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ABSTRACT

We analyze neural scaling laws in a solvable model of last-layer fine-tuning where
targets have intrinsic, instance-heterogeneous difficulty. In our Latent Instance Dif-
ficulty (LID) model, each input’s target variance is governed by a latent "precision"
drawn from a heavy-tailed distribution. While generalization loss recovers standard
scaling laws, our main contribution connects this to inference. The pass@k failure
rate exhibits a power-law decay, k−βeff , but the observed exponent βeff is training-
dependent. It grows with sample size N before saturating at an intrinsic limit β set
by the difficulty distribution’s tail. This coupling reveals that learning shrinks the
"hard tail" of the error distribution: improvements in the model’s generalization
error steepen the pass@k curve until irreducible target variance dominates. The
LID model yields testable, closed-form predictions for this behavior, including
a compute-allocation rule that favors training before saturation and inference at-
tempts after. We validate these predictions in simulations and on CIFAR-10H,
where human-label variance provides a realistic difficulty measure.

1 INTRODUCTION

The remarkable success of large-scale machine learning models is tightly linked to empirically
observed and theoretically understood scaling laws, which characterize performance improvements
with increasing data, model size, or training time (Kaplan et al., 2020; Hestness et al., 2017; Rosenfeld
et al., 2019; Bahri et al., 2024; Maloney et al., 2022; Bordelon et al., 2024). These laws have been
crucial for predicting learning curves and optimizing resource allocation in the large dataset size N
and number of parameters P regime. Most classical analyses focus on the training side, relating
generalization loss Lgen to N (and sometimes P ) through properties of the data distribution such as
spectral decay (Bartlett et al., 2020; Hastie et al., 2020; Bordelon et al., 2020) or tractable model
classes (Maloney et al., 2022; Tay et al., 2022).

A complementary paradigm emphasizes inference-time compute: repeated attempts, best-of-N ,
and search can produce substantial gains on difficult reasoning tasks even without further training,
typically evaluated with pass@k under a verifier (Snell et al., 2024; Brown et al., 2024). While
practical methods for exploiting inference-time compute are rapidly evolving (see Sec. 2), and some
explanations for their success have been given (Levi, 2024; Schaeffer et al., 2025), a basic theoretical
question remains: how does training progress shape performance scaling at inference time?

In many real-world settings the input–output relationship is not deterministic; some instances are
intrinsically more variable than others (Arpit et al., 2017; Northcutt et al., 2021). Such instance-level
heterogeneity affects both stages: during training we observe only a single noisy realization per input,
and during inference we may compare a model prediction to multiple fresh realizations under pass@k.
This motivates a minimal model that explicitly ties training and inference through instance difficulty.

Setting. We adopt a deliberately simple but analyzable framework that mirrors common practice
in fine-tuning: last-layer (linear) regression on fixed features in high dimension, with intrinsically
stochastic targets. Each instance x carries a latent precision τx (its “difficulty”), drawn from a
heavy-tailed distribution, which controls the variance of its target around the mean x⊤θ∗. Training
observes one realization y ∼ Y ∗

x per input and fits a linear head (ridge/OLS). At inference, we
evaluate pass@k with a perfect verifier by drawing k fresh realizations per test input and asking
whether at least one lies within a fixed tolerance of the model prediction.
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Overview and contributions.

• A solvable LID model for linear fine-tuning. We formalize the Latent Instance Difficulty
(LID) model in the high-dimensional linear setting. Training with a single realization per
input reduces to ridge/OLS and recovers established generalization scaling with respect to
sample size N , dimension d, and spectral exponent α (including the 1/N tail in the classical
regime when the average target variance is finite, i.e., β > 2).

• Training–inference coupling via a two-tail law. We show that the distribution of single-
trial success probabilities under pass@k acquires two regularly varying components: an
intrinsic tail determined by the latent difficulty distribution (exponent β) and a finite-N tail
governed by the model’s error relative to the mean target (exponent γ(N) ∝ 1/Lgen(N)).
Averaging over trials yields a mixture pass@k law from which the effective inference
exponent βeff(N) = min{β, γ(N)} emerges. Hence the observed pass@k slope increases
with N and saturates at the intrinsic difficulty index β.

• Predictions and implications. The theory predicts (i) a crossover surface in (N, k) separat-
ing a finite-N (bias-dominated) region from an intrinsic-tail region; (ii) a saturating βeff(N)
curve; and (iii) continued prefactor improvements with N even after the slope has plateaued.
These lead to a simple compute-allocation rule: invest in training until βeff(N) is near β,
then prioritize inference attempts.

• Evidence in simulation and a real-data proxy. Controlled simulations confirm the 1/N
training tail (with the correct intercept), the steepening of pass@k with N , and a saturating
β̂eff(N). A CIFAR-10H last-layer fine-tuning experiment, where human-label variance
provides realistic instance difficulty, exhibits analogous behavior.

Taken together, these results provide a clean, testable baseline that unifies training and inference
scaling in a setting that captures a widely used fine-tuning regime. The model makes explicit when
test-time compute should help, how far its benefits can go, and how those benefits depend on training.

2 RELATED WORK

Due to space constraints, we defer a detailed literature review to App. A and focus here on the prior
research most central to our contribution.

Generalization Scaling Laws A large body of work has established that the generalization loss of
deep networks often scales as a predictable power law with resources like dataset size N or model
parameters (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann and et al., 2022). Theoretical
frameworks seek to explain these laws by appealing to properties of the data, such as its spectral
decay, or the model architecture (Bahri et al., 2021; Maloney et al., 2022). Our work builds on the
standard scaling of generalization loss with N , which serves as the "training" component of our
unified model.

Inference-Time Scaling A parallel line of work has shown that performance on difficult reasoning
tasks can be dramatically improved by increasing compute at inference time, even without further
training (Snell et al., 2024; Brown et al., 2024). The dominant methods involve generating multiple
candidate solutions and selecting the best one, often evaluated with the pass@k metric. While some
theoretical models for this phenomenon have been proposed (Levi, 2024; Schaeffer et al., 2025), they
typically analyze inference in isolation.

To our knowledge, a simple, solvable model that analytically connects the progress of training (i.e.,
the decrease in generalization error) to the scaling of inference performance is still missing. Our work
aims to provide exactly this unified view.

The rest of the paper is organized as follows: In Sec. 3, we present the LID model. We provide
our main results for training and inference scaling laws in Sec. 4. In Sec. 5 we present an example
of regression performed on an inherently stochastically labeled dataset, showing that the LID is a
reasonable proxy for a real-world task. We conclude in Sec. 6.

3 THE LATENT INSTANCE DIFFICULTY SETTING

Real-world datasets exhibit significant instance-level heterogeneity: some image labels are ambiguous,
incurring higher annotator disagreement (Peterson et al., 2019; Northcutt et al., 2021), and some
reasoning problems are intrinsically harder than others, leading to more variable outputs. Standard
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homogeneous-noise assumptions overlook this complexity. Addressing this, and connecting it to
the distinct scaling behaviors observed during training versus inference (especially when multiple
inference attempts can be verified against a correct solution; cf. Section 1), motivates our setting.
Intuitively, factors that increase training difficulty (harder to learn the mean) also shape inference
reliability (harder to match a fresh realization).

Last-layer fine-tuning view. We instantiate Latent Instance Difficulty (LID) within the common
fine-tuning regime: a frozen representation produces features x ∈ Rd and we learn a linear head
x⊤θ. Each instance carries a latent precision (its “easiness”) τx that controls the variance of its target
around the mean x⊤θ∗. Training observes one realization y per x; at inference, pass@k compares
the model’s prediction to k fresh realizations from the same instance-specific target distribution.
Definition 3.1 (Latent Instance Difficulty (LID) Model). The data generation process for an observa-
tion (x, y) is:

1. Features. An input feature vector x ∈ Rd is drawn from a distribution p(x) with zero mean
E[x] = 0 and covariance Σ = E[xxT ]. We assume eigenvalues σ2

j exhibit power-law decay
σ2
j ∝ j−(1+α) for j = 1, . . . , d, with α > 0.

2. Latent difficulty. Associated with x is a latent difficulty precision τx ∈ (0,∞), drawn
independently of x from

τx ∼ Gamma(shape = β/2, rate = 1), (1)

where β > 0 controls the near-zero tail. Smaller β increases the mass at very low precision
(high intrinsic variance), corresponding to “hard” instances.

3. Stochastic target. Conditional on (x, τx), the instance target is Gaussian around the mean
relationship f∗(x) = x⊤θ∗ with variance inversely proportional to τx:

Y ∗
x ∼ N

(
mean = xTθ∗, variance = σ2

η/τx
)
, where σ2

η > 0 is a global scale. (2)

4. Training labels. The observed label is a single realization

y ∼ Y ∗
x equivalently y = xTθ∗ + η, η ∼ N (0, σ2

η/τx). (3)

Comments. (i) The power-law spectrum in Item 1 abstracts benign-feature regimes observed in
practice and used in linear scaling analyses (Maloney et al., 2022; Levi and Oz, 2023; 2024). (ii) The
Gamma family in Eq. (1) is chosen for analytic convenience; all results that govern inference scaling
depend only on the near-zero tail Pr(τx ≤ t) ≍ tβ/2, so other distributions with the same tail index
yield the same exponents (Levi, 2024). (iii) Independence of τx and x simplifies exposition; allowing
correlation is a natural extension and would primarily affect constants and crossover locations rather
than exponents. (iv) We will denote the model’s bias relative to the mean target on a fresh test feature
by Egen(x) = x⊤θ̂ − x⊤θ∗; its distribution is governed by the training procedure and sample size N
(see Sec. 4).
Corollary 1. The average variance of the target around its mean is

E
[
(Y ∗

x − xTθ∗)2
]
= Ex[Var(Y

∗
x | x)] = σ2

η E
[
1

τx

]
. (4)

For τx ∼ Gamma(β/2, 1), E[1/τx] = Γ(β/2−1)
Γ(β/2) = 2

β−2 when β > 2.

Assumption 3.2 (Finite average target variance). We assume E[(Y ∗
x − xTθ∗)2] < ∞, i.e., β > 2.

Assumption 3.2 enables standard high-dimensional ridge/OLS analyses of Lgen (train-
ing/generalization scaling). Importantly, our inference-time results (pass@k scaling) rely only
on the small-τ tail and continue to hold in the sense of exponents even when β ≤ 2 (though constants
and the onset of asymptotics may change), provided the learned predictor is consistent.

3.1 TRAINING SETUP

We consider learning the mean relationship f∗(x) = x⊤θ∗ from a dataset DN = {(xi, yi)}Ni=1,
where each yi is a single realization sampled according to Def. 3.1. In the fine-tuning view, xi are

3
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Figure 1: Training and inference-time scaling laws in the LID setting. Left: Generalization
error Lgen vs. N , showing double descent and the two classical regimes. Center: Pass@k inference
failure rate Linf(k) vs. k for several N > d, with asymptotic slope −β (dashed black) once the
mean is well learned. Right: The effective inference exponent βeff(N) extracted from the local
log–log slope in a fixed k-window. The dotted line marks the asymptote β; the solid curve is the fit
βeff(N) = β −∆/(1 + cβN

ν). We use λ = 10−9 and ση = 10−3.

frozen features from a pretrained backbone and we train only a linear head. The learner observes
(xi, yi) and estimates θ̂ by minimizing a ridge objective against the realized labels while evaluation
is always against the mean target:

Ltrain(θ̂) =
1

N

N∑
i=1

(yi − x⊤
i θ̂)

2 + λ∥θ̂∥22, (5)

where θ̂ ∈ Rd (last-layer parameters) and λ ≥ 0 is a small regularizer.

The minimizer admits the standard closed form
θ̂λ = argmin

θ̂
Ltrain(θ̂) = (N−1X⊤X + λId)

−1 N−1X⊤y, (6)

where X∈RN×d stacks the features and y∈RN the realized labels from equation 3. We will take
the ridgeless limit λ→0 when well-posed; in the overparameterized case N < d we use the standard
scaling λ = λ̃/N to recover the minimum-norm interpolator (see Sec. 4 and App.B).

Bias relative to the mean target. Throughout, we evaluate generalization against the mean signal
x⊤θ∗, and denote the model’s instancewise deviation by

Egen(x) := x⊤θ̂λ − x⊤θ∗. (7)

The test (generalization) loss is Lgen(N,λ) = Ex,DN

[
Egen(x)

2
]
. Under Ass. 3.2, the effective

training noise has finite average variance σ2
noise = σ2

η E[1/τx] =
2σ2

η

β−2 , so standard high-dimensional
ridge/OLS tools apply. In Sec. 4 we analyze how Lgen scales with N , d, and the feature spectrum
exponent α, and how the resulting distribution of Egen(x) controls the finite-N inference behavior
(pass@k) and the effective inference exponent βeff(N).

4 THEORETICAL ANALYSIS OF SCALING LAWS

We analyze two coupled laws: (i) the dependence of the generalization loss Lgen on sample size
N , and (ii) the pass@k inference failure Linf on the number of trials k. In our fine-tuning view
(last-layer regression on frozen features), Lgen controls the distribution of the instancewise deviation
Egen(x) = x⊤θ̂λ − x⊤θ∗, which in turn governs the finite-N behavior of Linf. As N grows, Lgen
shrinks and the Egen(x)-induced penalty in Linf recedes; the observed inference slope transitions from
a finite-N regime to the latent-difficulty asymptote −β. We quantify this transition empirically via
βeff(N) (Fig. 1, right).

4.1 TRAINING SCALING LAW (LGEN VS. N )

We evaluate generalization against the mean target, so the test loss is

Lgen(N,λ) = Ex∼p(x),DN

[
Egen(x)

2
]
= Ex∼p(x),DN

[ (
x⊤θ̂λ − x⊤θ∗)2 ]. (8)

4
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In high dimensions, Lgen depends critically on the N–d ratio and the spectrum of Σ; we follow the
standard decomposition into regimes (Belkin et al., 2019; Hastie et al., 2020). Under Ass. 3.2, the
effective label noise has finite average variance σ2

noise = σ2
η E[1/τx], and classical ridge/OLS results

apply (see App.B for a concise derivation in our notation).

Overparameterized (N < d). With ridgeless (or lightly regularized) interpolation, the error is
governed by the minimum-norm bias and the data spectrum exponent α (Belkin et al., 2018; Bartlett
et al., 2020; Mei and Montanari, 2020; Cohen et al., 2021; Hastie et al., 2020; Wu and Xu, 2020;
Maloney et al., 2022). For power-law spectra σ2

j ∝ j−(1+α),

Lgen(N) ∝ PN N−α, (N < d), (9)
where PN is a benign prefactor encapsulating spectrum and teacher alignment. This captures the
structured-data difficulty along trailing eigendirections.

Underparameterized (N > d). When samples exceed parameters, the variance term dominates and
decays at the parametric rate,

Lgen(N) ∝ σ2
η E[1/τx] d/N, (N ≫ d), (10)

with the usual 1/N slope and a noise-controlled constant that reflects the mean target being learned
from single realizations.

Transition (N ≈ d). Near interpolation the estimator is ill-conditioned and Lgen exhibits a peak
(“double descent”), whose height and width depend on λ and the spectrum (Belkin et al., 2019).

The left panel of Fig. 1 confirms these scalings in our LID setting, and provides the Lgen(N) baselines
used to interpret the finite-N inference behavior discussed next.

4.2 INFERENCE SCALING LAW (LINF VS. k)

We analyze inference through the pass@k metric (Snell et al., 2024; Brown et al., 2024), i.e., the
probability that at least one of k independent trials matches the target within tolerance. In the LID
setting, for a test instance x with latent precision τx,

Y ∗
x ∼ N

(
x⊤θ∗, σ2

η/τx
)
, (11)

and the model outputs ŷ = x⊤θ̂λ. In trial j we draw yj ∼ Y ∗
x so that

ej = ŷ − yj =
(
x⊤θ̂λ − x⊤θ∗)− ηj = Egen(x)− ηj , ηj ∼ N

(
0, σ2

η/τx
)
. (12)

A trial succeeds if |ej | ≤ δ.
Assumption 4.1 (Perfect Verification). We assume a perfect verifier that declares overall success iff
at least one of the k trials satisfies |ej | ≤ δ.

Let p(x, τx) = Pη∼N (0,σ2
η/τx)

(
|Egen(x)− η| > δ

)
be the single-trial failure probability. Assuming

independence across trials, the pass@k failure is
Linf(k) = Ex, τx,DN

[
p(x, τx)

k
]
= 1− pass@k. (13)

Remark (model-draw vs. target-draw pass@k). In practical pass@k for LLMs one draws k
model outputs and verifies them against a fixed target; here we draw k target realizations and compare
them to a fixed predictor ŷ = x⊤θ̂λ. For our scaling claims these protocols are equivalent under a
small tolerance window and smooth local densities: the single-try success is (2δ) times the local
density at the gap BN (x) = x⊤(θ̂λ − θ∗), so exchanging where the randomness lives (model vs.
target) leaves the k-dependence and the small-τx control unchanged (constants may differ). We
formalize this equivalence and its conditions at the start of App. B.4.

Asymptotic tail (bias-free reference). When the mean is learned well so that |Egen(x)| is negligible
relative to ση/

√
τx for the small-τx instances that dominate inference failures, a small-window

expansion gives
1− p(x, τx) ≈ cδ

√
τx, cδ = 2δ/

√
2π ση. (14)

Then p(x, τx)
k ≈ exp

(
− kcδ

√
τx
)

and averaging over τx ∼ Gamma(β/2, 1) yields (see App. B.3)

Linf(k) ∼ P̃β,δ,ση k
−β , P̃β,δ,ση =

2Γ(β)

Γ(β/2) (cδ)β
, k → ∞. (15)

This reproduces the −β slope governed by the small-τ tail of the LID prior, independent of d/N .

5
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Finite-N correction and βeff(N) evolution. For moderate τx = Θ(1), finite-N mean error Egen(x)
suppresses the per-trial success probability. A Gaussian CDF expansion gives, for small δ,

1− p(x, τx) ≈
√
2√
π

δ

ση

√
τx exp

(
−

Egen(x)
2 τx

2σ2
η

)
. (16)

Thus very small success probability arises either from τx ↓ 0 (intrinsic difficulty) or from large
|Egen(x)| at typical τx. Under standard linear generalization, BN (x) := Egen(x) is approximately
Gaussian with Var[BN ] = Θ(Lgen(N)).

Using equation 16 and Tauberian arguments for Laplace–Stieltjes transforms (under the conditions in
the assumptions below), we obtain the two-tail mixture law (details in App. C).

Linf(k;N) = P̃ k−β + P̃N (N) k−γ(N) (1 + o(1)), k → ∞, (17)

where P̃ > 0 depends on (β, δ, ση) as in equation 15, P̃N (N) > 0, and

γ(N) = Θ
( 1

Var[BN ]

)
= Θ

( 1

Lgen(N)

)
. (18)

Assumptions for the Tauberian step. The derivation relies only on mild regular-variation and
smoothness conditions, summarized in App. B.3 (regularly varying Pr(τx ≤ t) near 0, a uni-
form small-window expansion for the single-try success probability, sub-Gaussian BN (x) with
VarBN ≍ Lgen(N), and conditional independence of trials).
Proposition 4.2 (Training-dependent effective exponent). Fix a k-window [k1, k2] for which the local
slope is constant. For sufficiently large k1 and any N , the effective exponent for Linf(k;N) satisfies

βeff(N ; [k1, k2]) ≈ min
{
β, γ(N)

}
, (19)

with γ(N) given by equation 18. Consequently, as N increases and Lgen(N) decreases, γ(N) grows
and βeff(N) monotonically approaches the intrinsic LID exponent β.

In practice we summarize this monotone saturation by the empirical fit

βeff(N) = β −∆/(1 + cβ N
ν), (20)

where (∆, cβ , ν) depend weakly on the k-window and the estimator. The center and right panels
of Fig. 1 illustrate: (i) for fixed N > d, Linf(k) exhibits a slope that steepens with N ; (ii) βeff(N)
increases with N and plateaus at β.

4.3 COMPUTE ALLOCATION TRADEOFF (WITH TRAINING-DEPENDENT βeff(N))

Having derived the finite N inference scaling behavior, we can incorporate both training scaling
and inference scaling to study the optimal budget allocation between the two. We consider a fixed
compute budget C that must be split between training samples (cost cN each) and inference trials
(cost ck each) C = NcN + kck, s.t. k = C−Ñ

ck
, Ñ := NcN . We minimize a weighted objective

Ltot(Ñ) = RLgen(N) + Linf

(
k = C−Ñ

ck
; N
)
, training/inference weight = R. (21)

In the classical (under-parameterized) regime N ≫ d we have Lgen(N) ≈ PNN−γ with γ = 1
(Sec. 4.1); more generally take γ ∈ {1, α} depending on d/N . For inference, Sec. 4.2 established the
mixture law leading to a training-dependent effective slope; over the practical k-window used for
evaluation we model

Linf(k;N) ≈ P̃ (N) k−βeff (N), βeff(N) ↑ β as N → ∞, (22)

where βeff(N) is monotone increasing and saturating (e.g., βeff(N) = β − ∆/(1 + CNν)), and
P̃ (N) is a slowly varying prefactor capturing residual bias effects.

With Ñ = NcN and k = (C − Ñ)/ck, the budget-constrained objective becomes

Ltot(Ñ) = RPN cγN Ñ−γ + P̃ (N) c
βeff (N)
k (C − Ñ)−βeff (N). (23)

6
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Figure 2: Compute allocation with a training-dependent inference exponent. Left: empirical finite-
N case. We plot log10 Ltot(N, k;R) with R the training:inference weight ratio and C = NcN +kck.
Black: grid optimum Ñ⋆; white dashed: analytic approximation from equation 24, using βeff(N)
(local log–log slope of Linf) and its discrete derivative. Right: constant-β baseline calibrated from the
same data; white dashed is the closed-form analytic optimum. Contours clearly shift toward larger N
in the finite-N panel, consistent with the −β′

eff(N) log(·) correction.

Proposition 4.3 (Optimal allocation with training-dependent βeff(N)). Assume Lgen(N) ≈ PNN−γ

and Linf(k;N) ≈ P̃ (N)k−βeff (N). Let N = Ñ/cN . An interior optimum Ñ∗ ∈ (0, C) satisfies

RPN cγN γ Ñ−(γ+1) = P̃ (N) c
βeff (N)
k (C − Ñ)−βeff (N)

[
βeff (N)

C−Ñ
− β′

eff (N)
cN

ln
(

C−Ñ
ck

)]
. (24)

If P̃ (N) is slowly varying and |β′
eff(N)| is small over the relevant range, equation 24 simplifies to

the quasi-static balance

RPN cγN γ Ñ−(γ+1) ≈ P̃ cβk β (C − Ñ)−(β+1). (25)

Interpretation. Compared to the constant-β condition, equation 24 includes a new logarithmic term
proportional to −β′

eff(N) ln
(
(C − Ñ)/ck

)
. When the budget is such that k = (C − Ñ)/ck lies

below the LID-dominated window (so β′
eff(N) > 0 and ln((C − Ñ)/ck) > 0), this term increases

the marginal benefit of training, shifting the optimum towards larger N . Once βeff(N) has saturated
(so β′

eff(N)≈0), equation 24 reduces to the constant-exponent balance in equation 25 (recovering
the classical tradeoff with β replaced by βeff(N)).

Practical regimes. (i) Under-parameterized, near saturation: With γ = 1, β′
eff(N)≈0 and slowly

varying P̃ (N), equation 25 gives an accurate allocation rule: allocate training until the marginal
N -gain ∝ Ñ−2 matches the marginal k-gain ∝ (C − Ñ)−(βeff+2). (ii) Finite-N , sub-asymptotic k:
When βeff(N) is still increasing, the −β′

eff(N) log(·) term in equation 24 makes additional training
strictly more valuable than the quasi-static approximation predicts; optimal policies invest more in N
until the effective slope stabilizes. (iii) Boundary optima: If the right-hand side of equation 24 is
always larger (resp. smaller) than the left-hand side over Ñ ∈ (0, C), the optimum collapses to a
boundary solution Ñ∗ ∈ {0, C} (all inference or all training), which can be checked by the sign of
dLtot/dÑ at the endpoints. This is shown explicitly in Fig. 2.

5 TEST CASE: LID IN CIFAR-10H WITH PRE-TRAINED FEATURES

To bridge the LID model with a realistic setting, we evaluate on CIFAR-10 (Krizhevsky, 2012) paired
with human label distributions from CIFAR-10H (Peterson et al., 2019). We freeze a pretrained
ResNet-18 (He et al., 2015) and fine-tune only a linear head on top of the backbone features, matching
the fine-tuning focus of our analysis.
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Figure 3: Training and inference scaling on CIFAR-10H (frozen backbone, linear head). Top
row: Left: Generalization loss Lgen(N) with the N−1 tail in the classical regime. Center: Pass@k

failure Linf(k;N) for several N on CIFAR-10H; dashed shows a k−β reference anchored on the
largest-N curve. Right: Effective inference slope βeff(N) estimated from the local log–log slope;
the saturating fit βeff(N) = β −∆/(1 + cβN

ν) is overlaid, approaching the intrinsic tail index β.
Bottom row: A CIFAR-10 image, its human label distribution, and the Gaussian PDF used to sample
training/inference labels, illustrating instance difficulty via label variance.

5.1 EXPERIMENTAL SETUP

Feature extraction. We pass each image through a ResNet-18 pretrained on ImageNet and extract
the penultimate-layer vector zi ∈ Rd with d = 512. These frozen features play the role of x in our
LID analysis, and we fit only the linear head.

Stochastic Targets from Human Labels. The CIFAR-10H dataset provides, for each image, the
distribution of labels assigned by multiple human annotators. For each image xi (mapped to feature
zi), we calculate the mean mi =

∑9
c=0 c · P (label = c|xi) and variance vi =

∑9
c=0(c − mi)

2 ·
P (label = c|xi) of these human label distributions. The key connection to our LID model is made by
treating the target for our linear regressor as intrinsically stochastic. In order to control the signal to
noise ratio, we introduce a scaling factor s to account for the magnitude of the noise variance, which
is controllable in the LID setting. The learning problem is then defined on rescaled quantities

Rescaled features: zscaled
i = zi/s, Rescaled mean target: mscaled

i = morig
i /s. (26)

During training, for each rescaled feature vector zscaled
i , the target label yi is sampled from a Gaussian

distribution centered at its rescaled mean, using the human variance

yi ∼ N (mean = mscaled
i , variance = vi + ϵv). (27)

where mscaled
i is the rescaled mean human label for the instance, vi is the variance of the human labels,

and ϵv is a small constant (e.g., 10−6) to ensure non-zero variance. Here, vi plays a role analogous
to 1/τxi in our synthetic LID model, with high human label variance corresponding to a “difficult”
instance (low effective precision).

Model and Training. We perform fine tuning by training a linear regression model ŷ = zscaled,T θ̂ to
predict a scalar value from the rescaled features zscaled extracted from the pretrained ResNet. Given
the quadratic loss and linear model, we compute the optimal weights θ̂ analytically using the Ridge
regression solution with an effectively scaled regularization parameter λeff = λ/s2

θ̂λ = (N−1ZT
scaledZscaled + λeffI)

−1N−1ZT
scaledy, (28)

where Zscaled is the matrix of rescaled training features, and y is the vector of sampled noisy labels
(from Eq. (27)).
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Evaluation metrics. Generalization loss Lgen. On a held-out set we compute the MSE between
ŷval = zscaled T

val θ̂ and the rescaled human mean mscaled
val . (To compare across different s, multiply

by s2.) Inference failure Linf(k;N). For each validation point we draw k i.i.d. realizations yj ∼
N (mscaled

val , vval + ϵv) and declare success if |ŷval − yj | ≤ δeff for any j, with δeff = δ/s. We average
the all-fail indicator over the set. This implements the perfect-verification assumption from Sec. 4.2.

5.2 RESULTS AND CONNECTION TO LID THEORY

Fig. 3 (top) shows Lgen vs. N and Linf(·;N) vs. k (here, s = 32 and δ = 0.05). The generalization
curve exhibits the familiar transition near N ≈ d and the 1/N decay for N ≫ d, consistent with
our linear-ridge analysis. For inference, each fixed-N curve follows an approximate power law
k−βeff (N); we estimate βeff(N) as the local log–log slope in a central k window. As predicted by Sec.
4.2, βeff(N) increases with N and saturates, reflecting the crossover from a bias-limited window
(finite-N mean error) to the intrinsic LID-dominated tail.

The bottom row illustrates how human disagreement induces instance difficulty: broad label histo-
grams (large vi) produce wider Gaussians in equation 27, making pass@k success rarer at small k.
This matches the mechanism behind the k−β law in the synthetic LID model (Sec. 4.2), with the
caveat that the empirical difficulty distribution is not exactly Gamma; nevertheless, the slope behavior
is robust and governed by the prevalence of high-variance instances.

Takeaways. (i) The linear-head fine-tuning setting reproduces the Lgen scaling predicted by the ridge
analysis. (ii) The pass@k failure curves exhibit log–log linearity with a slope βeff(N) that grows with
training data and plateaus, aligning with the finite-N theory and supporting the compute-allocation
results in Sec. 4.3. (iii) Treating human uncertainty as instance-dependent noise provides a realistic
testbed for LID: the qualitative scaling and the training-dependent inference exponent persist despite
deviations from the idealized Gamma prior or independence assumptions between τx and x.

6 DISCUSSION AND CONCLUSION

This work introduced the Latent Instance Difficulty (LID) model, a simple, solvable framework
for last-layer fine-tuning that unifies the scaling laws of training and inference. We modeled tasks
with intrinsic, instance-heterogeneous difficulty and showed that while the generalization loss, Lgen,
follows established scaling with sample size N and data spectrum α, its improvement has a direct
and non-trivial impact on inference performance.

Our central contribution is the derivation of a training-dependent inference exponent. The pass@k
failure rate, Linf(k), decays as a power law, but its exponent, βeff(N), is not fixed. It begins small for
poorly-trained models and grows with the number of training samples N , eventually saturating at
an intrinsic limit, β, determined by the tail of the task’s true difficulty distribution. This mechanism
reveals how reducing the model’s error relative to the mean target makes inference-time compute
more effective, up to a point of diminishing returns set by the data’s irreducible stochasticity.

This unified view yields actionable insights. It predicts a clear crossover in the optimal resource
allocation strategy: when the model is undertrained and βeff(N) < β, the marginal benefit of
acquiring more training data is high. Once the model is well-trained and the inference exponent has
saturated, further gains are best sought by investing in more inference-time compute.

The LID model, while simple, provides a valuable theoretical baseline. It cleanly separates the
roles of data structure (α) and data heterogeneity (β) while also explaining how they are coupled
through the training process. By providing a closed-form, testable theory for when and how much
test-time compute should help, it offers a first step toward a more principled understanding of resource
allocation in modern machine learning.

Limitations. Our analysis focused on a tractable linear model to derive clear, analytical insights. This
necessary simplification comes with limitations. First, while our fine-tuning frame makes the linear
model highly relevant, a full theoretical extension to multi-layered, non-linear architectures would be
the next step. A potential avenue for this is via random features or kernel models. Second, we assumed
that the intrinsic difficulty distribution is a fixed property of the task, independent of the model’s
architecture. For complex reasoning, a more powerful model might not only learn the mean better
but also fundamentally simplify the problem, an effect our current model does not capture. Finally,
our work addresses single-output regression, and extending these ideas to structured, auto-regressive
outputs, as seen in large language models, is an important challenge for future research.
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A RELATED WORK

Generalization Scaling Laws Neural scaling laws (NSL) have been shown to accurately describe
how the generalization loss of deep neural networks improves with scale (model/dataset size, com-
pute) (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann and et al., 2022). Language model
cross-entropy loss, for instance, often exhibits power-law scaling over orders of magnitude (Kaplan
et al., 2020; Henighan et al., 2020), suggesting quantifiable performance gains with increased re-
sources. Theoretical frameworks aim to explain these observations by identifying distinct scaling
regimes (e.g., variance-limited, resolution-limited) (Bahri et al., 2021; Sharma and Kaplan, 2022; Spi-
gler et al., 2019), sometimes linking them to data manifold intrinsic dimension (Sharma and Kaplan,
2022; Bahri et al., 2021). More nuanced models address dynamical scaling evolution with training
time (Bordelon et al., 2024) and "broken" neural scaling laws (BNSL) that capture transitions between
power-law regimes (Caballero et al., 2023; Nakkiran et al., 2021). Such breaks highlight complexities
in extrapolation and suggest plateaus might stem from suboptimal strategies rather than fundamental
limits (Sorscher et al., 2022; Dey et al., 2025). Beyond pre-training, scaling laws also govern fine-
tuning performance relative to pre-trained model size and fine-tuning data volume (Hernandez et al.,
2021; Lin et al., 2024). These studies show pre-training effectively augments fine-tuning data, with
transfer benefits following predictable, though task-dependent, patterns (Hernandez et al., 2021),
shifting focus towards leveraging pre-training for diverse downstream applications. In this work,
we mainly focus on the vanilla NSL setting where the scaling law pertains to generalization loss
improvement with increased number of training samples.

Inference Time Scaling Methods for scaling inference-time compute in deep learning often involve
generating multiple solution candidates and then selecting the best one based on specific criteria.
These criteria include choosing the most frequent response for majority voting or the best response
based on an external reward for Best-of-N (Brown et al., 2024; Irvine et al., 2023; Levi, 2024;
Muennighoff et al., 2025; Schaeffer et al., 2025). Unlike repeated sampling, previous sequential
scaling methods let the model generate solution attempts sequentially, building upon previous attempts
and allowing it to refine each attempt based on prior outcomes (Snell et al., 2024; Hou et al., 2025; Lee
et al., 2025). Tree-based search methods (Gandhi et al., 2024; Wu et al., 2024) offer a hybrid approach
between sequential and parallel scaling. Examples include Monte-Carlo Tree Search (MCTS) (Liu
et al., 2024; Zhang et al., 2023; Zhou et al., 2024; Choi et al., 2023) and guided beam search (Xie
et al., 2023). REBASE (Wu et al., 2024) employs a process reward model to balance exploitation and
pruning during its tree search. Empirically, REBASE has been shown to outperform sampling-based
methods and MCTS (Wu et al., 2024). Reward models play a key role in these inference-time scaling
methods (Lightman et al., 2023; Wang et al., 2024a;b; Wu et al., 2024; Gandhi et al., 2024; Liu et al.,
2024; Zhang et al., 2023; Zhou et al., 2024; Choi et al., 2023; Xie et al., 2023; Xin et al., 2024;
Ankner et al., 2024). They generally come in two variants: outcome reward models and process
reward models. Outcome reward models (Xin et al., 2024; Ankner et al., 2024) assign a score to
complete solutions and are particularly useful in Best-of-N selection. In contrast, process reward
models (Lightman et al., 2023; Wang et al., 2024a; Wu et al., 2024) assess individual reasoning
steps and are effective in guiding tree-based search methods. Other approaches also explore simple
test-time scaling techniques (Muennighoff et al., 2025).

B HIGH DIMENSIONAL RIDGE REGRESSION WITH NOISY LABELS

In this appendix, we re-derive and analyze the generalization error for high-dimensional Ridge linear
regression with additive label noise used in the main text. While these results are well-established in
the literature (see, e.g., (Maloney et al., 2022; Hastie et al., 2020) and references therein), we present
a concise derivation to highlight the connection to our Latent Instance Difficulty (LID) model and to
set the stage for understanding the training scaling laws discussed in Section 4.1.

B.1 MODEL SETUP

We consider a linear model where the learner aims to estimate a true underlying parameter vector
θ∗ ∈ Rd from N training samples (xi, yi). The input features xi ∈ Rd are drawn IID from
a distribution with zero mean and covariance matrix Σ = E[xxT ]. The observed labels yi are
generated according to

yi = xT
i θ

∗ + ηi, (29)
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where ηi is the label noise for sample i. In the context of our LID model (Definition 3.1), ηi is a
realization from N (0, σ2

η/τxi
). For this general derivation, we assume ηi are IID with E[ηi] = 0 and

E[η2i ] = σ2
noise. If we were directly applying LID, σ2

noise would be replaced by E[σ2
η/τx] = σ2

ηE[1/τx].
The learner estimates θ∗ using Ridge regression by minimizing the loss

L(θ̂) =
1

2N

N∑
i=1

(yi − xT
i θ̂)

2 +
λ

2
∥θ̂∥22, (30)

where λ ≥ 0 is the regularization parameter. Let X ∈ RN×d be the matrix of training features (rows
xT
i ) and y ∈ RN be the vector of observed labels. The solution is

θ̂λ =

(
1

N
XTX + λId

)−1
1

N
XTy. (31)

B.2 GENERALIZATION ERROR

The generalization error (or test loss) measures the expected squared prediction error on unseen test
data xtest with true mean target xT

testθ
∗

Lgen(N,λ) = EDN ,xtest

[
(xT

testθ̂λ − xT
testθ

∗)2
]
. (32)

Let ∆θ = θ̂λ − θ∗. Then Lgen = E[∆θTΣ∆θ], where the expectation is over the training data DN .
Substituting y = Xθ∗ + η⃗ (where η⃗ is the vector of noise realizations ηi) into Eq. (31)

θ̂λ =

(
1

N
XTX + λId

)−1
1

N
XT (Xθ∗ + η⃗) =

(
1

N
XTX + λId

)−1(
1

N
XTXθ∗ +

1

N
XT η⃗

)
.

So the error vector ∆θ is

∆θ = θ̂λ − θ∗

=

(
1

N
XTX + λId

)−1(
1

N
XTXθ∗ +

1

N
XT η⃗

)
− θ∗

=

(
1

N
XTX + λId

)−1 [
1

N
XTXθ∗ +

1

N
XT η⃗ −

(
1

N
XTX + λId

)
θ∗
]

=

(
1

N
XTX + λId

)−1 [
1

N
XT η⃗ − λθ∗

]
. (33)

The generalization error can be decomposed into bias and variance terms. Assuming θ∗ is fixed (not
random) and E[η⃗] = 0, E[η⃗η⃗T ] = σ2

noiseIN (for IID noise with average variance σ2
noise = E[η2i ])

E[∆θ] =

(
1

N
XTX + λId

)−1

(−λθ∗). (34)

This is the bias of the estimator θ̂λ. The covariance of ∆θ (which is also Cov(θ̂λ)) is

Cov(∆θ) = E[(∆θ − E[∆θ])(∆θ − E[∆θ])T ]

=

(
1

N
XTX + λId

)−1

E

[(
1

N
XT η⃗

)(
1

N
XT η⃗

)T
](

1

N
XTX + λId

)−1

=

(
1

N
XTX + λId

)−1
1

N2
XTE[η⃗η⃗T ]X

(
1

N
XTX + λId

)−1

=

(
1

N
XTX + λId

)−1
σ2

noise

N2
XTX

(
1

N
XTX + λId

)−1

. (35)

The generalization error is Lgen = E[Tr(Σ∆θ∆θT )] = Tr(ΣE[∆θ∆θT ]). E[∆θ∆θT ] =
Cov(∆θ) + E[∆θ]E[∆θ]T .
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Hence, Lgen = Bias2 + Variance

Lgen = E[∆θ]TΣE[∆θ] + Tr (ΣCov(∆θ)) = λ2Tr
[
θ∗(θ∗)T

(
Σ̂+ λI

)−1

Σ
(
Σ̂+ λI

)−1
]

+ Tr
(
Σ
(
Σ̂+ λI

)−1

σ2
noiseΣ̂

(
Σ̂+ λI

)−1
)
, (36)

where Σ̂ = 1
NXTX is the empirical covariance.

B.2.1 UNDERPARAMETERIZED REGIME (N ≫ d)

In the underparameterized limit, N ≫ d, we can safely take the Ridge parameter to 0, obtaining a
simple result

Lgen = σ2
noiseTr

(
ΣΣ̂−1Σ̂Σ̂−1

)
= σ2

noiseTr
(
ΣΣ̂−1

)
. (37)

In the setting discussed in the main text, the population covariance can be written as a Σ = ΛI,
where Λ is diagonal with a decaying power law spectrum, as in Item 1. As stated in Silverstein and
Bai (1995); Couillet and Liao (2022), the empirical covariance matrix is given by Σ̂ = ΛW where
W is a Wishart matrix with parameter κ = d/N . This definition implies that the generalization loss
is given by

Lgen = σ2
noiseTr

(
W−1

)
≈ σ2

noise
1

N/d− 1
∝ σ2

noise
d

N
, (38)

where the key equality is due to taking an expectation over the eigenvalues of an Inverse Wishart
matrix, which obey an inverse Marchenko-Pastur distribution distribution Couillet and Liao (2022).

Transition (N ≈ d): Note that near the interpolation threshold, Lgen in Eq. (38) exhibits a peak
which is one side of "double descent" Belkin et al. (2019).

B.2.2 OVERPARAMETERIZED REGIME (N ≪ d)

In the limit of ridgeless regression (λ → 0) for the overparamerized regime, the solution interpolates
the training data. The error is mainly determined by the implicit bias of the minimum L2-norm
solution, with the noise contribution appearing only near the interpolation threshold. In this case, the
matrix Σ̂ is rank deficient, with N nonzero eigenvalues and d−N null eigenvalues. This requires
a more careful consideration of the ridgeless limit, namely, one must introduce scaling to the ridge
parameter, for instance as λ = λ̃/N (Bahri et al., 2021). Under this scaling, the test loss becomes

Lgen =
λ̃2

N2d
Tr

(Σ̂+
λ̃

N
I

)−2

Σ

+ Tr

Σ

(
Σ̂+

λ̃

N
I

)−1

σ2
noiseΣ̂

(
Σ̂+

λ̃

N
I

)−1
 . (39)

The first term can be exactly derived using replica methods, as in Bordelon et al. (2020), but can also
be evaluated asymptotically by solving the self consistent equations

Bias2 ≈ λ̃2

N2d

N∑
i=1

σ2
i

(σ2
i +

λ̃
N )2

, λ̃ =

N∑
i=1

λ̃
N σ2

i

(σ2
i +

λ̃
N )

. (40)

Solving Eq. (40) leads to the power law scaling Lgen ∝ N−α (Bartlett et al., 2020; Hastie et al.,
2020). The noise term in the overparameterized regime can be resolved with the same arguments
as in the underparameterized case, with the replacement {d,N} → {N, d}, examplifying double
descent (Maloney et al., 2022).

In the context of the LID model, σ2
noise is replaced by σ2

ηE[1/τx]. Thus, Assumption 3.2 (β > 2) is
crucial for these scalings to hold with finite prefactors. If β ≤ 2, E[1/τx] diverges, and standard
Ridge regression analysis is compromised.
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B.3 INFERENCE SCALING AT FIXED N

We provide the detailed steps for the asymptotic evaluation of the pass@k failure probability integral
given in Eq. (13) for large k

Linf(k) = Eτx∼Gamma(β/2,1)

[
[p(x, τx)]

k
]
≈ Eτx∼Gamma(β/2,1)[e

−kcδ
√
τx ]. (41)

Here, cδ = 2δ/(
√
2πση) and p(x, τx) ≈ 1−cδ

√
τx for small τx. The PDF of τx ∼ Gamma(β/2, 1)

is f(τ) = 1
Γ(β/2)τ

β/2−1e−τ . The expectation integral is

Linf(k) =

∫ ∞

0

e−kcδ
√
τ 1

Γ(β/2)
τβ/2−1e−τdτ. (42)

For large k, the factor e−kcδ
√
τ decays extremely rapidly for any τ > 0, forcing the dominant

contribution to the integral to come from the region near τ = 0. In this region, the term e−τ in the
Gamma PDF is approximately 1. Thus, we approximate the integral as

Linf(k) ≈
1

Γ(β/2)

∫ ∞

0

e−kcδ
√
ττβ/2−1dτ. (43)

We perform a change of variable: Let u = kcδ
√
τ . Then

√
τ = u/(kcδ), which implies τ =

(u/(kcδ))
2 = u2/(kcδ)

2. The differential is dτ = 2u
(kcδ)2

du. Substituting these into the integral
equation 43 ∫ ∞

0

e−u

(
u2

(kcδ)2

)β/2−1
2u

(kcδ)2
du =

∫ ∞

0

e−u uβ−2

(kcδ)β−2

2u

(kcδ)2
du

=
2

(kcδ)β−2(kcδ)2

∫ ∞

0

e−uuβ−1du

=
2

(kcδ)β

∫ ∞

0

uβ−1e−udu.

The remaining integral is the definition of the Gamma function, Γ(β), which converges for β > 0.∫ ∞

0

uβ−1e−udu = Γ(β). (44)

Substituting this back into the expression for Linf(k)

Linf(k) ≈
1

Γ(β/2)

2Γ(β)

(kcδ)β
=

(
2Γ(β)

Γ(β/2)(cδ)β

)
k−β . (45)

This confirms the asymptotic scaling Linf(k) ∼ k−β for large k.

Assumptions for the Tauberian step We use standard Laplace–Stieltjes Tauberian arguments
under the following mild conditions:

1. Regularly varying difficulty near zero. The latent precision satisfies Pr(τx ≤ t) =
tβ/2L(t) as t ↓ 0, with L slowly varying and bounded on (0, t0].

2. Uniform small-window expansion. For some cδ =
√

2/π δ/ση and any compact
[τlo, τhi] ⊂ (0,∞),

s(B, τ) := Pr
(
|B − η| ≤ δ | τ

)
= cδ

√
τ exp

(
− B2τ

2σ2
η

)
(1 + o(1))

uniformly in τ ∈ [τlo, τhi] as δ ↓ 0.

3. Model error. BN (x) = x⊤(θ̂λ−θ) is centered sub-Gaussian with Var[BN ] ≍ Lgen(N) and
is independent of τx (or weakly dependent so that conditioning on τx preserves sub-Gaussian
tails).

4. Independent trials and perfect verification. Conditional on (x, τx) and the training set,
the k comparisons are i.i.d., and success is declared if any trial lies within the tolerance.

Under (1)–(4), Karamata-type Tauberian theorems yield the mixture law in equation 17 and the k−β

tail in equation 15, with constants as stated.
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B.4 EQUIVALENCE TO MODEL-DRAW PASS@k.

Consider the alternative protocol that draws k i.i.d. model proposals ỹj = ŷ + ξj with proposal
noise ξ having a bounded, smooth density fξ independent of τx, and verifies against a fixed target y⋆.
Writing BN (x) = ŷ −m(x), the per-trial success probability is∫

|u|≤δ

fξ
(
BN (x)− u

)
du = 2δ fξ

(
BN (x)

)
(1 + o(1)) (δ ↓ 0). (46)

In our target-draw protocol the corresponding quantity is 2δ fη
(
BN (x); τx

)
(1 + o(1)) with

fη(·; τx) = N (0, σ2
η/τx). Thus both protocols reduce to (1 − p)k with p ∝ 2δ times a local

density at BN (x); since the only heavy tail in LID comes from fη(·; τx) ∝ √
τx as τx ↓ 0, the

small-success behavior, and hence the k−β tail, is unchanged by swapping model vs. target sampling
(up to prefactors). This equivalence holds provided fξ is bounded and does not itself introduce a
τx-dependent tail, and trials are conditionally independent.

C TRAINING-DEPENDENT INFERENCE SCALING IN THE LID LINEAR MODEL

Setup. Let x ∈ Rd be features with x ∼ N (0,Σ) and linear teacher m(x) = x⊤θ∗. Each instance
has latent precision τx ∼ Γ(β/2, 1), independent of x. A single realization of the stochastic target is

Y ∗
x ∼ N

(
m(x), σ2

η/τx
)
. (47)

Training observes i.i.d. pairs (xi, yi) with yi ∼ Y ∗
xi

and fits ridge/OLS to obtain θ̂λ(N) from N

samples. At test time we evaluate (i) the training loss Lgen(N) = Ex[(x
⊤θ̂λ − x⊤θ∗)2], and (ii) the

inference loss Linf(k;N) under a perfect verifier with tolerance δ > 0: for each test x we draw k i.i.d.
yj ∼ Y ∗

x and declare success if minj≤k |x⊤θ̂λ − yj | ≤ δ. The quantity Linf(k;N) is the population
failure probability.

Verification symmetry. Throughout we evaluate pass@k under a perfect verifier by drawing k

fresh realizations from Yx and checking proximity to the deterministic head x⊤θ̂λ. As argued in
Sec. 4.2, in the small-window regime the single-try success is proportional to the local density of
whichever operand is random near the gap BN (x). Replacing “draws from Yx” with “draws from a
model sampling distribution m independent of τx” therefore leaves the k–dependence and the τx-tail
exponent unchanged (the prefactor may shift).

Asymptotic reference (bias-free). When the mean is learned well (e.g., Lgen(N)→ 0), a standard
Tauberian argument over the small-τx tail yields

Linf(k;N) ∼ C1(β, δ, ση) k
−β , k → ∞, (48)

with C1 = 2Γ(β)
/[
Γ(β/2) c β

δ

]
and cδ =

√
2/π δ/ση , matching equation 15.

Assumption C.1 (Regular-variation and small-window conditions for Tauberian steps). We assume:

1. Near-zero tail of difficulty. The latent precision has a regularly varying CDF Pr(τx ≤
t) = tβ/2L(t) as t ↓ 0, with L slowly varying and β > 0. (For Γ(β/2, 1) we have
L(t) → 1/Γ(β/2 + 1).)

2. Small-window success form (uniform on compacts). For tolerance δ > 0,

s(B, τx) := Pr(|B − η| ≤ δ | τx) = cδ
√
τx e

−B2τx
2σ2

η (1 + o(1)) as δ ↓ 0, (49)

uniformly for τx in any fixed compact subset of (0,∞), with cδ =
√
2/π δ/ση and η ∼

N (0, σ2
η/τx).

3. Training-induced bias. BN (x) := Egen(x) is sub-Gaussian with Var[BN ] = Θ(Lgen(N)),
and (BN , τx) are independent (the latter simplifies exposition and affects only con-
stants/crossover scales).
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Finite-N mean error and per-trial success. Define the prediction bias on a fresh test point by

BN (x) := Egen(x) = x⊤(θ̂λ − θ∗) . (50)

Under standard linear generalization (e.g., benign spectrum), BN (x) is approximately Gaussian with
zero mean and variance Var[BN ] = Θ(Lgen(N)); in the under-parameterized regime, Lgen(N) =
Θ(1/N). For fixed (x, τx) and small δ, a CDF expansion of the Gaussian likelihood gives the
small-window approximation that we used in the main text (cf. equation 16):

s
(
BN (x), τx

)
:= P

(
|BN (x)− η| ≤ δ

∣∣ τx) ≈ cδ
√
τx exp

(
− BN (x)2 τx

2σ2
η

)
, (51)

where η ∼ N
(
0, σ2

η/τx
)
.

Therefore, very small success probability arises either from τx ↓ 0 (intrinsic difficulty) or from large
|BN (x)| at typical τx = Θ(1).
Proposition C.2 (Two-tail law for single-try success probabilities). Let SN denote the random
single-trial success probability SN = s(BN (x), τx) across test x and τx. Assume equation 51 and
BN (x) ∼ N (0,Var[BN ]) with Var[BN ] = Θ(Lgen(N)). Then, as s ↓ 0,

P(SN ≤ s) = Asβ + B(N) sγ(N) (1 + o(1)), (52)

where A = c−β
δ /Γ(β/2 + 1) > 0, B(N) > 0, and

γ(N) = Θ
( 1

Var[BN ]

)
= Θ

( 1

Lgen(N)

)
. (53)

Sketch. Condition on τx and use equation 51. For moderate τx = Θ(1), the event SN ≤ s corres-

ponds to |BN (x)| ≳
√
(2σ2

η/τx) log(cδ
√
τx/s). Since BN (x) is (approximately) Gaussian with

variance Var[BN ], Gaussian tail bounds imply P(SN ≤ s | τx) ≈ sσ2
η/(τxVar[BN ]) up to slowly

varying factors; integrating τx over the Γ(β/2, 1) density concentrated at Θ(1) yields the sγ(N) con-
tribution with γ(N) = Θ(1/Var[BN ]). Separately, for small τx, s ≈ cδ

√
τx, so {SN ≤ s} contains

{τx ≤ (s/cδ)
2} and P(τx ≤ t) ∼ tβ/2/Γ(β/2 + 1), giving Asβ . Summing the contributions gives

the two-tail form.

Corollary C.3 (Mixture law for pass@k). Let Linf(k;N) = E
[
(1− SN )k

]
. By Tauberian theory for

Laplace–Stieltjes transforms of regularly varying tails,

Linf(k;N) = C1 k
−β + C2(N) k−γ(N) (1 + o(1)) (k → ∞), (54)

with C1 = 2 Γ(β)
Γ(β/2) c

−β
δ , cδ =

√
2
π

δ
ση

(identical to the constant in equation 15) and C2(N) =

B(N) Γ(γ(N) + 1) > 0.

Training-dependent effective exponent. For a fixed practical k-window [k1, k2], define the local
slope

βeff(N ; [k1, k2]) := − d logLinf(k;N)

d log k

∣∣∣
k∈[k1,k2]

. (55)

By Cor. C.3, the dominant term in the window dictates the slope; hence the summary law reported in
the main text:

βeff(N) ≈ min
{
β, γ(N)

}
, γ(N) = Θ

( 1

Lgen(N)

)
. (56)

Therefore βeff(N) is monotone in N and saturates at β; if Lgen(N) ≍ N−νtr , then γ(N) ≍ Nνtr ,
and a convenient saturating fit is

βeff(N) ≈ β − ∆

1 + cβ Nν
(∆, cβ , ν > 0), (57)

as used to summarize empirical curves (cf. center/right panels of Fig. 1).
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Summary: finite-N correction and βeff(N)

Single-trial success (small window). For tolerance δ > 0,

1− p(x, τx) ≈ cδ
√
τx exp

(
−

Egen(x)
2 τx

2σ2
η

)
, cδ =

√
2√
π

δ

ση
. (58)

Two-tail mixture. As k → ∞,

Linf(k;N) = C1 k
−β + C2(N) k−γ(N)(1 + o(1)), γ(N) = Θ

(
1

Lgen(N)

)
, C1 =

2Γ(β)

Γ(β/2)
c−β
δ .

(59)

Effective slope. In any fixed k-window,

βeff(N) ≈ min{β, γ(N)} ↗ β as N ↑, (60)

with the empirical fit equation 57 used for plots and for the compute-allocation condition in
Sec. 4.3.
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D ADDITIONAL EXAMPLES FROM CIFAR-10H

Here, we provide some additional examples from the CIFAR-10H dataset, to illustrate the type of
stochastic labels inherent in the data.
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Figure 4: Examples for low and high variance images from CIFAR-10H. Top to bottom: low
variance samples are easier to predict (more localized near the average prediction) while high variance
samples are difficult.
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