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Abstract

Reinforcement learning (RL) is inherently rife with non-stationarity since the
states and rewards the agent observes during training depend on its changing
policy. Therefore, networks in deep RL must be capable of adapting to new ob-
servations and fitting new targets. However, previous works have observed that
networks in off-policy deep value-based methods exhibit a decrease in represen-
tation rank, often correlated with an inability to continue learning or a collapse
in performance. Although this phenomenon has generally been attributed to neu-
ral network learning under non-stationarity, it has been overlooked in on-policy
policy optimization methods which are often thought capable of training indefi-
nitely. In this work, we empirically study representation dynamics in Proximal
Policy Optimization (PPO) on the Atari and MuJoCo environments, revealing that
PPO agents are also affected by feature rank deterioration and loss of plasticity.
We show that this is aggravated with stronger non-stationarity, ultimately driving
the actor’s performance to collapse, regardless of the performance of the critic.
We ask why the trust region, specific to methods like PPO, cannot alleviate or
prevent the collapse. We find that there is a connection between representation
collapse and the degradation of the trust region, one exacerbating the other, and
present Proximal Feature Optimization (PFO), a novel auxiliary loss that, along
with other interventions, shows that regularizing the representation dynamics im-
proves the performance of PPO agents. Code and run histories are available at
https://github.com/CLAIRE-Labo/no-representation-no-trust.

1 Introduction
Reinforcement learning (RL) agents are inherently subject to non-stationarity as the states and rewards
they observe change during learning. Therefore, neural networks in deep RL must be capable of
adapting to new inputs and fitting new targets. However, previous works have observed that value
networks in off-policy value-based algorithms exhibit a decrease in the rank of their representations,
termed feature rank, and a decrease in their ability to regress to arbitrary targets, called plasticity
(Kumar et al., 2021; Lyle et al., 2022). Consequently, this decrease in representation fitness was
often correlated with the value network’s inability to continue learning and adapting to new tasks,
especially in sparse-reward scenarios. Although this phenomenon is more generally attributed to
neural networks trained under non-stationarity (Lyle et al., 2023), it has been overlooked in on-policy
policy optimization methods that are often thought capable of training indefinitely. In particular,
Proximal Policy Optimization (PPO) (Schulman et al., 2017), one of the most popular policy opti-
mization methods, introduces additional non-stationarity by making several minibatch updates over
non-stationary data and by optimizing a surrogate loss depending on a moving policy. This raises the
question of how much PPO agents are impacted by the same representation degradation attributed
to non-stationarity. Igl et al. (2021) have shown that non-stationarity affects the generalization of
PPO agents (learning speed when training episodes are very different otherwise performance at test
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time on novel episodes) but does not prevent training, and no connection was made with the feature
rank and plasticity measures used in the recent value-based works. One open question is why the
trust region embedded in methods like PPO is not able to prevent the deterioration in policy, by
constraining its movement. Our contributions are the following:

1. We provide the first study of feature rank and plasticity in policy optimization, reveal-
ing that PPO agents in the Arcade Learning Environment (Bellemare et al., 2013) and
MuJoCo (Todorov et al., 2012) environments are subject to representation collapse.

2. We draw connections between representation collapse, performance collapse, and trust region
issues in PPO, showing that PPO’s clipping becomes ineffective under poor representations
and fails to prevent performance collapse, which is irrecoverable due to loss of plasticity.

3. We corroborate these connections by performing interventions that regularize non-
stationarity and representations and result in a better trust region and mitigation of per-
formance collapse, incidentally giving insights on sharing an actor-critic trunk.

4. We propose Proximal Feature Optimization (PFO), a new regularization on the representation
of the policy that regularizes the change in pre-activations. By addressing the representation
issues, PFO can mitigate performance collapse and improve the agent’s performance.

5. We open source our code and run histories, providing a comprehensive and reproducible
codebase for studying representation dynamics in policy optimization and a large database
of run histories with extensive logging for further investigation on this topic.

2 Background

Reinforcement Learning (Sutton & Barto, 2018) We formalize our RL setting with the finite-
horizon undiscounted Markov decision process, describing the interaction between an agent and an
environment with finite 1 sets of states S and actions A, and a reward function r : S×A×S→ R. An
initial state S0 ∈ S is sampled from the environment, then at each time step t ∈ {0, . . . , tmax−1}, the
agent observes the state St ∈ S, picks an action At ∈ A according to its policy π : S→ ∆(A) with
probability π(At|St), 2 observes the next state St+1 ∈ S sampled from the environment and receives
a reward Rt+1

.
= r(St, At, St+1). We denote by Gt

.
=

∑tmax−1
k=t Rk+1 the return after the action at

time step t. The goal of the agent is to maximize its expected return J(π)
.
= Eπ

[∑tmax−1
t=0 Rt+1

]
=

Eπ[G0] over the induced random trajectories. We discuss the choice of this setting in Appendix A.1.

Actor-Critic Agent We consider on-policy deep actor-critic agents which train a policy (or actor)
network π(·;θ) also denoted πθ , and a value (or critic) network v̂(·;w) that approximates the return
of πθ at every state. At every training stage, the agent collects a batch of samples, called rollout, with
its current policy πθ, and both networks are trained with gradient descent on this data. The critic is
trained to minimize the Euclidean distance to an estimator of the returns (e.g., Gt). We use λ-returns
computed with the Generalized Advantage Estimator (GAE) (Schulman et al., 2015b). The actor is
trained with the Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Proximal Policy Optimization PPO-Clip, the most popular variant of PPO algorithms proposed by
Schulman et al. (2017), optimizes the actor by maximizing the objective in Equation 1 at each rollout.

LCLIP
πold

(θ) = Eπold

[
tmax−1∑
t=0

min

(
πθ(At|St)

πold(At|St)
Ψt, clip

(
πθ(At|St)

πold(At|St)
, 1 + ϵ, 1− ϵ

)
Ψt

)]
(1)

The objective is defined for some small hyperparameter ϵ, where πold is the last πθ of the previous
optimization stage. It is used to collect the training batch, and Ψt is an estimator of the advantage of
πold (e.g., Ψt = Gt − v̂(St;wold)); we use the GAE in our experiments. The objective is optimized

1The pixel-based environment with discrete actions used in our experiments and our simple theoretical
example in Section 3.2.1 fit the finite state and action formalism but not our continuous action space environment.
We refer the reader to Szepesvári (2022) for a formalism of RL in that setting.

2The time step t is included in the representation of St to preserve the Markov property in finite-horizon
tasks as done by Pardo et al. (2018) and is analogous to considering time-dependent policies in the classical
formulation of finite-horizon MDPs.
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with minibatch gradient steps over multiple epochs on the rollout data (batch). We refer to PPO-Clip
as PPO and provide a high-level pseudocode in Algorithm 1.

Intuitively, PPO aims to maximize the policy advantage Eπold

[∑tmax−1
t=0

πθ(At|St)
πold(At|St)

Ψt

]
defined by

Kakade & Langford (2002), which participates in a lower bound to the improvement of πθ given
that it is close to πold (Schulman et al., 2015a, see Theorem 1). In this regard, a gradient step on
LCLIP
πold

(θ) would increase (decrease) the probability of actions at states yielding positive (negative)
advantage until the ratio between the policies for those actions reaches 1 + ϵ (1− ϵ) at which point
the gradient at those samples becomes null. This is a heuristic to ensure a trust region that keeps
policies close to each other, resulting in policy improvement.

Non-stationarity in deep RL and PPO The actor and the critic networks are both subject to non-
stationarity in deep RL. As the agent improves, it visits different states, shifting the distribution of
states which makes the networks’ input distribution non-stationary. This also holds for the targets
to fit the critic, which change as the policy returns change. This form of non-stationarity has been
shown by previous work to hinder the ability of several deep RL agents (e.g., DQN (Mnih et al.,
2015), SAC (Haarnoja et al., 2018)) to continue learning (Lyle et al., 2022; Nikishin et al., 2022).
PPO introduces additional non-stationarity to the actor compared to policy gradient methods (such as
vanilla policy gradient (Sutton et al., 1999), A2C Mnih et al. (2016)). Its objective is non-stationary
as it depends on the previous policy and it is optimized by performing multiple epochs of minibatch
gradient descent on every new collected batch, making the networks more likely to be impacted by
previous training rollouts as new rollouts are collected. Increasing the number of epochs can cause
the agent to “overfit” more to previous experience, making the impact of non-stationarity stronger.

Feature rank As done in most works studying feature dynamics in deep RL (Lyle et al., 2022;
Kumar et al., 2021), we refer to the activations of the last hidden layer of a network (the penultimate
layer) as the features or representation learned by the network. On a batch of N samples, this
gives a matrix of dimensions N ×D denoted by Φ, where D < N is the width of the penultimate
layer. Several measures of the rank of this matrix have been used to quantify the “quality” of the
representation (Kumar et al., 2021; Gulcehre et al., 2022; Lyle et al., 2022; Andriushchenko et al.,
2023). Their absolute values differ significantly, but their dynamics are often correlated. We track
all of the different rank metrics in our experiments, compare them in Appendix E, and use the
approximate rank in our main figures for its connection to principal component analysis (PCA).
Given a threshold δ ∈ R and the singular values ⟨σi(Φ), . . . , σD(Φ)⟩ of Φ in decreasing order, the

approximate rank of Φ is mink

{∑k
i=1 σ2

i (Φ)∑D
j=1 σ2

j (Φ)
> 1− δ

}
which corresponds to the smallest dimension

of the subspace recovering (1− δ)% of the variance of Φ. We use δ = 0.01 i.e. the reconstruction
recovers 99% of the variance as done by Andriushchenko et al. (2023); Yang et al. (2020). We refer to
this metric as feature rank with reference to the rank of the feature matrix when there is no ambiguity.

Plasticity loss Plasticity is computed on checkpoints of a network undergoing some training to
measure the evolution of its ability to fit targets. Given a fixed target and a fixed optimization budget
(number of gradient steps), a checkpoint’s plasticity loss is the loss from fitting the checkpoint to the
target at the end of the optimization budget. Usually, the plasticity of a deep RL agent throughout
training is measured by its ability to fit the outputs of a model initialized from the same distribution
as the agent on a fixed rollout collected by this target random model (Lyle et al., 2022; Nikishin
et al., 2023). The data would, in expectation, be from the same distribution as the agent’s initial
checkpoint. To fit the critic, we use an L2 loss on the outputs of the models. To fit the actor, we use a
KL divergence between the target and the checkpoint (forward KL).

3 Deteriorating representations, collapse, and loss of trust

It is well-known that non-stationarity in deep RL can be a factor causing issues in representation
learning. However, most of the observations have been made in value-based methods showing that
value networks are prone to rank collapse, harming their expressivity, and in turn, the performance of
the agent (Lyle et al., 2022; Kumar et al., 2022); Igl et al. (2021) studied non-stationarity in PPO but
only showed that it harms its generalization, with no evidence of rank deterioration or performance
collapse. Our motivation is to reuse the tools that showed that value-based methods are prone to
representation collapse but in policy optimization methods for the first time. We focus on PPO
for its popularity and extra non-stationarity through multi-epoch optimization. One open question,
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compared to most value-based alternatives, is how the regularization implicit in PPO through its trust
region interacts with this phenomenon. Intuitively it should prevent rapid degradation of the policy.

Experimental setup We begin our experiments by training PPO agents on the Arcade Learning
Environment (ALE)(Bellemare et al., 2013) for pixel-based observations with discrete actions and on
MuJoCo (Todorov et al., 2012) for continuous observations with continuous actions. To keep our
experiments tractable, we choose the Atari-5 subset recommended by Aitchison et al. (2023) and add
Gravitar to include at least one sparse-reward hard-exploration game from the taxonomy presented
by Bellemare et al. (2016). For MuJoCo, we train on Ants, Half-Cheetahs, Humanoids, and Hoppers,
which have varying complexity and observation and output sizes. We use the same model architectures
and hyperparameters as popular implementations of PPO on ALE and MuJoCo (Raffin et al., 2021;
Huang et al., 2022b); these are also the architectures and hyperparameters used by Schulman et al.
(2017) in the original implementation of PPO; they do not include normalization layers. The ALE
model uses ReLU activations (Nair & Hinton, 2010) and the MuJoCo one tanh; we also experiment
with ReLU on MuJoCo. We use separate actor and critic models for both environments unless
specified in Section 4. Details on the performance metrics and tables of all environment parameters,
model architectures, and algorithm hyperparameters are presented in Appendix B. Observing that
the previous findings on the feature dynamics of value-based approaches (Gulcehre et al., 2022;
Lyle et al., 2022) apply to the critic of PPO as well since the loss function is the same, we focus on
studying the feature dynamics of the actor unless stated otherwise in the text or figures.

We vary the number of epochs as a way to control the effect of non-stationarity, which gives the agent
a more significant number of optimization steps per rollout while not changing the optimal target
it can reach due to clipping, as opposed to changing the value of ϵ in the trust region for example.
We keep the learning rate constant throughout training and use the same value for all the epoch
configurations. To understand the feature dynamics, we measure different metrics that are proposed
in the literature, including feature rank, number of dead neurons (Gulcehre et al., 2022), plasticity
loss (Lyle et al., 2022), and penultimate layer pre-activation norm. Previous work has monitored
feature norm values as well (Lyle et al., 2024); however, in our case, we found that as the neurons in
the policy network die, the feature norm might be stable while the pre-activation norm blows up. All
the metrics are computed on on-policy rollouts except for the plasticity loss.

We run five seeds per hyperparameter configuration and report mean curves with min/max shaded
regions unless specified otherwise. All curves, except for plasticity loss, are smoothed using an
exponentially weighted moving average with a coefficient of 0.05. We explore the following questions:
Q1. How do a PPO agent’s representation metrics, such as the feature rank and the plasticity loss,
evolve during training? Are they subject to the same decline observed by Kumar et al. (2021); Lyle
et al. (2022) in value-based methods? Does it affect performance?
Q2. How does increasing the number of epochs per rollout to vary non-stationarity affect a PPO
agent’s representation? Does it degrade as observed in DQN and SAC agents when increasing the
replay ratio (Nikishin et al., 2022; Kumar et al., 2022)?

3.1 PPO suffers from deteriorating representations

Q1. Deteriorating representation As illustrated in Figure 1 with ALE/Phoenix as an example, we
observe a consistent increase in the norm of the pre-activations of the feature layer of the policy
network. Learning curves for all the ALE games and MuJoCo tasks considered can be found in
Appendix D. The increase in feature norm is present in all the games/tasks considered in both
environments, that is, with the two different model architectures and activation functions in the case
of MuJoCo. We associate the rapid growth in the norm of the pre-activations with an eventual decline
in the policy network’s feature rank. We observe a rank decline in five out of six ALE games and
seven out of eight MuJoCo tasks (four with ReLU and three with tanh). The same observations about
the increasing norm of the pre-activations can be made about the critic network. However, its rank
varies more with the sparsity of the reward. In most environments, its rank experiences a significant
deterioration after the policy’s performance (not its rank) declines and rewards become sparser. In
the sparse-reward game Gravitar, the critic’s rank collapses before the policy. Furthermore, plasticity
loss is increasing for the critic, as observed in value-based plasticity studies and it is also the case for
the actor, for which it explodes around rank collapse.

Q2. Worse consequences Increasing the replay ratio in DQN and SAC deteriorates the agent’s
representation and, in turn, its performance (Kumar et al., 2022; D’Oro et al., 2023). This is commonly
attributed to “overfitting” to previous experience (Nikishin et al., 2022). Increasing the number of
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epochs in PPO is analogous, and a natural hypothesis is that this would accelerate the deterioration
of the policy’s representation. Figure 1 shows that increasing the number of epochs accelerates the
increase of pre-activations norm and the decrease of the policy’s feature rank. In some cases, the rank
eventually collapses, coinciding with a policy’s performance collapse. We observe the performance
collapse in three of the six ALE games and three of the four MuJoCo tasks.
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Figure 1: Deteriorating performance and representation metrics The policy network of a PPO-Clip agent on
ALE/Phoenix-v5 is subject to a deteriorating representation. The norm of the pre-activations of the penultimate
layer consistently increases, and its rank eventually decreases. Performing more optimization epochs per rollout
to increase the effects of non-stationarity accelerates the growth of the norm of the pre-activations and the
collapse of its rank. This ultimately leads to the collapse of the policy. This collapse is not driven by the value
network, whose rank is still high.
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Figure 2: Rank collapse gives a high but trivial en-
tropy The rank collapse of the policy gives a policy with
high entropy but zero variance across states. The net-
work outputs the same high-entropy action distribution
in all states, as all the neurons in the feature layer are
dead. Its output only depends on the constant bias term.

Characterizing the collapse The collapse ob-
served in the policy’s representation differs from
the typical entropy collapse. As one can ob-
serve from Figure 2, the collapse in representa-
tion gives a policy that has high entropy (still
lower than a uniform policy and its initializa-
tion). However, in MDPs, entropy is computed
as the average across states. A high overall en-
tropy can come from an average of high-entropy
states with different action distributions or triv-
ially from the same high-entropy distribution
in all states. In our case, it is the latter: we
compute the policy variance across states and
observe that it collapses to zero, indicating that
the policy network outputs the same action distribution at every state, which is often close to uniform.
This is consistent with the policy representation, which has collapsed to a layer with mostly dead
neurons 3. The output layer gives the output distribution based on only the bias term, as the linear
weights are multiplied by a null feature vector. Such a policy takes the same actions across all states;
therefore, performance for non-trivial tasks would collapse.

3.2 Collapsed representations create trust issues and unrecoverable loss

Intuitively, the heuristic trust region set by PPO-Clip should prevent sudden catastrophic changes and
limit the rank collapse, which induces worse performance. However, empirically, it seems the trust
region cannot mitigate the collapse. In this section, we seek to understand the interaction between the
rank collapse and the trust region. We argue that as rank collapses, the clipping constraint becomes
unreliable and unable to restrict learning. This is in line with previous works that have pointed out
that probability ratios during training can go beyond the clipping limits with PPO-Clip (Engstrom
et al., 2020; Wang et al., 2020; Sun et al., 2022). We believe, however, that this behavior is systematic
when rank collapses and does not merely happen occasionally.

Wang et al. (2020, Theorem 2) state that when the gradients of the unclipped samples align with the
gradients of clipped samples, the clipped samples’ ratios will have their probabilities continue to go
beyond the clip limit. They claim this condition would hold in practice because of “optimization
tricks” or optimizer accumulated moments; however, there is no evidence that these factors induce
the gradient alignment or that the alignment is present in practice. Our intuition is that representation

3We consider a ReLU neuron as dead when its values are zero for all the samples in the batch and a tanh
neuron dead when its standard deviation across samples is less than 0.001.
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degradation leads to alignment in the gradients and, therefore, a breakdown of the trust region
constraint. This can create a snowball effect, preventing PPO-Clip from preventing representation
collapse. We summarize this in two observations:

1. Loss of trust is extreme around poor representations The average of probability ratios outside
the clipping limits (below 1 − ϵ in Figure 3) significantly diverges from the clipping limit around
the collapse of the agent’s representation. This gives one more reason why the PPO trust region can
be violated. We isolate this in a toy setting and analyze it formally in the next section. We further
show in Figure 4 scatter plots of the lowest average probability ratios in runs with their associated
representation metrics (20 points per run, across windows of size 1% training progress, spanning
at least the horizon of the environment, so that points are well spaced in the run, with each point
being the average of the window); we observe no significant correlation in the regions where the
representation is rich (high rank, low pre-activation norm), but an apparent decrease of the average of
probability ratios below 1− ϵ is observed as the representation reaches poor values.
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Figure 3: Focusing on individual runs Individual training curves on ALE/NameThisGame-v5 with different
epochs per batch. Extremely low ratios are observed around the representation collapse of a PPO-Clip agent,
implying that the heuristic trust region breaks down when representation power is lacking. The last-minibatch
value of the PPO objective decreases towards 0 around the representation collapse, implying a reduction in the
ability to improve the policy and recover, which is corroborated by the increase in plasticity loss. (Ratios are
trivially above 1− ϵ after collapse as a collapsed model does not change much to have values below 1− ϵ.)
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Figure 4: Representation vs trust region Samples from ALE/Phoenix-v5 training curves. Each point maps an
average of the probability ratios below the clipping limit vs. its corresponding average representation metric
(dead neurons, feature rank, feature norm). The average ratios are significantly lower around poor representations
(high dead neurons, low policy rank, high feature norm) reflecting the failure of the trust region. Averages are
over non-overlapping windows larger than episodes.

2. Loss of plasticity renders performance collapse unrecoverable The persistent decrease in
performance overlaps with a monotonic decrease in policy variance and PPO objective. It appears
that as the policy loses its ability to distinguish state, it can also ascend the PPO objective less and less
at each batch (recall: after collecting a batch, the loss starts around zero with a normalized advantage,
and through minibatch updates, the clipped policy advantage is ascended). Intuitively, this is implied
by a loss of plasticity or a collapse in entropy (no new actions to learn from). As seen in Section 2 the
entropy does not collapse, and measuring the plasticity loss in Figure 3 shows that that the decrease
in objective gain is associated with a significant increase in plasticity loss.

Connecting the dots Hence, around collapse, the representation of the policy is getting so poor
that it is impacting its ability to distinguish and act differently across states; the trust region cannot
prevent this catastrophic change as it also breaks down with a poor representation; finally, the policy’s
plasticity is also becoming so poor that the agent cannot recover by optimizing the surrogate objective.
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3.2.1 A toy setting to understand the effects of rank collapse on trust region

We present a toy example that illustrates how a collapsed representation bypasses the clipping set
by PPO and cannot satisfy the trust region it seeks to set. PPO constructs a trust region around the
policy πθ(·|s) of the agent evaluated at a given state s, enforcing (in an approximate way) that the
update computed on state s can not move the policy πθ(·|s) outside of the trust region. However, the
constraint does not capture how updates computed on another state s′ affect the policy’s probability
distribution over the current state s. The underlying assumption is that updates computed on different
states are, at least in expectation, approximately orthogonal to each other, and they do not interact.
Therefore, restricting the update of the current state is sufficient to keep the policy within the region.

In our case, however, one can show that as the rank collapses or the neurons die, the representations
corresponding to different states become more colinear.4 Therefore, the gradients also become more
colinear. In the extreme case, when the rank collapses to 1, or there is only one neuron alive, all
representations are exactly colinear; therefore, all gradients are also. This means that even though
clipping prevents the policy πθ(·|s) on the current state s from changing due to the update of that
state ∇L(πθ(·|s)), πθ(·|s) will still change and move outside of the trust region due to the updates
on other states s′. Leading to the trust region constraint being ineffective and not constraining the
learning process in any meaningful sense. This gives a clear situation where the theorem of Wang
et al. (2020) holds and can easily be analyzed as below without resorting to the theorem for an
end-to-end proof or to get a better intuition.

Formal statement of the toy setting Let us consider a batch containing two state-action
pairs (x, a1) and (y, a1) with sampled probabilities πold(a1|x) and πold(a1|y) and posi-
tive estimated advantages A(x, a1), A(y, a1) > 0. Let ϕ(x), ϕ(y) ∈ R be fixed 1-
dimensional representations of x, and y that can be seen as the output of the (frozen) penul-
timate layer of a policy network with collapsed representation (all but one dead neuron),
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Figure 5: Simulation of the toy setting Left (α > 0): a gradient
on (x, a1) takes the probability of (y, a1) up and vice versa. When
one is above the threshold and should not increase, the other still
pushes it. Right (α < 0): a gradient on (x, a1) takes the probability
of (y, a1) down and vice versa. Both slow each down, with one
forcing the other to be lower than its initial value.

and let α ∈ R such that ϕ(y) =
αϕ(x). Let θ = [θ1, θ2], be the last
layer of the network, computing the
logits of two actions, a1 and a2, that
are fed into a softmax to compute
the probabilities. I.e., πθ(ai|s) =

eθ1ϕ(s)

eθ1ϕ(s)+eθ2ϕ(s) . Consider PPO mini-
batch updates alternating between
(x, a1) and (y, a1). Ideally, the PPO
loss increases πθ(a1|s) at gradients
on (x, a1) until it reaches the clip ratio
and similarly on (y, a1). However, we
show in Appendix C that a gradient
step in (x, a1) also affects πθ(a1|y)
and depending on α will increase it past its clipped ratio, or decrease it below its initial value.

Essentially, when α ≥ 0, a gradient on (x, a1) increases θnew
1 therefore increasing both πθnew(a1|x)

and πθnew(a1|y). The same holds for a gradient on (y, a1), causing one state to reach the clip limit
first depending on α > 1 but still have the other keep pushing its probability upwards. However,
when α ≤ 0, a gradient on (x, a1) increases θnew

1 therefore increasing πθnew(a1|x) but decreasing
πθnew(a1|y). For a gradient on (y, a1) it is the opposite: θnew

1 decreases therefore πθnew(a1|x) decreases
and πθnew(a1|y) increases, causing each state to reduce the probability of the other, and depending
on α < 1 one of the probabilities will dominate and push the other one down. Figure 5 shows the
evolution of the probabilities when simulating the updates empirically.

4 Intervening to regularize representations and non-stationarity
Having observed that PPO is affected by a frequent representation degradation that impacts its
trust region heuristic and causes its performance to collapse, we turn to study interventions that
aim at regularizing the representation of the policy network or reducing the non-stationarity in the
optimization. We investigate whether these interventions improve the representation metrics we
track and if in turn, this affects performance. We choose simple interventions that do not apply

4The expected angle between representations shrinks to 0.
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modifications to the models during training (e.g., resetting or adding neurons) or require significantly
more memory (e.g., maintaining separate copies of the models). We perform interventions on the
games/tasks where the collapse is the most significant. We are interested in the state of the agent at
the end of the training budget. We record the performance and representation metrics for each run
as averages over the last 5% of training progress. We measure the excess ratio at a timestep as the
average probability ratio above 1 + ϵ divided by the average probability ratio below 1 − ϵ at that
timestep. This metric gives an idea of how much the policy exceeds the trust region. Its average value
is computed over the last 5% of training progress where the ratios are non-trivial, giving the same
window at the end of training as the other metrics when there is no collapse, otherwise a window
before total collapse covering 5% of training progress, as after collapse, the model does not change
anymore and the ratios are trivially within the 1 + ϵ and 1− ϵ limits. We give additional details on
the computation of these aggregate metrics and the interventions performed in Appendix B.

PFO: Regularizing features to mitigate trust issues The motivation for our first intervention and
our proposed regularization method comes from our observation that the norm of the preactivation
features is consistently increasing, which can be linked to the trust issues discussed in Section 3.
We seek to mitigate this effect in a way that is analogous to the PPO trust region. We apply an L2

loss on the difference between the pre-activated features of the optimized policy and the policy that
collected the batch. This can also be thought of as a way to keep the pre-activations of the network
during an update within a trust region. We apply this regularization to the pre-activations and not
the activations, as dead neurons cannot propagate gradients, and even when they do, depending on
the activation function, do so with a low magnitude. The regularization is an additional loss/penalty
added to the overall loss. We term this loss the Proximal Feature Optimization (PFO) loss.

LPFO
πold

(θ) = Eπold

[
tmax−1∑
t=0

(ϕθ(St)− ϕold(St))
2

]
(2)

We apply two versions of PFO: one on only the penultimate layer’s pre-activations and one on all the
pre-activations until the penultimate layer. In the scope of this work, we do not tune the coefficient of
PFO; we pick the closest power of 10 that sets the magnitude of this loss to a similar magnitude of
the clipped PPO objective tracked on the experiments without intervention. This gives a coefficient of
1 for ALE, 1 for MuJoCo with tanh, and 10 with ReLU. The goal is not necessarily to obtain better
performance but to see if PFO improves the representations learned by PPO and if, in turn, it affects
its trust region and performance. As shown in Figure 6, the regularization of PFO effectively brings
the norm of the preactivation down, the number of dead neurons down, the plasticity loss down, and
the rank up. This coincides with a significant decrease in the excess probability ratio, especially in the
upper tail. More importantly, we also see a significant increase in the lower tail of the returns where
no collapse in performance is observed anymore on ALE/NameThisGame and ALE/Phoenix, with a
slight increase in the upper tail showing that PFO can increase performance. Among the interventions
we have tried, PFO provided the most consistent improvements.

Sharing the actor-critic trunk In deep RL, the decision to use the same feature network trunk
for both the actor and the critic is not trivial. Depending on the complexity of the environment, it
can significantly vary the performance of a PPO agent (Andrychowicz et al., 2021; Huang et al.,
2022a). We, therefore, attempt to draw a connection between sharing the feature trunk, the resulting
representation, and its effects on the PPO objective. In this intervention, we make the actor and
the critic share all the layers except their respective output layers and backpropagate the gradients
from both the value and policy losses to the shared trunk. Figure 6 shows that the value loss acts as
a regularizer, which decreases the feature rank and, depending on the reward’s sparsity, gives two
distinct effects; In dense-reward environments such as ALE/Phoenix and ALE/NameThisGame, the
ranks are concentrated at low but non-zero values: the upper tail significantly decreases compared
to the baselines while the lower tail increases. This coincides with a lower feature norm, lower
excess probability ratio, and, in turn, a high tail for the returns. It also increases performance in some
cases. However, the opposite is true in the sparse-reward environment Gravitar: the rank completely
collapses, and the feature norms and excess ratios are very high, collapsing the model’s performance.
This is consistent with the observations made in the plasticity works studying value-based methods
where sparse rewards deteriorate the rank of the value network. We provide training curves showing
the difference in the evolution of the feature rank when sharing the actor-critic trunk in Appendix D.

Adapting Adam Asadi et al. (2023) argue that as the targets of the value function change with the
changing policy rollouts, the old moments accumulated by Adam become harmful to fit the new

8



2 4 6
×103

Adam equal betas
Share actor and critic features

Reset Adam
Regularize all preactivations
Regularize last preactivation

No invervention
Episode return

2.0 2.5 5.0

Excess ratio

0 2 4
×102

Dead neurons policy

102 103 104

Norm preactivation policy

0 2
×102

Feature rank policy (PCA)

0.0 0.5 1.0
×10−1

Plasticity loss policy
Mean Median Outliers

Phoenix

2.5 5.0 7.5
×103

Adam equal betas
Share actor and critic features

Reset Adam
Regularize all preactivations
Regularize last preactivation

No invervention
Episode return

1.5 2.0 2.5

Excess ratio

0 2 4
×102

Dead neurons policy

102 103 104

Norm preactivation policy

0 2
×102

Feature rank policy (PCA)

0 1 2
×10−1

Plasticity loss policy
Mean Median Outliers

NameThisGame

0.5 1.0
×103

Adam equal betas
Share actor and critic features

Reset Adam
Regularize all preactivations
Regularize last preactivation

No invervention
Episode return

1.5 2.0 2.5 3.695
×102

Excess ratio

0 2 4
×102

Dead neurons policy

102 104

Norm preactivation policy

0 2
×102

Feature rank policy (PCA)

0.0 2.5 5.0
×10−1

Plasticity loss policy
Mean Median Outliers

Gravitar

Figure 6: Effects of regularizing features and non-stationarity Top: ALE/Phoenix-v5. Regularizing the
difference between the features of consecutive policies with PFO results in better representations and mitigates
performance collapse while improving performance in some cases. Bottom: ALE/Gravitar. Sharing the feature
trunk between the actor and the critic results in a worse policy representation as the value network is subject to
rank collapse due to reward sparsity. A boxplot includes 15 runs with the different epochs.

targets and find that resetting the moments of Adam helps performance in DQN-like algorithms. As
the PPO objective creates a dependency on the previous policy, and more generally, in the policy
gradient, the advantages change with the policy, the same argument about Adam moments can be
made for PPO. Furthermore, Dohare et al. (2023); Lyle et al. (2023) advocate for decaying the second
moment of Adam faster than its default decay of 0.999 when training under non-stationarity and
set it to match the decay of the first moment. Therefore, we experiment with both resetting Adam’s
moments after each batch collection (to avoid tuning its frequency) and setting the second moment to
decay at the (smaller) default decay of the first moment for both the actor and the critic; the moments
are thus only accumulated over the epochs on the same batch in the former and over shorter batch
sequences in the latter. We observe in Figure 6 and Appendix D that these interventions reduce the
feature norm and increase the feature rank on ALE, which also reduces the excess probability ratio
and, in some cases, improves performance; however, they are not sufficient to prevent collapse and,
like sharing the actor-critic trunk, result in poor performance on ALE/Gravitar.

5 Conclusion and Discussion
Conclusion In this work, we have provided evidence that the representation deterioration under
non-stationarity observed by previous work in value-based methods generalizes to PPO agents in
ALE and MuJoCo with their common model architectures and can lead to performance collapse. We
have shown that this is particularly concerning for the heuristic trust region set by PPO-Clip, which
fails to prevent collapse as it becomes less effective when the agent’s representation becomes poor.
Finally, we presented Proximal Feature Optimization (PFO), a simple novel auxiliary loss based on
regularizing the features’ evolution that mitigates representation degradation and, along with other
interventions, shows that controlling representation degradation improves performance.

Limitations and open questions In this work, we study the common architecture and optimizer of
PPO agents in ALE and MuJoCo consisting of relatively small models without normalization layers,
weight decay, or memory (e.g., not using Transformers and RNNs). Despite our best attempts, like
any other empirical machine learning work, the generalization of our results to other settings is not
fully known. Still, this work should raise awareness about the representation collapse phenomenon
observed in PPO and encourage future work to monitor representations when training PPO agents,
as it can help diagnose performance collapse. We have focused on interventions that regularize
representations to highlight the connection between representation, trust region, and collapse, but
exploring interventions on plasticity is also valuable as these may also influence the same dynamics.
We believe further studies to analyze this problem, both empirically and particularly theoretically, to
understand the reasons driving representation deterioration under non-stationarity to be valuable. We
anticipate our study to encourage this.
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A Additional background

A.1 Reinforcement Learning

The undiscounted formulation presented in the background (Section 2) has also been used by
Schulman et al. (2015b) and does not limit the use of a discount factor to discount future rewards; for
that purpose, as we consider a finite-horizon setting, we can assume that discounting would already
be present in the reward which depends on time through the state. This allows to isolate the discount
factor γ for the purpose of the value estimation with GAE which serves as a trade-off between the
bias and the variance in the estimator, in addition to λ used for the λ-returns that combine multiple
n-step returns. More importantly, this also allows us to reuse the policy gradient and PPO losses
without discount factors, as the deep RL community is used to them while avoiding their incorrect
use in the discounted setting as pointed out by Nota & Thomas (2020). In any case, our results can
also be translated to the discounted setting using a biased gradient estimator (missing a discount
factor), being the typical setting considered in deep RL works.

B Experiment details

B.1 Code and run histories

Our codebase is publicly available at https://github.com/CLAIRE-Labo/
no-representation-no-trust/tree/arlet. It includes the development environment
distributed as a Docker image for GPU-accelerated machines and a Conda environment for
MPS-accelerated machines, the training code, scripts to run all the experiments, and the notebook
that generated the plots. The codebase uses TorchRL (Bou et al., 2024) and provides a comprehensive
toolbox to study representation dynamics in policy optimization. We also provide modified scripts of
CleanRL (Huang et al., 2022b) to replicate the collapse observed in this work and ensure it is not a
bug from our novel codebase.

The code repository contains links to the Weights&Biases (W&B) project with all of our run histories,
a summary W&B report of the runs, and a W&B report with the replication with CleanRL.

Runs are fully reproducible on the same acceleration device on which they were run. In particular,
we have reproduced our results on three different clusters with the same NVIDIA GPU device.

B.2 Additional details on our experimental setup

We conduct experiments on an environment with pixel-based observations and discrete actions and
an environment with continuous observations and actions, each with a different model architecture.
For the discrete action case, we use the Arcade Learning Environment (ALE)(Bellemare et al., 2013)
with the specification recommended by Machado et al. (2018) in v5 on Gymnasium (Towers et al.,
2023). That is, with a sticky action probability of 0.25 as the only form of environment stochasticity,
using only the game-over signal for termination (as opposed to end-of-life signals) with the default
maximum of 108 × 103 environment frames per episode and reporting performance over training
episodes (i.e., with sampling according to the policy distribution as opposed to taking the mode
action). We train all models for 100 million environment frames. We use standard algorithmic choices
to make our setting and results relevant to previous work. This includes taking only the sign of
rewards (clipping) and frame skipping. We use a frame skip of 3, as opposed to the standard value of
4, due to limitations in the ALE-v5 environment, which does not implement frame pooling.5 We use
the standard architecture of Mnih et al. (2015) consisting of convolutional layers followed by linear
layers, all with ReLU activations, and no normalization layers. We also use Mnih et al. (2015)’s
standard observation transformations with a resizing to 84x84, grayscaling, and a frame stacking of 4.

For the continuous case, we use MuJoCo (Todorov et al., 2012) with v4 on Gymnasium (Towers
et al., 2023) with the default maximum of 1,000 environment frames to mark episode termination.
Similarly to Atari, we report performance as the average episode return over training episodes. We

5That is taking the max over the last two skipped and unskipped frames to capture elements
that only appear in even or odd frames of the game (https://github.com/Farama-Foundation/
Arcade-Learning-Environment/issues/467). Using an odd frame skip value alleviates the issue.
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train all models for 5 million environment frames. We standardize the observations (subtract mean
and divide by standard deviation) according to an initial rollout of 4,000 environment steps (at least
four episodes). The standardization parameters are kept the same to avoid adding non-stationarity.
We use the same architecture as Schulman et al. (2017), with only linear layers, tanh activations, and
no normalization layers. We also experiment with ReLU activations. The network outputs a mean
and a standard deviation (with softplus), both conditioning on the observation independently for each
action dimension, which are then used to create a TanhNormal distribution, similarly to Haarnoja
et al. (2018).

To measure the plasticity loss of a checkpoint, we use the same optimization hyperparameters used to
train the checkpoint, i.e. the same batch size and learning rate. The dataset sizes and fitting budgets
for plasticity are listed in Tables 2 and 3.

We provide a high-level pseudocode for PPO in Algorithm 1 and list all hyperparameters considered
in Tables 2 and 3.

Algorithm 1 High-level Pseudocode for PPO

N : number of environments in parallel.
Benv: agent steps per environment to collect in a batch.
K: number of optimization epochs per batch.

LCLIP
πold

(θ): PPO-Clip objective.
H(θ): entropy bonus/loss; cH : entropy bonus coefficient.
LV F (w): critic loss (L2 to GAE); cV F : critic loss coefficient.

1: while collected environment steps ≤ total environment steps do
Collect a batch of interaction steps of size B = N ×Benv and computes advantages.

2: for actor = 1 to N do
3: Run policy πold in environment for Benv agent steps.
4: Compute advantage estimates Ψactor

1 , . . . ,Ψactor
Benv

with GAE.
5: end for
6: Minimize overall policy and value loss (−LCLIP

πold
(θ)−cHH(θ)+cV FL

V F (w)) with autograd
on the on the collected batch over K epochs with minibatch size M ≤ B.

7: πold ← πθ

8: end while

Proximal Feature Regularization With a coefficient cPFO, the PFO loss is added to the overall loss
(−LCLIP

πold
(θ) + cPFOL

PFO
πold

(θ)− cHH(θ) + cV FL
V F (w)) optimized with autograd over multiple

minibatch epochs.

Table 1: Hyperparameters for the toy setting in Figure 5.

Environment
ϕ(x) Sampled from a Normal distribution
ϕ(y) αϕ(x)
α 3 (overshoot), -1 (interfere)
A(x, a1), A(y, a1) 1

Policy
Network 2 output neurons representing the 2 logits + Softmax

Optimization
Clipping epsilon (PPO-Clip) 0.1
Optimizer SGD
Learning rate 1.5
Minibatch size 1
Number of epochs 10
Number of steps 20 alternating between x and y
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B.3 Additional details on metrics used in the figures

Training curves A point in the training curves in Figures 1, 2, 3, before aggregating seeds and
smoothing, corresponds to an average value over the last batch collected at the time of logging for
metrics available at every batch (feature rank, entropy, etc.) or the latest batch where the metric was
available at the time of logging for the episodic return (as it’s only available when episodes finish, and
it requires multiple batches to finish an episode). E.g., in Figure 1 on ALE, a feature rank corresponds
to the average feature rank over all the states in the last batch collected at the time of logging and is
logged every 0.1% of the batches (i.e. every 6,144 env steps); A return corresponds to the average
return across all workers that had episodes finished in the latest batch containing finished episodes at
the time of logging.

Figure 4 A window of size 1% of training progress represents approximately 1 million training steps
on ALE and 50,000 training steps on MuJoCo We average the metrics per window and then take the
20 windows with the lowest average probability ratios below 1− ϵ. The probability ratios in a run
can be trivially within the 1− ϵ region after the model collapses, resulting in less than 20 points if the
model collapses before 20% of the training progress. When all runs give 20 points, we can observe
300 points in total per scatter plot.

Figure 6 A window of size 5% of training progress represents approximately five million training
steps in ALE and captures at least five episodes per environment so in total at least 40 episodes. For
MuJoCo this represents approximately 256,000 training steps and captures at least 128 episodes per
environment so in total at least 256 episodes.

When a model collapses, it typically doesn’t change anymore so its optimization trivially gives ratios
within the clipping limits (no value above 1 + ϵ and below 1 − ϵ is logged). In that case, we are
more interested in the evolution of the excess ratio before the ratios become trivial. Therefore, the
upper limit of the 5% of training progress is taken such that it is the latest timestep where there are
at least 10 non-trivial ratios, i.e. 10 logged excess ratios. This coincides with a window before the
collapse of the model capturing the values we are interested in. Note that when a model collapses
this window may not coincide with the window used to report the other metrics such as the average
return, however, these other metrics typically do not change after a collapse, so it is more robust to
capture them at the end of training rather than looking for an arbitrary window after the collapse. We
give training curves similar to Figure 1 with the interventions performed.

In MuJoCo, with continuous action distributions the ratios diverge to infinity and 0 before collapse
therefore to get meaningful plots, we clip average probability ratios above 1 + ϵ and below 1− ϵ to
1012 and 10−12, respectively, before computing the average excess ratio.

We group the different epoch configurations of an intervention on the same environment, giving 15
runs per boxplot (three epochs with five seeds each).

B.4 Statistical significance

Stochasticity in our experiments arises from network initialization, environment transitions (e.g.,
sticky actions in ALE), agent action sampling, and minibatch sampling for optimization. A seed
fully controls the sequence of randomness in a run with the same hyperparameter configuration. We
repeat each configuration with five seeds using the same collection of seeds, resulting in the same
initialization of the networks and environments for a given seed across configurations. This form
of repeated measures allows us to compare the configurations with lower variance as they share the
same initial conditions, hence requiring a lower number of seeds.

In Figures 1 and 2, we aggregate the five runs of each experiment into mean curves with min/max
shaded areas. The use of min/max error bars allows us to demonstrate the full range of observed
outcomes, although it may result in shaded areas that overlap more than with other types of error
bars. Most of the claims we make based on those figures do not rely on non-overlapping shaded areas
and are instead stronger when the max or min boundaries are consistent with the observation made
(min boundary of feature norm increasing, max boundary of feature rank decreasing). Otherwise,
we made comparative claims when shaded areas did not overlap (feature rank decreasing faster with
more epochs and more non-stationarity).

Figure 3 displays individual seeds to zoom on single-run dynamics around collapse. It is used for
an illustrative purpose to provide intuition and does not depend on the number of runs or statistical
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aggregation of results. The main claim made with the intuition (breakdown of the trust region) is
backed by Figure 4, which includes 300 points per plot per environment, subsampled from 15 training
curves per environment.

To evaluate the effects of the interventions in Figure 6, we show boxplots to give a complete idea
of the distribution of the data which is formed by grouping the different configurations in the same
environment. Each boxplot contains 15 runs. We make claims such as preventing collapse using
the tails and medians and claims about lower excess ratio and higher rank using the interquartile
range. Without a clear intuition about the distribution of combined configurations per environment,
we consider this approach appropriate for comparing interventions.

In summary, we believe our experimental design provides a balanced tradeoff between statistical
significance and richness of claims. The computational cost of running more seeds may not yield
proportionately valuable insights.

B.5 Hardware and runtime

The experiments in this project took a total of ~11,300 GPU hours on NVIDIA V100 and A100 GPUs
(ALE) and ~25,500 CPU hours (MuJoCo). A run on ALE takes around 10 hours on an A100 and 16
hours on a V100. A run on MuJoCo takes around 5 hours on 6 CPUs.
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Table 2: Hyperparameters for ALE.

Environment
Repeat action probability (Sticky actions) 0.25
Frameskip 3
Max environment steps per episode 108,000
Noop reset steps 0

Observation transforms
Grayscale True
Resize width (‘resize_w‘) 84
Resize height (‘resize_h‘) 84
Frame stack 4
Normalize observations False

Reward transforms
Sign True

Collector
Total environment steps 100,000,000
Num envs in parallel 8
Num envs in parallel plasticity 1
Agent steps per batch 10,24 (128 per env)
Total agent steps plasticity 36,000 (at least one full episode)

Models (actor and critic)
Activation ReLU
Convolutional Layers
Filters [32, 64, 64]
Kernel sizes [8, 4, 3]
Strides [4, 2, 1]
Linear Layers
Number of layers 1
Layer size 512

Optimization
Advantage estimator
Advantage estimator GAE
Gamma 0.99
Lambda 0.95
Value loss
Value loss coefficient 0.5
Loss type L2
Policy loss
Normalize advantages minibatch normalization
Clipping epsilon 0.1
Entropy coefficient 0.01
Feature regularization coefficient 1 (last pre-activation), 10 (all pre-activations)
Optimizer (actor and critic)
Optimizer Adam
Learning rate 0.00025
Betas (0.9, 0,999), (0.9, 0,9) for the intervention
Max grad norm 0.5
Annealing linearly False
Number of epochs 4, 6, 8
Number of epochs plasticity fit 1
Minibatch size 256

Logging (% of the total number of batches)
Training every 0.1% (~100,000 env steps)
Plasticity every 2.5% (41 times in total)
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Table 3: Hyperparameters for MuJoCo.

Environment
Frameskip 1
Max env steps per episode 1,000
Noop reset steps 0

Observation transforms
Normalize observations True (from initial steps collected by uniform policy)
Initial random steps for normalization 4000 (at least 4 episodes)

Collector
Total environment steps 5,000,000
Num envs in parallel 2
Num envs in parallel plasticity 4
Agent steps per batch 2048 (1024 per env)
Total environment steps plasticity 4,000 (at least 4 full episodes)

Models (actor and critic)
Activation Tanh, ReLU
Convolutional layers
Number of Layers 0
Linear layers
Number of layers 2
Layer size 64

Optimization
Advantage estimator
Advantage estimator GAE
Gamma 0.99
Lambda 0.95
Value loss
Value coefficient 0.5
Loss type L2
Policy loss
Normalize advantages minibatch normalization
Clipping epsilon (PPO-Clip) 0.2
Entropy coefficient 0.0
Feature regularization coefficient 1 (tanh), 10 (ReLU)
Optimizer (actor and critic)
Optimizer Adam
Learning rate 0.0003
Betas (0.9, 0,999), (0.9, 0,9) for the intervention
Max grad norm 0.5
Annealing linearly False
Number of epochs 10, 15, 20
Number of epochs plasticity fit 4
Minibatch size 64

Logging (% of the total number of batches)
Training every 0.1% (6,144 env steps)
Plasticity every 2.5% (41 times in total)
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C Toy setting derivation details

The derivatives of the softmax probability πθ(a1|s) with respect to θ1 and θ2 are as follows:

∂πθ(a1|s)
∂θ1

=
∂

∂θ1

(
eθ1ϕ(s)

eθ1ϕ(s) + eθ2ϕ(s)

)
= ϕ(s) · eθ1ϕ(s) · eθ2ϕ(s)

(eθ1ϕ(s) + eθ2ϕ(s))2
(3)

∂πθ(a1|s)
∂θ2

=
∂

∂θ2

(
eθ1ϕ(s)

eθ1ϕ(s) + eθ2ϕ(s)

)
= −ϕ(s) · eθ1ϕ(s) · eθ2ϕ(s)

(eθ1ϕ(s) + eθ2ϕ(s))2
(4)

The update rule for each parameter θi in θ with SGD is θnew
i = θi + η ∂L

∂θi
where η is the learning rate.

Therefore, given the partial derivatives, the updated values for θ1 and θ2 after taking a gradient step
are (if the probability is still inferior to 1 + ϵ, otherwise the gradient is 0)

θnew
1 = θ1+η· A(s, a1)

πold(ai|s)
·
(
ϕ(s) · eθ1ϕ(s) · eθ2ϕ(s)

(eθ1ϕ(s) + eθ2s)2

)
and θnew

2 = θ2−η·
A(s, a1)

πold(ai|s)
·
(
ϕ(s) · eθ1ϕ(s) · eθ2ϕ(s)

(eθ1ϕ(s) + eθ2ϕ(s))2

)
Hence,

θnew
1 = θ1 + δs with δs = η · A(s, a1)

πold(ai|s)
·
(
ϕ(s) · eθ1ϕ(s) · eθ2ϕ(s)

(eθ1ϕ(s) + eθ2ϕ(s))2

)
θnew
2 = θ2 − δs

Let α ≥ 0 and without loss of generality, let’s take α ≥ 1. After a gradient step on x one has

πθnew(a1|x) =
eθ

new
1 ϕ(x)

eθ
new
1 ϕ(x) + eθ

new
2 ϕ(x)

=
e(θ1+δx)ϕ(x)

e(θ1+δx)ϕ(x) + e(θ2−δx)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + e(θ2−2δx)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)−2δxϕ(x)

≥ eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)
(since − 2δxϕ(x) ≤ 0)

= πθ(a1|x)

πθnew(a1|y) =
eθ

new
1 αϕ(x)

eθ
new
1 αϕ(x) + eθ

new
2 αϕ(x)

=
e(θ1+δx)αϕ(x)

e(θ1+δx)αϕ(x) + e(θ2−δx)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + e(θ2−2δx)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)−2δxαϕ(x)

≥ eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)
(since − 2δxαϕ(x) ≤ 0)

= πθ(a1|y)
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And after a gradient step on y:

πθnew(a1|x) =
eθ

new
1 ϕ(x)

eθ
new
1 ϕ(x) + eθ

new
2 ϕ(x)

=
e(θ1+δy)ϕ(x)

e(θ1+δy)ϕ(x) + e(θ2−δy)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + e(θ2−2δy)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)−2δyϕ(x)

≥ eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)
(since − 2δyϕ(x) ≤ 0)

= πθ(a1|x)

πθnew(a1|y) =
eθ

new
1 αϕ(x)

eθ
new
1 αϕ(x) + eθ

new
2 αϕ(x)

=
e(θ1+δy)αϕ(x)

e(θ1+δy)αϕ(x) + e(θ2−δy)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + e(θ2−2δy)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)−2δyαϕ(x)

≥ eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)
(since − 2δyαϕ(x) ≤ 0)

= π(a1, αx,θ)

= πθ(a1|y)

Let α ≤ 0 and without loss of generality, let’s take α ≤ 1, after a gradient step on x one has

πθnew(a1|x) =
eθ

new
1 ϕ(x)

eθ
new
1 ϕ(x) + eθ

new
2 ϕ(x)

=
e(θ1+δx)ϕ(x)

e(θ1+δx)ϕ(x) + e(θ2−δx)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + e(θ2−2δx)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + e(θ2ϕ(x)−2δxϕ(x)

≥ eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)
(since − 2δxϕ(x) ≤ 0)

= πθ(a1|x)
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πθnew(a1, y) =
eθ

new
1 αϕ(x)

eθ
new
1 αϕ(x) + eθ

new
2 αϕ(x)

=
e(θ1+δx)αϕ(x)

e(θ1+δx)αϕ(x) + e(θ2−δx)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + e(θ2−2δx)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)−2δxαϕ(x)

≤ eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)
(since − 2δxαϕ(x) ≥ 0)

= πθ(a1|y)

And after a gradient step on y:

πθnew(a1|x) =
eθ

new
1 ϕ(x)

eθ
new
1 ϕ(x) + eθ

new
2 ϕ(x)

=
e(θ1+δy)ϕ(x)

e(θ1+δy)ϕ(x) + e(θ2−δy)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + e(θ2−2δy)ϕ(x)

=
eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)−2δyϕ(x)

≤ eθ1ϕ(x)

eθ1ϕ(x) + eθ2ϕ(x)
(since − 2δyϕ(x) ≥ 0)

= πθ(a1|x)

πθnew(a1|y) =
eθ

new
1 αϕ(x)

eθ
new
1 αϕ(x) + eθ

new
2 αϕ(x)

=
e(θ1+δy)αϕ(x)

e(θ1+δy)αϕ(x) + e(θ2−δy)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + e(θ2−2δy)αϕ(x)

=
eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)−2δyαϕ(x)

≥ eθ1αϕ(x)

eθ1αϕ(x) + eθ2αϕ(x)
(since − 2δyαϕ(x) ≤ 0)

= πθ(a1|y)

22



D Main paper figures on all environments
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Figure 7: Figure 1 on ALE. QBert is the only game where rank decline and collapse are not observed, apart from
an outlier run that collapsed at initialization. The performance of the policy should be taken into consideration
when comparing the plasticity loss of the critic. E.g., for Phoenix, the plasticity loss of the critic associated with
the policy the doesn’t collapse ends up higher than that of the policies that do collapse.
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Figure 8: Figure 1 on MuJoCo with the tanh activation.
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Figure 9: Figure 1 on MuJoCo with the ReLU activation.

24



0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1.0

1.2

1.4

1.6

1.8

2.0

En
tro

py

ALE/Phoenix-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0

1

2

3

4

5

Po
lic

y 
va

ria
nc

e

×10−2

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0

1

2

3

4

5

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0.50

0.75

1.00

1.25

1.50

1.75

En
tro

py

ALE/NameThisGame-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0

2

4

6

8

Po
lic

y 
va

ria
nc

e

×10−2

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

2.5

3.0

3.5

4.0

4.5

5.0

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1.0

1.5

2.0

2.5

3.0

En
tro

py

ALE/BattleZone-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0

1

2

3

Po
lic

y 
va

ria
nc

e

×10−2

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1

2

3

4

5

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

2.0

2.2

2.4

2.6

2.8

En
tro

py

ALE/Gravitar-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
lic

y 
va

ria
nc

e

×10−2

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1

2

3

4

5

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1.5

2.0

2.5

En
tro

py

ALE/DoubleDunk-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0.0

0.5

1.0

1.5

Po
lic

y 
va

ria
nc

e

×10−2

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

2

3

4

5

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0.50

0.75

1.00

1.25

1.50

1.75

En
tro

py

ALE/Qbert-v5

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y 
va

ria
nc

e

×10−1

0.00 0.25 0.50 0.75 1.00
Environment steps ×108

1

2

3

4

5

De
ad

 n
eu

ro
ns

 p
ol

icy

×102
4 epochs 6 epochs 8 epochs

Figure 10: Figure 2 on ALE.
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Figure 11: Figure 2 on MuJoCo with the tanh acti-
vation. With a continuous action distribution, the
policy variance can either drop or explode. Dead
neurons for the tanh activation are hard to compute
as they are dependent on an arbitrary threshold.
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Figure 12: Figure 2 on MuJoCo with the ReLU
activation.
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Figure 13: Figure 3 on ALE. (No other environments considered; same figure as Figure 3).
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Figure 14: Figure 3 on MuJoCo with the tanh activation. The PPO-Clip objective explodes in the negative
direction after collapse so we clip the y-axis of that plot to −1.
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Figure 15: Figure 4 ALE. Qbert and Gravitar do not have runs with poor representation regions (dead neurons
> 510) to exhibit the correlation around collapse. Qbert has one outlier where the agent collapsed at the very
beginning of the training and kept a high (but lower than 510) number of dead neurons and a trivial rank, but a
low excess ratio.
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Figure 16: Figure 4 on MuJoCo with the tanh activation. Dead neurons for the tanh activation are hard to
compute as they are dependent on an arbitrary threshold. In Humanoid the rank does not arrive at low values to
exhibit the correlation around collapse.

1 2 3 4
Dead neurons policy ×101

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1

Hopper-v4

Kendall: -0.46, Spearman: -0.58

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Feature rank policy (PCA) ×101

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: 0.46, Spearman: 0.53

102 103

Feature preactivation norm

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: -0.43, Spearman: -0.54

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Dead neurons policy ×101

−1

0

1

2

3

4

5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1

HalfCheetah-v4

Kendall: -0.46, Spearman: -0.68

0 1 2 3 4
Feature rank policy (PCA) ×101

0

1

2

3

4

5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: 0.53, Spearman: 0.67

101 102 103 104

Feature preactivation norm

0

1

2

3

4

5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: -0.24, Spearman: -0.35

0 1 2 3 4
Dead neurons policy ×101

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1

Humanoid-v4

Kendall: -0.30, Spearman: -0.41

0 1 2 3 4 5
Feature rank policy (PCA) ×101

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: 0.42, Spearman: 0.55

102 103 104 105 106 107 108 109

Feature preactivation norm
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: -0.45, Spearman: -0.58

0 1 2 3 4 5 6
Dead neurons policy

1.5

2.0

2.5

3.0

3.5

4.0

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1

Ant-v4

Kendall: -0.04, Spearman: -0.06

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
Feature rank policy (PCA) ×101

1.5

2.0

2.5

3.0

3.5

4.0

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: -0.21, Spearman: -0.33

1016 × 100

Feature preactivation norm

1.5

2.0

2.5

3.0

3.5

4.0

Av
g 

of
 p

ro
b 

ra
tio

s <
 1

 - 
ε

×10−1
Kendall: -0.23, Spearman: -0.33

Figure 17: Figure 4 on MuJoCo with the ReLU activation. In Ant, the rank does not arrive at low values to
exhibit the correlation around collapse.
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Figure 18: Figure 6 on ALE. The tails of the plasticity loss on Phoenix with interventions can be higher than
without interventions on the runs where the models collapse too early without interventions, leading to the
plasticity loss of the non-collapsed models with interventions eventually becoming higher. This can be observed
from the training curves with interventions. Nevertheless, their medians are lower.
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Figure 19: Figure 6 on MuJoCo with the tanh activation.
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Figure 20: Figure 6 on MuJoCo with the ReLU activation.
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Figure 21: Figure 1 on ALE/Phoenix-v5 with interventions.
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Figure 22: Figure 1 on ALE/NameThisGame-v5 with interventions.
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Figure 23: Figure 1 on ALE/NameThisGame-v5 with interventions.
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Figure 24: Figure 1 on MuJoCo Hopper with the tanh activation.
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Figure 25: Figure 1 on MuJoCo Humanoid with the tanh activation.
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Figure 26: Figure 1 on MuJoCo Hopper with the ReLU activation.
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Figure 27: Figure 1 on MuJoCo Humanoid with the ReLU activation.
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E Measuring and comparing rank dynamics

Several matrix rank approximations have been used in the deep learning literature, and more specifi-
cally the deep RL literature, to measure the rank of the representation of features learned by a deep
network. In complement to the background presented in section 2, we give here all the rank metrics
we have tracked in this work and their correlations, showing that although their absolute values differ,
their dynamics tend to describe the same evolution.

E.1 Definitions of different rank metrics

Essentially, the main difference between the rank metrics considered in the literature is whether they
apply a relative thresholding of the singular values or an absolute one. Their implementation can be
found under src/po_dynamics/modules/metrics.py in our codebase.

Referring by Φ the N × D matrix of representations as in Section 2, and letting δ = 0.01 be the
threshold, and ⟨σi(Φ), . . . , σD(Φ)⟩ the singular values of Φ in decreasing order, the different rank
definitions are as follows.

Effective rank (Roy & Vetterli, 2007) A relative measure of the rank. Let H(p1, . . . , pk) denote
the Shannon entropy of a probability distribution over k events and ∥σ∥1 be the sum of the singular
values. Let σ̃i(Φ) =

σi(Φ)
∥σ∥1

be the normalized singular values. The effective rank is

exp(H(σ̃1(Φ), . . . , σ̃D(Φ))}

This rank measure has also been used in deep learning by Huh et al. (2023).

Approximate rank (PCA) A relative measure of the rank. Intuitively this rank measures the number
of PCA values that together explain 99% of the variance of the matrix. This can also be viewed as
the lowest-rank reconstruction of the feature matrix with an error lower than 1%. 6 It is also used in
RL by Yang et al. (2020).

min
k

{∑k
i=1 σ

2
i (Φ)∑D

j=1 σ
2
j (Φ)

> 1− δ

}

srank (Kumar et al., 2021) A relative measure of the rank. This is a relative thresholding of the
singular values, similar to the approximate rank but with no connection to low-rank reconstruction or
variance of the feature matrix.

min
k

{∑k
i=1 σi(Φ)∑D
j=1 σj(Φ)

> 1− δ

}

Feature Rank (Lyle et al., 2022) An absolute measure of the rank. The number of singular values
of the normalized Φ that are larger than a threshold δ.∣∣∣∣{σi(Φ)√

N
> δ for i ∈ {1, . . . , D}

}∣∣∣∣
PyTorch rank An absolute measure of the rank. This is the rank computed by
torch.linalg.matrix_rank and torch.linalg.matrix_rank. Let ϵ be the smallest differ-
ence possible between points of the data type of the singular values, i.e. for torch.float32 that is
1.19209e−7. This rank is computed as follows.

∣∣∣∣{ σi(Φ)

σ1 ×N
> ϵ for i ∈ {1, . . . , D}

}∣∣∣∣
It also appears in Press et al. (2007) in the discussion of SVD solutions for linear least squares.

6https://github.com/epfml/ML_course/blob/94d3f8458e31fb619038660ed2704cef3f4bb512/
lectures/12/lecture12b_pca_annotated.pdf
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E.2 Correlations between the rank metrics

We compute various correlation coefficients and distance measures between the rank metrics. To
compute a correlation/distance on a pair of rank metrics (X,Y ), we take for each training run the set
{(xt, yt)t ∈ {0, ..., T}} of coinciding values of the curves of the two rank metrics during the run that
had T logged steps, compute the correlation/distance on this set, and average the correlation/distance
values across all considered runs. We also compute the worst correlation/distance between each
rank metric pair for a worst-case analysis. We separate the average values and worst-case values
by environment (ALE vs. MuJoCo) for a more granular analysis. We consider all the runs without
the interventions and exclude a few runs where the models collapse since the beginning of training,
giving constant trivial ranks, as these result in undefined or trivial correlation coefficients.

We compute Kendall’s τ coefficient (Kendall, 1938), Spearman’s ρ coefficient (Spearman, 1987), the

Pearson correlation coefficient, and a normalized L2-distance computed as
√∑T

t=1(xt−yt)2√
T×L

where L

is the width of the feature layer considered (i.e., 512 for ALE and 64 for MuJoCo).

Results We visualize the correlation/distance between the pairs of ranks as heatmaps annotated with
averages and standard deviations. Overall, the metrics are highly correlated with average correlation
the coefficients varying between 0.99 and 0.51. Individually, no rank metric correlates significantly
more on average with the other metrics. Interestingly, from the average correlations, we clearly see
two consistent clusters of stronger correlations between the relative rank metrics (approximate rank
(PCA) and Effective rank (Roy & Vetterli, 2007)) and absolute rank metrics (Feature Rank (Lyle
et al., 2022) and PyTorch rank). The srank (Kumar et al., 2021) which is technically a relative metric,
but with a weak normalization rationale, correlates more with the relative metrics on MuJoCo with
tanh but more with the absolute metrics on ALE and MuJoCo with ReLU.
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Figure 28: Average correlation between rank metrics on MuJoCo ALE.
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Figure 29: Average correlation between rank metrics on MuJoCo with the tanh activation.
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Figure 30: Average correlation between rank metrics on MuJoCo with the ReLU activation.
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Figure 31: Worst-case correlations between rank metrics on ALE.
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Figure 32: Worst-case correlations between rank metrics on MuJoCo with the tanh activation.
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Figure 33: Worst-case correlations between rank metrics on MuJoCo with the ReLU activation.

37


	Introduction
	Background
	Deteriorating representations, collapse, and loss of trust
	PPO suffers from deteriorating representations
	Collapsed representations create trust issues and unrecoverable loss
	A toy setting to understand the effects of rank collapse on trust region


	Intervening to regularize representations and non-stationarity
	Conclusion and Discussion
	Additional background
	Reinforcement Learning

	Experiment details
	Code and run histories
	Additional details on our experimental setup
	Additional details on metrics used in the figures
	Statistical significance
	Hardware and runtime

	Toy setting derivation details
	Main paper figures on all environments
	Measuring and comparing rank dynamics
	Definitions of different rank metrics
	Correlations between the rank metrics


