Under review as a conference paper at ICLR 2026

TOWARDS EFFICIENT OPTIMIZER DESIGN FOR LLM
VIA STRUCTURED FISHER APPROXIMATION WITH A
LOW-RANK EXTENSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing efficient optimizers for large language models (LLMs) with low-memory
requirements and fast convergence is an important and challenging problem. This
paper makes a step towards the systematic design of such optimizers through the
lens of structured [Fisher information matrix (FIM)|approximation. We show that
many state-of-the-art efficient optimizers can be viewed as solutions to[FIM]approx-
imation (under the Frobenius norm) with specific structural assumptions. Building
on these insights, we propose two design recommendations of practical efficient
optimizers for LLMs, involving the careful selection of structural assumptions to
balance generality and efficiency, and enhancing memory efficiency of optimiz-
ers with general structures through a novel low-rank extension framework. We
demonstrate how to use each design approach by deriving new memory-efficient
optimizers: [Row and Column Scaled SGD (RACS)|and [Adaptive low-dimensional|
[subspace estimation (Alice)l Experiments on LLaMA pre-training (up to 1B pa-
rameters) validate the effectiveness, showing faster and better convergence than
existing memory-efficient baselines and Adam with little memory overhead. No-
tably, achieves better than 2x faster convergence over Adam, while [RACS]|
delivers strong performance on the 1B model with SGD-like memory.

1 INTRODUCTION

Adaptive optimizers are critical in training large language models (LLMs). Yet, as models and datasets
continue to grow, it brings several implications for training, including increased GPU requirements or
reduced per-device batch size, which lowers overall training throughput. Adam, for instance, triples
memory requirements due to the storage of two internal [exponential moving average (EMA)| states,
while other optimizers (Gupta et al.| 2018 [Vyas et al.,|2024) with faster convergence (in terms of
training steps) can further inflate the total memory. Meanwhile, some memory efficient optimizers,
like [stochastic gradient descent (SGD)] fail to train the LLMs effectively. Thus, designing efficient
optimizers has become increasingly important.

There are several promising lines of research that have advanced one or more of these aspects of
efficiency: (1) removing the optimizer state (Ma et al.| 2024; Jordan et al.,2024; Zhang et al.| 2024;
Xu et al.,[2024; |Zhu et al.| [2024), or (2) using ad-hoc low-rank design to reduce memory (Hu et al.,
2021} Lialin et al., 2023} Zhao et al., [2024a; |Chen et al., 20244} |Si et al.,|2024). However, developing
new efficient optimizers remains challenging. This paper explores structured approximation as a
potential framework for this task.

To demonstrate the effectiveness of this framework, we begin by showing that many existing opti-
mizers and gradient operators, including Adam, Shampoo, gradient normalization and whitening
(Zhang et al., [2024} |Gupta et al.| 2018 |Vyas et al.l 2024; [You et al.,2019; Ma et al., [2024} Jordan
et al.,[2024), can be recast under structured@]approximation. We then go on to show how to derive
two generalizations of Adanﬂ with more relaxed structural assumptions, named (Generalized Adam|
and SOAP/AdaDiag++ (Vyas et all 2024; Nguyen et al.,[2025). Although this framework

! Generality of structural assumption defines how relaxed this assumption is. We say structure A is more
general than B iff. B can be recovered by applying further constraints on A. The general structures tend to give
better approximations to[FIM]|than the less general one.

Under review as a conference paper at ICLR 2026

provides a clear link between structures and optimizers, working with more general structures can
come at the cost of efficiency. For example, SOAP can require 7 times more memory than SGD.

Building on these insights, our first design recommendation proposes to choose structural assumptions
that balance generality with practical efficiency. We demonstrate this by choosing a structure that
generalizes gradient normalization, leading to a new efficient optimizer, [Row and Column Scaled]

SGD (RACS)} with[SGD}ike memory requirements.

For optimizers with more general structures it may not be always possible to achieve such a balance.
Instead of rejecting their potentials, our second design recommendation proposes to apply a novel
low-rank extension framework to improve their efficiency. This framework consists of three steps
that can convert full-rank optimizers into their low-rank approximations with reduced memory
and computational costs. We demonstrate this by deriving a low-rank extension of called
[Adaptive low-dimensional subspace estimation (Alice)l We also prove its convergence under the
continuous-time setup.

We emphasize that the main contribution is the unifying viewpoint that allows a systematic design for
efficient optimizers. and [Alice]are two examples. More novel optimizers can be derived by
(1) designing new structural approximations; or (2) adapting existing optimizers with our low-rank
extension. This allows one to go beyond the ad hoc design and focus on a well grounded strategy.

With pre-training LLaMA (Touvron et al.,[2023) with C4 dataset (Raffel et al.| 2020), we demonstrate
that and[Alice] outperform Adam and several memory-efficient baselines. achieves better
than 2x speed-ups compared to Adam, and [RACS]| performs strongly on pre-training the 1B LLaMA.

To summarize, our contributions are:

* We propose structured [FIM]approximation as a practical framework for optimizer design and
show that several existing optimizers can be viewed as special cases within this framework.

* We propose to design optimizers by choosing structures that balance generality and efficiency
and demonstrate it with a new optimizer,

* We present a low-rank extension framework to convert full-rank optimizers and demonstrate
it with a new optimizer[Alice] We also prove its convergence property.

* We demonstrate the effectiveness of and on LLaMa pre-training tasks when
compared to Adam and other baselines.

Scope of this paper We want to emphasize and clearly define the scope of this paper. Specifically,
we DO NOT aim to provide the definitive and complete answers on how to design an optimizer for
LLM and their theoretical properties. Instead, our primary contribution is to establish that structured
approximation is a potential candidate as a unifying design principle for LLM optimizers,
followed by two design guidelines with exampled efficient optimizers. In summary, we aim to provide
a potential direction for future LLM optimizer research.

2 PRELIMINARIES

2.1 BASIC NOTATIONS AND SETUP

Throughout the paper we consider 2D matrix parameters W (i.e. layer weights) of size m x n and
m < n; the operation Vec(-) vectorizes the input matrix by stacking its columns; Mat(-) is the
inverse of Vec(-) and reshapes the vector back into a matrix. We use Ly as the loss function where
0 = Vec(W). G = Vw L is the matrix gradient and g is the vectorized gradient, i.e. § = Vec(G).
g; denotes the i column of G. In the paper, we assume W are parameters of one layer. ®
indicates the Kronecker product. By default, M? and v/ M indicates the elementwise multiplication
and square-root. EVD(M, r) performs the [eigen-value decomposition (EVD)|and keeps the top
r eigenvectors ordered by the descending eigenvalues. If r is omitted, we keep all eigenvectors.
QR(M) with orthonormal M € R™*" obtains the remaining m — r basis via QR decomposition.

We also introduce the following diagonal operations: Diag(M) will extract the diagonals of M
to a vector. Diagg (M, ..., M,,) will stack the input sequence of matrices to form a larger block
diagonal matrix. Diag, (v) will expand the input vector v to a pure diagonal matrix. Diagy (M) will

Under review as a conference paper at ICLR 2026

Table 1: The summary of underlying structure assumptions of existing and newly proposed optimizers,
along with practical efficiency. “Generalizes" refers to the optimizer whose structure is generalized,
e.g.[Gadany[s structure generalizes Adam (see Sec. [[.T]for further details). Optimizers in blue color
are new. The “Computation” is the cost of per-step of the optimizer update. We assume n > m > r.

Adam Shampoo Gadam/AdaDiag SOAP/AdaDiag++ GaLore RACS Alice
T T —

Stucture Diagy(v) RZ ® L, Diagp({U;D; UIT},) (Up@UL)D(Ur @ UL)T Approx. Alice SeQ Low-rank to Gadam
Generalizes N/A N/A Adam Gadam + Shampoo N/A Normalization GaLore
Computation O(mn) O(m® +n?) O(m?) O(m® +n?) O(mnr +m?n/K) O(mn) O(mnr +m?r/K)
Memory 3mn mn+m?+n? 3mn+ 2m? 3mn + 2m? + 2n? mn + 2nr + mr mn+m+n+1 mn+2nr+mr+n+r?
Full-rank update | v* v v v X ' v
Section Scc.m Scc.[ﬁ] Scc.[ﬂ] Scc.[ﬂ Sec.D.11 Scc.m Scc.[ﬂ]

expand the input M to a larger pure diagonal matrix by stacking the element of M in a column-wise
order. We demonstrate the above operations with examples in Sec. [C} Note that results in this paper
may involve the expectation E[-], we assume the use of an as its practical estimation.

2.2 FISHER INFORMATION AND NATURAL GRADIENT DESCENT

Fisher information is a fundamental concept in statistics that measures the amount of information a
random variable carries about a parameter of interest. In this paper, we ignore dependence between
layers and treat each layer independently. Under the context of LLMs, with the vectorized mini-
batched gradient of one layer g, we define the empirical for that layer as F = E[gg”].
[gradient descent (NGD)| leverages the inverse of to smooth the local geometry to improve
convergence and stabilize training (Martens, 2020). In practice, the square-root inverse of may
be preferred due to its properties and improved performance on certain optimization problems (Yang
& Laaksonen, 2008; [Lin et al.l 2024; Loshchilov & Hutter, |2016} Bergstra & Bengio}, [2012; |Chot,
2019). The corresponding update of W is:

W« W — AMat(F~2V,L). (1)

Due to the large size of F' € R™"™*™"™ computing its inverse is a significant impediment to applying
this update rule in practice. One way to address this is to enforce certain structures to approximate
In this paper, we consider two main classes of structures: block diagonal and Kronecker product
matrices. They possess favorable properties that can significantly reduce computational complexity.
Sec. [D.2] provides a brief introduction and summary of their key properties. We also include a
comprehensive background in Sec. [D]to be more self-contained.

3 STRUCTURAL APPROXIMATION TO [FIM]

The structured approximation framework consists of three steps: first, choose a structure to
approximate second, find the solution F' by minimizing the following objective:

min || F — F||3,)
FcH

where F' is the empirical [FIM] # is the matrix family corresponding to the structural assumption;
third, derive the square—ro update with approximated F . In this section, we show that many
existing optimizers and gradient operators can be reformulated within this framework by varying
structural assumptions, thereby establishing connections between the structure and optimizers.

3.1 ADAM: PURELY DIAGONAL STRUCTURE

When Adam was originally proposed, it was argued that the purpose of the second moment was to
approximate the diagonal elements of (Kingma, 2014} [Hwang} 2024).

Proposition 3.1 (diagonal approximation). Assuming H = {Diagy(v);v; > 0}, then Eq. (2) has

analytic solution F* = Diag, (E[g?]) where G2 indicates the element-wise square of § = Vec(G).

It is trivial to show the resulting square-root[NGD|recovers Adam’s second moment when using the
to estimate [E. Together with the first moment, one can recover Adam.

Under review as a conference paper at ICLR 2026

3.2 SHAMPOO: KRONECKER PRODUCT STRUCTURE

Although previous work (Morwani et al., [2024)) has demonstrated the connection of Shampoo (Gupta
et al., 2018) to the Kronecker product approximation through power iteration algorithm, we provide
an alternative view: Shampoo’s pre-conditioner can be derived by minimizing an upper bound of

Eq. () with
7_[— {R'rél ®L7%77,7Rn c RnxnyLm, c Rmxm}

where R,, and L,, are[symmetric positive definite (SPD)| matrices.

Theorem 3.2 (Shampoo pre-conditioner). Assume the above structural assumption, then we have an
upper bound of Eq. (2))

IF — F||% < 3(mn||A* — C?||p[|B® — C*||p + vmn||C|[%(]| A% - C*||r + [|B* — C?||r))

1 1
where A= R:®1,, B=1,8L3,C = JE[g’ﬁT]%, and ? indicates the matrix square. Minimizing
the upper-bound admits R}, = LE[G" G| and L}, = LE[GG"].

m m

Sec. shows that the corresponding square-root leads to the Shampoo’s update formula.
Therefore, the structure behind Shampoo is the Kronecker product of two square-root[SPD] matrices.

3.3 NORMALIZATION AND WHITENING: SIMPLE BLOCK DIAGONAL STRUCTURES

For an input G, the whitening and normalization operator are defined as
Whitening(G) = (GGT)"*G; Norm(G) = GS =
where Diag(S) contains the squared column /3 norm of G. Next, we show that these two operators

also corresponds to minimizing Eq. (Z) with different structural assumption.

Proposition 3.3 (Normalization and whitening). With H = {I, @ M} and H = {S ® I,,; Si; >
0, Vi}, where M € R™*™ js and S € R™*" is a positive diagonal matrix. Then, minimizing
Eq. @) admits

M= %E[GGT] 3)
* 1 3
§* = —E[Diage(g1 g1, -+ 9,.9n)] @)

The proof can be found in Sec.[G.3] where we prove a much more general solution (Theorem|[G.4)),
and Theorem [3.3]is a special case. The square-root [NGD] update with Eq. (3) and Eq. (@) are
Mat(F~2g) = /aE[GGT]"2G and /mGS*~2, respectively (refer to Sec for derivation).
We can view Whitening(-) and Norm(+) as special cases with one-sample estimate for E.

Muon and many others are special cases Many recently proposed optimizers, such as Muon,
SWAN, LARS, and LAMB (Jordan et al., 2024; Ma et al., [2024; |You et al., 2017;|2019), rely on
normalization and/or whitening. These gradient operators improve convergence (You et al., 2017}
2019} Jordan et al., 2024) and can remove Adam’s internal states (Ma et al.| [2024)). In fact, Muon
simply whitens the gradient, and thus is a special case of this framework. Interestingly, the original
Muon lacks a /n coefficient predicted by Theorem This was later added back by (Liu et al.,
2025)), which is proved to be critical for LLM training. We include a thorough discussion in Sec.

3.4 |[GADAMIAND SOAP: TWO GENERALIZATIONS OF ADAM

All structures considered above are do not strictly generalize Adam’s purely diagonal structure. Next,
we consider two structures that strictly generalize Adam, normalization, and whitening: a block
diagonal matrix with a shared eigen-space; and its combination with the Kronecker product.

First, consider a block-diagonal structure that generalizes Adam:

H = {Diagg(M,...,M,); M; =U;D;U} } (5)

Under review as a conference paper at ICLR 2026

where U defines a shared full-rank eigen-space, and D; is an eigenvalue matrix. Adam is a special
case by constraining Uy = I. The structures in Sec. are also special cases by setting D; = D
(whitening); and Uy = I, D; = s;I (normalization). However, this structure does not lead to an
analytic solution for Eq. (2)). Instead, we propose an approximation by solving a 1-step refinement.
Theorem 3.4 (1-step refinement). For the structure in Eq. (3)), we consider the following I-step
refinement: (i) assuming all D; are equal, and find Uy; (ii) fix the Uy and find D;. Then, step (i)
admits the analytic solution:

U; = EVD(E[GG™)). (6)
where EVD is the eigenvalue decomposition; step (ii) admits the analytic solution:
D = Diagm(E[(Uf G)?)))

where D = Diagg(Dy, ..., D,).

Based on this result, we can derive the corresponding square-root[NGDjrefer to Sec. [F3):
_ UG
Mat(F~2g) = Uf————. ®)
E[(UfG)’]

This can be viewed as applying Adam’s update on a space “rotated" by Uy. Consequently, we can
design an optimizer based on Eq. (8), called[Gadam| The following procedures describes its update:

my=pimy 1+ (1—-51)Gr; Qi =PFsQi 1+ (1—B3)G:GY; Uy, =EVD(Qy);
U T my

v = fBovy_q + (1 — 52)(UfT,th)2; Ay = Uf,t% 9)
Algorithm[7]in Sec.[D.6|summarizes its algorithm. In fact, the above procedures coincide with two
recent works: AdaDiag and one-sided SOAP (Nguyen et al., |2025; [Vyas et al.,|2024), which are
heuristic memory-efficient variants of their main algorithms (i.e. AdaDiag++ and SOAP). In the
following, we show should not be classified as a variant of SOAP/AdaDiag++, since they
have different underlying structures. The can be efficiently approximated by a 1-step subspace
iteration (Algorithm[I0]in Sec.[D). Also, one can only update U every K steps, effectively amortizing
the cost.

SOAP/AdaDiag++ Despite the structural generality of it only focuses on the block diago-
nals of To go beyond this, one can combine the structure of with Shampoo’s Kronecker
product to obtain a structure that generalizes all the others in this paper. Interestingly, this turns out to
be SOAP/AdaDiag++. Refer to Sec. [E|for details.

4 [RACSLE MEMORY-EFFICIENT OPTIMIZER FROM A CAREFULLY SELECTED
STRUCTURE

The structured approximation reveals two important insights: there exists a correspondence
between structural assumption and optimizers, and structural generality often comes at the cost of
practical efficiency. For example, while the structures of and SOAP offer more accurate
approximations, they require expensive computation and memory consumption (Table[I). Building on
this, our first design recommendation is to select structures that balance generality and efficiency.

To demonstrate this, we select a structure that generalizes gradient normalization, which scales both
the rows and columns simultaneously:

H={S®Q} (10)
where S € R"*", Q € R™*™ are positive diagonal matrices. The optimal solution of Eq. (2)) can be
solved by a fixed-point procedure:

Proposition 4.1 (Two-sided scaling). Assuming the structure of Eq. , and E[G?] contains only
positive values, solving Eq. admits an iterative fixed point procedure:
Diag (E[GT QG]) Diag (E[GSGT))
s = =

QI 1S11%

Under review as a conference paper at ICLR 2026

where s = Diag(S), g = Diag(Q). Additionally, the fixed point solution s, q converges to the right
and left principal singular vector of E[G?] up to a scaling factor with unique S @ Q.

The correspondmg square- -root [NGD| @ update scales both rows and columns through S and Q
(.e. Mat(F g) Q 1GS 2) We name this optimizer, IROW and Column Scaled SGD (RACS)I
(Algorithm 3]in Sec. [B]). Although analytic solutions of s, g exist, we perform 5 steps of Eq. (L) as
an efficient approximation. To further stabilize training, we also incorporate the norm-growth limiter
used in (Chen et al.l [2024a). RACS]is highly memory efficient since it only needs the storage of two
diagonal matrices S and Q and a scalar for the limiter, consuming m + n + 1 memory. In Sec. [[.3]
we discuss connections to Adapprox, Apollo and Adafactor (Zhao et al., 2024b; [Zhu et al., [2024;
Shazeer & Stern, [2018). The above structure may not always be easy to find. Therefore, our next
design guideline based on the novel low-rank extension is more widely applicable.

5 [ALICE: MEMORY-EFFICIENT OPTIMIZER FROM LOW-RANK EXTENSION
FRAMEWORK

We propose a novel low-rank framework consisting of three steps, low-rank tracking, subspace
switching; and compensation. Tracking aims to reduce the memory cost of states, whereas
switching and compensation are designed to correct the potential issues caused by low-rank approx-
imations. We demonstrate these by converting to its low-rank version, While the
procedure could be applied to SOAP in a similar manner, we leave this for future work.

5.1 TRACKING: LOW-RANK PROJECTIONS TO REDUCE MEMORY

By carefully examining the[Gadam[s procedure (Eq. (9)), we notice the key internal state of
is the projection Uy ;. To reduce the memory cost, we propose low-rank U; by keeping only the top

r eigenvectors, and denote the remaining m — r basis as U, ; (i.e. Uy = [U;, U, 4]). For Q; we
propose the following low-rank tracking:

o =U! Gy, Qui1 = B3Q: + (1 — B3)orof (12)

where o is the projected gradient, and Qt is the low-rank tracking state. One can easﬂy reconstruct
back Q; ~ U, Qt U/ when needed. This reduces the memory from m? of Q; to r? of Q..

However, this low-rank projection comes with two consequences: (1) the reconstructed state Q; is no
longer accurate; (2) the resulting parameter update A in Eq. @) ignores the information within U, ;.
Next, we propose two additional steps, switching and compensation, rooted in theoretical insights to
address the two problems, respectively.

5.2 SWITCHING: MIXING LEADING BASIS WITH THE COMPLEMENTS

Since the projected gradient o, only maintains the information in the space spanned by Uy, the low-
rank tracking state ; necessarily discards information in U, ;. Therefore, even if those directions

should become the leading basis, @ will ignore their contributions, causing the stability of the
previous leading eigenvectors and preventing the exploration of other spaces. This effect is largely
ignored by the previous work (Yen et al.}|2023; Zhao et al.,|2024a) and believe one should always
keep the top eigenvectors. Here, we challenge this commonly adopted concept.

Theorem [G.§] confirms this and shows that the true tracking state Q; can be decomposed into a
low-rank reconstructed state (i.e. U;Q; UtT) and a residual term quantifying the importance of U ;.
When the residual term becomes dominant, the remaining basis will become the new leading basis.
Inspired by this theoretical insight, we propose a practical scheme to replace the original in
Eq. (), called subspace switching (Algorithm|[I)). It deliberately replace some leading eigenvectors
with randomly sampled basis, forcing the optimizer to explore other spaces.

Under review as a conference paper at ICLR 2026

Algorithm 1 Subspace switching Algorithm 2 Compensation

1: Input: Reconstructed state @, rank r, lead- 1: Input: G4, projection U, previous norm p,
ing basis number [, previous low-rank projec- limiter norm ¢, threshold -, decay rate 5
tion U;_, 2 pe Bp+(1-pBALG2-1T(UTG,)?)

2: U/ = Subspace iteration(Q, U;_1) 3: Compute C; as Eq.

3: U/, + Keep top [eigenvectors of U/ 4 =~/ max{m v}if ¢ > Oelse 1

. % - . . b

4: Uniformly sample r — [basis from the com- 5. ¢ = |[nCy||
plement U/, = QR(Uy) as Uy , 6: C, ncft

5: Combine basis U = | {71, t 2] 7. Return C}, p, ¢

6: Return U

5.3 COMPENSATION: CONVERT LOW-RANK UPDATE TO BE FULL-RANK

Another problem with low-rank projection U, is the information loss in the resulting parameter
update A at each step. The goal of compensation step is to compensate for this information loss with
minimal memory overhead. We first show that the full-rank update for A with U ; in Eq. (8) can be
decomposed into the low-rank and complement update controlled by U; and U.; (proof in Sec.[[.6).
We omit the subscript ¢ for simplicity:

UG UrG
A=U + U. = (13)
E[(UTG)?] VEIULG)?
—_——
Mat(F. 2 g)

where F, = Diagg(U.D.,U7Y,...,U.D.,UT) is the approximatedcorresponding to the
complement basis, D..; = Diag, (E[(UZ g;)?]) and =3 is the square-root pseudo-inverse.

We notice that Mat (F.? §) is exactly the square-root with F.. We can directly leverage the

view point to approximate F, with a carefully selected structure that leads to memory-efficient
compensation procedures. One choice is the diagonal structure of normalization operator. Based on
this, we propose the following compensation at each step:

C =Mat(Se@U.UN§) =UU'GS (14)

where S is a positive diagonal matrix, U.UI G = (G — UUTG) is the gradient information
preserved in the remaining basis. This compensation admits an analytic solution of S to Eq. (2) with

F, as the target (Theoremin Sec. :

Diag(S) = Al

VEALG? - 1] (UTG)

(15)

Algorithm 2] summarizes the compensation step with the norm growth limiter from (Chen et al.,
~ 1
2024a). C; will then be used to replace the Mat(F¢? §) in Eq. li for each update step.

5.4 [|ALICEIOPTIMIZER AND ITS CONVERGENCE

Based on the above analyses, we propose and a variant[Alice without tracking (Alice-0)] as
low-rank extensions to Interestingly, GaLore, in fact, is an approximation to [Alice| when
disabling tracking, switching and compensation. Our view point offers a connection of GaLore to
revealing that it is a low-rank version of a more powerful optimizer than Adam, and providing
an explanation of its effectiveness. Algorithm[]in Sec. [B|summarizes procedures.

Convergence of To further support the theoretical validity of Wwe prove its convergence
under the continuous-time setup (Maddison et al., [2018; Nguyen et al.,[2025} |Chen et al.,2023). We
leave the general treatment of the convergence to future work. Please refer to Theorem [H.2]in Sec.

Under review as a conference paper at ICLR 2026

Table 2: LLaMA pretraining performance. Ppl. is the evaluation perplexity, Mem. is the estimated
memory consumption of optimizers. Regarding the last layer, we report ppl of GaLl.ore and Fira for
both cases. For baselines, the ppl. in bracket are directly cited from (Zhu et al., [2024])), where the last
layer is trained by Adam and consumes more memory. We also cite the numbers of Apollo-mini,
Apollo-svd from (Zhu et al.| 2024)); and Muon from (Ma et al., 2024). The speed-up is measured
against Adam in terms of steps. The TP is the number of training tokens processed per second, and
effective TP is total training token used by Adam divided by time used by the candidate optimizers to
reach the final eval ppl of Adam. Effective TP is equivalent to wall-clock time performance.

Methods 60M 130M 350M 1.3B
Ppl. Mem. Ppl. Mem. Ppl Mem. Ppl. Mem.
AdamW 33.94 0.32G 25.03 0.75G 19.24 2.05G 16.44 7.48G
GaLore 3891 (34.88) 0.21G(0.26G) 27.18(25.36) 0.51G(0.57G) 2I.11(18.95) 1.2G(1.29G) 16.60 (15.64) 4.25G(4.43G)
Fira 33.77 (31.06) 0.21G(0.26G) 25.21 (22.73) 0.51G(0.57G) 18.93(17.03) 1.2G(1.29G) 15.14 (14.31) 4.25G(4.43G)
Apollo-mini 31.93 0.23G 23.84 0.43G 17.18 0.93G 14.17 2.98G
Apollo-svd 31.26 0.26G 22.84 0.57G 16.67 1.29G 14.10 4.43G
Muon 31.6 0.27G 24.59 0.59G 19.30 1.49G 16.08 5.23G
%_A_CS(J 30.25 0.23G 22.67 0.43G 16.51 0.93G 13.52 2.98G
ice-! 28.83 (29.74) 0.21G(0.26G) 21.99 (22.43) 0.51G 16.66 (16.43) 1.2G (1.29G) 13.97 (13.47) 4.25G (4.44G)
Alice 28.69 (29.33) 0.22G(0.26G) 21.95 (21.79) 0.53G 16.61 (16.37) 1.24G (1.33G) 13.85(13.52) 4.42G (4.6G)
Speed-up in steps (Alice) 2.22x 2.00x 2.45x 2.82x
Throughput(TP)/Effect TP(AdamW) 97748/97748 82247/82447 63139/63139 53588/53588
Throughput(TP)/Effect TP (Alice] 92589/202058 71583/141148 58847/143088 45523/123048
Throughput(TP)/Effect TP (RA 98238/162423 73233/123116 55970/131372 47488/129817

Connections to structured approximation The proposed low-rank framework seems to
be separated and independent to the structured [FIM] viewpoint. On the contrary, they are deeply
connected. First, approximation provides a base optimizer as a starting point for the low-rank
extension to work on. More importantly, the critical compensation step is entirely inspired the
structured FIM viewpoint. Since the information loss from low-rank projection has a[NGD|format
(Eq.) with a@-like preconditioner (F), we ask a principled question: How can we compensate
this in an optimal way? Through structuredviewpoint, we aim to approximate this F. with
simple structural assumptions, leading to a compensation term with minimal resources requirement.

6 EXPERIMENTS

6.1 PRETRAINING LLAMA WITH C4 DATASET

Setup We evaluate the proposed [RACS] and its variant on pre-training LLaMA

(Touvron et al., [2023) on the C4 dataset (Raffel et al., 2020). We train the following model sizes:
60M, 130M, 350M and 1.3B using a similar setup to (Zhao et al., |2024a; |[Zhu et al., [2024). An
important consideration in our experiments is that all previous low-rank methods rely on full-rank
Adam to train the last layer, which is arguably one of the most important layers (Zhao et al.,
2024c). To thoroughly assess their effectiveness, we report performance for both cases for low-rank
methods—training the last layer with and without Adam—but prioritize the latter. For baselines, we
consider Galore, Fira, Apollo-mini, Apollo-svd, Muon and Adam.

Main results Table 2]reports the pretraining performance in terms of evaluation perplexity.
and outperforms the other memory-efficient baselines and full-rank Adam consistently across
model sizes. and perform on par with each other, suggesting may be preferred
for better memory efficiency. One major advantage of is its fast convergence compared to
Adam, and achieves more than 2x speed-ups across model sizes, while maintaining similar memory
consumption as GaLore. Fig.[I] shows the eval ppl. for the 1B model. Despite the simplicity of
it performs well for 350M and 1.3B model, and surpasses the other scaling-based baseline,
Apollo-mini and Apollo-svd, consistently. From the throughput (TP), we can observe and
[RACS]is not significantly slower than Adam with 15% and 11% drop for 1B model. Considering the
speedup effect, we report the effective TP to represent how quickly the optimizers reach a target loss
in wall-clock time. and achieve 123048 and 129817, respectively, compared to 53588
for Adam, resulting in more than 2x faster convergence in wall-clock time to reach Adam’s final
evaluation perplexity. For the actual memory footprints and additional training curves, see Sec.

1B v.s. 7B LLaMA To further demonstrate the effectiveness, we follow the setup of (Zhu et al.|
2024), but train a 1B with and [RACS]|to compare with 7B LLaMA trained by baselines. Table [3]
shows that 1B model with our optimizer consistently outperforms 7B model trained with baselines at

Under review as a conference paper at ICLR 2026

Eval PPL with model size: 1b Method Mem. | 40K 80K 120K 150K

n — 8-bit Adam (7B) | 26G 1800 1547 1483 1461

Aiice 8-bit Galore (7B) | 18G 1794 1539 1495 14.65

2 — Alice:0 Apollo (7B) 15.03G | 17.55 1439 1323 13.02

i —pe Apollo-mini (7B) | 13.53G | 18.03 14.60 1332 13.09

— Gatore RACS|(1B) 298G | 1643 1426 1320 13.01

18 Alice+im head lN'_che 1B) 46G | 1593 1408 13.15 1297
—— Alice-0+Im head

> 16.6080)

Eval PPL

o e Table 3: Eval ppl. at different training steps.
* orsod For baselines, we cite the number from (Zhu
1 8K o et al.||2024).
14 \ﬁ Components Eval ppl.
1 i No tracking, switch, compen. | 26.96
20000 AOOOﬁ'pdate St:(:)l)OO 80000 100000 Tracklng 27'35
Tracking+Switch 25.11
Figure 1: 1B LLaMA eval ppl. curve. "+lm head" Tracking+Switch+Compen. 21.95

represents the last layer is trained by Adam.
Table 4: Effectiveness of each components.

different training checkpoints. For 150K steps with 8xA100, Apollo requires 15 days while
requires 3.8 days. We DO NOT claim 1B can outperform 7B model trained with standard AdamW,
but demonstrate the effectiveness of our optimizers compared to other memory-efficient baselines.

6.2 ABLATION AND GLUE FINETUNING

Effect of low-rank tracking and switching strategy First, we verify whether low-rank tracking
(Eq. (I2)) is beneficial. As shown in Table 2] performs on par with [Alice] suggesting that
tracking does not provide a significant boost. Fig.|[5(a)|indicates that tracking can be helpful when
compensation is disabled and used alongside switching. Without switching, tracking leads to inferior
performance due to the stability of the eigenspace (Fig. [6). We also evaluate the effectiveness
of switching strategy compared to other heuristics: (1) Gaussian: U is sampled from a Gaussian
distribution; (2) Gaussian mix: the leading basis is mixed with basis sampled from a Gaussian matrix;
(3) full basis: instead of sampling the — [basis in Algorithm I]solely from m — r complement
basis, it is sampled jointly from the top » — [and m — r basis. Fig. [5(b)|shows that our strategy
outperforms the alternatives with clear margins.

Compensation strategy, other ablations and GLUE finetune The closest work to our compen-
sation step is Fira (Chen et al.| 2024a)), which introduces a heuristic-based compensation term. To
evaluate the effectiveness of our optimal compensation, we compare it against Fira compensation
and a no-compensation baseline. As shown in Fig. our optimal compensation achieves better
performance and convergence than all candidates. Table 4] summarizes the contributions of each
component. We also performed additional ablations: (1) the effect of the last layer, (2) the effect of
in[RACS] and (3) hyperparameter sensitivity analysis, and GLUE (Wang, [2018) finetuning
experiment. For more details, see Sec. [Kj] and Sec. @] for details.

7 CONCLUSION AND LIMITATIONS

In this paper, we take a step toward the systematic design of efficient optimizers for LLMs through
structured approximation. We establish the connection between structural assumptions and
optimizers. Building on this, we propose two design approaches: (1) simple structure that balances
generality and efficiency; (2) low-rank extension framework for more general structures. These are

demonstrated with novel optimizers, and [Alice] respectively.

Despite the theoretical and empirical results, this paper does not aim to provide a complete recipe but
serves as a starting point for future research. For example, a complete convergence treatment for all
optimizers under this framework is an important research question that is currently lacking in
this paper. Also, how to incorporate the model structure and task into the optimizer design is another
promising direction.

Under review as a conference paper at ICLR 2026

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560-569. PMLR, 2018.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024b.

Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, and Jaegul Choo. Image-to-image
translation via group-wise deep whitening-and-coloring transformation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10639-10647, 2019.

D Choi. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo.
Robustnet: Improving domain generalization in urban-scene segmentation via instance selec-
tive whitening. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11580-11590, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kaixin Gao, Xiaolei Liu, Zhenghai Huang, Min Wang, Zidong Wang, Dachuan Xu, and Fan Yu. A
trace-restricted kronecker-factored approximation to natural gradient. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 7519-7527, 2021.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573-582. PMLR, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842-1850. PMLR, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardization
towards efficient whitening. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4874—-4883, 2019.

Dongseong Hwang. Fadam: Adam is a natural gradient optimizer using diagonal empirical fisher
information. arXiv preprint arXiv:2405.12807, 2024.

10

Under review as a conference paper at ICLR 2026

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. Advances in
Neural Information Processing Systems, 36:25793-25818, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Gares, Mounir Haddou,
and Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks using
kronecker product singular value decomposition. arXiv preprint arXiv:2201.10285, 2022.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 947-955, 2018.

Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions on neural networks and
learning systems, 29(5):1454-1466, 2017.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
transfer via feature transforms. Advances in neural information processing systems, 30, 2017.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning

Representations, 2023.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective. arXiv
preprint arXiv:2402.03496, 2024.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982,
2025.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Preprocessing sgd enables
adam-level performance on llm training with significant memory reduction. arXiv preprint
arXiv:2412.13148, 2024.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1-76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417. PMLR, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Under review as a conference paper at ICLR 2026

Son Nguyen, Bo Liu, Lizhang Chen, and Qiang Liu. Improving adaptive moment optimization via
preconditioner diagonalization. arXiv preprint arXiv:2502.07488, 2025.

Omead Pooladzandi and Xi-Lin Li. Curvature-informed sgd via general purpose lie-group precondi-
tioners. arXiv preprint arXiv:2402.04553, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596-4604. PMLR, 2018.

Chongjie Si, Xuehui Wang, Xue Yang, Zhengqin Xu, Qingyun Li, Jifeng Dai, Yu Qiao, Xi-
aokang Yang, and Wei Shen. Flora: Low-rank core space for n-dimension. arXiv preprint
arXiv:2405.14739, 2024.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Minghao Xu, Lichuan Xiang, Xu Cai, and Hongkai Wen. No more adam: Learning rate scaling at
initialization is all you need, 2024. URL https://arxiv.org/abs/2412.11768,

Zhirong Yang and Jorma Laaksonen. Principal whitened gradient for information geometry. Neural
Networks, 21(2-3):232-240, 2008.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit Dhillon, and Cho-Jui Hsieh. Block low-rank preconditioner
with shared basis for stochastic optimization. Advances in Neural Information Processing Systems,
36:17408-17419, 2023.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kolker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized low-
rank matrices. arXiv preprint arXiv:2403.14958, 2024b.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024c.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
arXiv preprint arXiv:2412.05270, 2024.

12

https://arxiv.org/abs/2412.11768

Under review as a conference paper at ICLR 2026

A RELATED WORK

Optimizer based on structural approximation Due to the desirable properties and convergence
of second-order optimization, various work has been proposed to efficiently approximate Hessian-like
matrix, e.g. m KFAC (Martens & Grossel 2015) was one of the first work that goes beyond the
simple diagonal approximations, and approximate the layer-wise Subsequent works extends
KFAC beyond MLP layers (Grosse & Martens, [2016; Martens et al.,[2018)). Further refinement to
KFAC are also proposed, including the refinement of eigenvalues (George et al.| 2018)), fixing the
trace (Gao et al.} 2021), and refinement by Kronecker product singular value decomposition (Koroko
et al.l 2022). Our proposed view point is different from KFAC, which express the [FIM|using the back-
proped gradients and layer input. In addition, KFAC needs to re-derived for different type of layers.
On the other hand, our proposed view point is closer to another line of work, aiming to approximate
the full AdaGrad (Duchi et al,[2011). In particular, Shampoo (Gupta et al.l 2018 |Anil et al.|2020) is
proposed as a Kronecker product approximation to AdaGrad. Later, (Morwani et al., 2024])) explicitly
proved that it is a 1-step power interation to optimal Kronecker product approximation. In here, we
propose an alternative view as minimizing a upper bound of the approximation error. SOAP (Vyas
et al.,|2024) is a recently proposed adaptive optimizer that further improves Shampoo based on the
connection of Adafactor and Shampoo. In this work, we make explicit connection of those approaches
to approximation, and establish the equivalence of structural assumption to optimizers. We
also additionally provide connections of gradient operators to[FIM| approximation, and design new
optimizers from this view point. We provide more discussions of our approach to many existing
optimizers, including Apollo (Zhu et al.,2024), GaLore (Zhao et al., |2024a)), Muon (Jordan et al.|
2024), SWAN (Ma et al .| [2024), Adapprox (Zhao et al.,[2024b), Lars (You et al., 2017), Lamb (You
et al.,|2019), Fira (Chen et al., 2024a)) and AdaDiag (Nguyen et al.,|2025), in Sec. E} Preconditioning
SGD (Li,|2017; [Pooladzandi & Li, 2024)) aims to directly approximate the inverse Hessian through
different structural assumptions.

Comparison to blockwise low-rank approximation (Yen et al., 2023) Recently, (Yen et al.,
2023) proposed an optimizer based on the blockwise low-rank approximation to the full AdaGrad
preconditioner. On the high level, it seems to be similar to our proposed low-rank extension framework.
In fact, they are different in several important ways. First, their approach is not scalable due to the use
of the full coefficient matrix with shape r x r, where r is the rank. From Section 2.2 in (Yen et al.|
2023)), the memory cost of their method is (m + n)r2. For 130M model with r = 256 and weight
size m = 768, n = 768, this corresponds to 42 times higher memory than Adam and 84 times higher
than the model weight. On the other hand, only requires roughly 55% of Adam’s memory, and
77 times smaller than their approach. Our low-rank extension framework also incorporates switching
and compensation steps, which are proved to be critical for low-rank based method. More importantly,
the switching step challenges the common knowledge that one should use the top eigenvectors for a
low-rank preconditioner. Our analysis (Theorem [G.8) suggests that less important directions should
be mixed with the leading ones for better performance.

Memory-efficient optimizer Practical training efficiency is a crucial factor when training large
models. In particular, there are many work focusing on the memory efficiency of optimizers, since
less memory consumption allows larger batch size, effectively improving the throughput. There are
two lines of research: (1) use low-rank approximation to reduce memory of optimizer internal states;
(2) remove the internal states. GaLore (Zhao et al.|[2024a), a well-know low-rank optimizer, proposed
to use [singular value decomposition (SVD)|for finding a low-rank projection and apply Adam within
it. It can be seen as a special case of |Alice} Fira, an extension to GaLore, add compensation term
at each step to turn low-rank update to full-rank, substantially improves the performance. Flora (S1
et al.| 2024)) uses randomly sampled Gaussian matrix as the subspace to save compute and memory.
However, it is mainly focused on the fine-tuning tasks. ReLora (Lialin et al.,|2023)), an extension to
LoRA (Hu et al.} 2021), periodically merges the LoRA weights to enable full-rank learning. On the
other hand, many optimizers requires fewer internal states compared to Adam. Lion (Chen et al.|
2024b) and Signum (Bernstein et al., 2018]) introduced optimizers that only requires the storage of 1
internal states, offering a balance between memory efficiency and performance. Apollo (Zhu et al.,
2024), a recently proposed approach, only maintains rank 1 GaLore states for estimating the scaling
matrix for the raw gradient. Although it still requires 2 internal states, rank 1 states allows it to
achieve SGD-like memory. At the same time, (Ma et al.| [2024)) developed SWAN, which manages to

13

Under review as a conference paper at ICLR 2026

completely removes the internal states through two gradient operators: normalization and whitening,
and obtain stronger performance than Adam. In this paper, we also show that normalization and
whitening operators are special cases of approximation.

Comparsion to Sophia Sophia (Liu et al.,[2023)) is a recently proposed second-order optimizer for
training LLMs. It requires similar memory consumption as Adam but claims to achieve 2x speed-up.
However, (Kaddour et al.,[2023)) argues that the speed-up is achieved under an unfair comparison.
With the fair comparison (i.e. the setup adopted in this paper), Sophia consistently performs worse/or
similarly compared to Adam, whereas ours (i.e. and [RACS)) achieve near 22 speed-up in both
training steps and wall-clock time under the fair comparison setup.

B [RACS|AND ALGORITHMS

Algorithm 3|RACS
1: Input: learning rate \, 3, scale «, limiter threshold v, optimization steps 7.
2: 50=0;q0=0;¢9=0
3: fort=1,...,Tdo

4: G = VW,,[:

5: Obtain S; and Q, by Eq. (TI)

6: 8¢ =Pst—1+ (1 —) Diag(S:);

7 q=PBq-1+(1 - B) Diag(Q:))
8: G = Diag,(q:)”2G Diag,(s;)” 2
9: n=r/max{ ‘(f_tjl ,yrift > lelsel
10: ¢y = 1||GYl| N

11: Wt+1 = Wt —)\ﬁOéGt

12: end for

Algorithm 4 optimizer
1: Input: learning rate A, scale o, compensation scale «.., update interval k, 51, B2, B3 (83 = 0 for
|Alice-0), optimization step 7', rank 7, loss function £, limiter threshold ~, leading basis number

2 Qo=0,Uy=0,py=0,¢=0,my=0,v0=0
3:fort=1...,Tdo

4: Gt = VWtE

5. ift==1or (¢t mod K)== 0 then

6: Q: = B3U,.Q 11Ul + (1 - B3)G.GY
7: Ut = SthCh(Qt, r, l, Ut—l)

8: else

9: Ut = Ut,1

10: endif

11: OA"t = U;TNGt

122 Qi =B3Qi—1+ (1 — B3)oo]
13: my=pimy_ + (1 - pr)oy
140 vy = Povy_1 + (1 — Ba)o}

15: w= \;ni

16: Ac,pt, ¢ = Compensation(Uy, pi—1, $i—1,7, B1)
17: Wt+1 = Wt —)\Oé(Ut(.d + OéCAC)
18: end for

C EXAMPLES OF DIAGONAL OPERATIONS

In this section, we will give some detailed examples on each of the diagonal operations we introduced
in Sec.2

14

Under review as a conference paper at ICLR 2026

Example of Diag(-) This will extract the diagonals of a input matrix into a vector:

ailp aiz2 ais T
M = | a1 aze az |, Diag(M) = [a11,a22,ass]

asz1 asz as3

Example of Diagg(-) This simply stack the input matrices sequence into a larger block diagonal
matrix:
M, 0 0
Diagg (M1, M>,M3)=| 0 DM, 0
0 0 M;

Example of Diag, (-) This will stack the vector element into a pure diagonal matrix:

aill 0 0
Diag, ([a11,a22,a33]") = | 0 azx 0
0 0 ass

Example of Diagy () This will stack the elements in input matrix to form a larger pure diagonal
matrix in a column-wise manner.

ay

. a1 612 . 0
oo (| 03 22]) = 0
0

D BACKGROUND

0 0 0
asy 0 0
0 0

In this section, we will provide a more comprehensive backgrounds.

D.1 FISHER INFORMATION

Fisher information can also be viewed as the "sharpness” of the likelihood around the true parameters
from the maximum likelihood view point. Formally, under the context of LLMs fy(+), we consider a
dataset {z;}Y,, where N is total batched sentences, and x; is the token sequence of i'" sentence.
One can define sentence-level auto-regressive loss function £ =) =1 c(xi j+1, fo(xi,.j), where j
is the token index and c is the user-defined loss metric. The corresponding likelihood can be defined
as pp(x;) o< exp(— >,y (i j+1, fo(2i;))). The standard empiricalis defined as

N

F = Z Vo log pg(z:) Vi log po(x;)

i=1

In practice, we often use the mini-batched gradient § = NLB Zf\g log pg(x;) with batch size N for
empirical during training. More discussion can be found in|Lin et al.|(2024)). Throughout this
paper, we adopt the notation E[Gg”] as F.

One standard application of is efficient optimization. leverage the inverse of to
smooth the local information geometry, leading to the steepest descent in the probability space with
KL divergence metric. This typically leads to faster convergences compared to its parameter-space
counterpart; and more stable optimization (Martens, |[2020). The update of with step size A is

0 60— AFIV,L.

However, square-root inverse is sometimes more favorable than inverse, and has been shown that
it provides a better approximation to the geodesic flow, compared with the default natural gradient
update |Yang & Laaksonen| (2008)). Empirically, it demonstrates stronger performance and desired
properties when using non-constant learning rate (Lin et al.| 2024} |Loshchilov & Hutter] 2016}
Bergstra & Bengiol, [2012; |Choi, [2019). The corresponding update is to simply replace F'~! with
F3:

00— \F2V,L. (16)

15

Under review as a conference paper at ICLR 2026

In this paper, we will use the square-root inverse view point, but our analysis is agnostic to it and can
be easily extended to the direct inverse. However, matrix multiplication involving [FIM]and its inverse
are computationally expensive for large models since F' € R™"*™" for vectorized parameters
0 € R™". Next, we will briefly introduce Kronecker product and block diagonals, which are two
main classes of structural assumptions used in this paper. Their nice properties can significantly
reduce the assocaited computation burden.

D.2 KRONECKER PRODUCT AND BLOCK DIAGONALS

Kronecker product, denoted by ®, is to combine two arbitrary matrices into a larger matrix with
block-wise patterns. It has emerged as a powerful tool for approximating higher-order information
like Hessian (Grosse & Martens, |2016) or The main advantages are their nice properties
regarding matrix operations, leading to efficient practical procedures when dealing with large matrix.
We will mainly use two properties:

(A®B) 2 =A":®B: (17)
(A ® B) Vec(C) = Vec(BCA") (18)

where the first one holds when A, B are square-root invertible. The second one is particular useful
to reduce the computation associated with matrix-vector multiplication in Eq. (I). For A® B €
R™nXmn it reduces the computation from O(m?n?) to O(mn? + m?n) with A € R"*", B €
Rmx’ﬂl and C E R’HLXTL‘

For block diagonal matrix, one can also easily compute its square-root inverse:
_1 _1
Diagg (M, ..., M,)”? = Diagg(M, ,..., M, *) (19)

where each M is square-root invertible. When each M is also a diagonal matrix with positive
values, we have the following:

c
Diagg (M, ..., M,) ? Vec(C) = Vec | ———— (20)
Mat(v)
where v is the vector containing the diagonals of Diagg (M7, .. ., M,,), transforming matrix vector

product into element-wise operation.

D.3 OPERATORS FOR GRADIENT: NORMALIZATION AND WHITENING

Recently, there are some optimizers (Ma et al., |2024; Jordan et al., 2024} You et al., [2017;[2019)
that apply operators to pre-process the gradient and use it in standard SGD. Empirical evidence
has verified their effectiveness in training LLMs. In particular, there are two well-known operators:
normalization and whitening, where the above optimizers relies on one or both of them. In particular,

G 1
Norm(G) =——= =GS™ 2 21
@) =1 e
Whitening(G) :(GGT)_%G. (22)

where s € R", 5; = Z;”Zl G?j with G € R™*" and S = Diag,(s). Namely, vector s contains
the squared column norm of G, and S is a scaling matrix to normalize the columns. Normalizing
the rows can also be written in a similar format. Whitening operator essentially orthogonalizes G,
that compute the closest orthogonal matrix to G under Frobenius norm. In practice, the whitening
operator can be iteratively solved using Newton-Schulz algorithm without explicitly computing the
square-root inverse.

D.4 SHAMPOO OPTIMIZER

Shampoo (Gupta et al.,[2018) was originally proposed as the second-order optimization technique over
the tensor space. Under the context of transformers, typically matrix parameters are considered. Its

- 1 1
core design principle also aims to approximate the EIM with structural assumptions F; = R; , QL 4,

16

Under review as a conference paper at ICLR 2026

with R, = R, 1+ Gl Gyand L,y = Ly, ;1 + G;GT. The above update rule can be seen
as the moving average estimate of E[G} G| and E[G;GY]. However, the Shampoo paper (Gupta
et al., 2018) does not explicitly show why these design choices of R,,, L,, approximate the In

1 1

fact, they only show R2 ® L2, forms an upper bound of This is not helpful in understanding
whether this approximates the or not. Another very recent follow-up work (Morwani et al.|
2024) provides an explanation of the shampoo preconditioner in terms of approximating They
show the square of Shampoo’s preconditioner is equivalent to a single step of power iteration of
computing optimal Kronecker product approximation to[FIM] It indirectly establishes the connections
to approximation since the approximation is expressed as an iterative algorithm. To the best
of our knowledge, our result is the first to directly establish the connection of Shampoo to
approximation as minimizing a upper bound of the loss with the Frobenius norm (Theorem 3.2)).

Nevertheless, the original Shampoo algorithm is summarized in Algorithm 5]

Algorithm 5 Shampoo Optimizer

Input: L, = €l,,, R, = el,, learning rate \, optimization step 7, loss function L.
fort=1,...,Tdo

G:=Vw, L

Lm,t = Lm,t—l + GtG?

Rn,t = Rn,t—l + G?Gf

Wt == Wt—l —+)\L;ZthRT_L%
end for ’ 7

D.5 SOAP/ADADIAG++

SOAP/AdaDiag++ (Vyas et al., 2024} [Nguyen et al., [2025) is a recently proposed adaptive optimizer
aiming to improve the practical convergence and stability of Shampoo. Their main intuition behind
(from the view point of [Vyas et al.|(2024))) is that they show Shampoo is equivalent to performing
Adafactor (Shazeer & Stern, |2018) under the Shampoo’s eigen-space. Namely, the eigen-matrix of
L, ;and R, ;in Algorithm@ Since Adafactor is an approximation to Adam, they propose to use
Adam instead of Adafactor in Shampoo’s eigen-space, to further improve the performance. They
propose the following update rule:

my = fimy_1 + (1 — B1)G, (first moment)

Ly =083Ly 1+ (1—63)G:GY (Shampoo’s L, ;)
R,:=B3R,; 1+ (1—B3)GIG; (Shampoo’s R, ;)
Ur,=EVD(L,,,) (Shampoo’s left eigen-space)
Ugr:=EVD(R, ;) (Shampoo’sright eigen-space)

vy = Bovy1 + (1 — B2) (UL ,GUr,)* (second moment)
ULmeUne o

\/,th Ryt

These update rules exactly describes the procedure to applying Adam updates in the "rotated" space
defined by Uy, ; and Ug ;. Due to the computational burden associated with EVD, SOAP proposed
to only update Uy, ;, Ug,; at certain intervals. This leads to the following algorithm:

A=Up, (23)

D.6 ADADIAG AND ONE-SIDE SOAP

AdaDiag++ (Nguyen et al.,[2025)), a concurrent work to SOAP, independently develops the equivalent
update rules as SOAP. The only difference is that they disable the tracking for L,, ; and R, ;.
The resulting optimizer is both computational and memory expensive due to the storage of Uy, U,
and two eigenvalue decompositions. To address this issue, they both propose a one-side version

’Lemma 8 in (Gupta et al., 2018). Note that our paper assumes Vec(-) is stacking columns of matrix whereas
Gupta et al.| (2018)) assumes stacking the rows, explaining the reverse order of presentation

17

Under review as a conference paper at ICLR 2026

Algorithm 6 SOAP optimizer
Input: learning rate A, update interval K, 31, B2, 53, optimization step 7.

my=0;v9=0 >Initialize two moments
Lypo=0R,0=0 >Initialize twostatesfor GGT, GTG
fort=1,...,T do
G, =Vw, L
my = Bimy_1 + (1 - B1)Gy
Lyt =B3Lmi—1+ (1—B3)GGY >Accumulation for GGT
R,:=pB3R,:—1+(1—-33)GIG: >Accumulation for GTG
ift ==1or (¢t mod K) == 0 then
Ur,=EVD(R, ;) >Get right eigen-space U
Ur:=EVD(Ly,,) >Get left eigen-space Uy,
else
Ur:=Ugr;t1
Ur:=Ur;i
end if
m; = UgtthR’t >Get rotated 1st moment
vy = Povy_1 + (1 — ﬂQ)(UEthUR,t)2 >Compute second moments
Wi =W, —)\UL,t%Ug,t
end for

called AdaDiag and one-side SOAP by only considering either left or right eigen-space. The resulting
update rule is exactly the same as our proposed [Gadam] (i.e. Eq. (9)).

However, they propose this design choice purely based on intuition to reduce computation and
memory consumption, and do not explicitly reveal the connections to their two-side version. Thus,
it lacks the understanding on why two-side version obtains empirically better performance. Based
on Sec. 3.4 and Sec. [E| we show that although one-side version has similar updates as the two-
side twins, they are different optimizers with distinct underlying structural assumptions. In fact,
the structures of SOAP/AdaDiag++ strictly generalizes their one-side version, explaning the better
empirical performance. The resulting algorithm is the following:

Algorithm 7[GadamJAdaDiag/one-side SOAP optimizer
Input: learning rate A, update interval K, 31, B2, 53, optimization step 7.

mg=0;v9=0 >Initialize two moments
Qo =0 >Initialize the[EMA|state for GG™
fort=1,...,Tdo
Gt = th»C
Qi = B3Qi—1 + (1 — B3)G:GT >Accumulate the GGT
my = fimy_ + (1 - B1)Gy bAccumulate the first moment
ift ==1or (¢t mod K) == 0 then
Uy = EVD(Q:) >Obtain the U
else
Upi =Usi1
end if
m; = Uftmt >Rotate the first moment
vy = Povy_1 + (1 — Bg)(UfTiGt)2 >Accumulate the second moments
Wipr =Wy — AUy, % >Update in the original space
end for
D.7 SWAN

Recently, there is a newly proposed adaptive optimizer that completely removes the needs of storing
internal states, called SWAN. It relies on two processing operators applied to raw current gradient:
GradNorm and GradWhitening, as a replacement of first and second moments. For a current gradient

18

Under review as a conference paper at ICLR 2026

G,
G-g1}

N =22 24

GradNorm(G) Sl (24)

GradWhitening(G) = (GGT) 2 G (25)

where g = 137" | G.; is the mean across rows; s = \/% S (G.; — g)? is the standard
deviation across rows; gff and s are m-dimensional column vectors; and 1,, is a n-dimensional column
vector of ones. Then, SWAN performs the following to generate the update:

G = GradNorn(G)

A = GradWhitening(G) (26)
We can see that the proposed GradNorm is equivalent to normalization up to a scaling /7 when
the mean g is 0. SWAN derives these two steps from investigating the LLM dynamics. In practice,
SWAN proposes to compute the (GGT)’% using Newton-Schulz iterations.

D.8 NEWTON SCHULZ ITERATION

In many machine learning applications, like successive whitening and coloring transform (L1 et al.,
2017;|Cho et al., [2019; |Choi et al.| |[2021), one often encountered the computation of square root
inverse of some [SPD|matrix. One standard approach is to compute the [EVD]and take the square root
inverse of the eigenvalue matrix. However, is computationally expensive. Another alternative
approach is use Newton-Schulz iteration (NS), an iterative updates of two matrix. Specifically,

A

Yo= —— Zy=1
Al

1
Y= §Yt(31 - Z:Y;)

1
Zi1 = 581 - Z,Y)Z,

1
with convergence Y; — ‘H“AZ” and Z, — A2 \/||A][r. Typically, NS converges very fast with
F

only 5 steps (Li et al., 2018 |Huang et al.|[2019).

D.9 MUON

Muon (Jordan et al.,[2024), is recently proposed to speed-up the training of LLMs, that relies on the
whitening operator similar to SWAN. The core of the Muon is to orthogonalize the the momentum.
The proposed update rule is

my =iy 1 + (1 - 51)Gy
A =GradWhitening(my). 27
Similarly, the GradWhitening step is computed using Newton-Schulz iteration. The main difference

between Muon and SWAN is that Muon still requires the storage of first moments as state, whereas
SWAN relies on the GradNorm operator applied to the raw gradient.

D.10 LARS

SWAN and Muon both involve the whitening operator with/without normalization, respectively. On
the other hand, Lars (You et al.,[2017) is an operator that only relies on layer-wise normalization. For
each layer, it simply compute the first moments, followed by a normalization operation. The update
rule for each layer is

my = fimu_1 + (1 - 51)G
A = ¢(]|0]]) 2
101

where ¢ is a scaling function with input of the parameter # norm. One major difference of this
layer-wise normalization to SWAN is that it is applied on the layer-wise level, whereas SWAN applies
row/column-wise normalization.

(28)

19

Under review as a conference paper at ICLR 2026

D.11 LoOW RANK OPTIMIZERS

The primary goal of low-rank optimizer is to reduce the memory consumed by the states of adaptive
optimizers. The popularity of low-rank based method for large models starts from the well-known
LoRA (Hu et al} [2021)), where each weight is inserted with an low-rank adapter W + A B with
A € R™*" and B € R"*" during the finetuning stage. This formulation directly modifies the model
architecture. |Si et al.| (2024) explicitly show that LoRA is secretly a gradient compressor, which
translates the modification to model architecture into a low-rank optimizer with randomly sampled
matrix. At the same time, GaLore (Zhao et al.,|2024a) popularizes the use of low-rank optimizers,
which demonstrates on-par performance compared to full-rank Adam training. GaLore is proposed
based on the analysis of reversible networks (Tian et al.}|2020). However, in practice, transformer
may not satisfy the reversibility condition. Thus, GalLore does not provide a clear understanding on
why it works on LLMs.

Algorithm 8] summarizes the procedures. In practice, GaLore can be viewed as the composition of
subspace search algorithm (i.e. SVD) with standard Adam optimizer. The original GalL.ore does
not provide an explanation on the choice of Adam. On the other hand, our analysis reveals that the
GalLore is an approximate low-rank extension to a different optimizer, [Gadam}AdaDiag/one-side
SOARP, that is generalizes Adam (see Sec.[3.4).

Algorithm 8 Gal.ore Optimizer

Input: learning rate)\, decay rates 5,, 32, rank r, update interval k, scale «
fort=1,...,T do
G, =Vw, L
ift ==1ort mod k == 0 then
Ut = SVD(Gt,’I")

else

U =U;_
end if
gy — UtTGt

A = Adam(oy, b1, B2)
Wt B Wtfl + PY7AN
end for

Since the states of Adam optimizer are based on the projected gradient o, the overall memory
consumption of GaLore is mn + 2nr 4+ mr.

D.12 APOLLO

Concurrent to this work, there is a recently proposed optimizer, called Apollo (Zhu et al.,[2024), that
only scales the raw gradient and obtains SGD-like memory with Adam-level performance. They
propose to scale the columns or rows similar to normalization in SWAN, but the scaling factor is
estimated following the procedure proposed by Fira (Chen et al.,|2024a). The core idea of Apollo
is to obtain A from GaLore algorithm (Algorithm[8), followed by computing the column/row-wise
norm of A. This norm will be used as the scaling factor for the raw gradient G. Apollo has many
variants. In particular, we choose Apollo-mini and Apollo-svd, where the former uses rank-1 random
projection for scaling estimation, and the latter relies on the use of top r singular vectors as the
projection, same as Gal.ore. Apollo-mini only maintains the rank-1 states, leading to significant
memory savings. The memory consumption is mn + 2n + 2 for parameter W € R™*". And
Apollo-svd consumes the same memory as GaLore. Algorithm [9]summarizes the procedures.

|A]2
lloell2

Note that when rank 7 is set to 1, they propose to use global scaling instead of row/column-wise

scaling.

D.13 SUBSPACE ITERATION
The subspace iteration method—also known as the block power method is a classical iterative

technique for computing the dominant eigenvalues and corresponding eigenvectors of a matrix. It
generalizes the basic power method from operating on a single vector to operating on a subspace,

20

Under review as a conference paper at ICLR 2026

Algorithm 9 Apollo Optimizer

Input: learning rate)\, decay rates 3;, 02, rank r, update interval k, scale «
fort=1,...,T do
Gt = th»C
ift ==1ort mod k == 0 then
U, ~ N(Oa %)
seed < an independent new random seed
else
U =U;
end if
gy — UtTGt
At = Adam(o'ta 517 52)
S, < Diagy(so, ..., 5m) {si =

Wt = Wt_1 + AO&GtSt
end for

loe,:,ill2

typically spanned by a initial matrix. When the initial matrix is closed to the targeting eigen-matrix,
the convergence is fast. Empirically, we found that only 1 step of iteration is enough to give a
satisfactory performance. Algorithm [I0]summarizes the subspace iteration algorithm to for finding
the top r eigenvectors of a matrix A. We can see that the computation is bottlenecked by the matrix
multiplication AU;_; which is O(m?r) if only performing 1 step.

Algorithm 10 Subspace iteration

Input: symmetric matrix A € R™*™, iteration step 7', initial matrix M € R™*"
Uy=M
fort=1,...,Tdo
H, = AU;
U; = QR decomposition(H;)
end for
V =UL AUy
U =EVD(V)

E SOAP: A FURTHER GENERALIZATION TO [GADAM]

All previous structures, apart from the one behind Shampoo, are under the class of block diagonal.
However, this only allows one to model the off-diagonal elements near the diagonal. Structure under
Kronecker product, like the one behind Shampoo, can go beyond this. Therefore, we can consider
combining the structure of with Shampoo, to obtain the most general structural assumption in
this paper. We show this exactly recovers SOAP (Vyas et al., [2024).

Specifically, we consider the following structural assumption: % = {(Ur @ U)D(Ug @ U)"},
where Ur € R™*"™, Uy, € R™*™ are orthonormal matrix, and D € R™"®™" i a diagonal matrix
with positive values. We can easily show that structure behind [Gadamlis a special case by constraining

Ur = I,,; and Shampoo is also a special case by constraining D to be decomposed by Kronecker
product (refer to Sec. [LT).

Similar to it is hard to directly minimizing Eq. (2) with this assumption. We can approximate
the solution by 1-step refinement procedure as

Theorem E.1 (1-step refinement of SOAP). Assuming the above structural assumptions. Consider
the following I-step refinement: (1) assume D can be decomposed as Kronecker product of two
diagonal matrix, find corresponding Ug, Uy, (2) fix Ug, Uy, find corresponding D. Step (1) admits
analytic for minimizing the upper bound of Eq. @) (i.e. Eq. 2)):

Ur = EVD(E[GTG]), U, =EVD(E[GG")).

21

Under review as a conference paper at ICLR 2026

Step (2) admits an analytic solution for minimizing Eq. (2):

D = Diagun(E[(UF GUR)?))

The proof is a straightforward combination of Theorem [3.2] and Theorem [3.4] and can be found
in Sec. One can show that the corresponding optimizer associated with the above result is
equivalent to SOAP (refer to Sec. [F.4]for details).

F DERIVATION OF UPDATE FORMULA

In this section, we will explicitly show how to connect the solution from minimizing reconstruction
loss of (Eq. @)) to corresponding update rule.

F.1 SHAMPOO’S UPDATE FORMULA

The key update formula of Shampoo is

_1 1
W, =W,_1 + L, 'G/R, |

Proof. From Theorem [3.2] we simply apply the properties of Kronecker product to square-root
version of natural gradient descent:
9)

— Mat ((Ré ® Li)—%g)

Nl=

Mat (13‘_

= Mat (Vec (L;ﬁ GR, i))

—L,'GR, "
O
F.2 GENERALIZATION TO WHITENING AND NORMALIZATION
The square—rootupdate with F' in Eq. (3) in Theorem [3.3|is
Mat (F—%g) = VnE[GGT] 3G (29)

Proof. From the solution in Eq. (3), we can simply apply the properties of Kronecker product as in
the derivation of Shampoo’s update:

= Mat (Vec (\/ﬁM*%G»
=/nE[GGT]":G
O
Similarly, the square-root update with F=S®lI,is
Mat (F*%g*) — J/mGS~3 (30)

22

Under review as a conference paper at ICLR 2026

Proof. This is trivial by applying the property of Kronecker product:
Mat((S ® I,) "% §)
= Mat(Vec(GS_%))
—GS 3

F.3 UPDATE FORMULA FOR[GADAM]

Proof. From the Theorem [3.4] we can apply the properties of block diagonal and Kronecker product
with a full-rank U:

Mat(F~*g)
— Mat (DiagB (M{”, o ,M;%) g)
— Mat (DiagB (UD;%UT, o UD;%UT) g)
— Mat ((® U) Diagg ﬁ,...,@)(I@UT)ﬁ)
—Mat ((I, ® U) Diaga(\ﬁ /D) Vee (UTG))

et << H®U>Vec(T))
(

= Mat | Vec (UUTG>)
E[(UTG)?]

B Uvra

 VE[UTG)

F.4 UPDATE FORMULA FOR SOAP

Based on the Theorem [E.T| we can derive the update formula of the corresponding square-root[NGD]
following the same procedure as

N T
Mat (F15) = Uy, ULGUr

E(UL GUR)’]

Ut.

Proof.

UI'GUR
E[(U GUR)?|

UTGUR
E[(Uf GUR)?|

Ug

23

Under review as a conference paper at ICLR 2026

O

Therefore, one can design the optimizer based on this update formula and exactly recovers the SOAP’s

procedure (Eq. (23) in Sec.[D.5).

G THEORY AND PROOF

To prove the results, we need to first introduce some useful lemmas and inequalities.

Lemma G.1. Assume F is a block diagonal matrix with n squared block matrix M; € R"™*™, then

mln||F F|% = vavd ZHM I — 2 Te(M] Elgig]) + C (3D

1L1i1

where g; is the i column of gradient G, C is a constant that is idenpendent of F,and F is the

Proof. This is straightforward by expanding the [Frobenius norm (F-norm)}

IF - F|%
—Tv ((F _P)T(F - F))
—|F|% —2Tr (FTF) e

= ZETFI — ETFZ +C
=1

= M7 — 2Tr (M Elgig{]) + C

i=1

where F). € R™" indicates the /"™ row vector of F' and F.; is the ™ column vector. The last equation
is obtained by the fact that F is a block diagonal matrix. So only the values of F’ at the position of
non-zero values F' contributes to the trace, which is exactly the outer product: E[g;g]]. O

Lemma G.2 (Powers-Stormer inequality). For positive semi-definite operator A, B, we have the
following inequality
Tr((A- B)' (A~ B)) < ||A* - B?|; (32)

where || - ||1 is the trace norm.
G.1 PROOF OF THEOREM[3.T]
Proof. From Theorem|[G.I] we have

- F|%

|| il# —2Tr (M Elgig]])

i M: W'Pllﬂ: El

Z iji 2Mi,jj]E[gi2,j]

By taking the derivative w.r.t M; ;;, we have
M5 =Elg;]

Thus, we have F' = Diag(E[?]). O

24

Under review as a conference paper at ICLR 2026

G.2 PROOF OF THEOREM[3.2]

To prove this theorem, we need to leverage the Theorem [3.3|for generalized whitening (Eq. (3)) in
Sec. This is proved in Sec. But in the following, we will provide an alternative proof for
completeness.

Proof. From Theorem|G.1] we have
IF — FIf

=Y M|} - 2Tx(M"Elgig]]) + C

i=1

=n| M|} - 2Te(MTE[Y_ g:9]) + C
i=1
=n||M|%2 - 2Tr(MTE[GGT]) + C

To minimize this, we take the derivative w.r.t. M, we have

1
2nM — 2E[GG"]|=0= M = EIE[GGT]

Next, we prove another proposition that is "symmetric" to the whitening results in Theorem3.3]

Proposition G.3. Assume H = {R,, ® I,,}, where R,, € R"*" is matrix, then Eq. (2)) can be
analytically solved with the optimal solution as

n

R = l]E[GTG] (33)
m

Proof. Since R,, ® I,, does not have a nice block diagonal structure like the previous proposition,
we need to analyze it a bit more. First, we have

IR, @ In — F|%

=R, ® I,||% —2Tr | (R, ® I,)"E[gg"] | + C
Z

Since we only care about the diagonal of Z, therefore, we only inspect the block diagonal of Z with
each block Z; of size R™*™, andi = 1,...,n. By basic algebra, we have

n

Z; = Rigrg
k=1

where g, is the k™ column of G. Therefore, we can simplify the trace of Z as

Tr(Z) =Y Tr(Z:)
i=1

~1(). > Riygeg?)

=1 k=1

=> 3> RilGlilG ;s

i=1 k=1 j=1

25

Under review as a conference paper at ICLR 2026

where [G];; is the element of G at j™ row and ™ column.
Now, let’s perform the same analysis of the following quantity

Tr <(Im ® RN)EHCJ—Ti[C;—TiT])

—
where [GT] is the vectorized transposed gradient GT'. Namely, it now stacks the rows of G instead
of columns of G like g. This object is simple to treat due to its block diagonal structure, by algebric
manipulation, we have

—— i
T ((Im © RE(G] [GT]T]> - Y mm; @7 6T
k=1 kth column of GT
v column O
over blocks
=YD > Ry[G" k[Gl
k=1i=1 j=1

Now, let’s change the variable ¢ = i, j = k and k = j, the above becomes

Tr ((Im ® Rn)E[[G—Tﬁ[G—TiT})

m n n

=Y > RulG"wlGl

j=11i=1 k=1
=Tv(Z) (34)
‘We should also note that
IR, @ Ly, ||%

=Tr (R, ®I,)" (R, ®I,))
=Tr (RIR,) ® I,)
=Tr(R!R,) Tr(I,,)

=Tr (I, ® R,)" (I, ® R,,))
=[|(Ln ® Rn)| %

Therefore, by using the above equation and Eq. (34), the original minimization problem is translated
to

—
argmin | R, ® I,,, — FH% =argmin ||I,, ® R, — IE[[GT][GT}T]H%
R, R,

Thus, we can leverage Theorem [3.3]to obtain the optimal solution

1
R = —E[G"G]
m

With the above two propositions, we can start to prove Theorem [3.2]

Proof. First, we note that
IR: © L} — F|%
—| (R, ® I,)? (I, ® L,,,)* —E[gg")? Elgg"]? ||%
N—_——
A B C
=|AB - CC|%

26

Under review as a conference paper at ICLR 2026

Next, we will upper bound this quantity. First, we have
AB-CC=AB-C)+(A-C)C
By triangular inequality, we have
IAB - CC|r
<[[AB-C)|r+(A-C)C|F
<|AlrllB—=Clr+[A-ClrlC|F
<([A-Clr+IClr)IB-Clr+|A-ClrlClr
=[[A=ClrllB-Clr+|Clr(IB-Clr+[A-Cl|F)
Now, the squared norm can be upper bounded by

IAB — CCl% <3 (|A - Cl%B - Clii + [ClZ A - C|I% + IClE B - ClI)

<3(mn||A* — C?||p||B* — C*||r + vmn|C|/%|| A% — C?||p (35)
+ V/mn||C||%|B* - C?||F) (36)

The first inequality is obtained by the fact that for any three matrix P, @ and H, we have

2
1P+Q+H|E <(IP|r+IQlr+ | H|F)
=PIz + QI + | H|I% + 2l PllrIQIr + 2Pl Hllr + 2|Qlr| Hl|
<3 (IPIF + 1QIE + [HI%)

The second inequality is obtained by directly applying Powers-Stormer’s inequality and Holder’s
inequality. For completeness, we will show how to upper-bound || A — C||%, the rest can be bounded
in the same way. From Theorem[G.2]and both A, C' are matrix, we have

|A-Cl% < (1A% - C?|lx
Then, we can select p = ¢ = 2 for Holder’s inequaity and obtain
|A? = C?|ly < Vmn||A® - C?||F

where \/mn comes from the || I, || 7 in Holder’s inequality. By substitute it back, we obtain the
upper bound.

We can see that minimizing the upper bound Eq. is equivalent to minimize each ||A%? — C?||F,
| B? — C?|| r individually, and

1A% = C?||p = | Ry @ In — Fl|r

|B* ~ C?|lp = |1, ® Ly — FF
Thus, from Theorem [3.3|and Theorem[G.3] we prove the theorem. O

G.3 PROOF OF THEOREM [3.3| AND THEOREM [4.]]

Instead of proving the Theorem [3.3] we propose a generalization to those gradient operations, where
Theorem [3.3]is a special case.

Structure assumption We consider H = {S ® M } with identical M € R™*™ and positive
diagonal S € R™"*". The following theorem proves that the optimal solution can be solved by a
fixed-point iteration.

Theorem G.4. Assuming H = {S ® M} with positive diagonal S € R™"*" and|SPD|M € R™*™,
and Egc [(GT G")? contains positive values, solving Eq. (2) admits a fixed point procedure:
_ Diag(E[GT M G]) _ E[GSG™]

Diag(8) = M= 37
8(5) M 1512 &7

The solution Diag(S*) converges to the principal eigenvector of E[(GT G")?] up to a scaling with
unique S* @ M*.

27

Under review as a conference paper at ICLR 2026

To prove Theorem|[G.4] we first introduce some classic results.

Theorem G.5 (Perron-Frobenius theorem). For a matrix A € R™ ™ with positive entries, the
principal eigenvalue v is positive, called Perron-Frobenius eigenvalue. The corresponding eigenvector
v of A is called Perron vector and only contains positive components: Av = rv withv; > 0. In
addition, there are no other positive eigenvectors of A.

Definition G.6 (Hilbert projective metric). For any given vectors v, w in C'/{0} where C' is a closed
convex pointed non-negative cone C, i.e. C'N (—C') = {0}, the Hilbert projective metric is defined as

dy (v, w) =log (max v2> — log (min m)
[3 ’U)i (3 ’Uji

This is a pseudo metric since it has a scaling invariance property: dg(v,am) = dg(v, m) for
a > 0. This means dy (v, m) = 0 does not mean v = m but v = am with some positive scaling «.
However, this is a metric on the space of rays inside the cone.

Theorem G.7 (Birkhoff-Hopf theorem). Let P € R™*" be a positive matrix and let
k(P)=inf{a>0:dg(Px, Py) < adg(x,y),YVe,y € Cy,x ~ y}

where C is the cone that each element is non-negative and ~ is the induced equivalence relation.
Namely, if x ~ y, there exists a, 3 > 0 such that cx < y < px, and x < y meansy — x € Cy.
Then, it holds

- 1 . B Pijpk-l
K(P) = tanh 2A(P) with A(P) = ged Py P

This theorem suggests that when P is a positive matrix, the corresponding linear mapping is contrac-
tive since tanh(-) < 1 under Hilbert projective metric.

Now, let’s prove the Theorem |G.4

Proof. First, we can simplify the Eq. (2) using Theorem [G.1}
IS ®M —F||%

= SIIF|% —2Tx(S; ME[g,g]]) + C
i=1
Then, we simply take its derivative w.r.t. s;, and obtain
25| M||3 = 2 Tr(ME[g:g]'])
_ Tr(ME[gig])
| M||%

) Diag (E[GT MG
= Diag(S) = (|M2)
F

Similarly, we have
M 221::1 SlIE;[g’ng]
ER
_E[GSGT]
1S11%

These define an iterative procedure. Next, we will show it converges. Let’s substitute M into S, and
obtain

S =Diag (EG [GTEG, [G’SG’T]GD a(S)

GG'T SG’TGD
——

=Diag (EGG,
H

28

Under review as a conference paper at ICLR 2026

where «(S) is the scaling term. In the following, we use E as Eg¢-. Since we can show

Si=E ansj ,
J

we can write S in its vector format:

s:E[H2] s.
P

From the assumption, we know P contains only positive values, let’s define a quotient space for
positive vectors s and g under the equivalence relation s ~ 8" if s = as’ for some positive scaling .
Namely, we define a space of rays inside the positive cone. Therefore, the Hilbert projective metric
becomes a real metric inside the quotient space.

From the Theorem[G.7} we know the linear mapping associated with P is contractive. Therefore, we
can follow the proof of Banach fixed point theorem on the previously defined quotient space with
Hilbert projective metric to show the convergence of this fixed point iteration on s.

Now, we show the solution s* is always positive. Since it is converging, therefor, the solution satisfies
s =a(s*)Ps”

This is equivalent to finding the eigenvectors of P. By leveraging Perron-Frobenius theorem

(Theorem|[G.3)), we know s* is the principal eigenvector of P, and only contain positive values. It

is also easy to verify that this fixed point converges upto a positive scaling factor (this is expected

since the contractive mapping holds true for the quotient space with Hilbert metric, that is invariant to
scaling.)

Although s™ is not unique, but S ® M is, since for arbitrary positive scaling /3
1 E[GS*GT]

B sl
—S*oM* =S5 @M

! ’
s*=8s"=—= M "* =

O

Therefore, Theorem [3.3|is a direct consequence by substituting F=I,9Mand F =S ® I, into
Eq. (13).
Next, we prove Theorem .1}

Proof. From the Theorem|[G.4] the iterative procedure for Q can be simply obtained by taking the
diagonals of M:

_ Diag (IE [GSG’T])
15113

Following the same proof strategy of Theorem|[G.4] we substitute @ into the update of S and re-write
it into the vector format. First, let’s rewrite the update of .S

S o]E[Z G?in]
j=1

S =
llall3
where P = E[G?]. Similarly, g = ”1;‘52' Thus,
2

s =a(s)PTPs

From the assumption P contains only positive values, we can follow the exact same argument made
in Theorem [G.4]to show the convergence of this fixed point update and the positivity of the final
solution s*. Precisely, s* and g* are the right and left principal singular vectors of P, respectively,
and S* ® Q* are unique. O

29

Under review as a conference paper at ICLR 2026

G.4 PROOFS OF[GADAM]

G.4.1 PROOF OF THEOREM [3.4]

Proof. For simplicity, we omit the subscript f in Uy. If we assume all D; are equal and only contain
positive values, then each block UD,;UT are the same for all 4, and it is matrix. Then, to
minimize the the loss Eq. (2)), we can directly leverage the whitening results in Theorem [3.3] and
obtain M* = E[GG™]. Due to the structure of U DU, the optimal U* is exactly the eigen-matrix
of M*.

Next, we prove for any fixed U, we can find the corresponding optimal D;. From the block diagonal
structure and Theorem |G.1} we have

IF — FII%
=Y IIUDUT|3 —2Tr (UTElgigl TUD;) + C

i=1

n
=Y D% —2Tr | UT Elgig/]UD; | +C
——

i=1 H,

=3 >"D?;; 2> > Diju] Hiu; +C

i=1j=1 i=1j=1
Taking the derivative w.r.t. D; ;;, we can find the optimal D; ;; is
T
Dj j; =u;j Hyu;
T,)2
=E[(u; 9:)7]

Now, by simple algebra manipulation, we have
D; = Diagy, (E[(U" g)))
where Diag,, is to expand the vector to a diagonal matrix. Finally, for ﬁ, we have
D = Diag (E[(UTG)?)) (38)

The optimality of D can also be obtained by leveraging the Lemma 1 in (George et al.,2018)), and
set the eigenbasis as I,, ® U. O

G.5 PROOF OF THEOREMIG.§]

Here, we present the following proposition that analyzes the issue casued by using low-rank tracking
Q@ compared to the true Q:

Proposition G.8 (Subspace switching). Assuming the setup mentioned above and all assumptions
of| are satisfied. We further assume the low-rank U € R™*" is obtained at the beginning
of i + 1 time block by EVD(QY},.,) where Q7 is the true tracking state. Further, we assume the
stability of the eigen-basis such that gradient G during i + 1 time block shares the same eigen-basis
as Q7. Then, we have the following for true statistics QZ‘Z 1y G the end of the i + 1 time block:

(i+1)k 4Dk
QZ‘Hl)k = Z GthT = Z GtG? + UcEtUcT (39)
t=ik+1 t=ik+1

where ét = Ua, is the low rank reconstructed gradients, 33, € R(m=r)x(m=r) jg 4 diagonal matrix
with positive values, and U is the complement eigen-basis such that (U , U.| will form the complete
eigen-basis of Q7.

Proof. Within the time block ¢ + 1 with low-rank mapping U, the gradient at each step can be
decomposed as

G, =UU"G,+ (G, -UUTGy)
—_ ——

G Ry

30

Under review as a conference paper at ICLR 2026

Therefore, the true state szi 1)k Can be simplified as

(i+1)k
Qurnk = Z GG}
t=ik+1
Dk N
= Y (Gi+R)(Gi+R)"
t=ik+1
(i+1)k
= Z G.G! + G:R{ + RG] +R,R{
t=ik+1 ——

The third equality is obtained because we assume GG shares the same eigen-basis as Q.. Namely,
A, 0 Ut
a4 2[4
=UAU" +USU!
where A; and X, are diagonal matrix. Then, we have
G.R!
=UU'G,(U.U'G)"
=vuT(vaAUT Uz UNUUT

-vA, UTU. U v UUTU,. . UTUUT
S~—— S~——

0 0
=0
In addition, we can also simplify
R.R}
=U.U!G:G{UU}
=U.UlvAUT +US,UNHUUT
=U,3,UT
Therefore,
(i+1)k
Qlir1r = Z GG} +U.zU!
t=ik+1

G.6 PROOF OF THEOREMI[G.9]

Here, we prove the following theorem to analytically search for the optimal scaling S; by minimizing
the reconstruction error under Frobenius norm:
Theorem G.9 (Optimal compensation). Assume that the conditions of| are satisfied. With the
proposed form of compensation (Eq. (I4)), minimizing [FIM] reconstruction loss
||(St_2 ® UCUCT) - Fc“%‘
admits analytic solution:
m—r

Diag(S;) =
8= Eirer-vwre))

(40)

where 1,, € R™, 1,. € R" are the column vectors with element 1 and ? is element-wise square.

31

Under review as a conference paper at ICLR 2026

Proof. For simplicity, we ignore the subscript ¢ for the following proof. First, we let O = S~2 Then,
the loss function can be written as

||O ® UcUcT - Fc”%‘

=> 10:UUL % - 2Te((0UUN) T (UMUY))

i=1

=Y |05UU|[3 — 2 Tr(0; M;)
i=1
ZO c, 7]9 2TI‘(O”M1)

i=1 k=1 j=1

where M; = Diag(E[(U” g;)%]), g; is the i column of G, and U, j, is the element in j™ row, £
column of U,. Then, we take the derivative w.r.t. O;;, and we have

204 Y > Uz =2 Z E[(UL g:)]
k=1 j=1 k=1
E UT : 2
0, = Bk (Uc gi)i]
m-—-r

This form still requires the access to U.. Next, let’s simplify it. First, let U = [U,U,] to be the
complete basis, we can show

Now, let’s re-write the above in a different format:

NE
(S
~
Q
=

k=1
= Tr(gin]UTgi)
= Tr(ﬁTgigile)

g;]glgz U, U])

(UU (gig]) + UU (g:9]))
r(U”g:))" (U g:)) + Te(UL g:)" (UL g:))

7 N
| — |

I
ﬁﬁﬁ =

m-—r
Ung + Z Ung
k=1

>
Il
-

Therefore, we have

E[i U g)3] =Elgl'g:i — > (U g)3]
=1 pa

So, we have
[1T G? — 1T(UTG)]

m

m—-r

32

Under review as a conference paper at ICLR 2026

and
m-—r

VEALG? - 11 (UTG)?|

Diag(D) =

G.7 PROOF OF THEOREM [E.T]
Proof. The proof strategy is a straightforward combination of Theorem 3.2]and Theorem[3.4} First,
when we assume D has the Kronecker product structure, one can easily write
(UR & UL)(SR (9 SL)(UR (9 UL)T
=(Ur®Uy) [(SrRUE) ® (S.UL)]
= (UrSrU}) © (ULSLUY)
A B

Therefore the loss (Eq. (2))) becomes

lAB - CC|%
where C = E[gg7]=. This is exactly the formulation used in Theorem 3.2{with R: = UgS rUEL
and L}, = U, S, UT.
Thus, by directly utilizing Theorem [3.2] we can see the optimal solution
UrSiUL = E[GT G
U.S?U! = E[GGT]

Due to the structural assumption of Uy, Ur, Sg, S, their corresponding optimal solution can
directly obtained using eigenvalue decomposition.

Now, let’s prove the optimal D with any fixed Ug, Uy. This is also straightforward by applying the
same technique as Theorem[3.4] The loss can be written as

|(Ur®UL) D (Ur@UL)" —F|%
I nr

—|uDu’ |2 - 2T (HTE[ggT]Hﬁ) +C

Since it is easy to verify orthonormality of II, i.e II”TI = I, the above is simplified to

|D|# — 2 (N7Elgg" D)
=Y D% -2 Dyl Elgg" [,
i=1 i=1

where [I1]; is the i column of matrix IT. Then, by taking the derivative, the optimal D;;:
Dj; = []7 E[g Vec" |[I1];
=E[([11]] §)*]
Therefore,
Diag(D*) = E[(II"§)*]
=E[(Ux ® UL)g)’]
= Vec((E[U{ GUR)))

= D* = Diag,,(E[(Uf GURr)?)))

33

Under review as a conference paper at ICLR 2026

H CONVERGENCE OF

In this section, we will prove the convergence of under the continuous-time setup. We initially
want to adopt the convergence proof techniques from GaLore (Zhao et al., [2024a). However, the
major drawback of their approach is the assumption of the fixed projection U. In practice, one
will not fix the projection, and instead, it is crucial to switch different U to achieve satisfactory
performance. Therefore, this mismatch requires us to find an alternative technique that can handle the
time-varying U. (Maddison et al., [2018) proposed an elegant framework for analyzing the behavior
of optimizers by converting the optimizer updates into continuous-time ODEs and examining a
suitable Hamiltonian function. This approach has been recently adopted to analyze the optimizers’
convergence behavior (Nguyen et al., 2025; (Chen et al., 2023).

Let’s first write down the discretized update of

-uvu'a
Wi=Wi_1—1 +vm 7" t)

(\/>+€ \/74—6
M, =M1+ (1-p)U"G,
= BoVie1 + (1 — Bo)(UTGy)?
@, = 1P 1+ (1 - B, 1LGF — 17 (UTG)?)
=B H 1+ (1 - 611,15 (G, — UUTGy)?

m

where 7) is the effective learning rate, U € R™*" is the low-rank projection, A2 % and /- are
elementwise operations for any matrix A, B.

Next, we can convert the above discretized update into continuous-time ODEs:

th Mt Gt - UfUtTGt
Ut ot T e M

dt P Vite YUTTTTU®, +e
dM,

dtt =U/G; -

dv;

7; = (UG’ -V,

it

% = 1,10 (G, — U U G,)? — @,

Ut = T(t, Gt) (41)

where 7(+, -) can represent a mapping from gradient G; (and the history of gradients) to the low-rank
projection matrix Uy.

To show the convergence, we need to design a key quantity called Hamiltonian H (W;, My, V;) such
that it satisfies:

an H(W;, M,,V;) = H‘}[;?E(Wt) (42)

where L(W) is the loss function we want to minimize. This property ensures that the minimization
of H is equivalent to the minimization of the actual loss function.

With this property, i f dH < 0, we can show the Hamiltonian is non-increasing, and it will reach to a

local optimum (i.e. dt = () at the end. We can analyze the state W, M; and V; under ddlf =0,

and if this leads to Gy = 0, we can prove the weight ODE trajectory will reach to a local optimum of
the loss function £L(Wp).
We propose the following Hamiltonian:
1 M,
HW, M, V) = LW+ - (——, M, 43
(Wi M, Vi) = W) + 5 (M) “3)
where (A, B) = Tr(A” B) represents the matrix inner product.

Before the proof of the convergence, let’s first prove a lemma.

34

Under review as a conference paper at ICLR 2026

Lemma H.1. Assume matrix A has constant columns with positive values, then for any positive
semi-definite projector P, we have
PG
<, G > > 0. (44)

A

Proof.

PG
(=)

e
M:

s
Il
-
~
Il

ikGik
1

(PG)zk
(€73

Y.
M:

sz

>~
Il
-
<
Il

1

GIPG, >0

[
=]
2|~

k

=
Il
_

where ay, is the value of the k™ column of A and Gy, is the k™ column of matrix G. The last
inequality is from the definition of positive semi-definite projector. [

Next, we prove the convergence of

Theorem H.2 (Convergence of [Alice). Assuming the ODEs defined in Eq. satisfies the assump-
tions of[Alice| with the Hamiltonian defined in Eq. @3), it satisfies

dH

o S <0 (45)

and 42 = 0 implies G, = ag(V“}f‘?) 0.

Proof. First, we write down the form of %I:

dH _ / 0H dW, N OH dM, N OH dV;
dt ~ \owW,’ dt OM,’ dt oV, dt

M, —-U,UTG, M, -
—(G, U, vm — U/ G, — M,
(Gt g, + V=TS i)+ vre -)

- <m(%+6)2,<w G - Vi)

M, G, - U UG, M, T
= (G U——) (G, Vm -t ——t _vulc
< " t\/Vt+e> < PV v e - VVite T

™)~ i re e OFE V)

GtUtU,TGt> < M, > 1< M? . 2>
- vm=r{a, i M) -~ (et (UTG,
o < . 7o M) i (s W6

Term 1 Term 2

*Km&lvfmf@

35

Under review as a conference paper at ICLR 2026

It is clear that Term 2 is non-negative. So, we first examine the remaining terms (i.e. other terms
except Term 1 and 2). Let denote \/]“T/I:_e = O for simplicity:
t

oo ()

=ZZi@ Vi — 04 M,

=1k

:i 1 Mj\/Viik M2

<4 (Vtzk+€) Vi + €

Now, let’s examine Term 1:

— T T
<Gt> G- U Gy Gt> = <Gt, Yl G Gt> >0
@t —|— € Qt + €

where U, € R™*(m=7) ig the complement basis of U such that [U, U, will form the complete
orthonormal basis. The last inequality is from Theoremwith P=UU!I A=® +e ltis
also trivial to see ®; contains constant columns with non-negative values.

Thus, combining the above, we prove dH < 0. Next, we consider the behavior when Hamiltonian

reaches the local optimum. When 4 d = 0, we can immediately see M; = 0, U/ G; = 0 and

G—UU; Gt \ __
<Gt, W> =0.

‘We examine the last term:

<Gt7 Gt - UtUtTGt>

t

VP + €
zk UU G)
= =0
R

Gi(UUIG), Gi(UULIG);
:sz Jie. | GinUU Gi _

i=1 k=1 Vi, + € Vi, + ¢
G; UUTG UTU G);

ézz ik (+)k:O

i=1 k=1 Vi, + €

n G2

N S S S

=1 k=1 ke
:>Gt:0

Therefore, the weight trajectory W; will reach to a local optimum of the £(W;) when % =0. O

I FURTHER DISCUSSION
1.1 CONNECTIONS BETWEEN DIFFERENT STRUCTURAL ASSUMPTIONS

Here, we will make explicit connections between different structures in terms of their generality.

generalizes Adam Since the structure behind [Gadam|is Diags(UD, U, ..., UD,U7),
when constraining U = I,,,, the resulting structural is pure diagonal matrix Diagg (D1, ..., Dp).
This coincide with the pure diagonal structure behind Adam.

36

Under review as a conference paper at ICLR 2026

generalizes S @ M not only extends Adam, but also generalizes the structure
considered in Theorem Consider setting D; = .S; D, then we have

UD,U" = S, UDU”
—
M
Therefore, Diagg(UDU7T, ..., UD,U") = Diagg(S1 M, ...,S,M). Since the structures of

normalization and whitening are special cases of Theorem|[G.4] generalizes these two gradient
operators as a consequence.

SOAP generalizes We can re-write the structural assumption of in the Kronecker
product format:

Diagg(UDU”,...,UD,U") = (I 2 U) Diagg(Dy,...,D,)(I@U").

D

It is clear that this is a special case of SOAP structure by containing Ur = I.

SOAP generalizes Shampoo The structure of Shampoo consists of two [SPD|matrices R,, and L,,.
If we eigen-decompose those, and let R,, = Ur D RUE and L, = U, D Uj , then the structure of
Shampoo can be re-write as

R: o LE
—(UrVDrUR) ® (Up\/DLUY)
=(Ur®@Uy) (vVDr® D) (UL @ UF).
N————

D

This coincides with SOAP’s structure when the positive diagonal D can be decomposed based on
Kronecker product.

1.2 MEMORY CONSUMPTION COMPARISON

Apart from the Table[T|provided in the main paper, we also include the memory consumption of
more optimizers.

Adam | GaLore Fira |Alice] |Alice-0]
Total 3mn mn+2nr +mr mn+2nr+mr mn+2nr+mr+r>+n omn+2nr +mr+n
Weight mn mn mn mn mn
First moment mn nr nr nr nr
Second moment | mn nr nr nr nr
U N/A mr mr mr mr
C; N/A N/A N/A n n
Q N/A N/A N/A r? N/A

Table 5: The memory consumption of low-rank optimizers. Here, we assume the weight has a shape
m x n withm < n and 7 < m. Note that memory consumption n and r? is typically very small.
For example, let’s take the largest possible n = 30K at the output layer. For 1B LLaMA, we select
r = 512, leading to r? ~ 262K, which is 8x larger than n. However, both are marginal compared to
mr = 5120 x 512, which is 10x larger than r2, and 80x larger than n.

1.3 COMPARISON TO PREVIOUS [FIM] APPROXIMATION

The idea of efficiently approximating the is not novel, and has been extensively studied in the
previous work. KFAC (Martens & Grossel [2015)) is a well-known second order optimization algorithm
for neural networks based on structural approximation to In particular, they explicitly express the
in terms of the gradient w.r.t this layer’s output and the input to this layer. Namely, they directly
decompose the gradient G used in our paper, whereas in our paper, we treat G' as a whole quantity.
In addition, the original KFAC also makes one crucial approximation: E[A ® B] ~ E[A] ® E[B].
They do not show theoretically whether this is a good approximation and under what metric, but

37

Under review as a conference paper at ICLR 2026

argue in practice this gives good accuracy. Last but not least, the original KFAC considers the [FIM]
for entire layers, and each block (i.e. corresponding to each layer) under their setup is actually the
entire |[FIM| we aim to approximate. To be precise, the principle is to structurally approximate the
diagonal block of KFAC without decomposing the gradient G using KFAC.

Another more related work is AdaGrad (Duchi et al., [2011). If we only considers layer-wise gradient,
the full AdaGrad matrix is the 23:1 g:gt. Although our principle is to approximate in
practice, we use as the approximation of E. Therefore, our principle can also be viwed as
a structural approximation to full EMA|] AdaGrad matrix. Under this view point, there are some
previous work on structural approximations. Shampoo (Gupta et al.,|2018)), was originally proposed
as an approximation to full AdaGrad matrix under the online learning setup. However, they do
not explicit show under what metric this approximation is based on, and whether it is optimal or
not. Later, there is a follow-up work (Morwanti et al., 2024), showing that Shampoo is a 1-step
power iteration algorithm of optimal Kronecker product approximation to [FIM]under Frobenius norm
(Koroko et al.}2022)). In this paper, we further extend the idea of approximating @}’AdaGrad matrix
to more efficient structures, under Frobenius norm.

1.4 SOLUTIONS TO GENERAL BLOCK DIAGONAL STRUCTURES

Here, we present the solution of the most general block diagonal approximation to [FIM| and discuss
why this is not practical.

Proposition .1 (General block diagonal approximation). Assume F = Diag(M,, ..., M,,) with
SPD|matrix M; € R™*™, then minimizing Eq. admits analytic solutions:

M; = E[gig]] (46)

where g; is the i™ column of G.

Proof. This is straightforward by taking the derivative w.r.t. M;. By leveraging Theorem[G.I] we
have

17— F|%

= |IMi|% — 2 Tr(M[E[gig]])

i=1

Then, taking derivative w.r.t. M;, we get
M; = E[gigiT]
L]

From the above, although it admits analytic solutions, its corresponding practical procedure requires
the EMA]to estimate E[g;g7] € R™*™ forall i = 1,...,n, leading to expensive memory cost nm?.
Another issue is that it does not allow efficient computation of the inverse. From the property of block
diagonal matrix, to compute F' *%g, one needs to invert each M, incurring O(m?) computational

cost. In total, the computational cost of inverting matrix Fis O(nm?). Due to both memory and
computational constraints, this structural assumption does not lead to practical algorithms.

1.5 CONNECTIONS TO EXISTING OPTIMIZERS

Lars and Lamb Lars and Lamb (You et al.l 2017;[2019) relies on the normalization operation of
the gradients. The main difference is that Lars proposed to normalize the raw gradient, whereas Lamb
normalizes the processed gradient from Adam optimizer. They also involves a scaling parameter that
is a function of the weight. Compared to the normalization discussed in Sec. [3.3] the main difference
is that we use channel-wise normalization with unit column or row norm, whereas Lars/Lamb uses
matrix-wise normalization where the norm of the matrix is regularized to be 1. However, if one
vectorizes the matrix weight into a vector, and stacks those vectors into a larger matrix. Then, Lamb
and Lars can be viewed as a 1-sample approximation to under the structure considered in

Sec.33

38

Under review as a conference paper at ICLR 2026

Muon Muon (Jordan et al.,|2024) performs the whitening operation on the momentum. Sec.
gives a brief introduction. In fact, Muon can be viewed as a special case of Eq. (3) in Theorem [3.3|by
considering the following approximation:

E[GGT] ~ E[GIE[GT]. (47)

Thus, the resulting operation becomes the whitening of the E[G], which is estimated by the momentum
in practice. One potential mismatch of the gradient whitening from the original Muon (Jordan et al.|
2024) compared to Theorem is the lack of the coefficient y/n, preventing the parameter update
to adapt to the shape of the weight matrix. Later, (Liu et al., [2025) found that this term is critical
for large-scale LLM training, and add it back to further improve Muon. Their argument is from the
empirical intuition to match the update RMS norm of Adam, whereas our Theorem 3.3 proved that
this is indispensable from a theoretical perspective.

Another advantage of Muon is its relatively low memory consumption compared to Adam since it
only requires the storage of first moments. However, our proposed [Alice] uses less memory than
Muon. Let’s consider a weight matrix with shape m x m, and [Alice|uses a rank 0.25m, which is
consistent to the setup for experiment. Thus, Muon will use m? memory for state andwill only
consume %m{ 20% less memory than Muon.

SWAN SWAN composes the gradient normalization and whitening operations as the replacement
of Adam’s first and second moments. Each individual operations can be viewed as a special case of
Theorem 3.3] However, Sec. does not provide an explanation for composing these two operators.
Namely, the whitening operator is estimated using normalized gradients, rather than the raw gradient.
We will leave the investigation of operator composition for future work.

Adapprox Adapprox (Zhao et al.,[2024b) uses low-rank approximation for Adam’s second moments
through randomized [SVD]to boost the memory efficiency. However, its performance will be similar
to Adam. In fact, Theorem[d.T] of proves that the converged s and g represents the right and
left singular vectors, coinciding with the rank-1 reconstruction. However, the proposed is
different from rank-1 Adapprox in three main aspects: (1) Adapprox proposes to use low-rank [EMA]
tracking on G2, whereas we use directly on scaling vectors s, g. The resulting vectors are
no longer singular vectors; (2) we do not have separate scaling apart from norm-growth limiter and
user-defined scale, whereas Adapprox uses the scaling from Adafactor; (3)[RACS|do not use any first
moment. Specifically, (1) is an important difference, since for any low-rank reconstruction with rank
r > 1, it is not guaranteed to be positive, causing numerical issue during square-root inverse scaling.
Adapprox adds a manually defined offset to ensure positivity. On the other hand,[RACS|is guaranteed
to have positive s, g at each step from Perron-Frobenius theorem. Therefore, RACS|is numerically
stable.

Adafactor Adafactor (Shazeer & Stern, 2018)) is another optimizer that uses rank-1 approximation
to Adam’s second moment. However, their scaling is derived by minimizing a different norm,
compared to Frobenius norm in this paper. Adapprox Zhao et al.| (2024b) has demonstrated the
advantages of using Frobenius norm compared to Adafactor with a slightly better performance on
LLM training.

AdaDiag and one-sided SOAP We acknowledge that there exists two concurrent work: AdaDiag
(Nguyen et al., 2025) and one-sided SOAP (Vyas et al., [2024), that are mathematically equivalent
to They are derived based on distinct view points. AdaDiag is based on the intuition to
transform the gradient covariance matrix so that it is diagonalizable, where this diagonal matrix is
estimated using Adam’s second moments. One-sided SOAP, a memory-efficient version of SOAP,
is proposed to based on intuitions that only one-sided eigenspace is enough for LLM training. On
the other hand, [Gadam)is derived on the basis of the structured [FIM] view point. providing a deeper
connections to optimizers considered in this paper.

Apollo There is one concurrent work, Apollo (Zhu et al.}|2024), that is also based on scaling the
raw stochastic gradients for memory-efficient LLM training. It proposed to scale columns OR rows
of the G through a scaling matrix estimated by similar procedure as Fira/Chen et al.|(2024a). The
main idea is that column or row norm after scaling matches the column or row norm of the gradient
from GaLore update. Thus, they require a GaLore procedure to compute this update at each step. Our

39

Under review as a conference paper at ICLR 2026

proposed [RACS]scales both columns and rows at the same time. The main differences are: (1) the
scaling estimation in [RACS]is different from Apollo; (2) the scaling scheme of RACY]is inspired
by the generalization of normalization, providing theoretical support. They enjoy a similar memory
consumption (i.e. mn + 2n + 2 of Apollo compared to mn + m + n + 1 of RACS).

Fira Fira/Chen et al.|(2024a) was proposed as an improvement towards Gal.ore, which modifies
the low-rank update to full-rank one by adding a compensation term. Their idea is similar to the
compensation used in[Alice] The main differences is that our proposed compensation is inspired
by approx1mat1ng@ and has the theoretical foundation on its optimality. Also, the compensation
strategy is different to Fira. We have conduced the ablation study in Sec. [6]to show the advantage of
our approach.

GaLore Comparing the[Alice] procedure to GaLore (Algorithm[8), we can clearly see that GaLore
is a special case of by disabling tracking, switching and compensation. These three steps flows
naturally from the structural approximation view point. This shows the advantage of this view point
compared to ad-hoc choices when designing new efficient optimizers.

1.6 DISCUSSION OF LOW-RANK EXTENSION FRAMEWORK

First, we derive how to decompose the full-rank update of into low-rank update and its
residuals in the main text. We assume U = [U U } where U, U, are defined in Sec.

1 ~

Mat F’ 2g
UTG)2

UT
or]

(5]e)]
vre]
H%D]

_ U'c¢

:[U U] V [(UTG)]

e

c

:[Uv Uc]

:[Uv Uc]

E(UZ)]
UG Ul'G

+ U,
E[(UTG)? E[(ULG)?]

Moore-Penrose inverse In Eq , we define F'~2 using the pseudo-inverse since each block
in F, is low-rank and not 1nvert1ble To be precise, for any block U,.D_; U7, its pseudo-inverse
can be easily verified as U.D Cll U7 by checking the definition. Similar to typical inverse, for any

block diagonal F., the pseudo-inverse is equivalent to applying pseudo-inverse of each blocks. The
square-root pseudo inverse can be defined through a similar way.

Similarly, for the proposed compensation, we can easily verify its vectorized format (ignoring the
subscript ¢ for simiplicity)

Vec(UU'GS) =(S @ U.UT)G
=($2@UUT) 3§

where the ~2 is the pseudo-inverse as the above. The second inequality can be easily verified
by the following facts: (1) the square root pseudo inverse of U.U. is itself; (2) the square root
pseudo-inverse of block-diagonal matrix is the pseudo-inverse of each individual block.

40

Under review as a conference paper at ICLR 2026

J EXPERIMENT DETAILS

In this section, we will include the detailed setup, hyperparameters and additional experiment results.

K IMPLEMENTATION DETAILS OF BASELINES

GaLore We leveraged the official GaLore package released by the author (https://github.
com/jiaweizzhao/GaLore).

Fira Since the main difference compared to Gal.ore is the additional compensation term, we follow
the implementation of the official Fira repo (https://github.com/xichen-fy/Fira)) and
add the compensation to GaLore.

K.1 EXPERIMENT SETUP FOR PRETRAINING LLAMA

We use context length of 256 and batch size of 128 with 4 gradient accumulations, apart from 60M
and 1.3B (batch size 256 with 2 gradient accumulations). [RACS|and[ATice] are applied to all linear
modules of attention and MLPs, others are optimized with Adam. We use the first 10% of the total
training steps as the warm-up, followed by a cosine learning rate decay to 10% of the original learning
rate. For hyperparameters, we perform a grid search on our proposed RACS] as well as GaLore,
Fira and full-rank Adam. For other methods, we directly cite their results in (Zhu et al., [2024)). For
Adam, we use 0.9 and 0.999 for 51 and f5, and enable the bias correction without weight decay.
Table [6] summarizes the hyperparameters used for both GaLore and Fira. Table [7] summarizes the
hyperparameters for Adam optimizer. Table[8]and Table [[0]summarizes the hyperparameters used
for [RACS|and respectively. In addition, for all methods with Fira limiter, we use threshold
v = 1.01 as suggested in [Chen et al|(2024a). For RACS| we use Adam to train the last layer of
LLaMA, following the same setup as Apollo for fair comparison. In summary, GaLore and
Fira do not use Adam to train the last layer to fully test the capabilities of low-rank methods, whereas
Apollo, and Adam utilize Adam for last layer. The total training steps for 60M, 130M, 350M
and 1.3B are 10K, 20K, 60K and 100K, respectively. These correspond to 1.1B, 2.6B, 7.8B and
13.1B training tokens, summarized in Table [0} All experiments are conduced on NVIDIA A100
GPUs.

Table 6: The hyperparameters for GaLore and Table 7: The hyperparameters used for Adam

. optimizer.
Fira - -
learning rate update scale rank update interval learningrate 81 2 correct bias
60M | 0.02 0.3 128 200 60M 0.001 0.9 0.999 True
%ggﬁ 885 83 ggg %88 130M | 0.001 0.9 0.999 True
b : : 350M | 0.001 0.9 0.999 True
138 | 001 025 o1z 200 13B | 7x107* 09 0999 True

Table 8: The hyperparameters Table 9: Model architectures and training steps

for[RA Cl Sl ; T : Hidden Intermediate Heads Layers Steps Data amount
carning rate scae a 60M | 512 1376 8 8 10K 1.3B
?gg"M 8'8% 843 882 130M | 768 2048 12 12 20K 2.6B
350M 0'02 0‘9 0‘05 350M | 1024 2736 16 24 60K 7.8B
138 | 0.02 09 002 1.3B 4096 5461 24 32 100K 13.1B

Table 10: The hyperparmeters for [Alice] optimizer

learning rate scale @« compensationscalea, (1 (2 (3 update interval X' rank r leading basis number [
60M | 0.02 0.3 0.4 09 09 0.999 200 128 40
130M | 0.02 0.3 04 09 09 0.99 200 256 40
350M | 0.02 0.3 0.4 09 09 0999 200 256 40
1.3B | 0.02 0.25 0.2 09 09 0999 200 512 160

41

https://github.com/jiaweizzhao/GaLore
https://github.com/jiaweizzhao/GaLore
https://github.com/xichen-fy/Fira

Under review as a conference paper at ICLR 2026

K.2 SETUPOF 1B V.s. 7B

We mainly follow the setup as (Zhu et al.| 2024). For 1B model, we use 16 per-device batch size
with 8xA100s and 4 gradient accumulations, which is 512 batch size in total, same as 7B model.
For [Alice] we use learning rate 0.02, scale « = 0.3 and compensation scale o = 0.2 with rank
r = 512, leading basis number [= 160. We also use full-rank Adam to train the last layer for better
performance. For memory estimation, we assume the use of BF16 format. For 8-bit optimizers, we
assume weights are stored in BF16, but optimizer states use FP8. Galore uses r = 1024 for 7B
model.

K.3 MEMORY ESTIMATION

Following the setup of Zhao et al.|(2024a)), we provide the estimated GPU memory for each optimizers
due to the difficulty of directly measuring their practical memory consumption without considering
the activations, internal storage for gradient, etc. We assume BF16 format, which consuming 2
Bytes per element. For example, 1273M parameters are optimized by and 65M parameters are
optimized by Adam for 1B model with rank 512. Therefore, [Alice] part will consume 3.86GB and
Adam will consume 0.37GB, summing to 4.42GB for [Alice| optimizer.

We also report the actual memory footprint with BF16 format. We use token batch size of 25,
following the same setup as|Zhao et al.|(2024a)). "-layerwise" represents layer-wise training where
we only store the gradient of the current back-propagated layer.

K.4 THROUGHPUT ESTIMATION

We report both the actual throughput and effective throughput. The effective throughput of a target
optimizer compared to a reference optimizer is defined as the ratio of training tokens consumed from
the target optimizer w.r.t total time consumption of reference optimizer when reaching the same
evaluation loss of the reference optimizer at the end of training. Compared to the standard throughput,
this considers the speed-up effect.

K.5 ADDITIONAL PRETRAIN RESULTS

Fig. 2] presents additional training curves with 60M, 130M and 350M models sizes. For all cases,
the proposed [Alice] and [RACS| outperforms the baselines with noticable margin, and achieves clear
speed-ups compared to full-rank Adam.

K.6 RESULTS FOR ABLATION STUDIES

For all ablations, we consider 130M LLaMA model.

Setup: ablation of tracking We disable the compensation step, and verify the effect of low-rank
tracking under our proposed switch strategy or purely replying on The other hyperparameters
follow the pre-training setup as Sec.

Setup: switch strategy For this setup, we enable low-rank tracking. Apart from Gaussian, we use
40 as the leading basis number. The Gaussian distribution is a standard isotropic Gaussian with zero
mean and unit variance.

Setup: compensation strategy We enable the tracking and switching, but with different compensa-
tion terms. For Fira, we directly leverage the compensation proposed in (Chen et al.| (2024al)). Fira+
modifies original Fira by the following two steps: (1) rescale the Fira compensation to have the same
I norm as the [Alice]low-rank update; (2) multiply this compensation by a scale parameter like c. in
Algorithm 4] We found this empirical trick boosts the performance of Fira.

Effects of last layer One crucial setup difference during evaluation for low-rank methods is whether
the last layer is trained by full-rank Adam or not. Most previous work train the last layer, arguably
one of the most important layer (Zhao et al.|[2024c)), using full-rank Adam. This effectively reduces

42

Under review as a conference paper at ICLR 2026

Eval PPL with model size: 60m

Eval PPL with model size: 130m

—— Adamw 3 —— Adamw
475 —— Alice —— Alice
—— Alice-0 —— Alice-0
—— RACS —— RACS
32
4.0 — Fira — Fira
—— Galore —— Galore
425 ~— Alice+Im head 30 —— Alice+Im head
2 —— Alice-0+Im head 2 —— Alice-0+Im head
& 400 38.9109 o
i = —28
= 333x] 2.86x 27.1857]
u>J 7 i \
26 \\ —
35.0 25.2148|
9% 33.9451)
2 00x 33.7729 2.00x 25.0323|
325 302541 24
29.7282) 22,672
29.333§ 22.4262
300
22
27 38869 1.7971
2000 3000 4000 5000 6000 7000 8000 9000 10000 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Update Step Update Step
(@) (b)
26 Eval PPL with model size: 350m
—— Adamw
—— Alice
—— Alice-0
24 —— RACS
—— Fira
—— Galore
—— Alice+Im head
L2 —— Alice-0+Im head
& 211181
= 4.00x
i
20
19.2485|
735
™ 2.26x 18.9339
18 166062
16.5122|
16.4288|
16 UL
10000 20000 30000 40000 50000 60000

Update Step

(©

Figure 2: Additional LLaMA C4 pretrain performance curve. (a), (b) and (c) represents the 60M,
130M and 350M, respectively. "+lm head" represents that the last layer of LLaMA is trained by
full-rank Adam.

43

Under review as a conference paper at ICLR 2026

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347

Throughput by Method and Model Size

100000 Adam
Galore
Fira
RACS
Alice-0
Alice

80000

60000

Throughput

40000

20000

Model Size

(a) Absolute throughput

2348 Effective Throughput by Method and Model Size

2349 B Adam

200000
[Galore
2350 Fira

2351 175000 = iﬁf:_o
2352 - Alice
2353 150000
2354
2355
2356
2357
2358
2359 50000
2360

2361 25000
2362

60m 130m 350m 1b
2363 Model Size

125000

100000

Effective Throughput

75000

2364
2365
2366

(b) Effective throughput

- Figure 3: Throughput of various methods. (a) this reports the absolute throughput, representing
the number of training token processed per second. (b) the effective throughput using Adam as the
2965 reference optimizer. This represents the absolute throughput adjusted by the speed-up factor. The

2989 effective throughput of GaLore is 0 since it under-performs the Adam.
2370

2371
2372
2373
2374
2375

44

Under review as a conference paper at ICLR 2026

Memory footprint of different optimizers and model size

Adam
Galore
[Z3 Galore-layerwise
Fira
ZA Fira-layerwise
EEm RACS
40| EEE RACS-layerwise
mm Alice-0
A Alice-0-layerwise
mm Alice
B Alice-layerwise

50

30

Memory Footprint (GB)

10

[

350m 1b
Model Size

Figure 4: The memory footprint of various optimizers. We use token batch size of 1 following the
same setup as[Zhao et al.| (2024d) under BF16 format. The suffix "layerwise" represents the memory
consumption when enabling layerwise training so that only the gradient of the current layer is stored.

the performance gap compared to full-rank method, and does not reveal their true capabilities. We
investigate the effect of the last layer to compared to GaLore. From the Table 2] we can see
that for all model sizes, GaL.ore and Fira are greatly affected by this effect. Training last layer with
full-rank Adam will boost their performance significantly. On the other hand, [Alice]is less impacted
with marginally worse performance. For example, Fig.[5(d)] shows the training curve comparison
with 130M model. When the rank is sufficiently large (i.e. 60M model), Fig. 2(a)] shows that using
Adam to train the last layer even decreases the performance. These serve as evidences that[Alice]is a
better optimizer than GaLore and Fira.

Effect of[EMA|in[RACS| The only internal states inside are the [EMA]tracking of two vectors

s and q. We investigate the importance of %me. From Fig. 5(e)} [RACS] without [EMA]

performs much worse than[RACS] suggesting the is necessary for satisfactory performance of

IRACYS!

Hyperparameter sensitivity analysis: Adam We consider 130M Llama model, and the other setup
follows the same setting as the pretraining experiments. For Adam, we consider a range of learning
rate from 3 x 1074 to 3 x 1073, 3; from [0.9,0.8,0.6,0.4] and 3> from [0.999,0.95,0.8,0.6, 0.4].
The total budget is 120 runs.

For 130M model, we found that the best performing hyperparameters for Adam are learning rate
0.001 with betas 81 = 0.8, 32 = 0.95. This achieves a ppl of 22.89. Surprisingly, apart fromRACS]|
(ppl 22.67) and [Alice] (ppl 21.95), fine-tuned Adam outperforms or is on par with all other candidates,
despite some of them claims to achieve better convergence than Adam. One hypothesis is that Adam
is sensitive to beta parameter, and most existing literature may use the untuned beta (i.e. 51 = 0.9,
B2 = 0.999) for comparison. Even compared to fine-tuned Adam, still achieves 1.4x speed-up.
Table[TT]reports a Adam performance with a selected set of hyperparameters. We observe that Adam’s
performance can drop significantly even by slightly changing the 3,. For example, with 5; = 0.8,
changing (s from 0.95 to 0.8 decreases the ppl from 22.89 to 24.51. Due to the expensive nature of
each run, fine-tuned Adam is not practical.

Hyperparameter sensitivity analysis: We follow the same setup as the sensitivity analysis
of Adam. We consider the following hyperparameters of (1) compensation scale o from
0.1 to 0.9; (2) update interval K from [50, 100, 200, 300, 400]; (3) rank r from [16, 32, 64, 128, 256];

45

Under review as a conference paper at ICLR 2026

Effects of low-rank tracking Effects of switch strategy

no switch no tracking —— full basis
36 no switch tracking i complement basis
switch no tracking —— gaussian mix
switch tracking —— gaussian
34 4
=32 =
Q Q
% 9
© ©
> > 30
@ 30 o 9.3646]
28 * 27.3643
26.9684 2
26 25.2637|
25.5181
2
Update Step Update Step
(a) Effect of tracking (b) Effect of switching
Effects of compensation strategy Effects of EMA scheme
— fira —— alice+Im head
2 fira+ alice
—— no compensation —— Galore + Im head
— ours * —— Galore
-
a =3
Q 5 o
I I
g 25.1149 g
D 25 [
24 30
23.604
27.1857
23 ~~
2
21.9562
2
Update Step Update Step
(c) Effect of compensation (d) Effect of last layer. "+lm head" represents the last

layer is trained by full-rank Adam.

Effects of EMA scheme

—— RACS
RACS w.0. EMA

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Update Step

(e) Effect of[EMA]in[RACS]

Figure 5: The pre-training curve to verify the effectiveness of the design choice. We consider 130M
model size.

Betas | (0.4,0.6) (0.4,0.95) (0.6,0.8) (0.6,0.95) (0.8,0.8) (0.8,0.95) (0.9,0.8) (0.9,0.95)
Ppl 25.18 23.44 23.79 23.05 24.51 22.89 24.90 23.36

Table 11: The validation ppl. of Adam optimizer with different choice of betas. Due to the large num-
ber of runs (120 in total), we only report Adam with Ir 0.001 and some selected betas combinations.
This is enough to prove that Adam is sensitive to hyperparameter selection.

46

Under review as a conference paper at ICLR 2026

Eigen-Space Cosine Similarity (Index 1)

Eigen-Space Cosine Similarity (Index 2)

1.01 1.04
0.8 1 0.8 1
Z z
£ 06 = 0.6
E —— no tracking no switch E
ﬁ ——— tracking no switch 2
E 0.4+ . % 0.4
o o
o o
0.2 0.2 1
—— no tracking no switch
0.04 004 tracking no switch
T T T T T T T T T T T v T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Step/Index in DataFrame Step/Index in DataFrame
(a) Index 1 (b) Index 2
Eigen-Space Cosine Similarity (Index 4) Eigen-Space Cosine Similarity (Index 8)
1.0 1.0
0.8 4 0.8
Z Z
& 0.6 5 0.6
E —— no tracking no switch E —— no tracking no switch
ﬁ ——— tracking no switch ﬁ ——— tracking no switch
£ 041 £ 0.4+ I
@ @
o o
: V : V
0.2 0.2 1 |
I A
0.0 1 0.0 1
T T T T T T T T T T T v T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Step/Index in DataFrame

(c) Index 4

Step/Index in DataFrame

(d) Index 8

Figure 6: The cosine similarity between eigenvectors per 200 steps. Since the update interval of
subspace is 200 steps, this essentially compare the similarity before and after updating the projection
U with a certain index. We always arrange the eigenvectors in a descending order based on the
eigenvalues.

47

Under review as a conference paper at ICLR 2026

and (4) leading basis number ! from [5, 10, 20, 40, 80, 160]. Due to the combinatorial nature, we only
change one particular hyperparameter of at a time and fix the others as Table[T0]

Tables [12] to [I5] shows the performance of under different choice of hyperparameters. We
observed that is not sensitive to the choice of hyperparameters. Among those runs (25 in
total), 23 of them outperform fine-tuned Adam, proving that the advantage of comes from its
principled design, rather than carefully selected hyperparameters.

Compensation scale o | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ppl. 23.04 2229 22.08 2195 2202 2205 2212 22.19 2227

Table 12: The performance of with different compensation scale c.

Update interval K | 50 100 200 300 400
Ppl. 23.01 22.09 2195 2199 22.09

Table 13: The performance of with different choice of update interval K.

Rankr | 16 32 64 128 256
Ppl. 2220 22.03 22.00 2207 21.95

Table 14: The performance of with different choice of rank 7.

Leading basis number ! | 5 10 20 40 80 160
Ppl. 2253 2233 2221 2195 2195 2190

Table 15: The performance of with different choice of leading basis number /.

K.7 GLUE FINETUNE PERFORMANCE

Although the primary goal of this paper is to design the efficient optimizer for pre-training LLMs, we
also conduct the preliminary finetune experiments with [Alicelusing GLUE (Wang| 2018).

Setup We follow the same setup as (Zhao et al.,[2024a) with RoBERTa (Liul 2019) model. We
select the rank r = 8 for both GaLore and Tables [I6]and [I7]reports the hyperparameters for
GalLore and[Alice] By default, we report prediction accuracy as the metric for most of the dataset.
For CoLA, we use Matthews_Correlation; and for STS-B, we report Pearson Correlation.

Table[I8]reports the GLUE finetune performance of Adam and[ATice] It is clear that[Alice]consistently
outperforms the GaLore across datasets. This is expected since each update step of [Alice]is full-rank
compared to the low-rank nature of GaLore. Also, Galore is a special case of

MNLI SST-2 MRPC CoLA QNLI QQP RIE STS-B

Batch size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning rate le-5 2e-5 2e-5 le-5 le-5 2e-5 2e-5 3e-5
Scale o 4

Sequence length 512

Update interval 500

Table 16: Galore hyperparameters for GLUE finetune experiments.

48

Under review as a conference paper at ICLR 2026

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning rate le-5 le-5 2e-5 2e-5 le-5 le-5 le-5 2e-5
Scale 4

Sequence length 512

Update interval 500

Leading basis number 8§ 3 8 3 6 6 3 6
Compensation scale 0.1 0.07 0.1 0.05 0.1 0.1 0.3 0.3

Table 17: hyperparameters for GLUE finetune experiments.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B | Mean
Galore | 87.31 94.72 89.71 60.34 9275 91.13 79.78 91.11 85.86
Alice 8745 9518 90.69 65.04 9290 9145 80.51 91.43 | 86.83

Table 18: The GLUE finetune performance of Adam and [Alice]

49

	Introduction
	Preliminaries
	Basic notations and setup
	Fisher information and natural gradient descent

	Structural Approximation to fim
	Adam: purely diagonal structure
	Shampoo: Kronecker product structure
	Normalization and Whitening: Simple block diagonal structures
	alicec and SOAP: Two generalizations of Adam

	ssgd: memory-efficient optimizer from a carefully selected structure
	alice: memory-efficient optimizer from low-rank extension framework
	Tracking: low-rank projections to reduce memory
	Switching: mixing leading basis with the complements
	Compensation: convert low-rank update to be full-rank
	alice optimizer and its convergence

	Experiments
	Pretraining LLaMA with C4 dataset
	Ablation and GLUE finetuning

	Conclusion and limitations
	Related Work
	ssgd and alice Algorithms
	Examples of diagonal operations
	Background
	Fisher information
	Kronecker product and block diagonals
	Operators for gradient: normalization and whitening
	Shampoo Optimizer
	SOAP/AdaDiag++
	AdaDiag and one-side SOAP
	SWAN
	Newton Schulz iteration
	Muon
	Lars
	Low rank optimizers
	Apollo
	Subspace iteration

	SOAP: A further generalization to alicec
	Derivation of update formula
	Shampoo's update formula
	Generalization to whitening and normalization
	Update formula for alicec
	Update formula for SOAP

	Theory and proof
	Proof of prop: adam solution
	Proof of thm: optimal shampoo
	Proof of coro: generalization to whitening and normalization and prop: two sided scaling
	Proofs of alicec
	Proof of thm: alicec 1 step refinement

	Proof of prop: subspace switching
	Proof of thm: optimal compensation
	Proof of thm: optimal asham

	Convergence of alice
	Further discussion
	Connections between different structural assumptions
	Memory consumption comparison
	Comparison to previous fim approximation
	Solutions to general block diagonal structures
	Connections to existing optimizers
	Discussion of low-rank extension framework

	Experiment details
	Implementation details of baselines
	Experiment setup for pretraining LLaMA
	Setup of 1B v.s. 7B
	Memory estimation
	Throughput estimation
	Additional pretrain results
	Results for ablation studies
	GLUE finetune performance

