moment was to
approximate the diagonal elements of FIM (Kingma, 2014; Hwang, 2024).

Proposition 3.1 (diagonal approximation). Assuming H = {Diagv(v); vi > 0}, then Eq. (2) has
analytic solution F̃ ∗ = Diagv(E[g⃗2]) where g⃗2 indicates the element-wise square of g⃗ = Vec(G).

It is trivial to show the resulting square-root NGD recovers Adam’s second moment when using the
EMA to estimate E. Together with the first moment, one can recover Adam.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 SHAMPOO: KRONECKER PRODUCT STRUCTURE

Although previous work (Morwani et al., 2024) has demonstrated the connection of Shampoo (Gupta
et al., 2018) to the Kronecker product approximation through power iteration algorithm, we provide
an alternative view: Shampoo’s pre-conditioner can be derived by minimizing an upper bound of
Eq. (2) with

H = {R
1
2
n ⊗L

1
2
m;Rn ∈ Rn×n,Lm ∈ Rm×m}

where Rn and Lm are symmetric positive definite (SPD) matrices.
Theorem 3.2 (Shampoo pre-conditioner). Assume the above structural assumption, then we have an
upper bound of Eq. (2)

∥F̃ − F ∥2F ≤ 3(mn∥A2 −C2∥F ∥B2 −C2∥F +
√
mn∥C∥2F (∥A2 −C2∥F + ∥B2 −C2∥F ))

where A = R
1
2
n ⊗Im, B = In⊗L

1
2
m, C = E[g⃗g⃗T ]

1
2 , and 2 indicates the matrix square. Minimizing

the upper-bound admits R∗
n = 1

mE[GTG] and L∗
m = 1

nE[GGT ].

Sec. F.1 shows that the corresponding square-root NGD leads to the Shampoo’s update formula.
Therefore, the structure behind Shampoo is the Kronecker product of two square-root SPD matrices.

3.3 NORMALIZATION AND WHITENING: SIMPLE BLOCK DIAGONAL STRUCTURES

For an input G, the whitening and normalization operator are defined as

Whitening(G) = (GGT )−
1
2G; Norm(G) = GS− 1

2

where Diag(S) contains the squared column l2 norm of G. Next, we show that these two operators
also corresponds to minimizing Eq. (2) with different structural assumption.
Proposition 3.3 (Normalization and whitening). WithH = {In ⊗M} andH = {S ⊗ Im;Sii >
0, ∀i}, where M ∈ Rm×m is SPD and S ∈ Rn×n is a positive diagonal matrix. Then, minimizing
Eq. (2) admits

M∗ =
1

n
E[GGT ] (3)

S∗ =
1

m
E[Diagv(g

T
1 g1, . . . , g

T
n gn)] (4)

The proof can be found in Sec. G.3, where we prove a much more general solution (Theorem G.4),
and Theorem 3.3 is a special case. The square-root NGD update with Eq. (3) and Eq. (4) are
Mat(F̃− 1

2 g⃗) =
√
nE[GGT ]−

1
2G and

√
mGS∗− 1

2 , respectively (refer to Sec. F.2 for derivation).
We can view Whitening(·) and Norm(·) as special cases with one-sample estimate for E.

Muon and many others are special cases Many recently proposed optimizers, such as Muon,
SWAN, LARS, and LAMB (Jordan et al., 2024; Ma et al., 2024; You et al., 2017; 2019), rely on
normalization and/or whitening. These gradient operators improve convergence (You et al., 2017;
2019; Jordan et al., 2024) and can remove Adam’s internal states (Ma et al., 2024). In fact, Muon
simply whitens the gradient, and thus is a special case of this framework. Interestingly, the original
Muon lacks a

√
n coefficient predicted by Theorem 3.3. This was later added back by (Liu et al.,

2025), which is proved to be critical for LLM training. We include a thorough discussion in Sec. I.5

3.4 GADAM AND SOAP: TWO GENERALIZATIONS OF ADAM

All structures considered above are do not strictly generalize Adam’s purely diagonal structure. Next,
we consider two structures that strictly generalize Adam, normalization, and whitening: a block
diagonal matrix with a shared eigen-space; and its combination with the Kronecker product.

First, consider a block-diagonal structure that generalizes Adam:

H = {DiagB(M1, . . . ,Mn);Mi = UfDiU
T
f } (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Uf defines a shared full-rank eigen-space, and Di is an eigenvalue matrix. Adam is a special
case by constraining Uf = I . The structures in Sec. 3.3 are also special cases by setting Di = D
(whitening); and Uf = I , Di = siI (normalization). However, this structure does not lead to an
analytic solution for Eq. (2). Instead, we propose an approximation by solving a 1-step refinement.
Theorem 3.4 (1-step refinement). For the structure in Eq. (5), we consider the following 1-step
refinement: (i) assuming all Di are equal, and find Uf ; (ii) fix the Uf and find Di. Then, step (i)
admits the analytic solution:

Uf = EVD(E[GGT ]). (6)
where EVD is the eigenvalue decomposition; step (ii) admits the analytic solution:

D̃ = DiagM(E[(UT
f G)2]) (7)

where D̃ = DiagB(D1, . . . ,Dn).

Based on this result, we can derive the corresponding square-root NGD(refer to Sec. F.3):

Mat(F̃− 1
2 g⃗) = Uf

UT
f G√

E[(UT
f G)2]

. (8)

This can be viewed as applying Adam’s update on a space “rotated" by Uf . Consequently, we can
design an optimizer based on Eq. (8), called Gadam. The following procedures describes its update:

mt = β1mt−1 + (1− β1)Gt; Qt = β3Qt−1 + (1− β3)GtG
T
t ; Uf,t = EVD(Qt);

vt = β2vt−1 + (1− β2)(U
T
f,tGt)

2; ∆t = Uf,t

UT
f,tmt
√
vt

(9)

Algorithm 7 in Sec. D.6 summarizes its algorithm. In fact, the above procedures coincide with two
recent works: AdaDiag and one-sided SOAP (Nguyen et al., 2025; Vyas et al., 2024), which are
heuristic memory-efficient variants of their main algorithms (i.e. AdaDiag++ and SOAP). In the
following, we show Gadam should not be classified as a variant of SOAP/AdaDiag++, since they
have different underlying structures. The EVD can be efficiently approximated by a 1-step subspace
iteration (Algorithm 10 in Sec. D). Also, one can only update U every K steps, effectively amortizing
the cost.

SOAP/AdaDiag++ Despite the structural generality of Gadam, it only focuses on the block diago-
nals of FIM. To go beyond this, one can combine the structure of Gadam with Shampoo’s Kronecker
product to obtain a structure that generalizes all the others in this paper. Interestingly, this turns out to
be SOAP/AdaDiag++. Refer to Sec. E for details.

4 RACS: MEMORY-EFFICIENT OPTIMIZER FROM A CAREFULLY SELECTED
STRUCTURE

The structured FIM approximation reveals two important insights: there exists a correspondence
between structural assumption and optimizers, and structural generality often comes at the cost of
practical efficiency. For example, while the structures of Gadam and SOAP offer more accurate FIM
approximations, they require expensive computation and memory consumption (Table 1). Building on
this, our first design recommendation is to select structures that balance generality and efficiency.

To demonstrate this, we select a structure that generalizes gradient normalization, which scales both
the rows and columns simultaneously:

H = {S ⊗Q} (10)

where S ∈ Rn×n, Q ∈ Rm×m are positive diagonal matrices. The optimal solution of Eq. (2) can be
solved by a fixed-point procedure:
Proposition 4.1 (Two-sided scaling). Assuming the structure of Eq. (10), and E[G2] contains only
positive values, solving Eq. (2) admits an iterative fixed point procedure:

s =
Diag

(
E[GTQG]

)
∥Q∥2F

, q =
Diag

(
E[GSGT ]

)
∥S∥2F

. (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where s = Diag(S), q = Diag(Q). Additionally, the fixed point solution s, q converges to the right
and left principal singular vector of E[G2] up to a scaling factor with unique S ⊗Q.

The corresponding square-root NGD update scales both rows and columns through S and Q

(i.e. Mat(F̃− 1
2 g⃗) = Q− 1

2GS− 1
2 ). We name this optimizer, Row and Column Scaled SGD (RACS)

(Algorithm 3 in Sec. B). Although analytic solutions of s, q exist, we perform 5 steps of Eq. (11) as
an efficient approximation. To further stabilize training, we also incorporate the norm-growth limiter
used in (Chen et al., 2024a). RACS is highly memory efficient since it only needs the storage of two
diagonal matrices S and Q and a scalar for the limiter, consuming m+ n+ 1 memory. In Sec. I.5
we discuss connections to Adapprox, Apollo and Adafactor (Zhao et al., 2024b; Zhu et al., 2024;
Shazeer & Stern, 2018). The above structure may not always be easy to find. Therefore, our next
design guideline based on the novel low-rank extension is more widely applicable.

5 ALICE: MEMORY-EFFICIENT OPTIMIZER FROM LOW-RANK EXTENSION
FRAMEWORK

We propose a novel low-rank framework consisting of three steps, low-rank tracking, subspace
switching; and compensation. Tracking aims to reduce the memory cost of EMA states, whereas
switching and compensation are designed to correct the potential issues caused by low-rank approx-
imations. We demonstrate these by converting Gadam to its low-rank version, Alice. While the
procedure could be applied to SOAP in a similar manner, we leave this for future work.

5.1 TRACKING: LOW-RANK PROJECTIONS TO REDUCE MEMORY

By carefully examining the Gadam’s procedure (Eq. (9)), we notice the key internal state of Gadam
is the projection Uf,t. To reduce the memory cost, we propose low-rank Ut by keeping only the top
r eigenvectors, and denote the remaining m − r basis as Uc,t (i.e. Uf,t = [Ut,Uc,t]). For Qt we
propose the following low-rank tracking:

σt = UT
t Gt; Q̃t+1 = β3Q̃t + (1− β3)σtσ

T
t (12)

where σt is the projected gradient, and Q̃t is the low-rank tracking state. One can easily reconstruct
back Qt ≈ UtQ̃tU

T
t when needed. This reduces the memory from m2 of Qt to r2 of Q̃t.

However, this low-rank projection comes with two consequences: (1) the reconstructed state Qt is no
longer accurate; (2) the resulting parameter update ∆ in Eq. (9) ignores the information within Uc,t.
Next, we propose two additional steps, switching and compensation, rooted in theoretical insights to
address the two problems, respectively.

5.2 SWITCHING: MIXING LEADING BASIS WITH THE COMPLEMENTS

Since the projected gradient σt only maintains the information in the space spanned by Ut, the low-
rank tracking state Q̃t necessarily discards information in Uc,t. Therefore, even if those directions
should become the leading basis, Q̃t will ignore their contributions, causing the stability of the
previous leading eigenvectors and preventing the exploration of other spaces. This effect is largely
ignored by the previous work (Yen et al., 2023; Zhao et al., 2024a) and believe one should always
keep the top eigenvectors. Here, we challenge this commonly adopted concept.

Theorem G.8 confirms this and shows that the true tracking state Qt can be decomposed into a
low-rank reconstructed state (i.e. UtQ̃tU

T
t ) and a residual term quantifying the importance of Uc,t.

When the residual term becomes dominant, the remaining basis will become the new leading basis.
Inspired by this theoretical insight, we propose a practical scheme to replace the original EVD in
Eq. (8), called subspace switching (Algorithm 1). It deliberately replace some leading eigenvectors
with randomly sampled basis, forcing the optimizer to explore other spaces.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Subspace switching
1: Input: Reconstructed state Q, rank r, lead-

ing basis number l, previous low-rank projec-
tion Ut−1

2: U ′
t = Subspace iteration(Q,Ut−1)

3: U ′
t,1 ← Keep top l eigenvectors of U ′

t
4: Uniformly sample r − l basis from the com-

plement U ′
c,t = QR(U ′

t) as U ′
t,2

5: Combine basis U = [U ′
t,1,U

′
t,2]

6: Return U

Algorithm 2 Compensation
1: Input: Gt, projection U , previous norm p,

limiter norm ϕ, threshold γ, decay rate β
2: p← βp+ (1− β)(1T

mG2
t − 1T

r (U
TGt)

2)
3: Compute Ct as Eq. (14)
4: η = γ/max{∥Ct∥

ϕ , γ} if ϕ > 0 else 1

5: ϕ = ∥ηCt∥
6: Ct ← ηCt

7: Return Ct, p, ϕ

5.3 COMPENSATION: CONVERT LOW-RANK UPDATE TO BE FULL-RANK

Another problem with low-rank projection Ut is the information loss in the resulting parameter
update ∆ at each step. The goal of compensation step is to compensate for this information loss with
minimal memory overhead. We first show that the full-rank update for ∆ with Uf,t in Eq. (8) can be
decomposed into the low-rank and complement update controlled by Ut and Uc,t (proof in Sec. I.6).
We omit the subscript t for simplicity:

∆ = U
UTG√

E[(UTG)2]
+Uc

UT
c G√

E[(UT
c G)2]︸ ︷︷ ︸

Mat(F̃
− 1

2
c g⃗)

(13)

where F̃c = DiagB(UcDc,1U
T
c , . . . ,UcDc,nU

T
c ) is the approximated FIM corresponding to the

complement basis, Dc,i = Diagv(E[(UT
c gi)

2]) and − 1
2 is the square-root pseudo-inverse.

We notice that Mat(F̃
1
2
c g⃗) is exactly the square-root NGD with FIM F̃c. We can directly leverage the

FIM view point to approximate F̃c with a carefully selected structure that leads to memory-efficient
compensation procedures. One choice is the diagonal structure of normalization operator. Based on
this, we propose the following compensation at each step:

C = Mat((S ⊗UcU
T
c )g⃗) = UcU

T
c GS (14)

where S is a positive diagonal matrix, UcU
T
c G = (G − UUTG) is the gradient information

preserved in the remaining basis. This compensation admits an analytic solution of S to Eq. (2) with
F̃c as the target (Theorem G.9 in Sec. G.6):

Diag(S) =

√
m− r√

E[1T
mG2 − 1T

r (U
TG)2]

(15)

Algorithm 2 summarizes the compensation step with the norm growth limiter from (Chen et al.,
2024a). Ct will then be used to replace the Mat(F̃

1
2
c g⃗) in Eq. (13) for each update step.

5.4 ALICE OPTIMIZER AND ITS CONVERGENCE

Based on the above analyses, we propose Alice and a variant Alice without tracking (Alice-0), as
low-rank extensions to Gadam. Interestingly, GaLore, in fact, is an approximation to Alice when
disabling tracking, switching and compensation. Our view point offers a connection of GaLore to
Gadam, revealing that it is a low-rank version of a more powerful optimizer than Adam, and providing
an explanation of its effectiveness. Algorithm 4 in Sec. B summarizes Alice procedures.

Convergence of Alice To further support the theoretical validity of Alice, we prove its convergence
under the continuous-time setup (Maddison et al., 2018; Nguyen et al., 2025; Chen et al., 2023). We
leave the general treatment of the convergence to future work. Please refer to Theorem H.2 in Sec. H.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: LLaMA pretraining performance. Ppl. is the evaluation perplexity, Mem. is the estimated
memory consumption of optimizers. Regarding the last layer, we report ppl of GaLore and Fira for
both cases. For baselines, the ppl. in bracket are directly cited from (Zhu et al., 2024), where the last
layer is trained by Adam and consumes more memory. We also cite the numbers of Apollo-mini,
Apollo-svd from (Zhu et al., 2024); and Muon from (Ma et al., 2024). The speed-up is measured
against Adam in terms of steps. The TP is the number of training tokens processed per second, and
effective TP is total training token used by Adam divided by time used by the candidate optimizers to
reach the final eval ppl of Adam. Effective TP is equivalent to wall-clock time performance.

Methods 60M 130M 350M 1.3B
Ppl. Mem. Ppl. Mem. Ppl Mem. Ppl. Mem.

AdamW 33.94 0.32G 25.03 0.75G 19.24 2.05G 16.44 7.48G
GaLore 38.91 (34.88) 0.21G(0.26G) 27.18 (25.36) 0.51G(0.57G) 21.11 (18.95) 1.2G(1.29G) 16.60 (15.64) 4.25G(4.43G)

Fira 33.77 (31.06) 0.21G(0.26G) 25.21 (22.73) 0.51G(0.57G) 18.93 (17.03) 1.2G(1.29G) 15.14 (14.31) 4.25G(4.43G)
Apollo-mini 31.93 0.23G 23.84 0.43G 17.18 0.93G 14.17 2.98G
Apollo-svd 31.26 0.26G 22.84 0.57G 16.67 1.29G 14.10 4.43G

Muon 31.6 0.27G 24.59 0.59G 19.30 1.49G 16.08 5.23G
RACS 30.25 0.23G 22.67 0.43G 16.51 0.93G 13.52 2.98G
Alice-0 28.83 (29.74) 0.21G(0.26G) 21.99 (22.43) 0.51G 16.66 (16.43) 1.2G (1.29G) 13.97 (13.47) 4.25G (4.44G)
Alice 28.69 (29.33) 0.22G(0.26G) 21.95 (21.79) 0.53G 16.61 (16.37) 1.24G (1.33G) 13.85 (13.52) 4.42G (4.6G)

Speed-up in steps (Alice) 2.22x 2.00x 2.45x 2.82x
Throughput(TP)/Effect TP(AdamW) 97748/97748 82247/82447 63139/63139 53588/53588
Throughput(TP)/Effect TP (Alice) 92589/202058 71583/141148 58847/143088 45523/123048
Throughput(TP)/Effect TP (RACS) 98238/162423 73233/123116 55970/131372 47488/129817

Connections to structured FIM approximation The proposed low-rank framework seems to
be separated and independent to the structured FIM viewpoint. On the contrary, they are deeply
connected. First, FIM approximation provides a base optimizer as a starting point for the low-rank
extension to work on. More importantly, the critical compensation step is entirely inspired the
structured FIM viewpoint. Since the information loss from low-rank projection has a NGD format
(Eq. (13)) with a FIM-like preconditioner (F̃c), we ask a principled question: How can we compensate
this in an optimal way? Through structured FIM viewpoint, we aim to approximate this F̃c with
simple structural assumptions, leading to a compensation term with minimal resources requirement.

6 EXPERIMENTS

6.1 PRETRAINING LLAMA WITH C4 DATASET

Setup We evaluate the proposed RACS, Alice and its variant Alice-0 on pre-training LLaMA
(Touvron et al., 2023) on the C4 dataset (Raffel et al., 2020). We train the following model sizes:
60M, 130M, 350M and 1.3B using a similar setup to (Zhao et al., 2024a; Zhu et al., 2024). An
important consideration in our experiments is that all previous low-rank methods rely on full-rank
Adam to train the last layer, which is arguably one of the most important layers (Zhao et al.,
2024c). To thoroughly assess their effectiveness, we report performance for both cases for low-rank
methods—training the last layer with and without Adam—but prioritize the latter. For baselines, we
consider GaLore, Fira, Apollo-mini, Apollo-svd, Muon and Adam.

Main results Table 2 reports the pretraining performance in terms of evaluation perplexity. RACS
and Alice outperforms the other memory-efficient baselines and full-rank Adam consistently across
model sizes. Alice and Alice-0 perform on par with each other, suggesting Alice-0 may be preferred
for better memory efficiency. One major advantage of Alice is its fast convergence compared to
Adam, and achieves more than 2× speed-ups across model sizes, while maintaining similar memory
consumption as GaLore. Fig. 1 shows the eval ppl. for the 1B model. Despite the simplicity of
RACS, it performs well for 350M and 1.3B model, and surpasses the other scaling-based baseline,
Apollo-mini and Apollo-svd, consistently. From the throughput (TP), we can observe Alice and
RACS is not significantly slower than Adam with 15% and 11% drop for 1B model. Considering the
speedup effect, we report the effective TP to represent how quickly the optimizers reach a target loss
in wall-clock time. Alice and RACS achieve 123048 and 129817, respectively, compared to 53588
for Adam, resulting in more than 2× faster convergence in wall-clock time to reach Adam’s final
evaluation perplexity. For the actual memory footprints and additional training curves, see Sec. K.5.

1B v.s. 7B LLaMA To further demonstrate the effectiveness, we follow the setup of (Zhu et al.,
2024), but train a 1B with Alice and RACS to compare with 7B LLaMA trained by baselines. Table 3
shows that 1B model with our optimizer consistently outperforms 7B model trained with baselines at

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

20000 40000 60000 80000 100000
Update Step

13

14

15

16

17

18

19

20

21

Ev
al

 P
PL

16.4420

13.857613.9761

13.5263

15.1400

16.6080

13.5261
13.4777

2.82x
2.99x

1.89x

Eval PPL with model size: 1b
AdamW
Alice
Alice-0
RACS
Fira
GaLore
Alice+lm head
Alice-0+lm head

Figure 1: 1B LLaMA eval ppl. curve. "+lm head"
represents the last layer is trained by Adam.

Method Mem. 40K 80K 120K 150K
8-bit Adam (7B) 26G 18.09 15.47 14.83 14.61
8-bit Galore (7B) 18G 17.94 15.39 14.95 14.65
Apollo (7B) 15.03G 17.55 14.39 13.23 13.02
Apollo-mini (7B) 13.53G 18.03 14.60 13.32 13.09
RACS (1B) 2.98G 16.43 14.26 13.20 13.01
Alice (1B) 4.6G 15.93 14.08 13.15 12.97

Table 3: Eval ppl. at different training steps.
For baselines, we cite the number from (Zhu
et al., 2024).

Components Eval ppl.
No tracking, switch, compen. 26.96
Tracking 27.35
Tracking+Switch 25.11
Tracking+Switch+Compen. 21.95

Table 4: Effectiveness of each components.

different training checkpoints. For 150K steps with 8xA100, Apollo requires 15 days while Alice
requires 3.8 days. We DO NOT claim 1B can outperform 7B model trained with standard AdamW,
but demonstrate the effectiveness of our optimizers compared to other memory-efficient baselines.

6.2 ABLATION AND GLUE FINETUNING

Effect of low-rank tracking and switching strategy First, we verify whether low-rank tracking
(Eq. (12)) is beneficial. As shown in Table 2, Alice-0 performs on par with Alice, suggesting that
tracking does not provide a significant boost. Fig. 5(a) indicates that tracking can be helpful when
compensation is disabled and used alongside switching. Without switching, tracking leads to inferior
performance due to the stability of the eigenspace (Fig. 6). We also evaluate the effectiveness
of switching strategy compared to other heuristics: (1) Gaussian: U is sampled from a Gaussian
distribution; (2) Gaussian mix: the leading basis is mixed with basis sampled from a Gaussian matrix;
(3) full basis: instead of sampling the r − l basis in Algorithm 1 solely from m − r complement
basis, it is sampled jointly from the top r − l and m − r basis. Fig. 5(b) shows that our strategy
outperforms the alternatives with clear margins.

Compensation strategy, other ablations and GLUE finetune The closest work to our compen-
sation step is Fira (Chen et al., 2024a), which introduces a heuristic-based compensation term. To
evaluate the effectiveness of our optimal compensation, we compare it against Fira compensation
and a no-compensation baseline. As shown in Fig. 5(c), our optimal compensation achieves better
performance and convergence than all candidates. Table 4 summarizes the contributions of each
component. We also performed additional ablations: (1) the effect of the last layer, (2) the effect of
EMA in RACS, and (3) hyperparameter sensitivity analysis, and GLUE (Wang, 2018) finetuning
experiment. For more details, see Sec. K.6 and Sec. K.7 for details.

7 CONCLUSION AND LIMITATIONS

In this paper, we take a step toward the systematic design of efficient optimizers for LLMs through
structured FIM approximation. We establish the connection between structural assumptions and
optimizers. Building on this, we propose two design approaches: (1) simple structure that balances
generality and efficiency; (2) low-rank extension framework for more general structures. These are
demonstrated with novel optimizers, RACS and Alice, respectively.

Despite the theoretical and empirical results, this paper does not aim to provide a complete recipe but
serves as a starting point for future research. For example, a complete convergence treatment for all
optimizers under this FIM framework is an important research question that is currently lacking in
this paper. Also, how to incorporate the model structure and task into the optimizer design is another
promising direction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024b.

Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, and Jaegul Choo. Image-to-image
translation via group-wise deep whitening-and-coloring transformation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10639–10647, 2019.

D Choi. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo.
Robustnet: Improving domain generalization in urban-scene segmentation via instance selec-
tive whitening. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11580–11590, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kaixin Gao, Xiaolei Liu, Zhenghai Huang, Min Wang, Zidong Wang, Dachuan Xu, and Fan Yu. A
trace-restricted kronecker-factored approximation to natural gradient. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 7519–7527, 2021.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardization
towards efficient whitening. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4874–4883, 2019.

Dongseong Hwang. Fadam: Adam is a natural gradient optimizer using diagonal empirical fisher
information. arXiv preprint arXiv:2405.12807, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. Advances in
Neural Information Processing Systems, 36:25793–25818, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Garès, Mounir Haddou,
and Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks using
kronecker product singular value decomposition. arXiv preprint arXiv:2201.10285, 2022.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 947–955, 2018.

Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions on neural networks and
learning systems, 29(5):1454–1466, 2017.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
transfer via feature transforms. Advances in neural information processing systems, 30, 2017.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective. arXiv
preprint arXiv:2402.03496, 2024.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982,
2025.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Preprocessing sgd enables
adam-level performance on llm training with significant memory reduction. arXiv preprint
arXiv:2412.13148, 2024.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Son Nguyen, Bo Liu, Lizhang Chen, and Qiang Liu. Improving adaptive moment optimization via
preconditioner diagonalization. arXiv preprint arXiv:2502.07488, 2025.

Omead Pooladzandi and Xi-Lin Li. Curvature-informed sgd via general purpose lie-group precondi-
tioners. arXiv preprint arXiv:2402.04553, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Chongjie Si, Xuehui Wang, Xue Yang, Zhengqin Xu, Qingyun Li, Jifeng Dai, Yu Qiao, Xi-
aokang Yang, and Wei Shen. Flora: Low-rank core space for n-dimension. arXiv preprint
arXiv:2405.14739, 2024.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Minghao Xu, Lichuan Xiang, Xu Cai, and Hongkai Wen. No more adam: Learning rate scaling at
initialization is all you need, 2024. URL https://arxiv.org/abs/2412.11768.

Zhirong Yang and Jorma Laaksonen. Principal whitened gradient for information geometry. Neural
Networks, 21(2-3):232–240, 2008.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit Dhillon, and Cho-Jui Hsieh. Block low-rank preconditioner
with shared basis for stochastic optimization. Advances in Neural Information Processing Systems,
36:17408–17419, 2023.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized low-
rank matrices. arXiv preprint arXiv:2403.14958, 2024b.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024c.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
arXiv preprint arXiv:2412.05270, 2024.

12

https://arxiv.org/abs/2412.11768


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

Optimizer based on structural approximation Due to the desirable properties and convergence
of second-order optimization, various work has been proposed to efficiently approximate Hessian-like
matrix, e.g. FIM. KFAC (Martens & Grosse, 2015) was one of the first work that goes beyond the
simple diagonal approximations, and approximate the layer-wise FIM. Subsequent works extends
KFAC beyond MLP layers (Grosse & Martens, 2016; Martens et al., 2018). Further refinement to
KFAC are also proposed, including the refinement of eigenvalues (George et al., 2018), fixing the
trace (Gao et al., 2021), and refinement by Kronecker product singular value decomposition (Koroko
et al., 2022). Our proposed view point is different from KFAC, which express the FIM using the back-
proped gradients and layer input. In addition, KFAC needs to re-derived for different type of layers.
On the other hand, our proposed view point is closer to another line of work, aiming to approximate
the full AdaGrad (Duchi et al., 2011). In particular, Shampoo (Gupta et al., 2018; Anil et al., 2020) is
proposed as a Kronecker product approximation to AdaGrad. Later, (Morwani et al., 2024) explicitly
proved that it is a 1-step power interation to optimal Kronecker product approximation. In here, we
propose an alternative view as minimizing a upper bound of the approximation error. SOAP (Vyas
et al., 2024) is a recently proposed adaptive optimizer that further improves Shampoo based on the
connection of Adafactor and Shampoo. In this work, we make explicit connection of those approaches
to FIM approximation, and establish the equivalence of structural assumption to optimizers. We
also additionally provide connections of gradient operators to FIM approximation, and design new
optimizers from this view point. We provide more discussions of our approach to many existing
optimizers, including Apollo (Zhu et al., 2024), GaLore (Zhao et al., 2024a), Muon (Jordan et al.,
2024), SWAN (Ma et al., 2024), Adapprox (Zhao et al., 2024b), Lars (You et al., 2017), Lamb (You
et al., 2019), Fira (Chen et al., 2024a) and AdaDiag (Nguyen et al., 2025), in Sec. I.5. Preconditioning
SGD (Li, 2017; Pooladzandi & Li, 2024) aims to directly approximate the inverse Hessian through
different structural assumptions.

Comparison to blockwise low-rank approximation (Yen et al., 2023) Recently, (Yen et al.,
2023) proposed an optimizer based on the blockwise low-rank approximation to the full AdaGrad
preconditioner. On the high level, it seems to be similar to our proposed low-rank extension framework.
In fact, they are different in several important ways. First, their approach is not scalable due to the use
of the full coefficient matrix with shape r × r, where r is the rank. From Section 2.2 in (Yen et al.,
2023), the memory cost of their method is (m+ n)r2. For 130M model with r = 256 and weight
size m = 768, n = 768, this corresponds to 42 times higher memory than Adam and 84 times higher
than the model weight. On the other hand, Alice only requires roughly 55% of Adam’s memory, and
77 times smaller than their approach. Our low-rank extension framework also incorporates switching
and compensation steps, which are proved to be critical for low-rank based method. More importantly,
the switching step challenges the common knowledge that one should use the top eigenvectors for a
low-rank preconditioner. Our analysis (Theorem G.8) suggests that less important directions should
be mixed with the leading ones for better performance.

Memory-efficient optimizer Practical training efficiency is a crucial factor when training large
models. In particular, there are many work focusing on the memory efficiency of optimizers, since
less memory consumption allows larger batch size, effectively improving the throughput. There are
two lines of research: (1) use low-rank approximation to reduce memory of optimizer internal states;
(2) remove the internal states. GaLore (Zhao et al., 2024a), a well-know low-rank optimizer, proposed
to use singular value decomposition (SVD) for finding a low-rank projection and apply Adam within
it. It can be seen as a special case of Alice. Fira, an extension to GaLore, add compensation term
at each step to turn low-rank update to full-rank, substantially improves the performance. Flora (Si
et al., 2024) uses randomly sampled Gaussian matrix as the subspace to save compute and memory.
However, it is mainly focused on the fine-tuning tasks. ReLora (Lialin et al., 2023), an extension to
LoRA (Hu et al., 2021), periodically merges the LoRA weights to enable full-rank learning. On the
other hand, many optimizers requires fewer internal states compared to Adam. Lion (Chen et al.,
2024b) and Signum (Bernstein et al., 2018) introduced optimizers that only requires the storage of 1
internal states, offering a balance between memory efficiency and performance. Apollo (Zhu et al.,
2024), a recently proposed approach, only maintains rank 1 GaLore states for estimating the scaling
matrix for the raw gradient. Although it still requires 2 internal states, rank 1 states allows it to
achieve SGD-like memory. At the same time, (Ma et al., 2024) developed SWAN, which manages to

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

completely removes the internal states through two gradient operators: normalization and whitening,
and obtain stronger performance than Adam. In this paper, we also show that normalization and
whitening operators are special cases of FIM approximation.

Comparsion to Sophia Sophia (Liu et al., 2023) is a recently proposed second-order optimizer for
training LLMs. It requires similar memory consumption as Adam but claims to achieve 2x speed-up.
However, (Kaddour et al., 2023) argues that the speed-up is achieved under an unfair comparison.
With the fair comparison (i.e. the setup adopted in this paper), Sophia consistently performs worse/or
similarly compared to Adam, whereas ours (i.e. Alice and RACS) achieve near 2x speed-up in both
training steps and wall-clock time under the fair comparison setup.

B RACS AND ALICE ALGORITHMS

Algorithm 3 RACS
1: Input: learning rate λ, β, scale α, limiter threshold γ, optimization steps T .
2: s0 = 0; q0 = 0; ϕ0 = 0
3: for t = 1, . . . , T do
4: Gt = ∇Wt

L
5: Obtain St and Qt by Eq. (11)
6: st = βst−1 + (1− β)Diag(St);
7: qt = βqt−1 + (1− β)Diag(Qt)

8: G̃t = Diagv(qt)
− 1

2GDiagv(st)
− 1

2

9: η = γ/max{∥G̃t∥
ϕt−1

, γ} if t > 1 else 1

10: ϕt = η∥G̃t∥
11: Wt+1 = Wt − ληαG̃t

12: end for

Algorithm 4 Alice/Alice-0 optimizer
1: Input: learning rate λ, scale α, compensation scale αc, update interval k, β1, β2, β3 (β3 = 0 for

Alice-0), optimization step T , rank r, loss function L, limiter threshold γ, leading basis number
l.

2: Q̃0 = 0, U0 = 0, p0 = 0, ϕ = 0, m0 = 0, v0 = 0
3: for t = 1 . . . , T do
4: Gt = ∇WtL
5: if t == 1 or (t mod K) == 0 then
6: Qt = β3UtQ̃t−1U

T
t + (1− β3)GtG

T
t

7: Ut = Switch(Qt, r, l,Ut−1)
8: else
9: Ut = Ut−1

10: end if
11: σt = UT

t Gt

12: Q̃t = β3Q̃t−1 + (1− β3)σtσ
T
t

13: mt = β1mt−1 + (1− β1)σt

14: vt = β2vt−1 + (1− β2)σ
2
t

15: ω = mt√
vt

16: ∆c,pt,ϕt = Compensation(Ut,pt−1,ϕt−1, γ, β1)
17: Wt+1 = Wt − λα(Utω + αc∆c)
18: end for

C EXAMPLES OF DIAGONAL OPERATIONS

In this section, we will give some detailed examples on each of the diagonal operations we introduced
in Sec. 2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Example of Diag(·) This will extract the diagonals of a input matrix into a vector:

M =

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
, Diag(M) = [a11, a22, a33]

T

Example of DiagB(·) This simply stack the input matrices sequence into a larger block diagonal
matrix:

DiagB(M1,M2,M3) =

[
M1 0 0
0 M2 0
0 0 M3

]

Example of Diagv(·) This will stack the vector element into a pure diagonal matrix:

Diagv([a11, a22, a33]
T ) =

[
a11 0 0
0 a22 0
0 0 a33

]

Example of DiagM(·) This will stack the elements in input matrix to form a larger pure diagonal
matrix in a column-wise manner.

DiagM

([
a11 a12
a21 a22

])
=

 a11 0 0 0
0 a21 0 0
0 0 a12 0
0 0 0 a22


D BACKGROUND

In this section, we will provide a more comprehensive backgrounds.

D.1 FISHER INFORMATION

Fisher information can also be viewed as the "sharpness" of the likelihood around the true parameters
from the maximum likelihood view point. Formally, under the context of LLMs fθ(·), we consider a
dataset {xi}Ni=1, where N is total batched sentences, and xi is the token sequence of ith sentence.
One can define sentence-level auto-regressive loss function L =

∑
j=1 c(xi,j+1, fθ(xi,:j), where j

is the token index and c is the user-defined loss metric. The corresponding likelihood can be defined
as pθ(xi) ∝ exp(−

∑
j=1 c(xi,j+1, fθ(xi,:j))). The standard empirical FIM is defined as

F =

N∑
i=1

∇θ log pθ(xi)∇T
θ log pθ(xi)

In practice, we often use the mini-batched gradient g⃗ = 1
NB

∑NB

i=1 log pθ(xi) with batch size NB for
empirical FIM during training. More discussion can be found in Lin et al. (2024). Throughout this
paper, we adopt the notation E[g⃗g⃗T ] as F .

One standard application of FIM is efficient optimization. NGD leverage the inverse of FIM to
smooth the local information geometry, leading to the steepest descent in the probability space with
KL divergence metric. This typically leads to faster convergences compared to its parameter-space
counterpart; and more stable optimization (Martens, 2020). The update of NGD with step size λ is

θ ← θ − λF−1∇θL.
However, square-root inverse is sometimes more favorable than inverse, and has been shown that
it provides a better approximation to the geodesic flow, compared with the default natural gradient
update Yang & Laaksonen (2008). Empirically, it demonstrates stronger performance and desired
properties when using non-constant learning rate (Lin et al., 2024; Loshchilov & Hutter, 2016;
Bergstra & Bengio, 2012; Choi, 2019). The corresponding update is to simply replace F−1 with
F− 1

2 :

θ ← θ − λF− 1
2∇θL. (16)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In this paper, we will use the square-root inverse view point, but our analysis is agnostic to it and can
be easily extended to the direct inverse. However, matrix multiplication involving FIM and its inverse
are computationally expensive for large models since F ∈ Rmn×mn for vectorized parameters
θ ∈ Rmn. Next, we will briefly introduce Kronecker product and block diagonals, which are two
main classes of structural assumptions used in this paper. Their nice properties can significantly
reduce the assocaited computation burden.

D.2 KRONECKER PRODUCT AND BLOCK DIAGONALS

Kronecker product, denoted by ⊗, is to combine two arbitrary matrices into a larger matrix with
block-wise patterns. It has emerged as a powerful tool for approximating higher-order information
like Hessian (Grosse & Martens, 2016) or FIM. The main advantages are their nice properties
regarding matrix operations, leading to efficient practical procedures when dealing with large matrix.
We will mainly use two properties:

(A⊗B)−
1
2 = A− 1

2 ⊗B− 1
2 (17)

(A⊗B)Vec(C) = Vec(BCAT ) (18)

where the first one holds when A,B are square-root invertible. The second one is particular useful
to reduce the computation associated with matrix-vector multiplication in Eq. (1). For A ⊗B ∈
Rmn×mn, it reduces the computation from O(m2n2) to O(mn2 + m2n) with A ∈ Rn×n, B ∈
Rm×m, and C ∈ Rm×n.

For block diagonal matrix, one can also easily compute its square-root inverse:

DiagB(M1, . . . ,Mn)
− 1

2 = DiagB(M
− 1

2
1 , . . . ,M

− 1
2

n ) (19)

where each Mi is square-root invertible. When each Mi is also a diagonal matrix with positive
values, we have the following:

DiagB(M1, . . . ,Mn)
− 1

2 Vec(C) = Vec

(
C√

Mat(v)

)
(20)

where v is the vector containing the diagonals of DiagB(M1, . . . ,Mn), transforming matrix vector
product into element-wise operation.

D.3 OPERATORS FOR GRADIENT: NORMALIZATION AND WHITENING

Recently, there are some optimizers (Ma et al., 2024; Jordan et al., 2024; You et al., 2017; 2019)
that apply operators to pre-process the gradient and use it in standard SGD. Empirical evidence
has verified their effectiveness in training LLMs. In particular, there are two well-known operators:
normalization and whitening, where the above optimizers relies on one or both of them. In particular,

Norm(G) =
G

1
√
sT

= GS− 1
2 (21)

Whitening(G) =(GGT )−
1
2G. (22)

where s ∈ Rn, si =
∑m

j=1 G
2
ij with G ∈ Rm×n, and S = Diagv(s). Namely, vector s contains

the squared column norm of G, and S is a scaling matrix to normalize the columns. Normalizing
the rows can also be written in a similar format. Whitening operator essentially orthogonalizes G,
that compute the closest orthogonal matrix to G under Frobenius norm. In practice, the whitening
operator can be iteratively solved using Newton-Schulz algorithm without explicitly computing the
square-root inverse.

D.4 SHAMPOO OPTIMIZER

Shampoo (Gupta et al., 2018) was originally proposed as the second-order optimization technique over
the tensor space. Under the context of transformers, typically matrix parameters are considered. Its
core design principle also aims to approximate the FIM with structural assumptions F̃t = R

1
2
n,t⊗L

1
2
m,t,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

with Rn,t = Rn,t−1 +GT
t Gt and Lm,t = Lm,t−1 +GtG

T
t . The above update rule can be seen

as the moving average estimate of E[GT
t Gt] and E[GtG

T
t ]. However, the Shampoo paper (Gupta

et al., 2018) does not explicitly show why these design choices of Rn, Lm approximate the FIM. In
fact, they only show R

1
2
n ⊗L

1
2
m forms an upper bound of FIM2. This is not helpful in understanding

whether this approximates the FIM or not. Another very recent follow-up work (Morwani et al.,
2024) provides an explanation of the shampoo preconditioner in terms of approximating FIM. They
show the square of Shampoo’s preconditioner is equivalent to a single step of power iteration of
computing optimal Kronecker product approximation to FIM. It indirectly establishes the connections
to FIM approximation since the approximation is expressed as an iterative algorithm. To the best
of our knowledge, our result is the first to directly establish the connection of Shampoo to FIM
approximation as minimizing a upper bound of the loss with the Frobenius norm (Theorem 3.2).

Nevertheless, the original Shampoo algorithm is summarized in Algorithm 5.

Algorithm 5 Shampoo Optimizer
Input: Lm = ϵIm, Rn = ϵIn, learning rate λ, optimization step T , loss function L.
for t = 1, . . . , T do
Gt = ∇WtL
Lm,t = Lm,t−1 +GtG

T
t

Rn,t = Rn,t−1 +GT
t Gt

Wt = Wt−1 + λL
− 1

4
m,tGtR

− 1
4

n,t
end for

D.5 SOAP/ADADIAG++

SOAP/AdaDiag++ (Vyas et al., 2024; Nguyen et al., 2025) is a recently proposed adaptive optimizer
aiming to improve the practical convergence and stability of Shampoo. Their main intuition behind
(from the view point of Vyas et al. (2024)) is that they show Shampoo is equivalent to performing
Adafactor (Shazeer & Stern, 2018) under the Shampoo’s eigen-space. Namely, the eigen-matrix of
Lm,t and Rn,t in Algorithm 5. Since Adafactor is an approximation to Adam, they propose to use
Adam instead of Adafactor in Shampoo’s eigen-space, to further improve the performance. They
propose the following update rule:

mt = β1mt−1 + (1− β1)Gt (first moment)

Lm,t = β3Lm,t−1 + (1− β3)GtG
T
t (Shampoo’s Lm,t)

Rn,t = β3Rn,t−1 + (1− β3)G
T
t Gt (Shampoo’s Rn,t)

UL,t = EVD(Lm,t) (Shampoo’s left eigen-space)
UR,t = EVD(Rn,t) (Shampoo’s right eigen-space)

vt = β2vt−1 + (1− β2)(U
T
L,tGtUR,t)

2 (second moment)

∆ = UL,t

UT
L,tmtUR,t
√
vt

UT
R,t (23)

These update rules exactly describes the procedure to applying Adam updates in the "rotated" space
defined by UL,t and UR,t. Due to the computational burden associated with EVD, SOAP proposed
to only update UL,t, UR,t at certain intervals. This leads to the following algorithm:

D.6 ADADIAG AND ONE-SIDE SOAP

AdaDiag++ (Nguyen et al., 2025), a concurrent work to SOAP, independently develops the equivalent
update rules as SOAP. The only difference is that they disable the EMA tracking for Lm,t and Rn,t.
The resulting optimizer is both computational and memory expensive due to the storage of UR, UL

and two eigenvalue decompositions. To address this issue, they both propose a one-side version

2Lemma 8 in (Gupta et al., 2018). Note that our paper assumes Vec(·) is stacking columns of matrix whereas
Gupta et al. (2018) assumes stacking the rows, explaining the reverse order of presentation

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 6 SOAP optimizer
Input: learning rate λ, update interval K, β1, β2, β3, optimization step T .
m0 = 0; v0 = 0 ▷Initialize two moments
Lm,0 = 0; Rn,0 = 0 ▷Initialize two EMA states for GGT , GTG
for t = 1, . . . , T do
Gt = ∇Wt

L
mt = β1mt−1 + (1− β1)Gt

Lm,t = β3Lm,t−1 + (1− β3)GtG
T
t ▷Accumulation for GGT

Rn,t = β3Rn,t−1 + (1− β3)G
T
t Gt ▷Accumulation for GTG

if t == 1 or (t mod K) == 0 then
UR,t = EVD(Rn,t) ▷Get right eigen-space UR

UL,t = EVD(Lm,t) ▷Get left eigen-space UL

else
UR,t = UR,t−1

UL,t = UL,t−1

end if
m̃t = UT

L,tmtUR,t ▷Get rotated 1st moment
vt = β2vt−1 + (1− β2)(U

T
L,tGtUR,t)

2 ▷Compute second moments
Wt+1 = Wt − λUL,t

m̃t√
vt
UT

R,t

end for

called AdaDiag and one-side SOAP by only considering either left or right eigen-space. The resulting
update rule is exactly the same as our proposed Gadam (i.e. Eq. (9)).

However, they propose this design choice purely based on intuition to reduce computation and
memory consumption, and do not explicitly reveal the connections to their two-side version. Thus,
it lacks the understanding on why two-side version obtains empirically better performance. Based
on Sec. 3.4 and Sec. E, we show that although one-side version has similar updates as the two-
side twins, they are different optimizers with distinct underlying structural assumptions. In fact,
the structures of SOAP/AdaDiag++ strictly generalizes their one-side version, explaning the better
empirical performance. The resulting algorithm is the following:

Algorithm 7 Gadam/AdaDiag/one-side SOAP optimizer
Input: learning rate λ, update interval K, β1, β2, β3, optimization step T .
m0 = 0; v0 = 0 ▷Initialize two moments
Q0 = 0 ▷Initialize the EMA state for GGT

for t = 1, . . . , T do
Gt = ∇Wt

L
Qt = β3Qt−1 + (1− β3)GtG

T
t ▷Accumulate the GGT

mt = β1mt−1 + (1− β1)Gt ▷Accumulate the first moment
if t == 1 or (t mod K) == 0 then
Uf,t = EVD(Qt) ▷Obtain the U

else
Uf,t = Uf,t−1

end if
m̃t = UT

f,tmt ▷Rotate the first moment
vt = β2vt−1 + (1− β2)(U

T
f,tGt)

2 ▷Accumulate the second moments
Wt+1 = Wt − λUf,t

m̃t√
vt

▷Update in the original space
end for

D.7 SWAN

Recently, there is a newly proposed adaptive optimizer that completely removes the needs of storing
internal states, called SWAN. It relies on two processing operators applied to raw current gradient:
GradNorm and GradWhitening, as a replacement of first and second moments. For a current gradient

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G,

GradNorm(G) =
G− ¯⃗g1⊤

n

s1⊤
n

(24)

GradWhitening(G) = (GGT )−
1
2G (25)

where ¯⃗g = 1
n

∑n
i=1 G:,i is the mean across rows; s =

√
1
n

∑n
i=1(G:,i − ¯⃗g)2 is the standard

deviation across rows; ¯⃗g and s are m-dimensional column vectors; and 1n is a n-dimensional column
vector of ones. Then, SWAN performs the following to generate the update:

G̃ = GradNorm(G)

∆ = GradWhitening(G̃) (26)
We can see that the proposed GradNorm is equivalent to normalization up to a scaling

√
n when

the mean ¯⃗g is 0. SWAN derives these two steps from investigating the LLM dynamics. In practice,
SWAN proposes to compute the (GGT )−

1
2 using Newton-Schulz iterations.

D.8 NEWTON SCHULZ ITERATION

In many machine learning applications, like successive whitening and coloring transform (Li et al.,
2017; Cho et al., 2019; Choi et al., 2021), one often encountered the computation of square root
inverse of some SPD matrix. One standard approach is to compute the EVD and take the square root
inverse of the eigenvalue matrix. However, EVD is computationally expensive. Another alternative
approach is use Newton-Schulz iteration (NS), an iterative updates of two matrix. Specifically,

Y0 =
A

∥A∥F
Z0 = I

Yt+1 =
1

2
Yt(3I −ZtYt)

Zt+1 =
1

2
(3I −ZtYt)Zt

with convergence Yt → A
1
2√

∥A∥F

and Zt → A− 1
2

√
∥A∥F . Typically, NS converges very fast with

only 5 steps (Li et al., 2018; Huang et al., 2019).

D.9 MUON

Muon (Jordan et al., 2024), is recently proposed to speed-up the training of LLMs, that relies on the
whitening operator similar to SWAN. The core of the Muon is to orthogonalize the the momentum.
The proposed update rule is

mt =β1mt−1 + (1− β1)Gt

∆ =GradWhitening(mt). (27)
Similarly, the GradWhitening step is computed using Newton-Schulz iteration. The main difference
between Muon and SWAN is that Muon still requires the storage of first moments as state, whereas
SWAN relies on the GradNorm operator applied to the raw gradient.

D.10 LARS

SWAN and Muon both involve the whitening operator with/without normalization, respectively. On
the other hand, Lars (You et al., 2017) is an operator that only relies on layer-wise normalization. For
each layer, it simply compute the first moments, followed by a normalization operation. The update
rule for each layer is

mt = β1mt−1 + (1− β1)Gt

∆ = ϕ(∥θ∥) mt

∥mt∥
(28)

where ϕ is a scaling function with input of the parameter θ norm. One major difference of this
layer-wise normalization to SWAN is that it is applied on the layer-wise level, whereas SWAN applies
row/column-wise normalization.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.11 LOW RANK OPTIMIZERS

The primary goal of low-rank optimizer is to reduce the memory consumed by the states of adaptive
optimizers. The popularity of low-rank based method for large models starts from the well-known
LoRA (Hu et al., 2021), where each weight is inserted with an low-rank adapter W + AB with
A ∈ Rm×r and B ∈ Rr×n during the finetuning stage. This formulation directly modifies the model
architecture. Si et al. (2024) explicitly show that LoRA is secretly a gradient compressor, which
translates the modification to model architecture into a low-rank optimizer with randomly sampled
matrix. At the same time, GaLore (Zhao et al., 2024a) popularizes the use of low-rank optimizers,
which demonstrates on-par performance compared to full-rank Adam training. GaLore is proposed
based on the analysis of reversible networks (Tian et al., 2020). However, in practice, transformer
may not satisfy the reversibility condition. Thus, GaLore does not provide a clear understanding on
why it works on LLMs.

Algorithm 8 summarizes the procedures. In practice, GaLore can be viewed as the composition of
subspace search algorithm (i.e. SVD) with standard Adam optimizer. The original GaLore does
not provide an explanation on the choice of Adam. On the other hand, our analysis reveals that the
GaLore is an approximate low-rank extension to a different optimizer, Gadam/AdaDiag/one-side
SOAP, that is generalizes Adam (see Sec. 3.4).

Algorithm 8 GaLore Optimizer
Input: learning rate λ, decay rates β1, β2, rank r, update interval k, scale α
for t = 1, . . . , T do
Gt = ∇WtL
if t == 1 or t mod k == 0 then
Ut = SVD(Gt, r)

else
Ut = Ut−1

end if
σt = UT

t Gt

∆ = Adam(σt, β1, β2)
Wt = Wt−1 + λα∆

end for

Since the states of Adam optimizer are based on the projected gradient σt, the overall memory
consumption of GaLore is mn+ 2nr +mr.

D.12 APOLLO

Concurrent to this work, there is a recently proposed optimizer, called Apollo (Zhu et al., 2024), that
only scales the raw gradient and obtains SGD-like memory with Adam-level performance. They
propose to scale the columns or rows similar to normalization in SWAN, but the scaling factor is
estimated following the procedure proposed by Fira (Chen et al., 2024a). The core idea of Apollo
is to obtain ∆ from GaLore algorithm (Algorithm 8), followed by computing the column/row-wise
norm of ∆. This norm will be used as the scaling factor for the raw gradient G. Apollo has many
variants. In particular, we choose Apollo-mini and Apollo-svd, where the former uses rank-1 random
projection for scaling estimation, and the latter relies on the use of top r singular vectors as the
projection, same as GaLore. Apollo-mini only maintains the rank-1 states, leading to significant
memory savings. The memory consumption is mn + 2n + 2 for parameter W ∈ Rm×n. And
Apollo-svd consumes the same memory as GaLore. Algorithm 9 summarizes the procedures.

Note that when rank r is set to 1, they propose to use global scaling ∥∆t∥2

∥σt∥2
instead of row/column-wise

scaling.

D.13 SUBSPACE ITERATION

The subspace iteration method—also known as the block power method is a classical iterative
technique for computing the dominant eigenvalues and corresponding eigenvectors of a matrix. It
generalizes the basic power method from operating on a single vector to operating on a subspace,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 9 Apollo Optimizer
Input: learning rate λ, decay rates β1, β2, rank r, update interval k, scale α
for t = 1, . . . , T do
Gt = ∇Wt

L
if t == 1 or t mod k == 0 then
Ut ∼ N (0, 1

r )
seed← an independent new random seed

else
Ut = Ut−1

end if
σt = UT

t Gt

∆t = Adam(σt, β1, β2)

St ← Diagv(s0, . . . , sm) {si = ∥∆t,:,i∥2

∥σt,:,i∥2
}

Wt = Wt−1 + λαGtSt

end for

typically spanned by a initial matrix. When the initial matrix is closed to the targeting eigen-matrix,
the convergence is fast. Empirically, we found that only 1 step of iteration is enough to give a
satisfactory performance. Algorithm 10 summarizes the subspace iteration algorithm to for finding
the top r eigenvectors of a matrix A. We can see that the computation is bottlenecked by the matrix
multiplication AUt−1 which is O(m2r) if only performing 1 step.

Algorithm 10 Subspace iteration
Input: symmetric matrix A ∈ Rm×m, iteration step T , initial matrix M ∈ Rm×r

U0 = M
for t = 1, . . . , T do
Ht = AUt−1

Ut = QR decomposition(Ht)
end for
V = UT

T AUT

U = EVD(V )

E SOAP: A FURTHER GENERALIZATION TO GADAM

All previous structures, apart from the one behind Shampoo, are under the class of block diagonal.
However, this only allows one to model the off-diagonal elements near the diagonal. Structure under
Kronecker product, like the one behind Shampoo, can go beyond this. Therefore, we can consider
combining the structure of Gadam with Shampoo, to obtain the most general structural assumption in
this paper. We show this exactly recovers SOAP (Vyas et al., 2024).

Specifically, we consider the following structural assumption: H = {(UR ⊗UL)D̃(UR ⊗UL)
T },

where UR ∈ Rn×n, UL ∈ Rm×m are orthonormal matrix, and D̃ ∈ Rmn⊗mn is a diagonal matrix
with positive values. We can easily show that structure behind Gadam is a special case by constraining
UR = In; and Shampoo is also a special case by constraining D̃ to be decomposed by Kronecker
product (refer to Sec. I.1).

Similar to Gadam, it is hard to directly minimizing Eq. (2) with this assumption. We can approximate
the solution by 1-step refinement procedure as Gadam.

Theorem E.1 (1-step refinement of SOAP). Assuming the above structural assumptions. Consider
the following 1-step refinement: (1) assume D̃ can be decomposed as Kronecker product of two
diagonal matrix, find corresponding UR, UL; (2) fix UR, UL, find corresponding D̃. Step (1) admits
analytic for minimizing the upper bound of Eq. (2) (i.e. Eq. (2)):

UR = EVD(E[GTG]), UL = EVD(E[GGT ]).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step (2) admits an analytic solution for minimizing Eq. (2):

D̃ = DiagM(E[(UT
LGUR)

2])

.

The proof is a straightforward combination of Theorem 3.2 and Theorem 3.4, and can be found
in Sec. G.7. One can show that the corresponding optimizer associated with the above result is
equivalent to SOAP (refer to Sec. F.4 for details).

F DERIVATION OF UPDATE FORMULA

In this section, we will explicitly show how to connect the solution from minimizing reconstruction
loss of FIM (Eq. (2)) to corresponding update rule.

F.1 SHAMPOO’S UPDATE FORMULA

The key update formula of Shampoo is

Wt = Wt−1 + λL
− 1

4
m,tGtR

− 1
4

n,t

Proof. From Theorem 3.2, we simply apply the properties of Kronecker product to square-root
version of natural gradient descent:

Mat
(
F̃− 1

2 g⃗
)

=Mat
(
(R

1
2
n ⊗L

1
2
m)−

1
2 g⃗
)

=Mat
(
Vec

(
L

− 1
4

m GR
− 1

4
n

))
=L

− 1
4

m GR
− 1

4
n

F.2 GENERALIZATION TO WHITENING AND NORMALIZATION

The square-root NGD update with F̃ in Eq. (3) in Theorem 3.3 is

Mat
(
F̃− 1

2 g⃗
)
=
√
nE[GGT ]−

1
2G (29)

Proof. From the solution in Eq. (3), we can simply apply the properties of Kronecker product as in
the derivation of Shampoo’s update:

Mat
(
F̃− 1

2 g⃗
)

=Mat
(
(In ⊗M)−

1
2 g⃗
)

=Mat
(
Vec

(√
nM− 1

2G
))

=
√
nE[GGT ]−

1
2G

Similarly, the square-root NGD update with F̃ = S ⊗ Im is

Mat
(
F̃− 1

2 g⃗
)
=
√
mGS− 1

2 (30)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. This is trivial by applying the property of Kronecker product:

Mat((S ⊗ Im)−
1
2 g⃗)

=Mat(Vec(GS− 1
2 ))

=GS− 1
2

F.3 UPDATE FORMULA FOR GADAM

Proof. From the Theorem 3.4, we can apply the properties of block diagonal and Kronecker product
with a full-rank U :

Mat(F̃− 1
2 g⃗)

=Mat
(
DiagB

(
M

− 1 2
1 , . . . ,M

− 1
2

n

)
g⃗
)

=Mat
(
DiagB

(
UD

− 1
2

1 UT , . . . ,UD
− 1

2U
T

n

)
g⃗
)

=Mat
(
(In ⊗U)DiagB(

√
D1, . . . ,

√
Dn)(I ⊗UT )g⃗

)
=Mat

(
(In ⊗U)DiagB(

√
D1, . . . ,

√
Dn)Vec

(
UTG

))
=Mat

(
(In ⊗U)Vec

(
UTG√

E[(UTG)2]

))

=Mat

(
Vec

(
U

UTG√
E[(UTG)2]

))

=U
UTG√

E[(UTG)2]

F.4 UPDATE FORMULA FOR SOAP

Based on the Theorem E.1, we can derive the update formula of the corresponding square-root NGD
following the same procedure as Gadam:

Mat
(
F̃− 1

2 g⃗
)
= UL

UT
LGUR√

E[(UT
LGUR)2]

UT
R .

Proof.

Mat
(
F̃− 1

2 g⃗
)

=Mat
(
(UR ⊗UL)DiagM(E[(UT

LGUR)
2])−

1
2 (UR ⊗UL)

T g⃗
)

=Mat
(
(UR ⊗UL)DiagM(E[(UT

LGUR)
2])−

1
2 Vec

(
UT

LGUR

))
=Mat

(UR ⊗UL)Vec

 UT
LGUR√

E[(UT
LGUR)2]


=Mat

Vec

UL
UT

LGUR√
E[(UT

LGUR)2]
UT

R


=UL

UT
LGUR√

E[(UT
LGUR)2]

UT
R

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Therefore, one can design the optimizer based on this update formula and exactly recovers the SOAP’s
procedure (Eq. (23) in Sec. D.5).

G THEORY AND PROOF

To prove the results, we need to first introduce some useful lemmas and inequalities.

Lemma G.1. Assume F̃ is a block diagonal matrix with n squared block matrix Mi ∈ Rm×m, then

min
F̃
∥F̃ − F ∥2F = min

{Mi}n
i=1

n∑
i=1

∥Mi∥2F − 2Tr(MT
i E[gigT

i ]) + C (31)

where gi is the ith column of gradient G, C is a constant that is idenpendent of F̃ , and F is the FIM.

Proof. This is straightforward by expanding the Frobenius norm (F-norm).

∥F̃ − F ∥2F
=Tr

(
(F̃ − F )T (F̃ − F )

)
=∥F̃ ∥2F − 2Tr

(
F̃ TF

)
+ C

=

mn∑
l=1

F̃ T
l,:F̃:,l − F̃ T

l,:F:,l + C

=

n∑
i=1

∥Mi∥2F − 2Tr
(
MT

i E[gigT
i ]
)
+ C

where F̃l,: ∈ Rmn indicates the lth row vector of F̃ and F̃:,l is the lth column vector. The last equation
is obtained by the fact that F̃ is a block diagonal matrix. So only the values of F at the position of
non-zero values F̃ contributes to the trace, which is exactly the outer product: E[gigT

i ].

Lemma G.2 (Powers-Stormer inequality). For positive semi-definite operator A, B, we have the
following inequality

Tr((A−B)T (A−B)) ≤ ∥A2 −B2∥1 (32)

where ∥ · ∥1 is the trace norm.

G.1 PROOF OF THEOREM 3.1

Proof. From Theorem G.1, we have

∥F̃ − F ∥2F

=

n∑
i=1

∥Mi∥2F − 2Tr
(
MT

i E[gigT
i ]
)

=

n∑
i=1

m∑
j=1

M2
i,jj − 2Mi,jjE[g2i,j ]

By taking the derivative w.r.t Mi,jj , we have

Mi,jj = E[g2i,j ]

Thus, we have F̃ = Diag(E[g⃗2]).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.2 PROOF OF THEOREM 3.2

To prove this theorem, we need to leverage the Theorem 3.3 for generalized whitening (Eq. (3)) in
Sec. 3.3. This is proved in Sec. G.3. But in the following, we will provide an alternative proof for
completeness.

Proof. From Theorem G.1, we have

∥F̃ − F ∥2F

=

n∑
i=1

∥M∥2F − 2Tr(MTE[gigT
i ]) + C

=n∥M∥2F − 2Tr(MTE[
n∑

i=1

gig
T
i ]) + C

=n∥M∥2F − 2Tr(MTE[GGT ]) + C

To minimize this, we take the derivative w.r.t. M , we have

2nM − 2E[GGT ] = 0⇒M =
1

n
E[GGT ]

Next, we prove another proposition that is "symmetric" to the whitening results in Theorem 3.3.
Proposition G.3. AssumeH = {Rn ⊗ Im}, where Rn ∈ Rn×n is SPD matrix, then Eq. (2) can be
analytically solved with the optimal solution as

R∗
n =

1

m
E[GTG] (33)

Proof. Since Rn ⊗ Im does not have a nice block diagonal structure like the previous proposition,
we need to analyze it a bit more. First, we have

∥Rn ⊗ Im − F ∥2F

=∥Rn ⊗ Im∥2F − 2Tr

(Rn ⊗ Im)TE[g⃗g⃗T ]︸ ︷︷ ︸
Z

+ C

Since we only care about the diagonal of Z, therefore, we only inspect the block diagonal of Z with
each block Zi of size Rm×m, and i = 1, . . . , n. By basic algebra, we have

Zi =

n∑
k=1

Rikgkg
T
i

where gk is the kth column of G. Therefore, we can simplify the trace of Z as

Tr(Z) =

n∑
i=1

Tr(Zi)

=Tr(

n∑
i=1

n∑
k=1

Rijgkg
T
i )

=

n∑
i=1

n∑
k=1

m∑
j=1

Rik[G]ji[G
T ]kj

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where [G]ji is the element of G at jth row and ith column.

Now, let’s perform the same analysis of the following quantity

Tr

(
(Im ⊗Rn)E[

−−→
[GT ]

−−→
[GT ]T ]

)
where

−−→
[GT ] is the vectorized transposed gradient GT . Namely, it now stacks the rows of G instead

of columns of G like g⃗. This object is simple to treat due to its block diagonal structure, by algebric
manipulation, we have

Tr

(
(Im ⊗Rn)E[

−−→
[GT ]

−−→
[GT ]T ]

)
=

m∑
k=1︸︷︷︸

over blocks

Tr(Rij [GT ]k︸ ︷︷ ︸
kth column of GT

[GT ]Tk )

=

m∑
k=1

n∑
i=1

n∑
j=1

Rij [G
T ]jk[G]ki

Now, let’s change the variable i = i, j = k and k = j, the above becomes

Tr

(
(Im ⊗Rn)E[

−−→
[GT ]

−−→
[GT ]T ]

)
=

m∑
j=1

n∑
i=1

n∑
k=1

Rik[G
T ]kj [G]ji

=Tr(Z) (34)

We should also note that

∥Rn ⊗ Im∥2F
=Tr

(
(Rn ⊗ Im)T (Rn ⊗ Im)

)
=Tr

(
(RT

nRn)⊗ Im
)

=Tr(RT
nRn) Tr(Im)

=Tr
(
(Im ⊗Rn)

T (Im ⊗Rn)
)

=∥(Im ⊗Rn)∥2F
Therefore, by using the above equation and Eq. (34), the original minimization problem is translated
to

argmin
Rn

∥Rn ⊗ Im − F ∥2F = argmin
Rn

∥Im ⊗Rn − E[
−−→
[GT ]

−−→
[GT ]T ]∥2F

Thus, we can leverage Theorem 3.3 to obtain the optimal solution

R∗
n =

1

m
E[GTG]

With the above two propositions, we can start to prove Theorem 3.2.

Proof. First, we note that

∥R
1
2
n ⊗L

1
2
m − F ∥2F

=∥ (Rn ⊗ Im)
1
2︸ ︷︷ ︸

A

(In ⊗Lm)
1
2︸ ︷︷ ︸

B

−E[g⃗g⃗T ]
1
2︸ ︷︷ ︸

C

E[g⃗g⃗T ]
1
2 ∥2F

=∥AB −CC∥2F

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Next, we will upper bound this quantity. First, we have

AB −CC = A(B −C) + (A−C)C

By triangular inequality, we have

∥AB −CC∥F
≤ ∥A(B −C)∥F + ∥(A−C)C∥F
≤ ∥A∥F ∥B −C∥F + ∥A−C∥F ∥C∥F
≤ (∥A−C∥F + ∥C∥F )∥B −C∥F + ∥A−C∥F ∥C∥F
= ∥A−C∥F ∥B −C∥F + ∥C∥F (∥B −C∥F + ∥A−C∥F )

Now, the squared norm can be upper bounded by

∥AB −CC∥2F ≤3
(
∥A−C∥2F ∥B −C∥2F + ∥C∥2F ∥A−C∥2F + ∥C∥2F ∥B −C∥2F

)
≤3(mn∥A2 −C2∥F ∥B2 −C2∥F +

√
mn∥C∥2F ∥A2 −C2∥F (35)

+
√
mn∥C∥2F ∥B2 −C2∥F ) (36)

The first inequality is obtained by the fact that for any three matrix P , Q and H , we have

∥P +Q+H∥2F ≤ (∥P ∥F + ∥Q∥F + ∥H∥F )2

=∥P ∥2F + ∥Q∥2F + ∥H∥2F + 2∥P ∥F ∥Q∥F + 2∥P ∥F ∥H∥F + 2∥Q∥F ∥H∥F
≤3
(
∥P ∥2F + ∥Q∥2F + ∥H∥2F

)
The second inequality is obtained by directly applying Powers-Stormer’s inequality and Holder’s
inequality. For completeness, we will show how to upper-bound ∥A−C∥2F , the rest can be bounded
in the same way. From Theorem G.2 and both A, C are SPD matrix, we have

∥A−C∥2F ≤ ∥A2 −C2∥1
Then, we can select p = q = 2 for Holder’s inequaity and obtain

∥A2 −C2∥1 ≤
√
mn∥A2 −C2∥F

where
√
mn comes from the ∥Imn∥F in Holder’s inequality. By substitute it back, we obtain the

upper bound.

We can see that minimizing the upper bound Eq. (36) is equivalent to minimize each ∥A2 −C2∥F ,
∥B2 −C2∥F individually, and

∥A2 −C2∥F = ∥Rn ⊗ Im − F ∥F
∥B2 −C2∥F = ∥In ⊗Lm − F ∥F

Thus, from Theorem 3.3 and Theorem G.3, we prove the theorem.

G.3 PROOF OF THEOREM 3.3 AND THEOREM 4.1

Instead of proving the Theorem 3.3, we propose a generalization to those gradient operations, where
Theorem 3.3 is a special case.

Structure assumption We considerH = {S ⊗M} with identical SPD M ∈ Rm×m and positive
diagonal S ∈ Rn×n. The following theorem proves that the optimal solution can be solved by a
fixed-point iteration.
Theorem G.4. AssumingH = {S ⊗M} with positive diagonal S ∈ Rn×n and SPD M ∈ Rm×m,
and EGG′ [(GTG′)2] contains positive values, solving Eq. (2) admits a fixed point procedure:

Diag(S) =
Diag(E[GTMG])

∥M∥2F
, M =

E[GSGT ]

∥S∥2F
. (37)

The solution Diag(S∗) converges to the principal eigenvector of E[(GTG′)2] up to a scaling with
unique S∗ ⊗M∗.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

To prove Theorem G.4, we first introduce some classic results.
Theorem G.5 (Perron-Frobenius theorem). For a matrix A ∈ Rn×n with positive entries, the
principal eigenvalue r is positive, called Perron-Frobenius eigenvalue. The corresponding eigenvector
v of A is called Perron vector and only contains positive components: Av = rv with vi > 0. In
addition, there are no other positive eigenvectors of A.
Definition G.6 (Hilbert projective metric). For any given vectors v, w in C/{0} where C is a closed
convex pointed non-negative cone C, i.e. C ∩ (−C) = {0}, the Hilbert projective metric is defined as

dH(v,w) = log

(
max

i

vi
wi

)
− log

(
min
i

vi
wi

)
This is a pseudo metric since it has a scaling invariance property: dH(v, αm) = dH(v,m) for
α > 0. This means dH(v,m) = 0 does not mean v = m but v = αm with some positive scaling α.
However, this is a metric on the space of rays inside the cone.
Theorem G.7 (Birkhoff-Hopf theorem). Let P ∈ Rn×n be a positive matrix and let

κ(P ) = inf {α ≥ 0 : dH(Px,Py) ≤ αdH(x,y),∀x,y ∈ C+,x ∼ y}
where C+ is the cone that each element is non-negative and ∼ is the induced equivalence relation.
Namely, if x ∼ y, there exists α, β > 0 such that αx < y < βx, and x < y means y − x ∈ C+.
Then, it holds

κ(P ) = tanh
1

4
∆(P ) with ∆(P ) = max

i,j,k,l

PijPkl

PilPkj

This theorem suggests that when P is a positive matrix, the corresponding linear mapping is contrac-
tive since tanh(·) ≤ 1 under Hilbert projective metric.

Now, let’s prove the Theorem G.4.

Proof. First, we can simplify the Eq. (2) using Theorem G.1:

∥S ⊗M − F ∥2F

=

n∑
i=1

S2
i ∥F ∥2F − 2Tr(SiME[gigT

i ]) + C

Then, we simply take its derivative w.r.t. si, and obtain

2Si∥M∥2F = 2Tr(ME[gigT
i ])

=⇒Si =
Tr(ME[gigT

i ])

∥M∥2F

=⇒Diag(S) =
Diag

(
E[GTMG]

)
∥M∥2F

Similarly, we have

M =

∑n
i=1 SiE[gigT

i ]

∥S∥2F

=
E[GSGT ]

∥S∥2F
These define an iterative procedure. Next, we will show it converges. Let’s substitute M into S, and
obtain

S =Diag
(
EG

[
GTEG′ [G′SG

′T ]G
])

α(S)

=Diag

(
EGG′

[
GG

′T︸ ︷︷ ︸
H

SG
′TG

])

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where α(S) is the scaling term. In the following, we use E as EGG′ . Since we can show

Si = E

 n∑
j

Sj

 ,

we can write S in its vector format:

s = E
[
H2
]︸ ︷︷ ︸

P

s.

From the assumption, we know P contains only positive values, let’s define a quotient space for
positive vectors s and q under the equivalence relation s ∼ s′ if s = αs′ for some positive scaling α.
Namely, we define a space of rays inside the positive cone. Therefore, the Hilbert projective metric
becomes a real metric inside the quotient space.

From the Theorem G.7, we know the linear mapping associated with P is contractive. Therefore, we
can follow the proof of Banach fixed point theorem on the previously defined quotient space with
Hilbert projective metric to show the convergence of this fixed point iteration on s.

Now, we show the solution s∗ is always positive. Since it is converging, therefor, the solution satisfies

s∗ = α(s∗)Ps∗

This is equivalent to finding the eigenvectors of P . By leveraging Perron-Frobenius theorem
(Theorem G.5), we know s∗ is the principal eigenvector of P , and only contain positive values. It
is also easy to verify that this fixed point converges upto a positive scaling factor (this is expected
since the contractive mapping holds true for the quotient space with Hilbert metric, that is invariant to
scaling.)

Although s∗ is not unique, but S ⊗M is, since for arbitrary positive scaling β

s
′∗ = βs∗ =⇒M

′∗ =
1

β

E[GS∗GT ]

∥s∥22
=⇒S

′∗ ⊗M
′∗ = S∗ ⊗M∗

Therefore, Theorem 3.3 is a direct consequence by substituting F̃ = In ⊗M and F̃ = S ⊗ Im into
Eq. (15).

Next, we prove Theorem 4.1.

Proof. From the Theorem G.4, the iterative procedure for Q can be simply obtained by taking the
diagonals of M :

Q =
Diag

(
E
[
GSGT

])
∥S∥2F

.

Following the same proof strategy of Theorem G.4, we substitute Q into the update of S and re-write
it into the vector format. First, let’s rewrite the update of S

Si ∝ E[
∑
j=1

G2
jiQj ]

=⇒s =
P Tq

∥q∥22
where P = E[G2]. Similarly, q = Ps

∥s∥2
2

. Thus,

s = α(s)P TPs

From the assumption P contains only positive values, we can follow the exact same argument made
in Theorem G.4 to show the convergence of this fixed point update and the positivity of the final
solution s∗. Precisely, s∗ and q∗ are the right and left principal singular vectors of P , respectively,
and S∗ ⊗Q∗ are unique.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.4 PROOFS OF GADAM

G.4.1 PROOF OF THEOREM 3.4

Proof. For simplicity, we omit the subscript f in Uf . If we assume all Di are equal and only contain
positive values, then each block UDiU

T are the same for all i, and it is SPD matrix. Then, to
minimize the the loss Eq. (2), we can directly leverage the whitening results in Theorem 3.3, and
obtain M∗ = E[GGT ]. Due to the structure of UDUT , the optimal U∗ is exactly the eigen-matrix
of M∗.

Next, we prove for any fixed U , we can find the corresponding optimal Di. From the block diagonal
structure and Theorem G.1, we have

∥F̃ − F ∥2F

=

n∑
i=1

∥UDiU
T ∥2F − 2Tr

(
UTE[gigT

i ]UDi

)
+ C

=

n∑
i=1

∥Di∥2F − 2Tr

UT E[gigT
i ]︸ ︷︷ ︸

Hi

UDi

+ C

=

n∑
i=1

m∑
j=1

D2
i,jj − 2

n∑
i=1

m∑
j=1

Di,jju
T
j Hiuj + C

Taking the derivative w.r.t. Di,jj , we can find the optimal Di,jj is

D∗
i,jj =uT

j Hiuj

=E[(uT
j gi)

2]

Now, by simple algebra manipulation, we have

D∗
i = DiagM (E[(UTgi)])

where DiagM is to expand the vector to a diagonal matrix. Finally, for D̃, we have

D̃ = DiagM (E[(UTG)2]) (38)

The optimality of D̃ can also be obtained by leveraging the Lemma 1 in (George et al., 2018), and
set the eigenbasis as In ⊗U .

G.5 PROOF OF THEOREM G.8

Here, we present the following proposition that analyzes the issue casued by using low-rank tracking
Q̃ compared to the true Q:
Proposition G.8 (Subspace switching). Assuming the setup mentioned above and all assumptions
of Gadam are satisfied. We further assume the low-rank U ∈ Rm×r is obtained at the beginning
of i + 1 time block by EVD(Q∗

ik, r) where Q∗
ik is the true tracking state. Further, we assume the

stability of the eigen-basis such that gradient Gt during i+ 1 time block shares the same eigen-basis
as Q∗

ik. Then, we have the following for true statistics Q∗
(i+1)k at the end of the i+ 1 time block:

Q∗
(i+1)k =

(i+1)k∑
t=ik+1

GtG
T
t =

(i+1)k∑
t=ik+1

G̃tG̃
T
t +UcΣtU

T
c (39)

where G̃t = Uσt is the low rank reconstructed gradients, Σt ∈ R(m−r)×(m−r) is a diagonal matrix
with positive values, and Uc is the complement eigen-basis such that [U ,Uc] will form the complete
eigen-basis of Q∗

ik.

Proof. Within the time block i + 1 with low-rank mapping U , the gradient at each step can be
decomposed as

Gt = UUTGt︸ ︷︷ ︸
G̃t

+(Gt −UUTGt)︸ ︷︷ ︸
Rt

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Therefore, the true state Q∗
(i+1)k can be simplified as

Q(i+1)k =

(i+1)k∑
t=ik+1

GtG
T
t

=

(i+1)k∑
t=ik+1

(G̃t +Rt)(G̃t +Rt)
T

=

(i+1)k∑
t=ik+1

G̃tG̃
T
t + G̃tR

T
t︸ ︷︷ ︸

0

+RtG̃
T
t︸ ︷︷ ︸

0

+RtR
T
t

The third equality is obtained because we assume GtG
T
t shares the same eigen-basis as Q∗

ik. Namely,

GtG
T
t =[U ,Uc]

[
At 0
0 Σt

] [
UT

UT
c

]
=UAtU

T +UcΣtU
T
c

where At and Σt are diagonal matrix. Then, we have

G̃tR
T
t

=UUTGt(UcU
T
c Gt)

T

=UUT (UAtU
T +UcΣtU

T
c )UcU

T
c

=UAt U
TUc︸ ︷︷ ︸
0

UT
c +U UTUc︸ ︷︷ ︸

0

ΣtU
T
c UcU

T
c

=0

In addition, we can also simplify

RtR
T
t

=UcU
T
c GtG

T
t UcU

T
c

=UcU
T
c (UAtU

T +UcΣtU
T
c )UcU

T
c

=UcΣtU
T
c

Therefore,

Q∗
(i+1)k =

(i+1)k∑
t=ik+1

G̃tG̃
T
t +UcΣtU

T
c

G.6 PROOF OF THEOREM G.9

Here, we prove the following theorem to analytically search for the optimal scaling St by minimizing
the reconstruction error under Frobenius norm:

Theorem G.9 (Optimal compensation). Assume that the conditions of Gadam are satisfied. With the
proposed form of compensation (Eq. (14)), minimizing FIM reconstruction loss

∥(S−2
t ⊗UcU

T
c )− F̃c∥2F

admits analytic solution:

Diag(St) =

√
m− r√

E[1T
mG2

t − 1T
r (U

TGt)2]
(40)

where 1m ∈ Rm, 1r ∈ Rr are the column vectors with element 1 and 2 is element-wise square.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. For simplicity, we ignore the subscript t for the following proof. First, we let O = S−2 Then,
the loss function can be written as

∥O ⊗UcU
T
c − F̃c∥2F

=

n∑
i=1

∥OiiUcU
T
c ∥2F − 2Tr((OiiUcU

T
c )T (UcMiU

T
c ))

=

n∑
i=1

∥OiiUcU
T
c ∥2F − 2Tr(OiiMi)

=

n∑
i=1

m−r∑
k=1

m∑
j=1

O2
iiU

2
c,jk − 2Tr(OiiMi)

where Mi = Diag(E[(UT
c gi)

2]), gi is the ith column of G, and Uc,jk is the element in jth row, kth

column of Uc. Then, we take the derivative w.r.t. Oii, and we have

2Oii

m−r∑
k=1

m∑
j=1

U2
c,jk = 2

m−r∑
k=1

E[(UT
c gi)

2
k]

=⇒Oii =
E[
∑m−r

k=1 (UT
c gi)

2
k]

m− r

This form still requires the access to Uc. Next, let’s simplify it. First, let Ũ = [U ,Uc] to be the
complete basis, we can show

m∑
k=1

(ŨTgi)
2
k

=Tr((ŨTgi)
T (ŨTgi))

=Tr(gT
i ŨŨT︸ ︷︷ ︸

I

gi)

=gT
i gi

Now, let’s re-write the above in a different format:
m∑

k=1

(ŨTgi)
2
k

=Tr(gT
i ŨŨTgi)

=Tr(ŨTgig
T
i Ũ)

=Tr

([
UT

UT
c

]
gig

T
i [U ,Uc]

)
=Tr(UUT (gig

T
i ) +UcU

T
c (gig

T
i ))

=Tr((UTgi)
T (UTgi)) + Tr((UT

c gi)
T (UT

c gi))

=

r∑
k=1

(UTgi)
2
k +

m−r∑
k=1

(UT
c gi)

2
k

Therefore, we have

E[
m−r∑
k=1

(UT
c gi)

2
k] = E[gT

i gi −
r∑

k=1

(UTgi)
2
k]

So, we have

Diag(O) =
E[1T

mG2 − 1T
r (U

TG)2]

m− r

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

and

Diag(D) =

√
m− r√

E[1T
mG2 − 1T

r (U
TG)2]

G.7 PROOF OF THEOREM E.1

Proof. The proof strategy is a straightforward combination of Theorem 3.2 and Theorem 3.4. First,
when we assume D̃ has the Kronecker product structure, one can easily write

(UR ⊗UL)(SR ⊗ SL)(UR ⊗UL)
T

=(UR ⊗UL)
[
(SRU

T
R )⊗ (SLU

T
L )
]

=(URSRU
T
R )︸ ︷︷ ︸

A

⊗ (ULSLU
T
L )︸ ︷︷ ︸

B

Therefore the loss (Eq. (2)) becomes

∥AB −CC∥2F

where C = E[g⃗g⃗T ]
1
2 . This is exactly the formulation used in Theorem 3.2 with R

1
2
n = URSRU

T
R

and L
1
2
m = ULSLU

T
L .

Thus, by directly utilizing Theorem 3.2, we can see the optimal solution

URS
2
RU

T
R = E[GTG]

ULS
2
LU

T
L = E[GGT ]

Due to the structural assumption of UR, UL, SR, SL, their corresponding optimal solution can
directly obtained using eigenvalue decomposition.

Now, let’s prove the optimal D̃ with any fixed UR, UL. This is also straightforward by applying the
same technique as Theorem 3.4. The loss can be written as

∥ (UR ⊗UL)︸ ︷︷ ︸
Π

D̃ (UR ⊗UL)
T︸ ︷︷ ︸

ΠT

−F ∥2F

=∥ΠD̃ΠT ∥2F − 2Tr
(
ΠTE[g⃗g⃗T ]ΠD̃

)
+ C

Since it is easy to verify orthonormality of Π, i.e.ΠTΠ = I , the above is simplified to

∥D̃∥2F − 2Tr
(
ΠTE[g⃗g⃗T ]ΠD̃

)
=

mn∑
i=1

D2
ii − 2

mn∑
i=1

Dii[Π]Ti E[g⃗g⃗T ][Π]i

where [Π]i is the ith column of matrix Π. Then, by taking the derivative, the optimal Dii:

D∗
ii = [Π]Ti E[g⃗Vec

T ][Π]i

=E[([Π]Ti g⃗)
2]

Therefore,

Diag(D̃∗) = E[(ΠT g⃗)2]

=E[((UT
R ⊗UT

L )g⃗)2]

=Vec((E[UT
LGUR]))

⇒ D̃∗ = DiagM ((E[(UT
LGUR)

2]))

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H CONVERGENCE OF ALICE

In this section, we will prove the convergence of Alice under the continuous-time setup. We initially
want to adopt the convergence proof techniques from GaLore (Zhao et al., 2024a). However, the
major drawback of their approach is the assumption of the fixed projection U . In practice, one
will not fix the projection, and instead, it is crucial to switch different U to achieve satisfactory
performance. Therefore, this mismatch requires us to find an alternative technique that can handle the
time-varying U . (Maddison et al., 2018) proposed an elegant framework for analyzing the behavior
of optimizers by converting the optimizer updates into continuous-time ODEs and examining a
suitable Hamiltonian function. This approach has been recently adopted to analyze the optimizers’
convergence behavior (Nguyen et al., 2025; Chen et al., 2023).

Let’s first write down the discretized update of Alice:

Wt = Wt−1 − η

(
U

Mt√
Vt + ϵ

+
√
m− r

Gt −UUTGt√
Φt + ϵ

)
Mt = β1Mt−1 + (1− β1)U

TGt

Vt = β2Vt−1 + (1− β2)(U
TGt)

2

Φt = β1Φt−1 + (1− β1)1m

[
1T
mG2

t − 1T
r (U

TG)2
]

= β1Ht−1 + (1− β1)1m1T
m(Gt −UUTGt)

2

where η is the effective learning rate, U ∈ Rm×r is the low-rank projection, A2, A
B and

√
· are

elementwise operations for any matrix A, B.

Next, we can convert the above discretized update into continuous-time ODEs:

dWt

dt
= −Ut

Mt√
Vt + ϵ

−
√
m− r

Gt −UtU
T
t Gt√

Φt + ϵ

dMt

dt
= UT

t Gt −Mt

dVt

dt
= (UT

t Gt)
2 − Vt

dΦt

dt
= 1m1T

m(Gt −UtU
T
t Gt)

2 −Φt

Ut = τ(t,Gt) (41)

where τ(·, ·) can represent a mapping from gradient Gt (and the history of gradients) to the low-rank
projection matrix Ut.

To show the convergence, we need to design a key quantity called Hamiltonian H(Wt,Mt,Vt) such
that it satisfies:

min
Mt,Wt,Vt

H(Wt,Mt,Vt) = min
Wt

L(Wt) (42)

where L(Wt) is the loss function we want to minimize. This property ensures that the minimization
of H is equivalent to the minimization of the actual loss function.

With this property, if dH
dt ≤ 0, we can show the Hamiltonian is non-increasing, and it will reach to a

local optimum (i.e. dH
dt = 0) at the end. We can analyze the state Wt, Mt and Vt under dH

dt = 0,
and if this leads to Gt = 0, we can prove the weight ODE trajectory will reach to a local optimum of
the loss function L(Wt).

We propose the following Hamiltonian:

H(Wt,Mt,Vt) = L(Wt) +
1

2

〈
Mt√
Vt + ϵ

,Mt

〉
(43)

where ⟨A,B⟩ = Tr(ATB) represents the matrix inner product.

Before the proof of the convergence, let’s first prove a lemma.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Lemma H.1. Assume matrix A has constant columns with positive values, then for any positive
semi-definite projector P , we have 〈

PG

A
,G

〉
≥ 0. (44)

Proof. 〈
PG

A
,G

〉
=

m∑
i=1

n∑
k=1

(
PG

A
)ikGik

=

n∑
k=1

m∑
i=1

(PG)ik
αk

Gik

=

n∑
k=1

1

αk
GT

kPGk ≥ 0

where αk is the value of the kth column of A and Gk is the kth column of matrix G. The last
inequality is from the definition of positive semi-definite projector.

Next, we prove the convergence of Alice:

Theorem H.2 (Convergence of Alice). Assuming the ODEs defined in Eq. (41) satisfies the assump-
tions of Alice, with the Hamiltonian defined in Eq. (43), it satisfies

dH

dt
≤ 0 (45)

and dH
dt = 0 implies Gt =

∂L(Wt)
∂Wt

= 0.

Proof. First, we write down the form of dH
dt :

dH

dt
=

〈
∂H

∂Wt
,
dWt

dt

〉
+

〈
∂H

∂Mt
,
dMt

dt

〉
+

〈
∂H

∂Vt
,
dVt

dt

〉
= −

〈
Gt,Ut

Mt√
Vt + ϵ

+
√
m− r

Gt −UtU
T
t Gt√

Φt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,UT
t Gt −Mt

〉
− 1

4

〈
M2

t√
Vt(
√
Vt + ϵ)2

, (UT
t Gt)

2 − Vt

〉
= −

〈
Gt,Ut

Mt√
Vt + ϵ

〉
−
〈
Gt,
√
m− r

Gt −UtU
T
t Gt√

Φt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,UT
t Gt

〉
−
〈

Mt√
Vt + ϵ

,Mt

〉
− 1

4

〈
M2

t√
Vt(
√
Vt + ϵ)2

, (UT
t Gt)

2 − Vt

〉
= −
√
m− r

〈
Gt,

Gt −UtU
T
t Gt√

Φt + ϵ

〉
︸ ︷︷ ︸

Term 1

−
〈

Mt√
Vt + ϵ

,Mt

〉
− 1

4

〈
M2

t√
Vt(
√
Vt + ϵ)2

, (UT
t Gt)

2

〉
︸ ︷︷ ︸

Term 2

+
1

4

〈
M2

t√
Vt(
√
Vt + ϵ)2

,Vt

〉

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

It is clear that Term 2 is non-negative. So, we first examine the remaining terms (i.e. other terms
except Term 1 and 2). Let denote Mt√

Vt+ϵ
= Θ for simplicity:

− ⟨Θ,Mt⟩+
1

4

〈
Θ2

√
Vt

,Vt

〉
=

m∑
i=1

n∑
k=1

1

4
Θ2

ik

√
Vt,ik −ΘikMik

=

m∑
i=1

n∑
k=1

1

4

M2
ik

√
Vt,ik

(
√

Vt,ik + ϵ)2
− M2

ik√
Vt,ik + ϵ

= −
m∑
i=1

n∑
k=1

1

4

ϵM2
ik

(
√
Vt + ϵ)2

≤ 0

Now, let’s examine Term 1:〈
Gt,

Gt −UtU
T
t Gt√

Φt + ϵ

〉
=

〈
Gt,

UcU
T
c Gt√

Φt + ϵ

〉
≥ 0

where Uc ∈ Rm×(m−r) is the complement basis of U such that [Ut,Uc] will form the complete
orthonormal basis. The last inequality is from Theorem H.1 with P = UcU

T
c , A =

√
Φt + ϵ. It is

also trivial to see Φt contains constant columns with non-negative values.

Thus, combining the above, we prove dH
dt ≤ 0. Next, we consider the behavior when Hamiltonian

reaches the local optimum. When dH
dt = 0, we can immediately see Mt = 0, UT

t Gt = 0 and〈
Gt,

Gt−UtU
T
t Gt√

Φt+ϵ

〉
= 0.

We examine the last term:〈
Gt,

Gt −UtU
T
t Gt√

Φt + ϵ

〉
⇒

m∑
i=1

n∑
k=1

Gik(UcU
T
c G)ik√

Φik + ϵ
= 0

⇒
m∑
i=1

n∑
k=1

Gik(UcU
T
c G)ik√

Φik + ϵ
+

Gik(UtU
T
t G)ik√

Φik + ϵ
= 0

⇒
m∑
i=1

n∑
k=1

Gik(UcU
T
c G+UT

t UT
t G)ik√

Φik + ϵ
= 0

⇒
m∑
i=1

n∑
k=1

G2
ik√

Φik + ϵ
= 0

⇒ Gt = 0

Therefore, the weight trajectory Wt will reach to a local optimum of the L(Wt) when dH
dt = 0.

I FURTHER DISCUSSION

I.1 CONNECTIONS BETWEEN DIFFERENT STRUCTURAL ASSUMPTIONS

Here, we will make explicit connections between different structures in terms of their generality.

Gadam generalizes Adam Since the structure behind Gadam is DiagB(UD1U
T , . . . ,UDnU

T ),
when constraining U = Im, the resulting structural is pure diagonal matrix DiagB(D1, . . . ,Dn).
This coincide with the pure diagonal structure behind Adam.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Gadam generalizes S ⊗M Gadam not only extends Adam, but also generalizes the structure
considered in Theorem G.4. Consider setting Di = SiD, then we have

UDiU
T = Si UDUT︸ ︷︷ ︸

M

Therefore, DiagB(UD1U
T , . . . ,UDnU

T ) = DiagB(S1M , . . . , SnM). Since the structures of
normalization and whitening are special cases of Theorem G.4, Gadam generalizes these two gradient
operators as a consequence.

SOAP generalizes Gadam We can re-write the structural assumption of Gadam in the Kronecker
product format:

DiagB(UD1U
T , . . . ,UDnU

T ) = (I ⊗U)DiagB(D1, . . . ,Dn)︸ ︷︷ ︸
D̃

(I ⊗UT ).

It is clear that this is a special case of SOAP structure by containing UR = I .

SOAP generalizes Shampoo The structure of Shampoo consists of two SPD matrices Rn and Lm.
If we eigen-decompose those, and let Rn = URDRU

T
R and Lm = ULDLU

T
L , then the structure of

Shampoo can be re-write as

R
1
2
n ⊗L

1
2
m

=(UR

√
DRU

T
R )⊗ (UL

√
DLU

T
L )

=(UR ⊗UL) (
√

DR ⊗DL)︸ ︷︷ ︸
D̃

(UT
R ⊗UT

L ).

This coincides with SOAP’s structure when the positive diagonal D̃ can be decomposed based on
Kronecker product.

I.2 MEMORY CONSUMPTION COMPARISON

Apart from the Table 1 provided in the main paper, we also include the memory consumption of
more optimizers.

Adam GaLore Fira Alice Alice-0
Total 3mn mn+ 2nr +mr mn+ 2nr +mr mn+ 2nr +mr + r2 + n mn+ 2nr +mr + n
Weight mn mn mn mn mn
First moment mn nr nr nr nr
Second moment mn nr nr nr nr
U N/A mr mr mr mr
Ct N/A N/A N/A n n

Q̃ N/A N/A N/A r2 N/A

Table 5: The memory consumption of low-rank optimizers. Here, we assume the weight has a shape
m × n with m < n and r ≪ m. Note that memory consumption n and r2 is typically very small.
For example, let’s take the largest possible n = 30K at the output layer. For 1B LLaMA, we select
r = 512, leading to r2 ≈ 262K, which is 8x larger than n. However, both are marginal compared to
mr = 5120× 512, which is 10x larger than r2, and 80x larger than n.

I.3 COMPARISON TO PREVIOUS FIM APPROXIMATION

The idea of efficiently approximating the FIM is not novel, and has been extensively studied in the
previous work. KFAC (Martens & Grosse, 2015) is a well-known second order optimization algorithm
for neural networks based on structural approximation to FIM. In particular, they explicitly express the
FIM in terms of the gradient w.r.t this layer’s output and the input to this layer. Namely, they directly
decompose the gradient G used in our paper, whereas in our paper, we treat G as a whole quantity.
In addition, the original KFAC also makes one crucial approximation: E[A⊗B] ≈ E[A]⊗ E[B].
They do not show theoretically whether this is a good approximation and under what metric, but

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

argue in practice this gives good accuracy. Last but not least, the original KFAC considers the FIM
for entire layers, and each block (i.e. corresponding to each layer) under their setup is actually the
entire FIM we aim to approximate. To be precise, the principle is to structurally approximate the
diagonal block of KFAC without decomposing the gradient G using KFAC.

Another more related work is AdaGrad (Duchi et al., 2011). If we only considers layer-wise gradient,
the full AdaGrad matrix is the

∑T
t=1 g⃗tg⃗

T
t . Although our principle is to approximate FIM, in

practice, we use EMA as the approximation of E. Therefore, our principle can also be viwed as
a structural approximation to full EMA AdaGrad matrix. Under this view point, there are some
previous work on structural approximations. Shampoo (Gupta et al., 2018), was originally proposed
as an approximation to full AdaGrad matrix under the online learning setup. However, they do
not explicit show under what metric this approximation is based on, and whether it is optimal or
not. Later, there is a follow-up work (Morwani et al., 2024), showing that Shampoo is a 1-step
power iteration algorithm of optimal Kronecker product approximation to FIM under Frobenius norm
(Koroko et al., 2022). In this paper, we further extend the idea of approximating FIM/AdaGrad matrix
to more efficient structures, under Frobenius norm.

I.4 SOLUTIONS TO GENERAL BLOCK DIAGONAL STRUCTURES

Here, we present the solution of the most general block diagonal approximation to FIM, and discuss
why this is not practical.

Proposition I.1 (General block diagonal approximation). Assume F̃ = Diag(M1, . . . ,Mn) with
SPD matrix Mi ∈ Rm×m, then minimizing Eq. (2) admits analytic solutions:

M∗
i = E[gigT

i ] (46)

where gi is the ith column of G.

Proof. This is straightforward by taking the derivative w.r.t. Mi. By leveraging Theorem G.1, we
have

∥F̃ − F ∥2F

=

n∑
i=1

∥Mi∥2F − 2Tr(MT
i E[gigT

i ])

Then, taking derivative w.r.t. Mi, we get

M∗
i = E[gigT

i ]

From the above, although it admits analytic solutions, its corresponding practical procedure requires
the EMA to estimate E[gigT

i ] ∈ Rm×m for all i = 1, . . . , n, leading to expensive memory cost nm2.
Another issue is that it does not allow efficient computation of the inverse. From the property of block
diagonal matrix, to compute F̃− 1

2 g⃗, one needs to invert each Mi, incurring O(m3) computational
cost. In total, the computational cost of inverting matrix F̃ is O(nm3). Due to both memory and
computational constraints, this structural assumption does not lead to practical algorithms.

I.5 CONNECTIONS TO EXISTING OPTIMIZERS

Lars and Lamb Lars and Lamb (You et al., 2017; 2019) relies on the normalization operation of
the gradients. The main difference is that Lars proposed to normalize the raw gradient, whereas Lamb
normalizes the processed gradient from Adam optimizer. They also involves a scaling parameter that
is a function of the weight. Compared to the normalization discussed in Sec. 3.3, the main difference
is that we use channel-wise normalization with unit column or row norm, whereas Lars/Lamb uses
matrix-wise normalization where the norm of the matrix is regularized to be 1. However, if one
vectorizes the matrix weight into a vector, and stacks those vectors into a larger matrix. Then, Lamb
and Lars can be viewed as a 1-sample approximation to FIM under the structure considered in
Sec. 3.3.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Muon Muon (Jordan et al., 2024) performs the whitening operation on the momentum. Sec. D.9
gives a brief introduction. In fact, Muon can be viewed as a special case of Eq. (3) in Theorem 3.3 by
considering the following approximation:

E[GGT ] ≈ E[G]E[GT ]. (47)

Thus, the resulting operation becomes the whitening of the E[G], which is estimated by the momentum
in practice. One potential mismatch of the gradient whitening from the original Muon (Jordan et al.,
2024) compared to Theorem 3.3 is the lack of the coefficient

√
n, preventing the parameter update

to adapt to the shape of the weight matrix. Later, (Liu et al., 2025) found that this term is critical
for large-scale LLM training, and add it back to further improve Muon. Their argument is from the
empirical intuition to match the update RMS norm of Adam, whereas our Theorem 3.3 proved that
this is indispensable from a theoretical perspective.

Another advantage of Muon is its relatively low memory consumption compared to Adam since it
only requires the storage of first moments. However, our proposed Alice uses less memory than
Muon. Let’s consider a weight matrix with shape m ×m, and Alice uses a rank 0.25m, which is
consistent to the setup for experiment. Thus, Muon will use m2 memory for state and Alice will only
consume 13

16m
2, 20% less memory than Muon.

SWAN SWAN composes the gradient normalization and whitening operations as the replacement
of Adam’s first and second moments. Each individual operations can be viewed as a special case of
Theorem 3.3. However, Sec. 3.3 does not provide an explanation for composing these two operators.
Namely, the whitening operator is estimated using normalized gradients, rather than the raw gradient.
We will leave the investigation of operator composition for future work.

Adapprox Adapprox (Zhao et al., 2024b) uses low-rank approximation for Adam’s second moments
through randomized SVD to boost the memory efficiency. However, its performance will be similar
to Adam. In fact, Theorem 4.1 of RACS proves that the converged s and q represents the right and
left singular vectors, coinciding with the rank-1 reconstruction. However, the proposed RACS is
different from rank-1 Adapprox in three main aspects: (1) Adapprox proposes to use low-rank EMA
tracking on G2, whereas we use EMA directly on scaling vectors s, q. The resulting vectors are
no longer singular vectors; (2) we do not have separate scaling apart from norm-growth limiter and
user-defined scale, whereas Adapprox uses the scaling from Adafactor; (3) RACS do not use any first
moment. Specifically, (1) is an important difference, since for any low-rank reconstruction with rank
r > 1, it is not guaranteed to be positive, causing numerical issue during square-root inverse scaling.
Adapprox adds a manually defined offset to ensure positivity. On the other hand, RACS is guaranteed
to have positive s, q at each step from Perron-Frobenius theorem. Therefore, RACS is numerically
stable.

Adafactor Adafactor (Shazeer & Stern, 2018) is another optimizer that uses rank-1 approximation
to Adam’s second moment. However, their scaling is derived by minimizing a different norm,
compared to Frobenius norm in this paper. Adapprox Zhao et al. (2024b) has demonstrated the
advantages of using Frobenius norm compared to Adafactor with a slightly better performance on
LLM training.

AdaDiag and one-sided SOAP We acknowledge that there exists two concurrent work: AdaDiag
(Nguyen et al., 2025) and one-sided SOAP (Vyas et al., 2024), that are mathematically equivalent
to Gadam. They are derived based on distinct view points. AdaDiag is based on the intuition to
transform the gradient covariance matrix so that it is diagonalizable, where this diagonal matrix is
estimated using Adam’s second moments. One-sided SOAP, a memory-efficient version of SOAP,
is proposed to based on intuitions that only one-sided eigenspace is enough for LLM training. On
the other hand, Gadam is derived on the basis of the structured FIM view point. providing a deeper
connections to optimizers considered in this paper.

Apollo There is one concurrent work, Apollo (Zhu et al., 2024), that is also based on scaling the
raw stochastic gradients for memory-efficient LLM training. It proposed to scale columns OR rows
of the G through a scaling matrix estimated by similar procedure as Fira Chen et al. (2024a). The
main idea is that column or row norm after scaling matches the column or row norm of the gradient
from GaLore update. Thus, they require a GaLore procedure to compute this update at each step. Our

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

proposed RACS scales both columns and rows at the same time. The main differences are: (1) the
scaling estimation in RACS is different from Apollo; (2) the scaling scheme of RACS is inspired
by the generalization of normalization, providing theoretical support. They enjoy a similar memory
consumption (i.e. mn+ 2n+ 2 of Apollo compared to mn+m+ n+ 1 of RACS).

Fira Fira Chen et al. (2024a) was proposed as an improvement towards GaLore, which modifies
the low-rank update to full-rank one by adding a compensation term. Their idea is similar to the
compensation used in Alice. The main differences is that our proposed compensation is inspired
by approximating FIM and has the theoretical foundation on its optimality. Also, the compensation
strategy is different to Fira. We have conduced the ablation study in Sec. 6 to show the advantage of
our approach.

GaLore Comparing the Alice procedure to GaLore (Algorithm 8), we can clearly see that GaLore
is a special case of Alice by disabling tracking, switching and compensation. These three steps flows
naturally from the structural approximation view point. This shows the advantage of this view point
compared to ad-hoc choices when designing new efficient optimizers.

I.6 DISCUSSION OF LOW-RANK EXTENSION FRAMEWORK

First, we derive how to decompose the full-rank update of Gadam into low-rank update and its
residuals in the main text. We assume Ũ = [U ,Uc], where U , Uc are defined in Sec. 5.3.

Mat(F̃− 1
2 g⃗) =Ũ

ŨTG√
E[(ŨTG)2]

=[U ,Uc]

[
UT

UT
c

]
G√√√√E

[([
UT

UT
c

]
G

)2
]

=[U ,Uc]

[
UTG
UT

c G

]
√√√√E

[([
UTG
UT

c G

])2
]

=[U ,Uc]

 UTG√
E[(UTG)2]

UT
c G√

E[(UT
c G)2]


=U

UTG√
E[(UTG)2]

+Uc
UT

c G√
E[(UT

c G)2]

Moore-Penrose inverse In Eq. (13), we define F̃− 1
2 using the pseudo-inverse since each block

in F̃c is low-rank and not invertible. To be precise, for any block UcDciU
T
c , its pseudo-inverse

can be easily verified as UcD
−1
ci UT

c by checking the definition. Similar to typical inverse, for any
block diagonal F̃c, the pseudo-inverse is equivalent to applying pseudo-inverse of each blocks. The
square-root pseudo inverse can be defined through a similar way.

Similarly, for the proposed compensation, we can easily verify its vectorized format (ignoring the
subscript t for simiplicity)

Vec(UcU
T
c GS) =(S ⊗UcU

T
c )g⃗

=(S−2 ⊗UcU
T
c )−

1
2 g⃗

where the − 1
2 is the pseudo-inverse as the above. The second inequality can be easily verified

by the following facts: (1) the square root pseudo inverse of UcU
T
c is itself; (2) the square root

pseudo-inverse of block-diagonal matrix is the pseudo-inverse of each individual block.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

J EXPERIMENT DETAILS

In this section, we will include the detailed setup, hyperparameters and additional experiment results.

K IMPLEMENTATION DETAILS OF BASELINES

GaLore We leveraged the official GaLore package released by the author (https://github.
com/jiaweizzhao/GaLore).

Fira Since the main difference compared to GaLore is the additional compensation term, we follow
the implementation of the official Fira repo (https://github.com/xichen-fy/Fira) and
add the compensation to GaLore.

K.1 EXPERIMENT SETUP FOR PRETRAINING LLAMA

We use context length of 256 and batch size of 128 with 4 gradient accumulations, apart from 60M
and 1.3B (batch size 256 with 2 gradient accumulations). RACS and Alice are applied to all linear
modules of attention and MLPs, others are optimized with Adam. We use the first 10% of the total
training steps as the warm-up, followed by a cosine learning rate decay to 10% of the original learning
rate. For hyperparameters, we perform a grid search on our proposed RACS, Alice as well as GaLore,
Fira and full-rank Adam. For other methods, we directly cite their results in (Zhu et al., 2024). For
Adam, we use 0.9 and 0.999 for β1 and β2, and enable the bias correction without weight decay.
Table 6 summarizes the hyperparameters used for both GaLore and Fira. Table 7 summarizes the
hyperparameters for Adam optimizer. Table 8 and Table 10 summarizes the hyperparameters used
for RACS and Alice, respectively. In addition, for all methods with Fira limiter, we use threshold
γ = 1.01 as suggested in Chen et al. (2024a). For RACS, we use Adam to train the last layer of
LLaMA, following the same setup as Apollo for fair comparison. In summary, Alice, GaLore and
Fira do not use Adam to train the last layer to fully test the capabilities of low-rank methods, whereas
Apollo, RACS and Adam utilize Adam for last layer. The total training steps for 60M, 130M, 350M
and 1.3B are 10K, 20K, 60K and 100K, respectively. These correspond to 1.1B, 2.6B, 7.8B and
13.1B training tokens, summarized in Table 9. All experiments are conduced on NVIDIA A100
GPUs.

Table 6: The hyperparameters for GaLore and
Fira

learning rate update scale rank update interval
60M 0.02 0.3 128 200
130M 0.02 0.3 256 200
350M 0.02 0.3 256 200
1.3B 0.01 0.25 512 200

Table 7: The hyperparameters used for Adam
optimizer.

learning rate β1 β2 correct bias
60M 0.001 0.9 0.999 True
130M 0.001 0.9 0.999 True
350M 0.001 0.9 0.999 True
1.3B 7× 10−4 0.9 0.999 True

Table 8: The hyperparameters
for RACS.

learning rate β scale α
60M 0.02 0.9 0.05
130M 0.02 0.9 0.05
350M 0.02 0.9 0.05
1.3B 0.02 0.9 0.02

Table 9: Model architectures and training steps
Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3B
130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8B
1.3B 4096 5461 24 32 100K 13.1B

Table 10: The hyperparmeters for Alice optimizer
learning rate scale α compensation scale αc β1 β2 β3 update interval K rank r leading basis number l

60M 0.02 0.3 0.4 0.9 0.9 0.999 200 128 40
130M 0.02 0.3 0.4 0.9 0.9 0.999 200 256 40
350M 0.02 0.3 0.4 0.9 0.9 0.999 200 256 40
1.3B 0.02 0.25 0.2 0.9 0.9 0.999 200 512 160

41

https://github.com/jiaweizzhao/GaLore
https://github.com/jiaweizzhao/GaLore
https://github.com/xichen-fy/Fira


2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

K.2 SETUP OF 1B V.S. 7B

We mainly follow the setup as (Zhu et al., 2024). For 1B model, we use 16 per-device batch size
with 8xA100s and 4 gradient accumulations, which is 512 batch size in total, same as 7B model.
For Alice, we use learning rate 0.02, scale α = 0.3 and compensation scale αc = 0.2 with rank
r = 512, leading basis number l = 160. We also use full-rank Adam to train the last layer for better
performance. For memory estimation, we assume the use of BF16 format. For 8-bit optimizers, we
assume weights are stored in BF16, but optimizer states use FP8. GaLore uses r = 1024 for 7B
model.

K.3 MEMORY ESTIMATION

Following the setup of Zhao et al. (2024a), we provide the estimated GPU memory for each optimizers
due to the difficulty of directly measuring their practical memory consumption without considering
the activations, internal storage for gradient, etc. We assume BF16 format, which consuming 2
Bytes per element. For example, 1273M parameters are optimized by Alice and 65M parameters are
optimized by Adam for 1B model with rank 512. Therefore, Alice part will consume 3.86GB and
Adam will consume 0.37GB, summing to 4.42GB for Alice optimizer.

We also report the actual memory footprint with BF16 format. We use token batch size of 25,
following the same setup as Zhao et al. (2024a). "-layerwise" represents layer-wise training where
we only store the gradient of the current back-propagated layer.

K.4 THROUGHPUT ESTIMATION

We report both the actual throughput and effective throughput. The effective throughput of a target
optimizer compared to a reference optimizer is defined as the ratio of training tokens consumed from
the target optimizer w.r.t total time consumption of reference optimizer when reaching the same
evaluation loss of the reference optimizer at the end of training. Compared to the standard throughput,
this considers the speed-up effect.

K.5 ADDITIONAL PRETRAIN RESULTS

Fig. 2 presents additional training curves with 60M, 130M and 350M models sizes. For all cases,
the proposed Alice and RACS outperforms the baselines with noticable margin, and achieves clear
speed-ups compared to full-rank Adam.

K.6 RESULTS FOR ABLATION STUDIES

For all ablations, we consider 130M LLaMA model.

Setup: ablation of tracking We disable the compensation step, and verify the effect of low-rank
tracking under our proposed switch strategy or purely replying on EVD. The other hyperparameters
follow the pre-training setup as Sec. K.1.

Setup: switch strategy For this setup, we enable low-rank tracking. Apart from Gaussian, we use
40 as the leading basis number. The Gaussian distribution is a standard isotropic Gaussian with zero
mean and unit variance.

Setup: compensation strategy We enable the tracking and switching, but with different compensa-
tion terms. For Fira, we directly leverage the compensation proposed in Chen et al. (2024a). Fira+
modifies original Fira by the following two steps: (1) rescale the Fira compensation to have the same
l2 norm as the Alice low-rank update; (2) multiply this compensation by a scale parameter like αc in
Algorithm 4. We found this empirical trick boosts the performance of Fira.

Effects of last layer One crucial setup difference during evaluation for low-rank methods is whether
the last layer is trained by full-rank Adam or not. Most previous work train the last layer, arguably
one of the most important layer (Zhao et al., 2024c), using full-rank Adam. This effectively reduces

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

2000 3000 4000 5000 6000 7000 8000 9000 10000
Update Step

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Ev
al

 P
PL

33.9451

28.697028.8289

30.2541
33.7729

38.9109

29.3336
29.7482

2.22x

3.33x

2.00x

Eval PPL with model size: 60m
AdamW
Alice
Alice-0
RACS
Fira
GaLore
Alice+lm head
Alice-0+lm head

(a)

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Update Step

22

24

26

28

30

32

34

Ev
al

 P
PL

25.0323

21.9562
21.9949

22.6725

25.2148

27.1857

21.7971

22.4262

2.00x

2.86x

2.11x

Eval PPL with model size: 130m
AdamW
Alice
Alice-0
RACS
Fira
GaLore
Alice+lm head
Alice-0+lm head

(b)

10000 20000 30000 40000 50000 60000
Update Step

16

18

20

22

24

26

Ev
al

 P
PL

19.2485

16.611616.6662
16.5122

18.9339

21.1181

16.3732

16.4288

2.45x

4.00x

2.26x

Eval PPL with model size: 350m
AdamW
Alice
Alice-0
RACS
Fira
GaLore
Alice+lm head
Alice-0+lm head

(c)

Figure 2: Additional LLaMA C4 pretrain performance curve. (a), (b) and (c) represents the 60M,
130M and 350M, respectively. "+lm head" represents that the last layer of LLaMA is trained by
full-rank Adam.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

60m 130m 350m 1b
Model Size

0

20000

40000

60000

80000

100000
Th

ro
ug

hp
ut

Throughput by Method and Model Size
Adam
GaLore
Fira
RACS
Alice-0
Alice

(a) Absolute throughput

60m 130m 350m 1b
Model Size

0

25000

50000

75000

100000

125000

150000

175000

200000

Ef
fe

ct
iv

e 
Th

ro
ug

hp
ut

Effective Throughput by Method and Model Size
Adam
GaLore
Fira
RACS
Alice-0
Alice

(b) Effective throughput

Figure 3: Throughput of various methods. (a) this reports the absolute throughput, representing
the number of training token processed per second. (b) the effective throughput using Adam as the
reference optimizer. This represents the absolute throughput adjusted by the speed-up factor. The
effective throughput of GaLore is 0 since it under-performs the Adam.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

350m 1b 7b
Model Size

0

10

20

30

40

50

M
em

or
y 

Fo
ot

pr
in

t (
GB

)

Memory footprint of different optimizers and model size
Adam
GaLore
GaLore-layerwise
Fira
Fira-layerwise
RACS
RACS-layerwise
Alice-0
Alice-0-layerwise
Alice
Alice-layerwise

Figure 4: The memory footprint of various optimizers. We use token batch size of 1 following the
same setup as Zhao et al. (2024a) under BF16 format. The suffix "layerwise" represents the memory
consumption when enabling layerwise training so that only the gradient of the current layer is stored.

the performance gap compared to full-rank method, and does not reveal their true capabilities. We
investigate the effect of the last layer to Alice compared to GaLore. From the Table 2, we can see
that for all model sizes, GaLore and Fira are greatly affected by this effect. Training last layer with
full-rank Adam will boost their performance significantly. On the other hand, Alice is less impacted
with marginally worse performance. For example, Fig. 5(d) shows the training curve comparison
with 130M model. When the rank is sufficiently large (i.e. 60M model), Fig. 2(a) shows that using
Adam to train the last layer even decreases the performance. These serve as evidences that Alice is a
better optimizer than GaLore and Fira.

Effect of EMA in RACS The only internal states inside RACS are the EMA tracking of two vectors
s and q. We investigate the importance of EMA scheme. From Fig. 5(e), RACS without EMA
performs much worse than RACS, suggesting the EMA is necessary for satisfactory performance of
RACS.

Hyperparameter sensitivity analysis: Adam We consider 130M Llama model, and the other setup
follows the same setting as the pretraining experiments. For Adam, we consider a range of learning
rate from 3× 10−4 to 3× 10−3, β1 from [0.9, 0.8, 0.6, 0.4] and β2 from [0.999, 0.95, 0.8, 0.6, 0.4].
The total budget is 120 runs.

For 130M model, we found that the best performing hyperparameters for Adam are learning rate
0.001 with betas β1 = 0.8, β2 = 0.95. This achieves a ppl of 22.89. Surprisingly, apart from RACS
(ppl 22.67) and Alice (ppl 21.95), fine-tuned Adam outperforms or is on par with all other candidates,
despite some of them claims to achieve better convergence than Adam. One hypothesis is that Adam
is sensitive to beta parameter, and most existing literature may use the untuned beta (i.e. β1 = 0.9,
β2 = 0.999) for comparison. Even compared to fine-tuned Adam, Alice still achieves 1.4x speed-up.
Table 11 reports a Adam performance with a selected set of hyperparameters. We observe that Adam’s
performance can drop significantly even by slightly changing the β2. For example, with β1 = 0.8,
changing β2 from 0.95 to 0.8 decreases the ppl from 22.89 to 24.51. Due to the expensive nature of
each run, fine-tuned Adam is not practical.

Hyperparameter sensitivity analysis: Alice We follow the same setup as the sensitivity analysis
of Adam. We consider the following hyperparameters of Alice: (1) compensation scale αc from
0.1 to 0.9; (2) update interval K from [50, 100, 200, 300, 400]; (3) rank r from [16, 32, 64, 128, 256];

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

26

28

30

32

34

36

ev
al

_p
pl

26.9684

27.3539

25.5181
25.1113

Effects of low-rank tracking
no switch no tracking
no switch tracking
switch no tracking
switch tracking

(a) Effect of tracking

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

26

28

30

32

34

36

ev
al

_p
pl

25.2637
25.1149

27.3643

29.3646

Effects of switch strategy
full basis
complement basis
gaussian mix
gaussian

(b) Effect of switching

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

22

23

24

25

26

27

28

29

30

ev
al

_p
pl

23.6049

22.4653

25.1149

21.9562

Effects of compensation strategy
fira
fira+
no compensation
ours

(c) Effect of compensation

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

25

30

35

40

45

50

ev
al

_p
pl

21.7971
21.9562

25.2859
27.1857

Effects of EMA scheme
alice+lm head
alice
GaLore + lm head
GaLore

(d) Effect of last layer. "+lm head" represents the last
layer is trained by full-rank Adam.

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

25

30

35

40

45

50

ev
al

_p
pl

22.6725

29.7469

Effects of EMA scheme
RACS
RACS w.o. EMA

(e) Effect of EMA in RACS.

Figure 5: The pre-training curve to verify the effectiveness of the design choice. We consider 130M
model size.

Betas (0.4, 0.6) (0.4, 0.95) (0.6 ,0.8) (0.6, 0.95) (0.8 ,0.8) (0.8, 0.95) (0.9,0.8) (0.9,0.95)
Ppl 25.18 23.44 23.79 23.05 24.51 22.89 24.90 23.36

Table 11: The validation ppl. of Adam optimizer with different choice of betas. Due to the large num-
ber of runs (120 in total), we only report Adam with lr 0.001 and some selected betas combinations.
This is enough to prove that Adam is sensitive to hyperparameter selection.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500 20000
Step/Index in DataFrame

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Eigen-Space Cosine Similarity (Index 1)

no tracking no switch
tracking no switch

(a) Index 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Step/Index in DataFrame

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Eigen-Space Cosine Similarity (Index 2)

no tracking no switch
tracking no switch

(b) Index 2

0 2500 5000 7500 10000 12500 15000 17500 20000
Step/Index in DataFrame

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Eigen-Space Cosine Similarity (Index 4)

no tracking no switch
tracking no switch

(c) Index 4

0 2500 5000 7500 10000 12500 15000 17500 20000
Step/Index in DataFrame

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Eigen-Space Cosine Similarity (Index 8)

no tracking no switch
tracking no switch

(d) Index 8

Figure 6: The cosine similarity between eigenvectors per 200 steps. Since the update interval of
subspace is 200 steps, this essentially compare the similarity before and after updating the projection
U with a certain index. We always arrange the eigenvectors in a descending order based on the
eigenvalues.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

and (4) leading basis number l from [5, 10, 20, 40, 80, 160]. Due to the combinatorial nature, we only
change one particular hyperparameter of Alice at a time and fix the others as Table 10.

Tables 12 to 15 shows the performance of Alice under different choice of hyperparameters. We
observed that Alice is not sensitive to the choice of hyperparameters. Among those runs (25 in
total), 23 of them outperform fine-tuned Adam, proving that the advantage of Alice comes from its
principled design, rather than carefully selected hyperparameters.

Compensation scale αc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ppl. 23.04 22.29 22.08 21.95 22.02 22.05 22.12 22.19 22.27

Table 12: The performance of Alice with different compensation scale αc.

Update interval K 50 100 200 300 400
Ppl. 23.01 22.09 21.95 21.99 22.09

Table 13: The performance of Alice with different choice of update interval K.

Rank r 16 32 64 128 256
Ppl. 22.20 22.03 22.00 22.07 21.95

Table 14: The performance of Alice with different choice of rank r.

Leading basis number l 5 10 20 40 80 160
Ppl. 22.53 22.33 22.21 21.95 21.95 21.90

Table 15: The performance of Alice with different choice of leading basis number l.

K.7 GLUE FINETUNE PERFORMANCE

Although the primary goal of this paper is to design the efficient optimizer for pre-training LLMs, we
also conduct the preliminary finetune experiments with Alice using GLUE (Wang, 2018).

Setup We follow the same setup as (Zhao et al., 2024a) with RoBERTa (Liu, 2019) model. We
select the rank r = 8 for both GaLore and Alice. Tables 16 and 17 reports the hyperparameters for
GaLore and Alice. By default, we report prediction accuracy as the metric for most of the dataset.
For CoLA, we use Matthews_Correlation; and for STS-B, we report Pearson Correlation.

Table 18 reports the GLUE finetune performance of Adam and Alice. It is clear that Alice consistently
outperforms the GaLore across datasets. This is expected since each update step of Alice is full-rank
compared to the low-rank nature of GaLore. Also, GaLore is a special case of Alice.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Batch size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning rate 1e-5 2e-5 2e-5 1e-5 1e-5 2e-5 2e-5 3e-5
Scale α 4
Sequence length 512
Update interval 500

Table 16: Galore hyperparameters for GLUE finetune experiments.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Batch size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning rate 1e-5 1e-5 2e-5 2e-5 1e-5 1e-5 1e-5 2e-5
Scale α 4
Sequence length 512
Update interval 500
Leading basis number 8 3 8 3 6 6 3 6
Compensation scale 0.1 0.07 0.1 0.05 0.1 0.1 0.3 0.3

Table 17: Alice hyperparameters for GLUE finetune experiments.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Mean
GaLore 87.31 94.72 89.71 60.34 92.75 91.13 79.78 91.11 85.86
Alice 87.45 95.18 90.69 65.04 92.90 91.45 80.51 91.43 86.83

Table 18: The GLUE finetune performance of Adam and Alice.

49


	Introduction
	Preliminaries
	Basic notations and setup
	Fisher information and natural gradient descent

	Structural Approximation to fim
	Adam: purely diagonal structure
	Shampoo: Kronecker product structure
	Normalization and Whitening: Simple block diagonal structures
	alicec and SOAP: Two generalizations of Adam

	ssgd: memory-efficient optimizer from a carefully selected structure
	alice: memory-efficient optimizer from low-rank extension framework
	Tracking: low-rank projections to reduce memory
	Switching: mixing leading basis with the complements
	Compensation: convert low-rank update to be full-rank
	alice optimizer and its convergence

	Experiments
	Pretraining LLaMA with C4 dataset
	Ablation and GLUE finetuning

	Conclusion and limitations
	Related Work
	ssgd and alice Algorithms
	Examples of diagonal operations
	Background
	Fisher information
	Kronecker product and block diagonals
	Operators for gradient: normalization and whitening
	Shampoo Optimizer
	SOAP/AdaDiag++
	AdaDiag and one-side SOAP
	SWAN
	Newton Schulz iteration
	Muon
	Lars
	Low rank optimizers
	Apollo
	Subspace iteration

	SOAP: A further generalization to alicec
	Derivation of update formula
	Shampoo's update formula
	Generalization to whitening and normalization
	Update formula for alicec
	Update formula for SOAP

	Theory and proof
	Proof of prop: adam solution
	Proof of thm: optimal shampoo
	Proof of coro: generalization to whitening and normalization and prop: two sided scaling
	Proofs of alicec
	Proof of thm: alicec 1 step refinement

	Proof of prop: subspace switching
	Proof of thm: optimal compensation
	Proof of thm: optimal asham

	Convergence of alice
	Further discussion
	Connections between different structural assumptions
	Memory consumption comparison
	Comparison to previous fim approximation
	Solutions to general block diagonal structures
	Connections to existing optimizers
	Discussion of low-rank extension framework

	Experiment details
	Implementation details of baselines
	Experiment setup for pretraining LLaMA
	Setup of 1B v.s. 7B
	Memory estimation
	Throughput estimation
	Additional pretrain results
	Results for ablation studies
	GLUE finetune performance


