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Abstract

Substitute training-based data-free black-box attacks pose a
significant threat to enterprise-deployed models. These at-
tacks use a generator to synthesize data and query APIs, then
train a substitute model to approximate the target model’s de-
cision boundary based on the returned results. However, ex-
isting attack methods often struggle to produce sufficiently
diverse data, particularly for complex target models and ex-
tensive target data domains, severely limiting their prac-
tical application. To address this gap, we design domain-
augmented learning to improve the quality of the synthetic
data domain (SDD) generated by the generator from two per-
spectives. Specifically, (1) To broaden the SDD’s coverage,
we introduce textual semantic embeddings into the generator
for the first time. (2) To enhance the SDD’s discretization,
we propose a competitive optimization strategy that forces
the generator to self-compete, along with heterogeneity ex-
citation to overcome the constraints of information entropy
on diversity. Comprehensive experiments demonstrate that
our method is more effective. In non-targeted attacks on the
CIFAR-10 and Tiny-ImageNet datasets, our method outper-
forms the state-of-the-art by 14% and 7% in attack success
rate, respectively.

1 Introduction
In recent years, machine learning technology has been
widely applied across various fields, including self-driving
cars, intelligent medical diagnostics, etc., its influence is
pervasive. With the rapid advancement of these technolo-
gies, Machine Learning as a Service (MLaaS) has emerged.
It provides access to complex machine learning models for
users without a deep learning background. Therefore, more
enterprises are deploying pre-trained machine learning mod-
els on cloud platforms and making APIs avaiable to make
machine learning services easy to use.

However, this convenience also brings new security chal-
lenges. Recent studies indicate that models with public APIs
may be vulnerable to black-box attacks based on substitute
training. In this type of attacks, attackers query the API and
use the API’s predictions to train a substitute model that
closely approximates the functions of the target model, and
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Figure 1: Distribution comparison of synthetic data do-
mains. Previous work usually show high degree of con-
centration, resulting in limited data domain coverage. Our
domain-augmented learning can discretize these data and
expand the coverage of the synthetic data domain.

then use it to create adversarial samples that attack the tar-
get model, resulting in a transferable attack(Szegedy et al.
2013; Goodfellow, Shlens, and Szegedy 2014a; Tramèr et al.
2017). It can be divided into three types: (1) The first type in-
volves directly using real public data to query APIs for sub-
stitute training, such as Knockoff (Orekondy, Schiele, and
Fritz 2019; Jindal et al. 2024; Papernot et al. 2017). (2) Due
to protection of data privacy and the difficulty in obtaining
suitable real data, the second type uses the generator to cre-
ate synthetic data for querying. This type is based on the
“min-max” game framework, exemplified by DaST (Zhou
et al. 2020; Yu and Sun 2022; Wang et al. 2021; Zhang et al.
2022; Wei et al. 2023), which enhances the attack’s effec-
tiveness by simulating the adversarial mechanism of GANs
(Goodfellow et al. 2014). (3) The third type is also using
synthetic data for querying, but it’s based on gradient es-
timation, such as DFME (Truong et al. 2021; Kariyappa,
Prakash, and Qureshi 2021; Beetham et al. 2023; Sanyal,
Addepalli, and Babu 2022), which gives the generator extra
information by estimating the gradients of the target model.
Nevertheless, as the performance of models provided by en-
terprises gradually improves due to factors such as the in-
creasing complexity of model structures and the expanded
distribution of training datasets. This means that the deci-
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Method SSIM ↓ ASRs (%) ↑
DaST (Zhou et al. 2020) 0.571 32.41
DDG (Wang et al. 2021) 0.563 32.94

FE-DaST (Yu and Sun 2022) 0.542 35.74
TEDF (Zhang et al. 2022) 0.511 43.61

EDD (Wei et al. 2023) 0.415 48.80

Table 1: Structural similarity (SSIM) and attack success at-
tacks (ASRs) comparison for five methods on CIFAR-100
dataset. We calculate SSIM score of synthetic data, and
lower SSIM score indicate higher data diversity. We select
the same substitute model for these methods.

sion boundaries of the models are becoming highly non-
linear. Additionally, since the target model is a black box
for attackers, it limits the possibility of optimizing the sub-
stitute model based on its structure or gradient information.
Therefore, to approximate the highly non-convex decision
boundaries of the target model, the substitute model requires
synthetic data with wide area coverage for training. How-
ever, existing generators struggle to produce effective data.
We perform a simple experiment to show the relationship
between data diversity and attack success rates as shown in
Table 1. Obviously, the diversity of synthetic data seriously
affects substitute model’s ASRs. Therefore, we improve the
data diversity from the perspective of the synthetic data do-
main (SDD) produced by generators.
Challenges. There are two main challenges.
• How to broaden SDD’s coverage. Without real data su-

pervision, the generator synthesize data absolutely based
on the output of the target model, making it hard to syn-
thesize data with wide area coverage from only input
Gaussian noise.

• How to improve SDD’s discretization. On the one hand,
the optimization strategies of existing methods are lim-
ited to optimizing a single iteration of data, ignoring
inter-iteration correlations. On the other hand, they typ-
ically use information entropy to evaluate synthetic data
diversity. However, information entropy mainly reflects
model uncertainty and cannot adequately represent diver-
sity. These may cause the generator to produce data with
higher uncertainty but insufficient discretization.

We propose Domain-Augmented Leraning inspired by the
aforesaid challenges.
Contributions. The following concludes our contributions.
• Text modality information’s semantic content can effec-

tively compensate for the prior approaches’ noise input
constraint. However, the generator’s training might be-
come unstable if low-dimensional textual data is directly
entered into it. We therefore propose Adaptive Semantic
Embedding. With this approach, the text data is encoded
using CLIP Text Encoder (Radford et al. 2021) to obtain
high-dimensional semantic embedding. The embedding
is subdivided into three levels so that the generator can
gradually adapt to this beneficial information.

• Adaptive semantic embedding can extend SSD’s cover-
age, but the synthetic data within the domain may still
be centralized. We therefore propose two strategies. The

Abbreviation Description
G generator
S substitue model
T target model

SDD synthetic data domain
AGO adversarial generation optimization
DO diversity optimization
SSE shallow semantic embedding
MSE middle semantic embedding
DSE deep semantic embedding

Table 2: List of abbreviations used in this paper.

first strategy, termed as Competition Optimization, con-
structs a “loser and winner” game between previous and
current iterations, enabling the generator to compete with
itself. Compared to existing methods, the strategy further
leverages the ignored information between iterations. Be-
sides, we design a regularization strategy, termed as het-
erogeneity excitation, enforce the generator to maximize
the ratio of distance between the synthetic data and input
noise, and the ratio of the distance between the synthetic
data and semantic embedding. This strategy assists with
information entropy to better optimize the generator.

• The comprehensive experiments and synthetic data dis-
tribution analysis demonstrate the effectiveness of the
proposed domain-augmented learning against the state-
of-the-art attacks. Specifically, in target attacks on
CIFAR-10 and Tiny-ImageNet datasets, our method out-
performs the SOTA by 8.66% and 7.24% in attack suc-
cess rate, respectively.

As shown in Figure 1, domain-augmented learning expand
the coverage of the synthetic data domain, and increase its
discretization. This aims to support effective training for
substitute model, thereby enhancing attack effectiveness.

2 Limitation of Prior Works
For substitute training-based data-free black-box attacks, the
key to constructing a substitute model S that can approx-
imate the decision boundary of the target model T lies in
whether the generator G can generate sufficiently diverse
samples without real data supervision. However, for the
above issue, existing works (Zhou et al. 2020; Yu and Sun
2022; Wang et al. 2021; Wei et al. 2023; Zhang et al. 2022)
still has shortcomings. In this section, we mainly analyze
three limitations of previous work and their negative effects.
The abbreviations used in this paper are listed in Table 2.

2.1 Ignoring the Impact of Initial Distribution
Firstly, in the process of the data-free substitute training, we
cannot supervise the training of G with effective data, re-
lying solely on the output of T as guidance. However, the
output of T is often highly concise, such as labels or proba-
bility information predicted for images. This information is
very limited and cannot achieve the supervision effect sim-
ilar to real data on G, resulting in poor generation perfor-
mance. The problem can be formulated as follows:

x = G(z), z ∼ N(0, I), P (x) ≈ N(0, I), (1)
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Figure 2: The left subplots show the proposed domain-augmented learning. ❶, ❷ and ❸ represents the proposed adaptive
semantic embedding, competition optimization and heterogeneity excitation, respectively. The right subplot demonstrate the
substitute training-based data-free black-box attacks. Finally, we update G and S by Equations 9 and 10.

where z is the input noise from the Gaussian distribution
N(0, 1). P (x) represent the distribution of x.

In Equation 1, x should ideally cover a complex data dis-
tribution. However, due to the limited capacity of G, P (x)
remains highly similar to the distribution of z, which fails to
achieve significant distribution expansion and sample diver-
sification. In summary, this is hard to support the effective
training of S , further impacting attack effectiveness.
Solution. We need to improve the input strategy of G to
enhance the coverage range of the synthetic data domain
(SDD). We describe the strategy in detail in Section 3.2.

2.2 Limitations of Existing Optimization
Strategies

Currently, the optimization strategies of G can be roughly
divided into two parts: adversarial generation optimization
(AGO) and diversity optimization (DO). Specifically, AGO
enhances G by maximizing the difference between the out-
puts of S and T . On the other hand, DO improves G by max-
imizing the entropy of S on the synthetic data. However,
both optimization methods have certain limitations, which
are analyzed as follows:

Ignoring information interaction between iterations.
Under the data-free condition, we should fully utilize all
supervisable information for G optimization to enhance the
diversity of synthetic data. However, existing AGO strate-
gies fall short in this aspect. Specifically, these strategies are
usually limited to optimizing single-iteration data, focusing
only on the quality of data generated by G within the current
iteration while neglecting the correlation and informational
value between iterations. This isolated optimization way re-
stricts the potential of G to utilize the results from previ-
ous and subsequent iterations to improve data discretization,
making it difficult to generate wider and more diverse data.
Solution. We need to design a novel mechanism to enable G

to fully utilize information between iterations. The specific
design of the mechanism is referred to in Section 3.3.

Using only information entropy as optimization direc-
tion. Existing DO utilizes information entropy to assess the
diversity of synthesized data to update G. The goal of S is
to approach the decision boundary of T , with its output rep-
resenting the feedback of T to some extent. During the op-
timization of G, S takes synthetic data as input and gets in-
formation entropy based on its output, which can assist G
to generate data relevant to the target model. However, as
shown in Equation 2, information entropy only reflects the
uncertainty of S regarding the synthesized data and does not
fully reflect the data diversity. Hence, merely relying on in-
formation entropy as the direction of DO may result in G
producing data with higher uncertainty but lower diversity,
negatively impacting the training effectiveness of S and fur-
ther attack success rate.

H(X) = −
n∑

i=1

p (xi) log p (xi) , (2)

where xi represents synthesized data, n is the class number
of S , and p(xi) is the predicted probability of S for xi.
Solution. We need to introduce more effective optimization
scheme to assist the current optimization strategy, further in-
creasing the discretization of the synthetic data domain. The
scheme is extensively explained in Section 3.4.

In conclusion, for the existing optimization challenges,
we propose two methods to increase SSD’s discretization.

3 Methodology
In the previous sections, we analyzed three main limita-
tions of G in the existing substitute training-based data-
free black-box attacks: simplistic input distribution, nonin-
teractive inter-iteration information, and single information
entropy optimization. To address these issues, we propose
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domain-augmented learning to improve G more suitable for
data-free substitute training.

3.1 Overview
The proposed domain-augmented learning includes adaptive
semantic embedding, competitive optimization strategy, and
heterogeneity excitation. These methods complement each
other by increasing the breadth of coverage and degree of
discretization in the synthetic data domain, effectively pro-
moting training of S , and enhancing the attack success rate
on T . To begin, the adaptive semantic embedding enhances
the breadth of the synthetic data domain by embedding se-
mantic information into the process of data synthesis and
utilizing the text’s semantic richness to make up for the
limitation of input noise. Then, the competitive optimiza-
tion forces G to optimize generation effects in each iteration
through a self-competition mechanism. Finally, the hetero-
geneity excitation assists the information entropy optimiza-
tion, increasing the degree of discretization in the synthetic
data domain. Figure 2 displays the overall framework. The
following describes the specific details of each method’s im-
plementation.

3.2 Adaptive Semantic Embedding
In order to improve the initial distribution’s richness to en-
hance the breadth of the synthetic data domain, we intro-
duced copious semantic embedding information for G.

Specifically, we first collect a large amount of random
text information from sources, e.g., news and social media,
to ensure the richness of the text. Then, by a pre-trained
CLIP Text Encoder, we encode these texts to extract high-
dimensional Semantic Embedding (SE). These embeddings
are fused with Gaussian noise features through a cross-
attention mechanism to increase the richness of the inputs.
To ensure G’s stability when receiving SE in data-free sub-
stitute training attacks, we further refined the output of the
Text Encoder into three levels: shallow semantic embed-
ding (SSE), middle semantic embedding (MSE), and deep
semantic embedding (DSE). Specifically, the shallow layers
of CLIP Text Encoder capture basic text information, e.g.,
words and simple phrases; the middle layers acquire more
complex semantic relationships and phrase structures, which
provides rich sentence components and semantic dependen-
cies; and the deep layers obtain advanced semantic infor-
mation of the text’s overall meaning and abstract concepts
(Peters et al. 2018; Jawahar, Sagot, and Seddah 2019).

During the optimization process of G, we gradually intro-
duce SE’s different levels through the dynamically adjusted
weighting factor α, and then obtain the attention-weighted
features (AF) generated by the cross-attention mechanism
(CM) (Rombach et al. 2022). The process can be defined as:

AF = CM(α · SE, z), α ∈ {0, 1}, (3)

where z denotes Gaussian noise features.
In the initial stages of training, we select SSE to help G

gradually adapt to the basic semantic embedding informa-
tion. As G’s generation capability improves, we select MSE
to enable G to adapt to more complex semantic information.

Algorithm 1: The proposed data-free black-box attack.

Input: Random text T , Text Encoder (TE), cross-attention
mechanism (CM), adjusted weighting factor β, noise
feature z, epochs E, t iterations per epoch, and learn-
ing rates γ1, γ2.

Initialization: Model parameters θG , θS .
1: for each e ∈ E do
2: for each i ∈ t do
3: Get SE1, SE2 ← TE(T1),TE(T2)
4: Get AF1,AF2 ← CM(β ·SE1, z1),CM(β ·SE2, z2)
5: Generate two batches of data:

I1, I2 ← G(AF1),G(AF2)
6: Select the loser and winner data usingMD

7: Calculate Lm, LS = Lm

8: Update S: θS ← θS − γ1∇θSLS(θS)
9: CalculateLG = λ1(LAGO+LDO)+λ2LCO+λ3LHE

10: Update G: θG ← θG − γ2∇θGLG(θG)
11: end for
12: end for
13: return θS

Finally, we use DSE to let G understand advanced semantic
concepts. This adaptive embedding strategy allows G to ef-
fectively utilize semantic embedding information to expand
the coverage of the synthetic data domain.

3.3 Competition Optimization
As described in Section 2.2, current AGO strategies only uti-
lizes the current iteration data to optimize G, neglecting the
information interaction between iterations. Although adap-
tive semantic embedding can extend the breadth of the syn-
thetic data domain, the synthetic data within the domain may
still be centralized, exhibiting lower discretization and lack-
ing sufficient diversity. Therefore, we propose the concept
of competitive optimization to fully utilize the overlooked
inter-iteration information to optimize G. The core of com-
petitive optimization is to gradually improve the discretiza-
tion of the synthetic data domain by comparing the gener-
ation effect of G in different iterations. Specifically, during
the (i − 1)-th iteration, for the synthetic data I1i , I2i , which
generated from two different batches of Gaussian sampling
noise and randomized text, we use the diversity measure
MD to evaluate them and obtain the corresponding MD(I1i ),
MD(I2i ). The synthetic data with the larger MD value is se-
lected as the winner of this iteration, while the one with the
smaller MD value is the loser. In the i-th iteration, we repeat
the above steps to obtain a new winner and loser. We require
that the diversity of the loser in the i-th iteration exceed that
of the winner in the (i−1)-th iteration. The loss function for
competitive optimization can be expressed as:

LCO =MD(Ii)−MD(Ii−1), (4)
where Ii is the loser in the i-th iteration, and Ii−1 is the
winner in the (i − 1)-th iteration. For MD, we use the neg-
ative of cosine similarity to measure the diversity degree of
the synthesized data. Specifically, we calculate the cosine
similarity matrix for a round of synthetic data. Then, we ac-
cumulate the upper triangular elements of this matrix and
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Dataset MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
Target Model VGG-16 ResNet-18 VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

N
on

-t
ar

ge
te

d
Training Data 30.53 34.03 22.36 31.74 16.53 19.49 13.79

ImageNet 36.07 32.46 23.73 33.91 18.37 21.68 22.54
Knockoff 58.38 65.82 31.58 39.40 27.73 29.55 29.99

DDG 52.63 72.53 35.92 49.31 32.65 39.11 32.81
FE-DaST 69.01 70.73 49.61 53.39 34.46 43.60 34.67

TEDF 72.46 81.53 60.43 72.87 39.79 49.23 40.93
EDD 73.48 69.57 72.19 71.22 40.14 53.31 41.74
Ours 84.37 82.16 78.36 77.92 47.82 57.36 48.37

Ta
rg

et
ed

Training Data 41.98 42.37 10.76 12.35 5.49 8.73 5.98
ImageNet 42.81 43.35 11.86 13.67 6.31 10.97 12.15
Knockoff 52.89 54.27 16.92 19.56 12.83 22.37 15.26

DDG 38.15 55.57 31.30 0.93 15.24 15.48 13.23
FE-DaST 53.34 56.62 35.74 31.53 18.08 19.12 19.65

TEDF 62.57 63.58 50.83 49.53 35.67 31.59 35.26
EDD 61.52 56.31 36.62 42.15 26.85 29.46 33.64
Ours 70.77 74.48 59.24 58.19 37.61 38.81 42.68

Table 3: Comparing ASRs results (%) using the probability as the target model output among different attack methods.

take the negative of the cumulative sum. A larger MD value
represents a higher degree of diversification.

Competitive optimization forces G to produce better gen-
erative effects in each iteration, thereby increasing the dis-
cretization of the synthetic data domain.

3.4 Heterogeneity Excitation
As described in Section 2.2, existing DO strategies often rely
on information entropy to optimize G, but information en-
tropy is insufficient to comprehensively reflect the diversity
of synthetic data and may even limit the generative capabil-
ity of G. To address this issue, we propose a regularization
strategy for heterogeneity excitation. Specifically, we evenly
divide the original noise z into two noise groups, z1 and z2,
and obtain two sets of random texts. These texts are pro-
cessed through CLIP’s Text Encoder to obtain semantic em-
beddings t1 and t2. The two groups of noise and semantic
embeddings are then mapped by G to obtain synthetic data
I1 and I2. We then enforce G to maximize the ratio of the
distance between I1 and I2 to the distance between z1 and
z2, and the ratio of the distance between I1 and I2 to the
distance between t1 and t2. Heterogeneity Excitation can be
expressed as:

LHE = β

(
d (I1, I2)

d (z1, z2)

)
+ (1− β)

(
d (I1, I2)

d (t1, t2)

)
, (5)

where β balances the loss components, and d(∗) denotes the
Euclidean distance.

Heterogeneity excitation assists single information en-
tropy to optimize G, encouraging the generation of signif-
icantly diverse synthetic data to further enhance the dis-
cretization of the synthetic data domain.

3.5 Loss Functions
In this subsection, we describe the total loss functions of G
and S respectively. For G,

Lm = ∥T (I) ,S (I)∥F , (6)

LAGO = e−Lm , (7)

LDO = −H(S(I)), (8)

where Lm measures the distance between the outputs of T
and S , and I represents the data that wins in the compet-
itive optimization. LAGO denotes the adversarial optimiza-
tion loss, and e−Lm suggests a “min-max” game related to
Lm. LDO indicates the diversity optimization loss, and H(∗)
denotes information entropy in Equation 2. Overall, we min-
imize the following loss function to update G:

LG = λ1(LAGO + LDO) + λ2LCO + λ3LHE, (9)

where λ1, λ2, and λ3 are the balancing hyper-parameters for
each loss term. LCO and LHE comes from equations 4 and 5,
respectively, which can enable G to produce synthetic data
with a wider coverage and higher distribution dispersion.

For S , we use the basic loss function as in FE-DaST (Yu
and Sun 2022).

LS = Lm. (10)

The entire training process is described in Algorithm 1.

4 Experiment
4.1 Experiment Setting
Datasets and Model Architectures. We test our method on
public datasets and classic models. 1) MNIST (LeCun et al.
1998): T is pre-trained on VGG-16 (Simonyan 2014), and
ResNet-18 (He et al. 2016). S is a network with 3 convolu-
tional layers. 2) CIFAR-10 (Krizhevsky, Hinton et al. 2009):
T is pre-trained on VGG-16 and ResNet-18. S is VGG-13.
3) CIFAR-100 (Krizhevsky, Hinton et al. 2009): T is pre-
trained on VGG19 and ResNet50. S is ResNet-18. 4) Tiny-
Imagenet (Russakovsky et al. 2015a): T is pre-trained on
ResNet50. S is ResNet-34.
Comparison methods. To assess the effectiveness of our
method, we compare the attack results with four other data-
free black-box attack methods: FeDaST (Yu and Sun 2022),
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Dataset MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
Target Model VGG-16 ResNet-18 VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

N
on

-t
ar

ge
te

d
Training Data 21.37 24.97 11.47 13.83 4.93 9.04 7.84

ImageNet 22.98 23.64 13.53 13.97 8.73 12.37 12.93
Knockoff 33.18 37.72 20.74 19.87 16.48 18.31 22.33

DDG 37.87 49.32 42.32 16.17 25.79 32.94 20.59
FE-DaST 42.22 56.49 32.54 22.12 25.51 35.74 23.1

TEDF 47.53 61.72 45.85 41.72 28.92 43.61 29.37
EDD 50.46 68.49 67.68 49.97 26.31 48.80 37.93
Ours 78.28 80.17 73.51 64.48 30.18 52.73 42.56

Ta
rg

et
ed

Training Data 11.63 12.37 11.62 9.85 5.53 7.35 4.35
ImageNet 15.74 15.37 13.62 10.57 5.97 7.55 8.94
Knockoff 23.74 17.85 12.80 13.91 9.48 9.52 10.65

DDG 30.65 27.69 40.40 20.91 15.68 14.69 6.34
FE-DaST 32.37 22.66 26.98 17.39 15.37 20.23 7.96

TEDF 42.57 37.24 45.32 40.53 22.41 26.54 22.43
EDD 49.29 22.54 47.26 23.02 20.03 29.86 22.19
Ours 62.11 54.26 52.37 43.94 24.59 35.69 28.94

Table 4: Comparing ASRs results using the label as the target model output among different attack methods.
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Figure 3: Using probability as the target model output, dif-
ferent attack methods are compared in terms of ASR results,
alongside various white-box adversarial example generation
methods. Subgraphs (a) and (b) represent non-targeted and
targeted attacks in CIFAR-10, and subgraphs (c) and (d)
show the corresponding attacks in CIFAR-100.

DDG (Wang et al. 2021), TEDF (Zhang et al. 2022), and
EDD (Wei et al. 2023). And a black-box attack method
that requires real data, Knockoff (Orekondy, Schiele, and
Fritz 2019). Additionally, we also use the original train-
ing dataset of the target model and ImageNet (Russakovsky
et al. 2015b) to train S for black-box attacks.

Implementation details. Our S and G are trained using
the Adam with a learning rate of 0.0001. We set the mini-
batch size as 500, and the S for 120 epochs on MNIST, 300
epochs on CIFAR-10/100 datasets, and 400 epochs on Tiny-
ImageNet dataset. In Adaptive Semantic Embedding (ASE),
we evenly divide the epochs into three stages based on the
dataset. During each stage, the weight factor δ gradually
grows from 0 to 1. The hyper-parameter β in Heterogene-
ity Excitation (HE) is set to 0.5, while the hyper-parameters
λ1, λ2, and λ1 are equally as 1. In the evaluation phase, we
use PGD (Madry et al. 2017) as the main white-box attack to
assess ASR. Furthermore, we also evaluate our method us-
ing other classic attacks, e.g., FGSM (Goodfellow, Shlens,
and Szegedy 2014b), BIM (Kurakin, Goodfellow, and Ben-
gio 2018), and C&W (Carlini and Wagner 2017). We use the
same generator in ProGAN (Karras et al. 2017).

Evaluations. We evaluate our method in two scenarios de-
fined by DaST: one where the attacker has access to only
the probability outputs of the T (Probability), and another
where only label outputs are accessible (Label). Attack Suc-
cess Rates (ASRs) are used to measure the effectiveness of
black-box attacks. For non-targeted attacks, we generate ad-
versarial samples for correctly classified images; for targeted
attacks, we create them for misclassified images.A uniform
perturbation level ϵ=8 is applied to all adversarial exam-
ples. To mitigate the effects of randomness, we conduct each
experiment five times, recording the mean results. We also
evaluate the substitute model’s classification accuracy.

4.2 Attack Results
Comparisons among the state-of-the-art works. Tables 3
and 4 display a comparison of our method’s performance
with other attack methods, including a real-data-dependent
attack and four data-free attacks. Our method shows supe-
rior performance compared to others in both non-targeted
and targeted settings. It achieves the highest ASRs across
all datasets, for both probability and label scenarios. Espe-
cially in the extreme scenario of target attack on the Tiny-
ImageNet dataset with labels as outputs, our method can ex-
ceed SOTA by 6.51%. In addition, as shown in Figure 3,
compared to other methods, our method also outperforms
across four white-box attacks in the CIFAR-10 and CIFAR-
100 datasets. The results demonstrate that our method sig-
nificantly improves the quality of synthetic data domains,
enabling effective substitute training and generating more
powerful transferable adversarial examples.
Accuracy comparisons between substitute and target
models. The key to implementing an effective transfer at-
tack lies in the S’s ability to accurately mimic the decision
boundary of T . Therefore, a high classification accuracy rate
of S is an important indicator of the similarity between its
decision boundary and that of the T . As shown in Tables 5,
our method outperform others with the highest ACC across
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Dataset MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
Target Model VGG-16 ResNet-18 VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50
Training Data 92.34 94.16 83.39 80.43 62.42 63.59 48.61

ImageNet 94.82 95.11 86.49 82.34 66.73 69.89 50.13
Pr

ob
ab

ili
ty

DDG 53.66 49.51 34.82 32.26 12.25 23.92 7.04
FE-DaST 32.37 22.66 26.98 17.39 15.37 28.12 7.96

TEDF 65.28 63.47 55.28 52.90 24.15 35.97 16.73
EDD 70.35 60.76 65.15 43.98 24.89 42.17 15.96
Ours 72.64 71.67 71.34 57.33 35.22 57.70 28.10

Training Data 91.51 93.83 81.75 79.10 59.13 62.47 47.53
ImageNet 92.73 94.15 86.12 80.62 65.37 67.64 49.68

L
ab

el DDG 53.72 38.53 31.00 25.71 19.12 21.33 6.83
FE-DaST 51.49 42.42 27.1 32.88 17.41 24.12 8.51

TEDF 62.35 63.49 47.08 48.83 22.03 32.73 14.35
EDD 67.76 58.64 55.27 43.73 24.17 40.92 14.79
Ours 69.15 68.26 65.95 54.53 27.96 52.56 19.76

Table 5: Accuracy comparison of various attack methods under Probability and Label scenarios.

Scenario Probability Label
Dataset C-10 C-100 C-10 C-100

N
on

-t
ar

ge
t Ours 78.36 57.36 73.51 52.73

w/o ASE 71.21 48.93 67.47 46.92
w/o CO 69.02 50.12 66.81 45.65
w/o HE 69.25 49.52 64.05 46.35

Ta
rg

et

Ours 59.24 38.81 52.37 35.69
w/o ASE 49.37 32.29 48.72 30.49
w/o CO 47.90 32.23 47.89 31.42
w/o HE 51.48 31.91 48.49 30.20

Table 6: Ablation Study of ASRs by cutting of differ-
ent modules. “C-10” and “C-100” refers to CIFAR-10 and
CIFAR-100 dataset. In C-10, T is VGG-16, S is VGG-13.
In C-100, T is ResNet-50, S is ResNet-18.

all datasets for both probability and label scenarios. Espe-
cially on the CIFAR-100 dataset, it surpass the SOTA by
15.53%. The results suggest that our synthetic data domain
exhibits greater diversity, enabling S to acquire more infor-
mation about T . By utilizing this knowledge, S can more ac-
curately mimic the decision boundary of T , achieving close-
ness between the decision boundaries of the two and facili-
tating an efficient transfer attack.
Substitute training with the real data. As shown in Ta-
bles 3, 4 and 5, we train S with either T ’s training set or the
ImageNet. The experiments reveal that while real data train-
ing may improve the accuracy of S , it will reduce the ASRs
of adversarial attacks. We attribute this to the limitations in
the quantity and diversity of real images and the insufficient
distribution of real data around T ’s decision boundary.

4.3 Ablation Study
To demonstrate the effectiveness of each module, we se-
quentially cut off a single module at a time. As shown in Ta-
ble 6, cutting any single module leads to a significant drop
in ASRs, but the contribution of each module is relatively
similar, indirectly proving that the three methods we pro-
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Figure 4: Applying umap to reduce the dimension of data
generated by three different methods in 2-D and 3-D views.

posed are complementary to each other, jointly improving
the quality of the synthetic data domain.

4.4 Diversity Analysis
We use umap (McInnes, Healy, and Melville 2018) to ex-
hibit the diversity differences of DDG, EDD, and Ours on
the CIFAR-100 dataset. As shown in Figure 4, we visualize
the feature distributions of generated data extracted by T
for the first ten classes due to spatial limitations. Compared
to the other two methods, our synthetic data domains show
superior a broader coverage in 3-D view and better discrete-
ness in 2-D view. This more intuitively demonstrates that
our method do able to improve the coverage and discrete-
ness of the synthetic data domains. For more visualization
and analysis, please refer to the appendix.

5 Conclusion
In this paper, we analyze data diversity from the perspective
of synthetic data domains and identify two key challenges
in existing methods. To address these issues, we propose
Domain-Augmented Learning, which includes Adaptive Se-
mantic Embedding, Competition Optimization, and Hetero-
geneity Excitation, to improve the quality of the synthetic
data domain. Through extensive experiments, we prove the
effectiveness of the proposed approaches.
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