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Abstract: Autonomous robot operation in unstructured environments is often un-
derpinned by spatial understanding through vision. Systems composed of multiple
concurrently operating robots additionally require access to frequent, accurate and
reliable pose estimates. In this work, we propose CoViS-Net, a decentralized vi-
sual spatial foundation model that learns spatial priors from data, enabling pose
estimation as well as spatial comprehension. Our model is fully decentralized,
platform-agnostic, executable in real-time using onboard compute, and does not
require existing networking infrastructure. CoViS-Net provides relative pose es-
timates and a local bird’s-eye-view (BEV) representation, even without camera
overlap between robots (in contrast to classical methods). We demonstrate its
use in a multi-robot formation control task across various real-world settings. We
provide code, models and supplementary material online1.
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Figure 1: Our model can be used to control the relative pose of multiple follower robots (depicted
in yellow and magenta) to a leader robot (blue) following a reference trajectory using visual cues in
the environment only (the field-of-view is depicted as colored area). Even if there is no direct visual
overlap (intersection of colored areas), the model is able to estimate the relative pose.

1 Introduction

Spatial understanding is a cornerstone of robotic operation in unstructured environments, relying on
effective pose estimation and environmental perception [1, 2, 3, 4, 5, 6, 7, 8]. While GNSS, LiDAR,
and UWB sensors have been instrumental in advancing robotics, they are limited by constraints
such as indoor operation, unreliability when operating around reflective surfaces or in bright envi-
ronments. In contrast, color cameras offer a low-cost, energy-efficient, and rich data source, aligned
with the vision-centric design of real-world, human-designed environments. Classical vision-based
techniques [1, 6, 5] struggle with the ill-posed nature of image processing, cannot leverage semantic
priors to resolve ambiguous situations, and may converge to a solution only after multiple time steps.
These challenges are exacerbated in multi-robot scenarios that require fast and accurate relative pose

1https://proroklab.github.io/CoViS-Net/
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Figure 2: By leveraging spatial priors, our model provides rough relative positions even without
overlapping fields of view, which classical approaches cannot achieve. This figure shows a sample
from the simulation validation dataset DSim

Val for five nodes, each represented by a column. The top
row displays the respective camera image Ii. The middle row shows the ground truth labels in the
coordinate system Fi, with each robot centered and facing upwards at (0, 0), and the ground truth
poses pi,ij of other robots, along with their field of view. The background shows the BEV represen-
tation BEVi for each robot. The bottom row presents the corresponding predictions, displaying pose
predictions p̂i,ij , R̂i,ij with low uncertainty σ2

p,ijσ
2
R,ij , predicted uncertainties σ2

p,iij as dashed oval
and σ2

R,iij similar to the FOV, and the predicted BEV representation ˆBEVi in the background.

estimates for tasks like flocking [9], path planning [10], and collaborative perception [11]. Explicit
agent detection [4, 3, 2, 7, 8] requires line-of-sight and is not platform-agnostic, whereas deep pose
predictors [12, 13, 14, 15, 16, 17, 18] show promise but have are not widely adopted in multi-robot
systems due to hardware constraints. Additionally, incorporating uncertainty metrics is essential for
assessing the reliability of predictions in these applications.

Acknowledging these limitations, we introduce CoViS-Net, a decentralized visual spatial foundation
model targeting real-world multi-robot applications. This model operates in real-time on onboard
computers without the need for pre-existing network infrastructure, thus addressing critical scalabil-
ity, flexibility, and robustness challenges. CoViS-Net features a distributed architecture designed for
uncertainty-aware pose estimation and BEV representation prediction in areas without local camera
coverage. We demonstrate its effectiveness in real-world scenarios, including multi-robot control
tasks in real-world indoor and outdoor environments.

In summary, our contributions are threefold: (1) We introduce a novel architecture for decentralized,
real-time multi-robot pose estimation from monocular images, with built-in uncertainty awareness.
(2) We extend it to predict BEV representations, facilitating spatial understanding in occluded areas
through communication and by leveraging spatial priors. (3) We validate our model in the real-world
for a multi-robot control task, demonstrating robustness even in scenarios with no image overlap.

2 Related Work

Multi-robot systems require coordination of fast-moving robots in close proximity, necessitating
spatial understanding and accurate pose estimates. Key applications include flocking [9], formation
control [19], trajectory deconfliction [20], multi-agent object manipulation [21, 22], area cover-
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age [23, 24], and exploration [25, 26, 27, 28]. Recent advances use Graph Neural Networks (GNNs)
for enhanced control and perception, enabling inter-robot communication through latent messages
to address the challenge of partial observability [29, 30, 31, 32, 33, 34, 35]. Environment inference
deals with predicting unobserved environmental information [36, 37]. However, a significant gap
remains in acquiring relative pose knowledge with uncertainty estimates.

Map-free relative pose regression [17] estimates the relative pose between two camera images
without scene-specific training. Traditional methods [38] and learning-based approaches [39, 40,
41, 42] require significant visual overlap between views. Integrating scale involves depth maps or
Siamese networks [12, 43, 44, 45, 14, 13, 15]. These models lack uncertainty estimates, limiting
their robotics applicability, and have not been tested in real-world, real-time deployments. Our
approach provides reliable relative poses with aleatoric uncertainty estimates, beyond visual overlap
constraints, using unmodified pre-trained foundation models, enabling transfer learning [46].

BEV representations are an effective way of providing detailed spatial comprehension by merg-
ing data from a set of sensors. Learning-based approaches have recently gained popular-
ity [47, 48, 49, 50, 51]. Multi-agent scenarios [34, 33, 52, 35, 53, 54, 25] rely on GNSS for global
pose knowledge, precluding application to indoor environments, or rely on an existing SLAM stack.
Our work proposes a BEV representation predictor that utilizes relative poses predicted from monoc-
ular images, instead of known static poses of a camera rig or poses derived from external sensors.

Foundation models are large neural networks trained on broad data using self-supervised learning,
exhibiting emergence and homogenization [55]. These models, often based on the transformer ar-
chitecture [56], span several types: Large Language Models (LLMs) [57, 58], vision models [59],
Vision-Language Models (VLMs) [60, 61], and Vision-Language-Action Models (VLAs) [62, 63].
Recent trends include open-source development [64, 63] and significant scaling of model parame-
ters. Deploying these models in robotics faces challenges due to memory and latency constraints,
necessitating techniques like distillation [65] and quantization [66] for real-time processing.

3 Problem Formulation

Given a multi-robot system, our goals are: (i) for each robot to predict its pose and uncertainty
relative to other robots as well as corresponding embeddings using non-line-of-sight visual cor-
respondences, and (ii) to use these embeddings for downstream tasks like local occupancy grid
prediction. Consider a multi-robot system represented by a set of nodes V . Each node vi ∈ V
has a position pw,i and an orientation Rw,i in the world coordinate frame Fw. The set of edges
E ⊆ V × V defines the communication topology and thus the graph G = (V, E). For each
edge (vi, vj) ∈ E , the relative position of vj in the coordinate frame of vi (denoted as Fi) is
pi,ij = R−1

w,i · (pw,j − pw,i), and the relative rotation is Ri,ij = R−1
w,i · Rw,j . Each node vi is

equipped with a camera Ci, providing an image Ii. From the images, we estimate relative poses and
uncertainties (p̂i,ij , σ

2
p,ij , R̂i,ij , σ

2
R,ij) ∀ vj ∈ N (vi) with respect to vi in its coordinate frame Fi.

This approach does not assume overlap between images or line-of-sight visibility between robots,
relying exclusively on the relationship between images, thus making it platform-agnostic. Using
these estimated poses, the robots cooperatively generate a BEV representation ˆBEVi around each
node vi, which can be used for various downstream multi-robot applications.

4 Approach

In this section, we detail our architecture and training approach. We explain dataset generation, de-
fine our model architecture, and introduce the uncertainty estimation strategy and training protocol.

4.1 Model

We employ four primary models; The encoder fenc generates a common embedding of images, fpose
estimates pairwise poses, fagg aggregates node features, and fBEV predicts a two-dimensional BEV
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Figure 3: Overview of the model architecture: We illustrate the decentralized evaluation with re-
spect to ego-robot vi, which receives embeddings Ej ,Ek generated by the encoder fenc from the
neighbors vj , vk ∈ N (vi). For each received embedding, we employ fpose to compute the pose. We
concatenate the pose embedding Eij with the image embedding Ej (and Eik with Ek) and subse-
quently aggregate this into a node feature Fi. Model outputs are framed with a dashed line.

representation. An overview of the model architecture is provided in Sec. 4.1. Our model uses
transformers [56, 67] in fenc, fpose and fagg. We provide more details in Appendix A.1.

Image Encoder: We use the smallest distilled version of DinoV2 [59] (ViT-S/14) as image encoder
due to its robust feature representation and spatial understanding. Each robot vi processes the image
Ii through fenc to generate the communicated node embedding Ei ∈ RS×F , where S represents the
sequence length, and F the feature vector size. We freeze the weights of DinoV2, enabling the use
of various open-source downstream fine-tuned image detectors without an additional forward pass.

Pairwise pose encoder: Each robot vi) broadcasts the image encoding Ei to neighboring robots.
Given encodings Ei and Ej , fpose estimates edge embeddings Eij and relative poses with un-
certainties (p̂i,ij , σ

2
p,ij , R̂i,ij , σ

2
R,ij). For each incoming Ej ∀ vj ∈ N (vi), we concatenate

the node features along the sequence dimension, add the positional embedding, run the trans-
former and then extract the first element of the sequence dimension to obtain the edge embed-
ding. We then use this edge embedding to estimate position, rotation and uncertainties, resulting in
fpose(Ei,Ej) = (p̂i,ij , σ

2
p,ij , R̂i,ij , σ

2
R,ij).

Multi-Node Aggregation: We perform position-aware feature aggregation using node embeddings
Ej from fpose. The function fagg integrates information from all nodes vj ∈ N (vi)∪vi, producing a
feature vector Fi for each node vi, encapsulating the aggregated information from its local vicinity.
We concatenate node features along the sequence dimension and add the positional embedding.
We then concatenate a nonlinear transformation of the edge features along the feature dimension.
This operation is performed for all vj ∈ N (vi), including self-loops to handle cases where N (vi)
is empty by zeroing the edge embedding. We aggregate over the neighbors and the ego-robot to
produce the output embedding Fi from all edge embeddings Fij , which is used for downstream
tasks, such as estimating a BEV representation ˆBEVi = fBEV(Fi).

4.2 Training

For training our models, we use supervised learning. This section describes the dataset, loss func-
tions, and uncertainty estimation.

Dataset: We use the Habitat simulator [68, 69] and the HM3D dataset [70], consisting of 800 scenes
of 3D-scanned multi-floor buildings. The data is divided into training DSim

Train (80%), testing DSim
Test

(19%), and validation DSim
Val (1%) sets. We provide more details in Appendix A.2.

Uncertainty Estimation: Two types of uncertainties can be modeled: epistemic uncertainty, which
captures uncertainty in the model and can be reduced with more data, and aleatoric uncertainty,
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which captures noise inherent to specific observations [71]. For pose estimation and pose control in
robotic systems, aleatoric uncertainty is more important since downstream applications can act on it
to reduce it. Traditional methods like Monte Carlo Dropout [72] and Model Ensembles [73] model
epistemic uncertainty. Instead, we propose using the Gaussian Negative Log Likelihood (GNLL)
Loss [74, 71], a generalization of the mean squared error (MSE) loss, allowing the model to predict
both a mean µ̂ and a variance σ̂2, learned from data points µ. The loss is defined as

LGNLL(µ, µ̂, σ̂2) =
1

2

(
log
(
σ̂2
)
+

(µ̂− µ)
2

σ̂2

)
. (1)

The GNLL loss penalizes high variance predictions and scales the MSE loss by the predicted vari-
ance, penalizing errors more when predicted uncertainty is high.

Estimating Rotations: Estimating rotation is difficult due to discontinuities in many standard ori-
entation representations. Quaternions are often used for their numerical efficiency and lack of sin-
gularities. Related work [75] represents rotations with a symmetric matrix defining a Bingham
distribution over unit quaternions to predict epistemic uncertainty. We combine the chordal loss and
GNLL to predict aleatoric uncertainty for rotations, as shown in the following equation:

dquat(q̂,q) = min (∥q− q̂∥2 , ∥q+ q̂∥2) (2)
L2

chord (q̂,q) = 2d2quat (q̂,q)
(
4− d2quat (q̂,q)

)
(3)

LGNLL
chord

(
q, q̂, σ̂2

)
=

1

2

(
log
(
σ̂2
)
+

L2
chord (q̂,q)

σ̂2

)
. (4)

Training: We use a combination of the Dice loss [76] LDice and Binary Cross Entropy (BCE) Loss
LBEC weighted by the parameter 0 ≤ α ≤ 1. This is commonly referred to as combo loss [77] and
is typically utilized for slight class imbalance. We define the total loss as

Li,BEV = α · LDice

(
BEVi, ˆBEVi

)
+ (1− α) · LBCE

(
BEVi, ˆBEVi

)
(5)

Li,ij,Pose = (1− β)LGNLL(pi,ij , p̂i,ij , σ
2
p,ij) + β LGNLL

chord

(
Ri,ij , R̂i,ij , σ

2
R,ij

)
(6)

L =
∑
vi∈V

Li,BEV +
∑

vj∈N (vi)

Li,ij,Pose

 . (7)

The parameter 0 ≤ β ≤ 1 balances between the position and orientation loss. Uncertainty terms are
necessary for training, as many dataset samples lack overlap and may be in adjacent rooms, leading
to significant errors from difficult samples that could hinder learning. We train on simulated data
DSim

Train and provide further details in Appendix A.4.

5 Experiments and Results

We demonstrate the performance of our trained models on the test set DSim
Test and custom real-world

test sets DReal
Test . First, we outline the metrics used. Then, we introduce the real-world dataset. Next,

we analyze model performance on both simulation and real-world data. Finally, we compile and
deploy our model in a real-world, real-time trajectory tracking task.

Metrics: We compute the Euclidean distance between the predicted and ground truth poses as
Dpos(pi,ij , p̂i,ij) and the geodesic distance between rotations as Drot(Ri,ij , R̂i,ij) for all edges
and report median errors. We categorize the median pose error into four categories. All includes
all edges. Visible and Invisible edges are determined by FOV overlap (an edge is invisible if
Drot(Ri,ij ,0) > FOV). Invisible Filtered samples use the predicted position uncertainty σ2

p,ij

to reject high-uncertainty pose estimations based on the Youden’s index [78]. For simulation results,
we also report the Dice and IoU metric. We provide more details in Appendix B.1.

5



Table 1: Ablation study over the number of patches S and size of features F per patch. We report
the BEV representation performance and the median error for poses on the dataset DSim

Test and DReal
Test .

Model DSim
Test DReal

Test

S F Dice IoU All Invis. Filt. Invisible Visible

256 48 69.1 57.1 36 cm 8.3° 61 cm 6.8° 97 cm 7.9° 33 cm 5.8°
128 96 68.8 56.8 40 cm 8.4° 55 cm 7.7° 97 cm 7.4° 32 cm 5.6°
128 48 67.9 56.1 38 cm 7.7° 67 cm 9.9° 113 cm 9.6° 29 cm 5.7°
128 24 66.7 54.6 50 cm 9.5° 83 cm 11.2° 112 cm 9.7° 31 cm 5.7°

64 48 61.0 43.5 51 cm 9.6° 81 cm 9.4° 119 cm 10.8° 36 cm 6.3°

1 3072 47.0 1.4 144 cm 89.9° 123 cm 25.7° 122 cm 25.8° 93 cm 138.2°
1 348 47.1 1.4 84 cm 11.7° 150 cm 164.1° 135 cm 37.9° 80 cm 11.1°

5.1 Dataset Evaluation

We conducted experiments across various model variants trained with different parameters, reporting
on our model’s efficiency. We present quantitative results in Tab. 1 and qualitative findings in Fig. 2.

Real-World Dataset: Our setup includes four Cambridge RoboMasters [79] and one Unitree Go1
Quadruped, each equipped with local compute, a monocular camera and WiFi dongles for adhoc
networking. Our custom real-world test dataset DReal

Test covers a diverse and challenging range of
indoor and outdoor scenes. We provide more details in Appendix A.3.

Results: Tab. 1 details the performance across seven different experiments. We evaluated the impact
of image embedding sizes Ei on the performance. The IoU and Dice metrics for the BEV represen-
tation, alongside median pose estimates for all samples in the dataset, are provided. Experiments
show that the sequence length S has a more significant influence on BEV representation and pose
estimate performance than the feature size F . We set S to 1 for two experiments: (1) increasing
F to match the size of the embeddings for other experiments, and (2) decreasing F , effectively
reducing the transformer to a CNN-only architecture by removing the attention mechanism. Both
experiments result in reduced performance, highlighting the importance of attention in our model.
The best-performing model with S = 256 achieves an IoU of 0.571, a Dice score of 0.691, and me-
dian pose accuracy of 36 cm and 8.3◦, which is roughly equal to one robot body length. In contrast,
models with S = 1 show significant degradation, with nearly unusable BEV representation predic-
tions and pose errors on the scale of meters. Models with F = 24 and S = 64 performed slightly
worse than those with larger F or S. We provide additional results in Appendix B.2. Evaluation
on the real-world dataset DReal

Test focuses on position and rotation accuracy, excluding quantitative
BEV performance due to unavailable ground truth data. The results align with DSim

Test, showing a
correlation between the number of patches S and features F and pose estimation performance. The
rotation estimates do not significantly differ between visible and invisible samples, demonstrating
robust pose estimation without requiring visual overlap. The most accurate model achieves a median
localization error of 97 cm and 7.9◦ for invisible samples, and 33 cm and 5.8◦ for visible samples.
Note that DReal

Test samples are at most 2 m apart, resulting in a worst-case error of up to 4 m. These
findings demonstrate our model’s capability to reliably estimate poses, and accurately predict higher
uncertainties under adverse conditions. We attribute this performance to our pose prediction model,
as well as the robust spatial representation capabilities of the DinoV2 encoder. The model goes be-
yond mere feature matching, achieving sophisticated scene understanding that allows it to “imagine”
unseen portions of the scene based on learned data priors, thus facilitating pose estimation through
environment inference [36, 37]. We provide additional results in Appendix B.3.

Finally, we conduct a baseline comparison with two feature-matching-based approaches, as summa-
rized in Table 2. Both baseline methods extract and match features across two images to estimate the
essential matrix, deriving rotation and scale-less translation vectors. The first baseline uses OpenCV
for ORB feature extraction followed by brute-force matching. The second baseline, LightGlue, uses
a neural network-based approach for feature extraction and matching. Given both baselines estimate
scale-less transformations, we adopt the same metric used in LightGlue [42], computing the AUC
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Table 2: We report the FPS and AUC metric at 20, 45 and 90°on two baselines.

All Invisible Visible
AUC@ FPS 20 45 90 20 45 90 20 45 90

ORB/OpenCV [80] 2.79 6.45 15.43 28.26 0.16 1.60 7.43 9.41 21.92 38.03
LightGlue [42] 1.17 16.30 27.14 37.63 0.02 0.09 0.31 23.94 39.82 55.14
Ours 42.73 25.23 47.63 66.34 9.22 24.40 45.74 32.74 58.53 76.01

at thresholds of 20, 45, and 90 degrees based on the maximum error in rotation and translation. Our
findings indicate that our model surpasses both baselines in performance and speed across image
pairs with and without visual overlap. Notably, while both baselines require visual overlap to func-
tion effectively, our approach does not, highlighting its robustness and applicability in a broader
range of scenarios.

5.2 Real-World Pose Control

In this section, we describe our experiment setup (including model deployment, wireless communi-
cation, and controllers), demonstrating real-world multi-robot control tasks.

Model deployment: We deploy a model with F = 24 and S = 128. After training in PyTorch, we
compile fenc, fpose, and fagg for decentralized deployment. Using TensorRT, we achieve sub-30 ms
processing times. We provide more details and a runtime analysis in Appendix B.4.

Ad-hoc WiFi: Image embeddings are sent between robots at 15 Hz, each over 6 KiB. The system’s
distributed nature suits broadcast communication, allowing scalable operation. However, IEEE
802.11/WiFi’s fallback to low bit rates for broadcast increases frame loss probability, worsening
with more robots. Higher-level systems like ROS2’s CycloneDDS manage retransmissions but can’t
detect network overloads, leading to increased packet loss. We design a custom protocol that dynam-
ically adjusts messaging load based on network conditions and uses TDMA scheduling to maximize
frame reception without compromising data rates. We provide more details in Appendix B.4.

Experiment: We conduct qualitative experiments in various environments, including outdoors, and
quantitative experiments. Two follower robots maintain a fixed orientation and distance from a
leader robot on a predefined trajectory. A PD controller manages relative pose control, adjusting
based on predicted uncertainty and selectively deactivating if uncertainty thresholds are exceeded.
This ensures that even with unreliable estimates, robots maintain orientation toward the leader un-
til reliable estimates are available. We assess tracking accuracy by comparing ground truth and
estimated poses, focusing on position and rotation errors and predicted uncertainties.

Results: Fig. 5 shows snapshots from four different real-world deployments, and Fig. 4 shows the
trajectories of all robots for all quantitative experiments, as well as a visualization of the position
and rotation error over time. We provide additional results in Appendix B.4.
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Figure 4: We evaluate the tracking performance of our model and uncertainty-aware controller on
reference trajectories with two follower robots (blue and orange) positioned to the left and right of
the leader robot (green). We report tracking performance over time for position and rotation, as well
as the predicted uncertainties. The leader always faces the direction of movement. We show the
trajectory for 120 s and the tracking error for the first 60 s.
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Figure 5: We show snapshots of real-world deployments in different scenes with up to four robots.
Each row contains six frames from a video recording, each spaced 1 s in time. We indicate the posi-
tions of the robots in the first frame, where the leader is circled yellow and the followers blue. The
first three samples show indoor scenes, and the bottom sample is an outdoor deployment. The sec-
ond sample shows a heterogeneous deployment, combining robots of different sizes and dynamics.

The qualitative experiments show a robust system that generalizes to a wide range of scenarios,
including outdoors, albeit with a scale prediction that is less reliable outdoors. Our model was
trained exclusively on indoor data and generalizes to outdoor data due to the wide range of training
data used on the DinoV2 encoder. We furthermore show platform agnosticism by deploying our
model to a heterogeneous team of robots, lead by a quadruped (second row in Fig. 5).

In quantitative experiments, the tracking error oscillates throughout the trajectories as the followers
reactively adjust their positions to the leader’s movements. Follower A starts facing the opposite di-
rection of the leader, resulting in high position variance and low rotation variance, which decreases
as the robot aligns with the leader. An erroneous rotation prediction is accompanied by high uncer-
tainty. As the leader moves, one follower is inside and the other outside the trajectory, switching
roles depending on the section of the figure. We report a median tracking error of 48 cm and 5.3° for
Follower A, and 26 cm and 5.4° for Follower B (corresponding roughly to one robot body length).

6 Limitations

Foundation models are commonly trained unsupervised [55], whereas our model is trained on the
HM3D indoor dataset in a supervised manner. Our model requires peer-to-peer communication to
be available to merge information from other robots and GPU-accelerated onboard computing for
real-time deployment. Previous work showed the scalability of GNNs due to the principle of locality
(number of neighboring nodes are constrained by the communication range) [29]. The number of
real robots is currently constrained by our custom networking stack.

7 Conclusion

We introduced a first-of-its-kind cooperative visual spatial foundation model that leverages exist-
ing large vision models and demonstrated its use in multi-robot control. From monocular camera
images only, our model is able to output accurate relative pose estimates and BEV representations
by aggregating information across neighboring robots. We validated our model on a custom real-
world test set and demonstrated real-time multi-robot control. Our model accurately predicts poses,
even without pixel-level correspondences, and correctly predicts BEV representations for obscured
regions. In further real-world tests, we demonstrated accurate trajectory tracking, paving the way
for more complex vision-only robot tasks. Our model estimates relative poses with a median error
of 33 cm and 5.8° for visible edges, and 97 cm and 5.9° for invisible edges, roughly equivalent to
one body length of our robot. In future work, we plan to include temporal data, apply this model to
other downstream tasks and combine it with learning-based multi-agent control policies.
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Appendices
A Model Training

This section details our model architecture, datasets, and training process. We describe the key
components of our model, explain the creation of our training and validation datasets, and outline
our training methodology.

A.1 Model

This section introduces all hyperparameters and implementation details of the model architecture.

Our methodology utilizes the Transformer architecture [56]. Self-attention computes the output as
a weighted sum of the values (V), with the weights determined by the compatibility of queries (Q)
and keys (K) as per the formula: Attention(Q,K,V) = softmax((QKT )/

√
dk)V, where dk is the

dimensionality of the keys. Typically, Q, K, and V are set to the same input features.

DinoV2 is a vision foundation model based on the vision transformer (ViT) and pre-trained in a
self-supervised manner on the LVD-142M dataset, which is a cumulation of various filtered datasets,
including various versions of ImageNet [81] and Google Landmarks.

The encoder fenc consists of the pre-trained DinoV2 vision transformer and two more transformer
layers previously described as f enc

trans. We use the smallest distilled version of DinoV2 based on ViT-
S/14 with 22.1 M parameters due to the fastest inference on our hardware. The input feature size is
224×224, of which DinoV2 generates an embedding of size S = 256 and F = 384. We add a linear
layer that transforms F down to the parameter described in this paper (e.g. 24) while maintaining
S. The output of this is then cropped to the S described in this paper (e.g. 128) by cropping the
sequence length at that position.

fenc = fdino · f enc
trans (8)

fenc(Ii) = Ei (9)
The pairwise pose encoder fpose consists of transformer f pose

trans , which is assembled from five trans-
former blocks, and four MLPs fµ

p , fσ
p , fµ

R , fσ
R .

We define the concatenation operation of two tensors A and B along axis C as (A ||C B) and
the indexing operation on tensor A by the first element along axis B as AB1. We introduce an
instance of another transformer f pose

trans , and four MLPs fµ
p , fσ

p , fµ
R , fσ

R . Furthermore, we introduce a
learnable transformer positional embedding for the sequence dimension Spose. For each incoming
Ej ∀ vj ∈ N (vi), we perform a pose estimation as

Eij = f pose
trans ((Ei ||S Ej) + Spose)S1 (10)

p̂i,ij , R̂i,ij = fµ
p (Eij), f

µ
R (Eij) (11)

σ2
p,ij , σ

2
R,ij = fσ

p (Eij), f
σ
R (Eij) (12)

fpose(Ei,Ej) = (p̂i,ij , R̂i,ij , σ
2
p,ij , σ

2
R,ij).

We concatenate the node features along the sequence dimension, add the positional embedding, run
the transformer and then extract the first element of the sequence dimension (Eq. 10), and eventually
use this edge embedding to estimate poses and orientations (Eq. 11) and uncertainties (Eq. 12). We
first project the embedding Ei to a larger feature size F = 192 using a linear layer. Each transformer
layer has F = 192 in and out features. The learnable transformer positional embedding Spose is
initialized to match F and S, with normal distribution initialization of σ = 0.02. The MLPs fµ

p , fσ
p ,

fµ
R , fσ

R are represented by one linear layer mapping the output of the transformer from F = 192 to
F = 17 (position: 3, position uncertainty: 3, orientation: 10, orientation uncertainty: 1).

Multi-node aggregation: Lastly, we perform the position-aware feature aggregation, utilizing the
node embeddings Ej generated in fpose for each corresponding edge. The feature aggregation func-
tion fagg integrates information from the set of nodes vj ∈ N (vi) ∪ {vi}. The resulting output is a
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feature vector Fi for each node vi, encapsulating the aggregated information from its local vicinity,
which can be used for any downstream task in a transfer-learning context [46], requiring geometric
information in a robotic swarm, for example, to predict a BEV of the environment around the robot
that captures areas that might not necessarily be visible by the robot itself.

We introduce an instance of two more transformers f agg
trans and f post

trans, an MLP faggpos, a learnable
transformer positional embedding Sagg, as well as a BEV decoder fBEV. We perform the node
aggregation as

The feature aggregation function fagg is built from f agg
trans, which consists of five transformer layers,

and f post
trans, which consists of one transformer layer, all of which have an embedding size of F = 192.

The MLP faggpos consists of three layers with 17, 48 and 48 neurons each, the positional embedding
Sagg is initialized similar to the one in fpose, and the BEV decoder fBEV takes the first sequence
element of f post

trans as input and scales it up through seven alternations of convolutions and upsampling.

Xij = ((Ei ||S Ej) + Sagg) (13)
Fij = (Xij ||F faggpos(Eij)) (14)
Fii = (Xii ||F faggpos(0)) (15)

Fi = f post
trans

 ∑
vj∈N (vi)∪{vi}

f aggr
trans(Fij)


S1

(16)

ˆBEVi = fBEV(Fi). (17)

We concatenate the node features along the sequence dimension and add the positional embedding
(Eq. 13). We then concatenate a nonlinear transformation of the edge features along the feature
dimension to the output of the previous operation (Eq. 14). The previous operations are performed
for all vj ∈ N (vi), but it is essential to include self-loops to the graph topology, as a full forward
pass of the neural network would otherwise not be possible if N (vi) were empty. We therefore set
the edge embedding to the zero tensor 0 in that case (Eq. 14). We then aggregate over the set of
neighbors and itself to produce the output embedding (Eq. 16) and finally use this to estimate any
other downstream task, for example, estimating a BEV (Eq. 17).

All transformer blocks have 12 attention heads. The MLP used in the transformer has a hidden size
of 4F . All blocks utilize a dropout of 0.2. The model has a total of 43.7 M parameters (22.1 M of
which are frozen DinoV2 parameters and 21.6 M trainable parameters).

A.2 Training Dataset

We utilize the Habitat simulator [68, 69] along with the training set of the HM3D dataset [70], which
comprises 800 scenes of 3D-scanned real-world multi-floor buildings. We select Habitat and HM3D
for their photorealism and the availability of ground-truth pose information, as well as detailed nav-
igation mesh information that can be converted to a BEV representation of the scene. We instantiate
a single agent equipped with a calibrated, rectified camera with a field of view of 120◦, which cor-
responds to the camera configuration on our robots. For each scene, we randomly sample several
uniform agent positions based on the total area of the scene. For each sample, the camera orien-
tation is randomized across all three axes. Additionally, for each scene, we extract the processed
navigation mesh, which indicates areas that are navigable by a mobile robot, or not navigable due to
obstacles or overhangs. We extract 3, 816, 288 images from a calibrated camera with a 120◦ field of
view from 800 scenes and 1, 411 floors, along with corresponding BEV representations.

The samples of the datasets DSim
Train DSim

Test and DSim
Val are randomly sampled to be within orientation

range [− π
32 ,

π
32 ] for roll and pitch, and within a height of 0.0 to 2.0 meters, or less if the ceiling is at

a lower height.

The samples of the datasets DSim
Train6D DSim

Test6D are randomly sampled to be within orientation range
[−π, π] for roll and pitch. We furthermore randomize the FOV ranging from 60◦ to 120◦ per camera.
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Figure 6: To collect the real-world testset, we construct a static base station equipped with two
cameras facing in opposite directions and a lidar. We add a marker on the robot so that its pose can
be tracked with the lidar and then manually move the robot around the base station.

We divide our data into training DSim
Train (80%), testing DSim

Test (19%), and validation DSim
Val (1%) sets.

From these sets, we sample pairs of Nmax = 5 images and poses by (1) uniformly sampling 25%
of individual images from each dataset, and then (2) uniformly sampling Nmax − 1 images within
a distance of dmax = 2 m around each sample from (1). This process yields 763, 257 training and
276, 680 test tuples, each of which are at most 2dmax apart and pointing in random directions, thus
providing realistically close and distant data samples for estimating both poses and uncertainties in
case of no overlaps.

The ground truth BEV BEVi is a cropped 6 m × 6 m view of the floor’s BEV around vi, generated
through Habitat’s navigation mesh. Each agent vi is centered and facing north.

A.3 Validation Dataset

Data collection involves a base station with dual cameras and a 2D Lidar, plus a distinctively shaped
marker on each robot. We manually navigated robots around the base station to capture a variety of
relative poses, then used a custom tool to label Lidar data for pose extraction.

All robots are equipped with an NVidia Jetson Orin NX 16GB and a forward-facing camera, rectified
to a 120◦ FOV with an image resolution of 224 × 224 pixels. We collected the real-world test set
DReal

Test in eight indoor scenes. It consists of 5692 images. We sample image pairs to ensure a uniform
distribution of relative positions from 0 m to 2 m. This results in 14008 sets of samples, each with
three images, totaling 84048 pose edges, 32% which have no visual overlap. Our dataset covers a
diverse and challenging range of indoor scenes, as well as one outdoor scene.

We explain the setup of our data collection unit in Fig. 6. We visualize the five different scenes we
collected the dataset from as well as the data distribution from each respective scene in Fig. 7.

A.4 Training

We use Pytorch Lightning to train our model for 15 epochs on two NVidia A100 GPUs. This training
takes approximately 24 hours. We optimize the weights using the AdamW optimizer and use the
1cycle learning rate annealing schedule throughout the training and configured weight decay. We
choose the best model based on the performance on the validation set.

We set the initial learning rate to 1−5 and configure a learning rate schedule to increase this over
two epochs up to 1−3, followed by a sinusoidal decline to 0 over 20 epochs.

19



−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2
P

o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

−2 −1 0 1 2

Pos x

−2

−1

0

1

2

P
o
s

y

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

10

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

10

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

10

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0.0

2.5

5.0

7.5

10.0

12.5

P
e
rc

e
n
t

-180 -135 -90 -45 0 45 90 135 180

yaw gt

0

2

4

6

8

P
e
rc

e
n
t

Figure 7: We collect the real-world dataset DReal
Test from eight unique scenes, showing different chal-

lenges, from cluttered environments over scenes with high ceilings to sunny floors. The first row
shows a picture summary of the scene, taken from first-person-view perspective. The second to
fourth row shows three samples from the real-world dataset, from the perspective of the robot. The
fifth row shows the distribution of positions for each scene and the sixth row shows the distribution
of relative angles between nodes.
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Epoch
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1

L
o
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Figure 8: We show the training and validation loss for a model trained with F = 48 and S = 128
over N = 5 different training seeds. We report a low average standard deviation of 0.011374 over
all epochs on the validation loss.

We show the train and validation loss for N = 5 training runs with different seeds in Fig. 8. Training
with F = 48 and S = 128 across N = 5 different seeds reveals a low average standard deviation of
0.011374, leading us to report results for only N = 1 seeds in Tab. 1.

The parameters α balances between Dice and BCE loss, and we set it to α = 0.5, and the parameter
β balances between position and orientation prediction accuracy, and we set it to 1, given equal
weight to both.
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Figure 9: We show qualitative distributions for position and rotation errors and variances over the
relative angle between two robots on all edges of the simulation testset DSim

Test. Two agents facing
the same direction would have an angle difference of 0◦, whereas two agents facing the opposite
direction would have an angle difference of 180◦. We show the FOV as dashed line, where any
results below the line indicate that the edge has some image overlap and above no image overlap.
The horizontal marginals show the distribution of each individual plot while the vertical marginal
shows the distribution of angle differences over the dataset. While the position error and variance
increase over the threshold, the majority of the predictions are still useful. The rotation error is
consistent across angle differences, while the uncertainty increases.

Table 3: Ablation over different modes for the BEV prediction on the simulation testset DSim
Test.

Experiment Dice IoU Median Pose Err.

None 0.628 0.495 N/A
Predicted 0.683 0.561 31 cm, 5.0◦

Ground truth 0.743 0.632 0 cm, 0.0◦

B Experiments and Results

B.1 Metrics

We compute the absolute Euclidean distance between the predicted and ground truth poses and the
geodesic distance between rotations as

Dpos(pi,ij , p̂i,ij) = ∥pi,ij − p̂i,ij∥

Drot(Ri,ij , R̂i,ij) = 4 · arcsin
(
1

2
dquat(R̂i,ij ,Ri,ij)

)
for all edges and report median errors.

We perform a further evaluation on the distributions of pose errors and variations on the simulation
test set DSim

Test in Fig. 9. The results are in line with the results performed on DReal
Test in the main

manuscript.

B.2 Simulation

We provide additional quantitative experiments in Fig. 9 and Tab. 3. We visualize four additional
qualitative samples from the simulation dataset DSim

Test in Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14
and Fig. 15.

BEV Experiments: We assess the effectiveness of BEV predictions, focusing on the contribution
of pose predictions to enhancing BEV accuracy, in an ablation study detailed in Tab. 3.

We conduct three experiments: (1) A model trained without incorporating any pose prediction into
the BEV aggregator. This model can estimate local information and, to a degree, information ag-
gregated through neighbors. However, it must implicitly learn to predict the relative poses between
observations to successfully merge the BEV representations from multiple agents. (2) A model
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Figure 10: Sample A from DSim
Test.
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Figure 11: Sample B from DSim
Test.

trained as described in this work, integrating pose estimates with BEV predictions and aggregating
this information from neighbor nodes. For this experiment, we use the model configuration with
F = 48 and S = 128. (3) A BEV model trained with ground truth pose information from the
simulation training set DSim

Train. This model’s performance is considered an upper limit, assuming
perfect pose estimation. Evaluation on the simulation test set DSim

Test indicates our model performs
between the two baselines. It significantly outperforms the pose-free model with an 8.75% improve-
ment in accuracy, while the model using ground truth poses shows an 18.31% performance increase
compared to the baseline without pose information. These results highlight the substantial benefit of
incorporating pose predictions into BEV estimation, positioning our approach as a notably effective
middle ground between the two extremes.
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Figure 12: Sample C from DSim
Test.
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Figure 13: Sample D from DSim
Test.

6D Dataset: We train an additional set of seven models with differing S and F on the dataset
DSim

Train6D. Notably, this dataset contains fully randomized 6D camera poses (opposed to roll and
pitch constrained to π/32 in DSim

Train). We furthermore randomize the camera’s FOV. We show the
results in Tab. 4. While the simulated results are not comparable to the one reported in Tab. 1 as the
dataset is different, the real-world dataset is identical, and the reported performance is approximately
identical with a slight degradation. The rotation error on DSim

Test6D is higher as there is a larger number
of cameras without any direct visual overlap, and the maximum possible pose error increases.
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Figure 14: Sample E from DSim
Test.
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Figure 15: Sample F from DSim
Test.

B.3 Real-World

We provide additional quantitative experiments in Fig. 16, Tab. 5 and Tab. 6. We visualize four
additional qualitative samples from the real-world dataset DReal

Test in Fig. 17 and Fig. 18.

We investigate the efficiency of the uncertainty estimation as well as the distributions of pose errors
more closely. Fig. 16 illustrates the distributions of position and rotation errors, along with the
predicted variances over the angle difference between robot pairs in the dataset DSim

Test. An angle
difference of 0◦ signifies robots facing the same direction, potentially resulting in significant image
overlap, while an angle difference of 180◦ indicates opposite directions, with no overlap. The Field
Of View (FOV) overlap threshold is highlighted in red, delineating errors with overlap (below the
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Table 4: Ablation study over the number of patches S and size of features F per patch for models
trained on the dataset DSim

Train6D. We report the BEV representation performance and the median
error for poses on the dataset DSim

Test6D and DReal
Test .

Model DSim
Test6D DReal

Test

S F Dice IoU All Invis. Filt. Invisible Visible

256 48 65.1 53.8 39 cm 46.5° 75 cm 9.3° 112 cm 16.0° 44 cm 7.1°
128 96 64.8 53.3 42 cm 46.6° 100 cm 13.3° 119 cm 16.8° 41 cm 6.8°
128 48 64.9 53.4 43 cm 46.6° 88 cm 13.0° 113 cm 14.9° 41 cm 6.5°
128 24 66.8 54.1 48 cm 47.2° 107 cm 23.7° 120 cm 23.3° 45 cm 7.0°

64 48 64.3 52.7 52 cm 47.9° 138 cm 16.0° 126 cm 16.2° 48 cm 7.1°
32 24 66.0 53.5 59 cm 48.8° 166 cm 15.4° 127 cm 19.8° 55 cm 7.5°

1 48 58.3 46.4 106 cm 58.5° 153 cm 101.6° 132 cm 66.4° 102 cm 24.3°
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Figure 16: We show qualitative distributions for position and rotation errors and variances over the
relative angle between two robots on all edges of the real-world testset DReal

Test , containing 84048
unique edges. Two agents facing the same direction would have an angle difference of 0◦, whereas
two agents facing the opposite direction would have an angle difference of 180◦. We show the FOV
as dashed line, where any results below the line indicate that the edge has some image overlap and
above no image overlap. The horizontal marginals show the distribution of each individual plot
while the vertical marginal shows the distribution of angle differences over the testset. Note that the
angle distribution is not uniform due to the real-world dataset collection where at least two cameras
always face the opposite direction.

line) from those without (above the line). The analysis reveals that position errors remain consistent
up to the FOV threshold, beyond which they escalate, as reflected in the predicted position variance.
Conversely, rotation errors stay uniform across angle differences, with only a marginal increase for
higher angles, though the predicted rotation variance notably rises.

In Tab. 5, we investigate the performance of our model across the different scenes in the testing
dataset DReal

Test . We provide a detailed breakdown of the median pose error for Invisible, Invisible
Filtered and Visible cases for each of the eight scenes. While the pose error for visible samples is
consistently between 22 cm/5.2°and 48 cm/7.5°, there are more outliers for invisible samples. This
is due to some scenes having more or less symmetry, thus making it more challenging for the model
to accurately predict poses. The pose prediction for the outdoor scene are least accurate, which is to
be expected since the model was trained on indoor scenes. The Sunny scene has severe shadows and
direct sunlight, while still providing low pose errors. The pose predictions are useful in all scenarios,
demonstrating impressive generalization ability across a wide range of scenes.

Next, we evaluate the magnitude of pose prediction errors over different thresholds of distances
between image pairs in Tab. 6. We consider five bands of distances separated in 0.4 m chunks,
ranging up to 2m. Note that the worst-case pose error is 2 · d due to the three-dimensional pose
predictions. While the error increases with an increasing distance between samples, the rotational
error in particular stays low, and the position errors stay useful, ranging from 12 cm to 65 cm for
visible samples, 34 cm to 134 cm for invisible filtered samples (samples that are not visible but for
which he model predicts a high confidence) and 76 cm to 153 cm for all invisible samples.
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Table 5: The median pose estimation error of our model on each of the eight DReal
Test scenes.

Scenario Invisible Invisible Filtered Visible

Corridor A 138 cm 129.6° 90 cm 11.4° 22 cm 5.2°
Corridor B 112 cm 5.9° 261 cm 8.2° 31 cm 5.2°
Office A 86 cm 14.4° 38 cm 9.6° 33 cm 7.5°
Office B 146 cm 10.4° 248 cm 4.6° 20 cm 4.7°
Outdoor 134 cm 9.5° 193 cm 28.7° 49 cm 6.9°
Study A 132 cm 6.7° 40 cm 5.1° 28 cm 5.3°
Study B 115 cm 8.9° 56 cm 9.6° 34 cm 5.5°
Sunny 77 cm 9.3° 49 cm 8.7° 22 cm 6.0°

Table 6: We show median pose prediction errors for different distance thresholds d on the dataset
DReal

Test .

d Invisible Invisible Filtered Visible

<0.4 m 76 cm 7.6° 34 cm 6.7° 12 cm 4.9°
<0.8 m 80 cm 8.8° 48 cm 8.6° 21 cm 5.2°
<1.2 m 95 cm 9.5° 56 cm 8.5° 31 cm 5.8°
<1.6 m 123 cm 10.6° 97 cm 12.9° 45 cm 6.0°
<2.0 m 153 cm 10.5° 134 cm 16.2° 65 cm 6.8°

B.4 Real-World Pose Control

Ad-hoc WiFi: Image embeddings are sent between nodes at a rate of 15hz, with each being just over
6KiB. The fully distributed nature of our system matches well with a broadcast communications
topology, which theoretically can permit operation at scale. Broadcast messaging has a significant
drawback however, in that modern wireless data networking standards (IEEE 802.11/WiFi) fallback
to very low bit rates to ensure maximum reception probability.

802.11 uses low bit rates for broadcast due to a lack of acknowledgment messages, which are the
typical feedback mechanism for data rate control and retransmissions. The probability of a frame
being lost due to the underlying CSMA/CA frame scheduler is non-trivial (3%+); a condition which
worsens with increasing participating network nodes.

A higher level system, such as ROS2 communications middleware package CycloneDDS can man-
age retransmissions, however currently available systems are not well suited to the requirements of
a decentralized robotic network. In particular they lack the ability to detect network overload con-
ditions, which can result in retransmissions that further load the network; finally resulting in a rapid
increase in packet loss rates which renders the network as a whole unusable. While it is possible
to tune such communications packages manually, the best parameter values are sensitive to highly
variable deployment configuration parameters including ambient wireless network traffic. Manual
tuning of network hardware, such as forcing increased broadcast bit rates, can alleviate this problem
but are generally not resilient as scale.

Our custom messaging protocol is targeted to this specific use case, and includes the ability to
dynamically backoff messaging load based upon detected network conditions. Our system is also
uses a shared slot TDMA message scheduling system which works with the 802.11 frame scheduler
to maximize frame reception probability without compromising overall data rates.

Results: We benchmark the runtime performance of the model on the Jetson Orin NX in Tab. 7 by
averaging 100 sequential forward passes. We compare 16-bit and 32-bit float evaluated on the GPU
or CPU and compilation with TensorRT, a proprietary NVidia tool for ahead-of-time compilation of
neural networks. The model fenc, generating the communicated embedding Ei, has a total of 30 M
parameters, and takes ca. 20 ms for one forward pass as FP16 optimized with Torch TensorRT on
the GPU. This is 50× faster than running the same model on the CPU. We also note that changing
from 32-bit floats to 16-bit floats results in a 2.75× speedup. The model fpose, processing a pair of
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Figure 17: We visualize a sample from our custom real-world testset DReal
Test for three nodes, similar

to the simulation sample in Fig. 2. We do not show the ground-truth BEV segmentation since we
do not have labels for this. Additionally to the pose predictions p̂i,ij , R̂i,ij , we also visualize the
predicted uncertainties σ2

p,iij and σ2
R,iij.
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Figure 18: Sample B and C from DReal
Test .

embeddings into a relative pose, has a total of 6 M parameters and takes ca. 4 ms for one forward
pass. The model is run in a custom C++ environment integrated with ROS2 Humble and an ad-hoc
WiFi network for inter-node communication to communicate image embeddings Ei, achieving a
15 Hz processing rate for the whole pipeline, including image pre-processing, model evaluation,
communication and pose prediction.

Fig. 20 and Tab. 8 contain additional quantitative and qualitative evaluation for the multi-robot pose-
tracking experiment, consisting of two additional reference trajectories. Figure 8 static is similar to
the Figure 8 dynamic trajectory elaborated in the main paper, but all robots face the same direction,
resulting in two shifted Figure 8s for the two follower robots. Rectangle dynamic is also similar to
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Figure 19: We show additional snapshots of real-world deployments in different scenes with up to
four robots. Each row contains six frames from a video recording, each spaced 1 s in time.

Table 7: Model runtime evaluation for S = 128 and F = 24.

Type Mode Dev. fenc fpose

FP16 TRT GPU 19.22 ms ±0.92 ms 4.15 ms ±0.49 ms
FP16 JIT GPU 36.79 ms ±1.33 ms 8.04 ms ±0.73 ms
FP32 JIT GPU 99.32 ms ±1.56 ms 13.57 ms ±1.10 ms
FP32 JIT CPU 952.04 ms ±116.72 ms 248.41 ms ±45.98 ms

the Figure 8 dynamic trajectory elaborated in the main paper, but instead of a Figure 8, the reference
is a rounded rectangle, with robots moving with up to 0.8 m/s.

Tab. 8 reports quantitative evaluations for the same results, which are in line with the results reported
in Tab. 1. Note that the velocities reported are average velocities of the follower robots. The veloc-
ities are consistent for both Figure 8 trajectories, but differ for the rectangle trajectory, as the inner
robot moves more slowly than the outer robot.

B.5 Single-Robot Trajectory Recording

We perform a single-robot homing/trajectory replay experiment to further show the versatility of
CoViS-Net. In this experiment, we treat a list of recorded keyframes as reference embedding to es-
timate the relative pose to given the currently observed image. If either the distance or the predicted
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Figure 20: We evaluate the tracking performance of our model and uncertainty-aware controller on
two additional reference trajectories, with two follower robots (in blue and orange), positioned left
and right of the leader robot (in green). For each trajectory, we report the tracking performance
over time for position and rotation, as well as the predicted uncertainties. The top trajectory (1) is
a Figure Eight with the leader always facing in the same direction. The bottom trajectory (2) is a
rounded rectangle. We show the trajectory for 120 s and the tracking error for the first 60 s. The
tracking performance is consistent across multiple runs.

Table 8: We report the mean and absolute tracking error for both leaders for all three trajectories, as
well as average velocities. The errors are consistent with the results reported in Tab. 1.

Trajectory Robot Mean Abs. Median Vel

Figure 8 dynamic A 38 cm, 5.6◦ 38 cm, 4.8◦ 0.59 m/s
B 28 cm, 5.1◦ 25 cm, 4.7◦ 0.58 m/s

Figure 8 static A 51 cm, 5.2◦ 48 cm, 5.3◦ 0.60 m/s
B 28 cm, 5.6◦ 26 cm, 5.4◦ 0.61 m/s

Rectangle dynanic A 41 cm, 4.4◦ 42 cm, 4.4◦ 0.32 m/s
B 29 cm, 5.1◦ 27 cm, 5.1◦ 0.81 m/s

uncertainty increases by some predetermined threshold, we append a new keyframe to the list. After
teaching the robot the reference trajectory, we command it into a keyframe-following mode, where
the current reference keyframe is set based on the recorded list. We provide qualitative experiment
on the website.
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