
Under review as a conference paper at ICLR 2023

LIMITATIONS OF THE NTK FOR UNDERSTANDING
GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The “Neural Tangent Kernel” (NTK) (Jacot et al., 2018), and its empirical vari-
ants have been proposed as a proxy to capture certain behaviors of real neural
networks. In this work, we study NTKs through the lens of scaling laws, and
demonstrate that they fall short of explaining important aspects of neural network
generalization. In particular, we demonstrate realistic settings where finite-width
neural networks have significantly better data scaling exponents as compared to
their corresponding empirical and infinite NTKs at initialization. This reveals a
more fundamental difference between the real networks and NTKs, beyond just a
few percentage points of test accuracy. Further, we show that even if the empiri-
cal NTK is allowed to be pre-trained on a constant number of samples, the kernel
scaling does not catch up to the neural network scaling. Finally, we show that the
empirical NTK continues to evolve throughout most of the training, in contrast
with prior work which suggests that it stabilizes after a few epochs of training.
Altogether, our work establishes concrete limitations of the NTK approach in un-
derstanding generalization of real networks on natural datasets.

1 INTRODUCTION

The seminal work of Jacot et al Jacot et al. (2018) introduced the “Neural Tangent Kernel” (NTK) as
the limit of neural networks with widths approaching infinity. Since this limit holds provably under
certain initializations, and kernels are more amenable to analysis than neural networks, the NTK
promises to be a useful reduction to understand deep learning. Thus, it has initiated a rich research
program to use the NTK to explain various behaviors of neural networks, such as convergence to
global minima (Du et al., 2018; 2019), good generalization performance (Allen-Zhu et al., 2018;
Arora et al., 2019a), implicit bias of networks (Tancik et al., 2020) as well as neural scaling laws
(Bahri et al., 2021).

In addition to the infinite NTK, the emperical NTK — the kernel with features that are gradients of
a finite-width neural network— can be a useful object to study, since it is an approximation to both
the true neural network and the infinite NTK. This has also been studied extensively as a tool to
understand deep learning (Fort et al., 2020; Long, 2021; Paccolat et al., 2021; Ortiz-Jiménez et al.,
2021).

In this work, we probe the upper limits of this research program: we want to understand the extent
to which understanding NTKs (empirical and infinite) can teach us about the success of neural
networks. We study this question under the lens of scaling (Kaplan et al., 2020; Rosenfeld et al.,
2019)—how performance improves as a function of samples and as a function of time— since the
scaling is an important “signature” of the mechanisms underlying any learning algorithm. We thus
compare the scaling of real networks to the scaling of NTKs in the following ways.

1. Data scaling of initial kernel (Section 3): We show that both the infinite and empirical NTK
(at initialization) can have worse data scaling exponents than neural networks, in realistic
settings (Figure 1). We find that this is robust to various important hyperparameter changes
such as learning rate (in the range used in practice), batchsize and optimization method.

2. Width scaling of initial kernel (Section 3): Since neural networks provably converge to the
NTK at infinite width, we investigate why the scaling behavior differs at finite width. We
show (Figure 2(b), 2(c)) realistic settings where as the width of the neural network increases
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Figure 1: Summary of results: (A) Neural network scales better than NTK at initialization: We
compare the scaling exponent of a neural network, its corresponding infinite and empirical NTK
at initialization. Details in Section 3. (B) After-kernel continues to improve with more training
samples: We train a neural network with m = {1K, 2K...1024K} samples, extract the empirical
NTK at completion, and use this kernel to fit 500 samples. Details in Section 4. (C) Empirical NTK
improves with constant rate with respect to training time: We extract the empirical NTK at various
times in training and use it to fit the full train dataset. Details in Section 5.

to very large values, the test performance of the network gets worse and approaches the
performance of the infinite NTK, unlike existing results in literature which suggest that
increasing the width in the over-parameterized regime is always good. This also raises new
questions about scaling of neural networks with width, in particular the “variance-limited”
neural scaling regimes (Bahri et al., 2021).

3. Data scaling of after-kernel (Section 4):We consider the after-kernel (Long, 2021) i.e. em-
pirical NTK extracted after training to completion on a fixed number of samples. We show
(Figure 1(B), 4(b)) that the after-kernel continues to improve as we increase the training
dataset size. On the other hand, we find (Figure 4(c)) that the scaling exponent of the after-
kernel, extracted after training on a fixed number of samples remains worse than that of the
corresponding neural network.

4. Time scaling (Section 5): We show (Figure 1(C), 5(a)) realistic settings where the empirical
NTK continues to improve uniformly throughout most of the training. This is in contrast
with prior work (Fort et al., 2020; Ortiz-Jiménez et al., 2021; Atanasov et al., 2021; Long,
2021) which suggests that the empirical NTK changes rapidly in the beginning of the train-
ing followed by a slowing of this change.

We demonstrate these phenomena occur in certain settings which are based on real, non-synthetic
data, and modern architectures (for e.g.: for datasets CIFAR-10 and SVHN and convolutional net-
works). While we do not claim that these phenomena manifest for all possible datasets and architec-
tures, we believe that our examples highlight important limitations to the use of NTK to understand
the test performance of neural networks. Formalizing the set of distributions or architectures for
which these phenomenon occur is an important direction for future theoretical research.

1.1 COMPARISON TO PRIOR WORK ON NTK GENERALIZATION

Our main focus is to understand feature learning occurring due to finite width. To do this, we make
the following deliberate choices in all of our experiments: a) We use the NTK parameterization, this
makes sure that infinite width networks will be equivalent to kernels b) We use the same optimization
setup for the neural network, empirical NTK and Infinite NTK, this makes sure that as width tends
to infinity all 3 models will have the same limit. We make sure that our comparisons are robust
by c) using scaling laws to compare these models and d) doing various hyperparameter ablations
(Figure 3).

Below we describe several lines of related works and how our work differs from them.
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Small initialization and representation learning at infinite width. Infinite widths neural networks
in the NTK and standard initialization are equivalent to kernels (Jacot et al., 2018; Yang & Hu, 2021).
On the other hand it has been shown (Yang & Hu, 2021; Sirignano & Spiliopoulos, 2019; Nguyen
& Pham, 2020; Araújo et al., 2019; Fang et al., 2020) that with small initialization feature learning
is possible at infinite width. The feature learning displayed in our experiments is not due to small
initialization as we initialize our networks in the NTK parameterization. This was a deliberate choice
as we are interested in feature learning occurring due to finite width as this is the kind of feature
learning displayed by empirical neural networks (which usually do not have a small initialization).

Data Scaling for NTKs and neural networks. Scaling laws have been empirically shown Kaplan
et al. (2020); Rosenfeld et al. (2019) for neural networks and have been theoretically proven Bor-
delon et al. (2020); Canatar et al. (2021); Bordelon & Pehlevan (2022) for NTKs under natural
assumptions. Comparison between the scaling laws for neural network and empirical NTKs has
been previous looked at by Paccolat et al. (2021) and Ortiz-Jiménez et al. (2021) and both find that
neural networks have better scaling than empirical NTK at initialization. Both of these papers do not
compare to infinite NTKs which leaves open the possibility that neural networks and infinite width
NTKs behave the same wrt their scaling constants.

Pointwise comparisons of neural networks and corresponding infinite NTKs has also been stud-
ied extensively in the literature (Arora et al., 2019b; Lee et al., 2020; Simon et al., 2021) but the
results have been divided. As discussed earlier we focus on comparing scaling laws. We argue that
scaling laws, instead of point-wise comparisons, are the appropriate tool to compare neural networks
and NTKs. Practically, pointwise comparisons between any two models can be fraught with issues
as the ordering can flip depending on dataset size, as well as the specific choice of hyperparameters.
On the other hand, scaling exponents have been found to be more robust to the choice of hyper-
parameters (Bansal et al., 2022; Kaplan et al., 2020). More importantly, the claim that NTK can
capture ”most” of the performance of the neural network can be subjective, specially when we are
comparing small error or loss values. We show that when we look closely at the scaling exponents
of these objects instead, we find major differences.

Theoretical studied effects of finite width with respect to the NTK regime. Finite width cor-
rections to the NTK theory have been studied by Andreassen & Dyer (2020); Roberts et al. (2021);
Bahri et al. (2021). While these results do not need infinite widths they still require much higher
than practically used widths particularly for the training sizes used in practice. These papers either
consider a) the finite width corrections of empirical NTK or b) they consider the change in NTK but
predict that the higher order analogues of empirical NTK remain constant. For a) we show that the
empirical NTK is very far from the performance of finite width neural networks. Regarding b), in
Appendix D we show that the higher order analogues of empirical NTK change significantly.

After Kernel and Time Dynamics We discuss these in detail in Section 4 and 5.

We describe other related works in Appendix G.

2 EXPERIMENTAL METHODOLOGY

Here we describe the common methodology used in our experiments.

The core object we want to understand is the data-scaling law of real neural networks— that is, what
is its asymptotic performance as a function of the number of train samples? Concretely, in this work
we restrict to classification problems, where we measure performance in terms of test classification
error. For a given classification algorithm, let L(n) be its learning curve: its expected test error
as a function of number of samples n. In practice, many neural networks exhibit power-law decay
in their learning curves (Kaplan et al., 2020). In such settings, we have L(n) ∼ αnβ and we are
interested primarily in the scaling exponent β, which determines the asymptotic rate of convergence.

Empirical and Infinite NTK Let f(w, x) be a neural network with w representing the weights and
x an input. By Taylor expansion around w0 we have:

f(w, x) = f(w0, x) +∇wf(w, x)|w0
(w − w0) +

1

2
(w − w0)

T∇2
wf(w, x)|w0

(w − w0) + . . .
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Empirical NTK of the neural network around weights w0 refers to the model g1(w, x) =
∇wf(w, x)|w0

(w − w0). Note that this is not the same as linearizing the network as we omit the
f(w0, x) term. Empirical NTK is a linear model with respect to the weights w. Infinite NTK refers
to the limit of the empirical NTK of the network around initial weights as width tends to infinity.

For a given learning problem and given neural network architecture NN, we want to understand its
data-scaling law LNN(n). We consider the infinite NTK of the NN and the empirical NTK of the
NN at initialization and their corresponding learning curves, LNTK(n) and LENTK(n). Now we ask:
is the scaling-exponent of LNN always close to the scaling-exponent of either LENTK or LNTK, in
realistic settings? That is, how well does the NTK approximation capture the generalization of real
networks, on natural distributions?

Recall that this question is especially interesting because the three objects involved (Neural Network,
NTK, and ENTK) all become provably equivalent in the appropriate width → ∞ limit. Thus, at
infinite-width we know their scaling laws must be the equivalent. The question is then, how far
are we from this limit in practice? Are the widths used in practice large enough for their scaling-
behavior to be captured by the infinite-width limit? To probe these questions, we empirically study
scaling laws of these methods on image-classification problems.

Remark on comparisons. We intentionally only compare a neural network to its corresponding
NTK, and not to other kernels. Our motivation not address the question of “can (some) kernel
perform as well as as a given neural network?”— indeed, there may be some better kernel to consider
than the NTK. However, our goal is to study the specific kernels given by the NTK approximation,
in correspondence with real networks.

Datasets. We use the following datasets:

1. A 2 class subset (dog, horse) of CIFAR-5m (Nakkiran et al., 2021) dataset, as a binary
classification problem, which we denote CIFAR-5m-bin. This is a dataset of synthetic but
realistic 32× 32 RGB images similar to CIFAR-10, generated using a generative model.

2. A binary classification task on the SVHN dataset (Netzer et al., 2011) with the labels being
the parity of the digit, denoted by SVHN-parity. For the training data we use a balanced
random subset of ’train’ and ’extra’ partitions, for test data we use the ’test’ partition.

We focus on the CIFAR-5m-bin experiments in the main body. Corresponding SVHN-parity exper-
iments can be found in Appendix F.

We use these particular datasets because we need datasets with a large number of samples in order
to measure data-scaling, and CIFAR-5m-bin and the SVHN dataset both have ≥ 600k samples.
We chose to consider binary tasks as this makes the kernel experiments computationally feasible.
Although there are other datasets with similar sample sizes (e.g. ImageNet), the datasets we use have
the advantage that they are low-resolution and an easier task— thus, scaling-law experiments are far
more computationally feasible. We also do some experiments on a synthetic dataset in Appendix E.

Architectures. We use the following base architectures: Myrtle CNN (Page, 2018; Shankar et al.,
2020) for the CIFAR-5m-bin task and a 5 layer CNN with 64 channels for the SVHN-parity task.
We consider various width scaling for these networks: For the Myrtle CNN we vary the width from
16 to 1024 and from 16 to 4096 for the 5 layer CNN. See Appendix B for more details.

Experimental Details. We describe some subtleties in the experimental setup. We use NTK param-
eterization (Jacot et al., 2018) for both the neural network and the kernels as this is the parameteri-
zation used in proving the equivalence of neural network and NTK at infinite width. We train with
MSE loss and ±1 labels. We use test error as the metric for all the plots except in Appendix I where
we recreate some of the most important plots for test loss. All of our networks are in the overpa-
rameterized regime i.e. are able to reach 0 train error. To preserve the correspondence between the
neural networks, empirical NTKs and infinite NTKs we train all of them with SGD with momentum
with the same hyperparameters (Appendix B.4). This also ensures that in all experiments neural net-
works will be trained below the critical learning rate, i.e. the learning rate at which training of the
empirical and infinite NTK can converge (Appendix B.3). Training for the empirical NTK is done
by linearizing the initialized neural neural network using Novak et al. (2020) library while for infi-
nite NTK we directly use SGD with momentum on the linear system given by the infinite NTK and
the labels. We describe further experimental details for each individual experiment in Appendix B.
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3 DATA SCALING LAWS OF NEURAL NETWORKS AND NTKS IN THE
OVERPARAMETERIZED REGIME

In this section we compare the data-scaling laws of neural networks to their corresponding emperical
NTKs and infinite NTKs. Our main claim is the following.

Claim 3.1. There exists a natural setting of task and network architecture such that the neural
network trained with SGD has a better scaling constant than its corresponding infinite and empirical
NTK at initialization. Further, this gap in scaling continues to hold over a wide range of widths and
learning rates used in practice.

The above claim can be interpreted as stating that there exists natural settings where the regime in
which real neural networks are trained is meaningfully separated from the NTK regime, and real
neural networks have a better scaling law.

In Figure 1 (A), we train a Myrtle CNN (Page, 2018; Shankar et al., 2020), its empirical NTK
at initialization, and its infinite NTK on the CIFAR-5m-bin task. In each case, we train to fit the
train set with SGD and optimal early stopping. We then numerically fit scaling laws, and find,
scaling-exponents β of: .185 (empirical NTK), .213 (infinite NTK), .291 (neural network). Thus, in
this image-classification setting, the real neural network significantly outperforms its corresponding
NTKs with respect to data-scaling. We show the statistical significance of this result in Appendix A.
See the Appendix B for full experimental details.

We now investigate how robust this result is to changes in the width of the architecture and optimizer,
within realistic bounds.

(a) (b) (c)

Figure 2: On the Effect of width. In Figure 2(a) we plot data scaling laws of the Myrtle-CNN at
small (16) and large (1024) widths and its the infinite NTK. We observe that both finite widths have
similar scaling constant which is better than that of the infinite NTK. In Figure 2(b) we plot the
performance of Myrtle-CNN and its empirical NTK for a fixed training size while varying width. In
Figure 2(c) we do the same for a 5-layer CNN and the SVHN-parity task. Both Figure 2(b) and 2(c)
we observe that (a) the empirical NTK performance continues to improve with width, moving to-
wards the infinite NTK performance while (b) neural network performance improves initially and
then starts to deteriorate towards the infinite NTK performance. Error bars represent estimated stan-
dard deviation. See Appendix B for more details.

Effect of Width. We explore the effect of width. In Figure 2(a) we train neural networks with
widths much smaller (16) and much larger (1024) than the width (64) used in Figure 1(A). We
find that these networks behaved similarly with respect to their scaling constants (.276 and .279
respectively), and performed better than the infinite width NTK (scaling constant: .213), confirming
that real neural networks are far from the NTK regime. However, we know that in the truly infinite
width limit, all these methods will perform identically. Moreover, as mentioned in Section 2 we are
careful to ensure this limit is preserved by our optimization and initialization setup. This implies that
at some point, increasing width of the real network will start to hurt performance— although it may
be computationally infeasible to observe such large widths. To explore the width-dependency, in
Figure 2(b) we plot the expected performance of empirical NTK and Neural network as we increase
the width, using a fixed training size of 4000. Here we see that (a) the empirical NTK at initialization
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continues to improve with larger width and approaches the infinite NTK’s error from above, while
(b) the neural network improves initially and then starts to deteriorate and approach the infinite
NTK’s error from below. In Figure 2(c) we repeat the experiment for the SVHN-parity task. In
this setup it was computationally feasible to try out much larger width (upto 4096) with a smaller
training size of 1000. Hence in this experiment as the width increases, we can observe stronger
deterioration of the performance of neural network, towards the infinite NTK performance.

Together these results suggest that “intermediate” widths (not too large, not too small) are important
for the performance of overparameterized neural networks, and any explanatory theory must be
consistent with this.

Effect of Learning Rate. We now study how robust our results are to changes in the learning rate,
within practically used bounds. Note that changing the learning rate only affects the neural network
training, and does not affect any of their corresponding NTKs. In Figure 3(a) we train networks in the
same setting as Figure 2, but with varying learning rates. We find that after moderate modifications
of the the learning rate the neural network still has a better scaling law than infinite and empirical
NTK at initialization, suggesting that practically used learning rates (for practically used widths)
are far from the NTK regime. The scaling constants are .333, .262, .213 for the 3x higher learning
rate, 10x lower learning rate and the infinite neural network. We discuss the effects of more drastic
changes (1000x) in the learning rate in Appendix C.

(a) (b) (c) (d)

Figure 3: Neural networks continue to have a better scaling constant under various hyperpa-
rameter choices. We compare the data-scaling for a Myrtle-CNN, its empirical NTK and its infinite
NTK on CIFAR-5m-bin task under various hyperparameter changes: (a) Higher and lower learning
rate compared to Figure 1 (b) GD instead of SGD (c) SGD without momentum (d) Training until
convergence (no early stopping)

Other Changes in Optimization. We now study whether our results hold under other changes to
optimization parameters. In Figure 3(b), 3(c), 3(d), we see the effect of doing GD instead of SGD,
effect of training without momentum and of using the final test error instead of doing optimal early
stopping respectively. We see that in all of these cases, while there is some change in the scaling
laws, the neural network scaling constant is still always better than the one for infinite NTK. The
scaling constants for neural networks in Figure 3(b), 3(c), 3(d) are .294, .310 and .292 respectively.
The scaling constant for the infinite NTK is .213 in Figure 3(b), 3(c) and .219 for Figure 3(d). This
suggests that these optimization factors (within commonly used values) are not the fundamental
reason behind the improved scaling laws of neural networks.

Various extensions to the NTK regime have been proposed (Roberts et al., 2021; Andreassen &
Dyer, 2020) in the literature which allow for the change in empirical NTK but posit that higher
order analogues of the NTK remain constant. This would predict that higher order analogues of the
empirical NTK at initialization would be sufficient to match the performance of neural networks. In
Appendix D we show that this is not the case suggesting that these theories may also not be sufficient
to explain the performance of practical neural networks.

Discussion and Future Questions. The equivalence between neural networks and corresponding
NTKs applies when width ≫ train-size. On the other hand nearly all overparameterized networks
and natural tasks fall in the regime of width ≪ train-size (though width is still large enough to fit
the dataset). The results of this section — showing separations between neural networks in the latter
regime and NTKs lead to following concrete question on the gap between theory and practice which
could guide future work.
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Question 3.1. How can we understand the the behavior of overparameterized networks in the
width ≪ train-size regime?

4 EXPLORATION OF AFTER-KERNEL WRT DATASET SIZE

In the previous section, we studied the empirical NTK when linearized around weights at initial-
ization. In this section we will study the behaviour of empirical NTK when linearized around the
weights obtained at the end of training. This is known as the after-kernel for empirical NTK, in
the terminology of Long (2021). We will show, in the more precise sense defined below, that (1)
the after-kernel continues to improves with dataset size, and thus (2) no fixed-time after-kernel is
sufficient to capture the data scaling law of its corresponding neural network.

Formally, denote the after-kernel from the neural network trained on m samples as Km. We will
denote the accuracy of Km when fit on n samples as Km(n). Here, the n samples are a subset of
the original m samples. When we use fresh n samples to fit we use the notation KF

m(n). We study
the after-kernel as improved performance of neural networks over NTKs has been attributed (Ortiz-
Jiménez et al., 2021; Atanasov et al., 2021) to the adaptation of the empirical NTK of the neural
network to the task. Concretely, prior works (Long, 2021; Paccolat et al., 2021) have shown that
this explanation is complete in the following sense: The behaviour of Kn(n) is similar to that of the
neural network fit on n samples. In other words, when we fit an after-kernel obtained from training
on n samples to the same n samples we get an accuracy very close1 to that of the neural network fit
on the same n samples. We verify this for our setup in Figure 4(a). This tells us that the following
two factors are sufficient to explain the behaviour of neural networks fit on n samples: (1) Change
in empirical NTK from empirical NTK around initial weights to the after-kernel due to training on
n samples. (2) Fitting the after-kernel on n samples.

What this does not tell us is how these two improvements scale with training size n. In particular,
we know that K0(n) i.e. the empirical NTK at initialization fit on n samples does not match the
neural network trained on n samples on the other hand Kn(n) does. This raises the following natural
question: How data dependent does the kernel need to be to recover the performance of the neural
network? For example, it is possible that for some sample size m0 and all m ≥ m0, the after-kernel
Km is roughly constant, and has same scaling law as the neural network itself. We find that this is
not the case– the after kenel continuously improves with dataset size m.

4.1 EXPERIMENTAL RESULTS

After-Kernel continues to improve with dataset size. In Figure 4(b) we plot Km(500) versus m
for our base Myrtle CNN from Figure 1. We observe that Km(500) improves as m goes from 500
to 1024k showing that the after-kernel keeps improving with larger dataset sizes. Corresponding
SVHN-parity experiments can be found in Appendix F.

Fixed after-kernel is not sufficient to capture neural network data scaling. In Figure 4(b) we plot
the data scaling curves for the base Myrtle-CNN, its empirical NTK at initialization, K16k, K64k

with scaling constants .291, .185, .103, .097 respectively. We find that the neural network has the
best scaling constant. This shows that the scaling of the after-kernel with training size is an important
component of neural network scaling laws as even the after-kernel learnt with 64k samples (on the
simple CIFAR-5m-bin task) is not sufficient to explain the data scaling of neural networks. We also
see that K64k has better performance than K16k, another evidence towards the fact that after-kernel
improves with dataset size.

5 TIME DYNAMICS

In the previous section, we saw that the change in the empirical NTK from initialization to the end
of training (the after-kernel) is sufficient to explain the improved performance of neural networks.
Thus the empirical NTK must have evolved throughout training, and in this section we take a closer

1We again note that empirical NTK does not refer to the linearization of the network (See Section 2 for
an exact definition). If we had linearized the network this statement would be trivially true as the linearized
network around final weights would start out with an accuracy matching that of the trained neural network.
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(a) (b) (c)

Figure 4: After-Kernel continues to improve with dataset size. In Figure 4(a) we plot data scaling
curves of Kn(n),K

F
n (n) and the neural network and observe that they behave very similarly. In

Figure 4(b) we plot KF
m(500) versus m and observe that the performance improved with increasing

m. In Figure 4(c) we plot data scaling curves of empirical NTK at initialization, K16k, K64k and
the neural network. We observe that the neural network has the best scaling law amongst these.

(a) (b)

Figure 5: Empirical NTK keeps improving uniformly throughout most of the training. In
Figure 5(a) we plot the test error of Myrtle-CNN, its empirical NTK at initialization and Kt

fit at
time t. We observe that the slope Kt

fit does not decrease with time suggesting that the change in
kernel does not slow down after an initial part of training. Using this same setup, we plot the data
scaling curves of Kt for various t and the data scaling of Myrtle-CNN in Figure 5(b). We observe
that the Myrtle-CNN has the best scaling law.

look at this evolution. Our main focus in this section is to investigate the following informal proposal
in the literature (Fort et al., 2020; Long, 2021) about how the empirical NTK evolves:
Hypothesis 5.1 ((Informal, from Fort et al. (2020); Long (2021)). The empirical NTK evolves
rapidly in the beginning of training (< 5 epochs), but then undergoes a “phase transition” into
a slower regime.

One way to interpret the above hypothesis is that there is both a qualitative and quantitative differ-
ence in the empirical NTK between the “early phase” of training (the first few epochs) and the later
stage of training. This is called a “phase transition” in the literature, in analogy to physics, where
systems undergo discontinuities between two regimes with quantitatively different dynamics.

In this section we will give evidence that suggests, contrary to prior work, that there is no such
“phase transition”. We show that if empirical NTK performance is measured at the appropriate
scale, performance appears to continuously improve throughout training (from early to late stages),
at approximately the same “rate.” Our experiments are in fact compatible with the experiments in
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prior work (e.g. Fort et al. (2020)): we simply observe that if performance and time are measured
on a log-log scale (as is appropriate for measuring multi-scale dynamics), then the NTK is seen to
improve continuously throughout most of the training.

5.1 EXPERIMENTS

Setup. We now describe the setup more formally. Let Kt refer to the empirical NTK (as described
in Section 2) extracted at time t in the training, where we measure time in terms of number of
SGD batches seen in optimization. Kt

fit denotes the model Kt fit to the whole training data. Prior
works (Fort et al., 2020; Long, 2021) have used the slope of the curve of test error of Kt

fit versus t to
decide if the kernel is changing rapidly or not. We will do the same with one crucial difference: We
will measure this slope on a log-log plot instead of directly plotting test error and time. We do this
as empirically scaling laws with respect to time (or tokens processed) have been observed (Kaplan
et al., 2020) for natural language tasks in neural networks and formally proved for kernels (Velikanov
& Yarotsky, 2021) for natural tasks. These results suggest the need for log-log plots to observe
qualitative phase transitions in training dynamics.

Results. Our main claim is that the test error of Kt
fit as a function of time t is approximately linear

on a log-log scale, throughout the course of training. Recall that Kt
fit is the model obtained by

extracting the empirical NTK after t batches of training the real neural network.

In Figure 5(a) we compare the test error of the base Myrtle-CNN at time t, test error of empirical
NTK at initialization at time t and Kt

fit when trained on 64k samples with the same hyperparameters
as Figure 1. Since we want to probe Hypothesis 5.1, which is about the beginning of training, we
plot these quantities until train error reaches < 5% (which requires 32 epochs in our experiments).
This should be sufficient to cover any reasonable definition of “beginning of training”.

Observe that in Figure 5(a) we do not observe a “phase transition” after which the improvement in
kernel test error (in red) slows down. In fact, we observe that the kernel starts out being essentially
constant and then starts and continues to improve uniformly.

We instead observe the following two regimes: (1.) In the first regime (before the dashed vertical
line) the empirical NTK at initialization and the neural network have very similar behaviour, and
Kt

fit is nearly constant. This only lasts for around 140 batches ≈ 0.5 epochs2. (2.) In the next
regime (after the dashed line) the empirical NTK at initialization and the neural network diverge.
As they diverge, the extracted kernel Kt

fit also starts to improve with a constant slope, and this
improvement continues uniformly until the terminal stage of training.

Importantly, the kernel Kt
fit does not transition into a “slower phase” of learning at any point3 in

our experiments. Corresponding SVHN experiments can be found in Appendix F.

Next, we measure the performance of Kt in terms of its data scaling law. Due to computational
limitations (since measuring data-scaling is expensive), we can only measure the scaling law for
several selected values of time t, instead of every batch (as in Figure 5(a)). In Figure 5(b) we plot
data-scaling of Kt for t = 0 (empirical NTK at initialization), 3308 (10 epochs), 11861 (32 epochs),
in the same setup as Figure 5(a). We also plot the data scaling of the base Myrtle-CNN with the same
hyperparameters. As in Figure 4(c) of Section 4 we again observe that the neural network has the
best scaling law, outperforming any of the extracted kernels. This shows that representations learnt
after any constant time t of training are not sufficient to explain the data scaling of neural networks.
Rather, these representations improve throughout training, and the entire course of training must be
considered to recover the correct scaling law.
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2Note that this means that if we plot per epoch this phase would not be visible at all.
3As we keep training at some point train loss will tend to 0 and Kt

fit will converge to a fixed value. This
does not affect our results as we are only interested in the initial part of training as described in Hypothesis 5.1
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