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Graph Embedding Multi-Kernel Metric Learning for
Image Set Classification With Grassmannian

Manifold-Valued Features
Rui Wang , Xiao-Jun Wu , and Josef Kittler , Life Member, IEEE

Abstract—In the domain of video-based image set classification,
a considerable advance has been made by modeling a sequence
of video frames (image set) as a linear subspace, which typically
resides on a Grassmannian manifold. As a consequence of
the large intra-class variations of the video data, there are
two open challenges for the modeling task: how to establish
appropriate image set models to encode these variations, and
how to effectively measure the similarity between any two image
sets. As a possible way to tackle these issues, this paper presents
a graph embedding multi-kernel metric learning (GEMKML)
algorithm for image set classification. The proposed GEMKML
implements set modeling, feature extraction, and classification in
two steps. Firstly, the proposed framework constructs a novel
cascaded feature learning architecture on Grassmannian manifold
with the aim of producing more effective Grassmannian manifold-
valued feature representations. To make a better use of these
learned features, a graph embedding multi-kernel metric learning
scheme is then devised to map them into a lower-dimensional
Euclidean space, where the inter-class distances are maximized and
the intra-class distances are minimized. We evaluate the proposed
GEMKML on five different visual classification tasks using widely
adopted datasets. The extensive classification results confirm its
superiority over the state-of-the-art methods.

Index Terms—Image set classification, Grassmannian manifold,
Feature extraction, Graph embedding multi-kernel metric
learning.

I. INTRODUCTION

R ECENTLY, large amount of videos, such as surveil-
lance videos, handheld camera videos, and drive recorder
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videos, etc., have been recorded. As each video sequence can be
treated as an image set, the interest in image set classification
has been steadily increasing [1]–[12]. Video-based face recog-
nition [1], [8], [11], [12], object categorization [4], [7], action
recognition [9], [13], facial emotion recognition [13] and face
verification [8], [12], [14] are some of its practical applications.
Comparing to the conventional single-shot image based classi-
fication problem, some key distinguishing features of image set
classication can easily be identified. Firstly, the goal of image
set classification is to classify the whole image set (a video se-
quence) into one of the given categories, assuming that each set
generally consists of a number of images belonging to the same
category. Secondly, an image set is more representative of the
data variability, which is important from the point of view of
video scene parsing.

Among the existing image set models, linear subspaces have
shown impressive ability to derive very good feature represen-
tation [2], [13]–[15], [17]–[19]. The advantages of using linear
subspace for video based set data description include low com-
putational cost and the capacity of accommodating the effects
of various intra-set variations. For these characteristics, it is se-
lected to encode each image set in this paper. As well studied
in [2], [14], [20], the distinctive geometrical structure spanned
by a set of linear subspaces is usually not a vector space, but
instead a Riemannian manifold. Specifically, it is a nonlinear
Grassmannian manifold. Hence, applying Euclidean learning
techniques to perform vector space dissimilarity measurements
for Grassmannian manifold-valued data is inappropriate. In or-
der to overcome this problem, [2], [14], [15], [21] exploit the
projection mapping to map each Grassmannian manifold-valued
element into a flat space, which is generated by endowing the
Grassmannian manifold with the widely used Projection Metric
(PM) [2], designed for operations on Grassmannian manifold.
After the projection, Euclidean learning algorithms can be ap-
plied for computation. Alternatively, several works [2], [5], [15]
suggest to exploit the Grassmann kernel [2], which is derived
by computing the inner product in the flat space, to embed the
Grassmannian data into the Reproducing Kernel Hilbert Space
(RKHS) where Euclidean geometry applies.

In the past decade, impressive improvements have been made
in the accuracy and speed of video-based image set classifica-
tion [1], [2], [4]–[7], [9], [12]–[15], [22], [23], [28]–[30], [35].
Among these works, the Riemannian manifold based approaches
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have attracted much attention because they are more effectively
in modeling the nonlinearity of image set data. To the best of our
knowledge, the existing Riemannian manifold image set classifi-
cation methods can be grouped into four categories: 1) Rieman-
nian kernel based methods [1], [2], [4], [15], [16]; 2) Rieman-
nian manifold dimensionality reduction methods [7], [9], [14];
3) Multiple statistical features based approaches [5], [6], [22],
[23]; 4) Riemannian deep learning methods [13], [29]–[31]. To
be specific, the first type of methods attempt to make the Eu-
clidean computations valid for the Riemannian manifold-valued
data by adopting well-studied Riemannian kernel functions [2],
[4], [16], [23] to perform high-dimensional Hilbert space em-
bedding. The methods are based on the idea of approximate
computation and ignore the manifold geometry of the original
image set data. To address this problem, some Riemannian man-
ifold dimensionality reduction algorithms directly learn a map
from the original high-dimensional Riemannian manifold to a
lower-dimensional, more discriminative one, via Riemannian
metric learning. Their strength is mainly manifested in preserv-
ing the intrinsic geometrical structure of the data in the feature
transformation process. However, the inherent problem of map-
ping a linear function learned on the nonlinear manifold may
cause classification performance degradation.

As a matter of fact, the approaches mentioned above just
model each given image set from a single geometric perspec-
tive, which may lose some other useful information for classifi-
cation, especially in the case of complex video data. To tackle
this problem, several works [5], [6], [22], [23] attempt to en-
code each given image set in terms of multiple statistics such
as the first-order, second-order and high-order statistics, for the
purpose of obtaining complementary feature information. Since
different statistics lie in different topological spaces, the met-
ric learning framework is then devised to merge these heteroge-
neous feature representations into a lower-dimensional common
subspace for improved classification. Nevertheless, due to illu-
mination, pose, expression and changes of other conditions in the
video capturing process, it is challenging for these approaches
to faithfully characterize the real structure of image set data as
they are very likely to exhibit large within-class variations. This
raises another challenge, namely how to effectively measure the
similarity of any two image sets so as to make the intra-class
compactness and the inter-class separability of the learned fea-
tures enhanced as much as possible.

In parallel with the above developments, deep neural networks
have become a vital tool in the field of computer vision and pat-
tern recognition. Their advantages stem both from the ability to
extract powerful feature representations and from the effective
non-linear backpropagation computation [37]–[40] to accom-
plish learning. Inspired by these merits, some authors embarked
on applying the idea of conventional deep learning to Rieman-
nian manifolds to open up a new direction for video-based im-
age set classification. They proposed a spectrum of architec-
tures [13], [29], [31] to perform nonlinear deep feature learning
on the Riemannian manifolds. The idea has been successfully
applied to action recognition [13], [29], facial emotion recogni-
tion [13], [29], and hand action recognition [31], mainly due to
the following two factors: 1) the Riemannian geometry of the

input data is fully preserved under the end-to-end learning frame-
work; 2) the proposed nonlinear deep learning mechanisms re-
tain the fine-grained semantic information.

To cope with the above mentioned two issues, we propose
a graph embedding multi-kernel metric learning (GEMKML)
algorithm to learn a powerful feature representation for im-
proved classification. Inspired by the proven success of Rie-
mannian manifold deep learning algorithms, this GEMKML
framework first builds a cascaded feature extraction architec-
ture (CasArct) for the purpose of generating more efficient and
compact Grassmannian manifold-valued features. It resembles
the principle component analysis (PCA) for unsupervised filter
learning, rather than the extremely popular Riemannian matrix
backpropagation computation, which makes the design of the
system and its training much simpler. It also constructs a projec-
tion pooling layer by utilizing a two-directional two-dimensional
principal component analysis ((2D)2PCA) technique, which not
only compacts the generated Grassmannian manifold-valued
features, but also maintain the Grassmannian geometry of the
input data. To mine the new features better, we first employ the
Grassmannian kernel function to embed them into the explicit
kernel Hilbert space, inspired by [5], [23]. Then, a graph em-
bedding mechanism-guided multi-kernel metric learning frame-
work is developed to transform the kernel features into a lower
dimensional subspace, where the discriminatory power of the
resulting subspace features is expected to be enhanced. Our
motivation is two-fold: 1) The proven success of the graph-
embedding schemes in discovering both the local geometrical
structure and discriminative information of image set data [15],
[24], [25]; 2) The capability of multi-kernel embedding to learn
adaptive weights for each local kernel region reflecting their
importance [22], [26].

In contrast to the existing Grassmannian manifold discrim-
inant analysis approaches, which implement feature embed-
ding and classification by taking the path (a)-(b)-(c)-(d) or
alternatively (a)-(b)-(e), introduced in Fig. 1, our model ad-
dresses two issues: 1) the problem of large within-class am-
biguity and low inter-class separability; 2) how to effectively
measure dissimilarity of two samples, using a novel learning
mechanism (see Fig. 1(a)-(b)-(f)-(g)). To be specific, the pro-
posed framework consists of two progressive stages for fine-
grained feature learning, which are clearly shown in Fig. 2.
In the first stage, a lightweight cascaded feature extractor is
designed to hierarchically extract discriminative visual infor-
mation from the original Grassmannian manifold. Compared
with the conventional hand-crafted counterparts, the generated
multiple lower-dimensional features are complementary to each
other, such that the intra-class variational information is en-
coded more succinctly. In the second stage, with the help of the
constructed graph model and the multi-kernel learning mecha-
nism, our metric learning framework not only simultaneously
exploits the holistic and local geometrical structural informa-
tion, but also takes the contribution of each feature region into
consideration in the fine-grained semantic space embedding
process. The evaluation of the proposed GEMKML algorithm
on five widely used benchmarking datasets demonstrates its
effectiveness.
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Fig. 1. An intuitive illustration of the proposed graph embedding multi-kernel metric learning (GEMKML) framework. A number of conventional Grassmannian
manifold learning algorithms can be used (a)-(b)-(c)-(d) to transform the original Grassmannian manidold G(q,D) (b) into RKHS (c), then learn a map from
RKHS to a discriminative lower-dimensional Euclidean space Rd (d). The next step is to project the result of (a)-(d) G(q,D) into a lower-dimensional, but a
more powerful counterpart G(q, d) (e) via a learnable map. In contrast, the proposed approach follows the path (a)-(b)-(f)-(g) first to learn multiple discriminative
lower-dimensional Grassmannian manifolds G(q, k) (f) via the newly designed feature extractor, CasArct. Then a map from the Grassmann manifold-valued feature
space to a fine-grained semantic embedding space Rd (g) is designed so that the within-class compactness and the between-class separation are both enhanced,
with the aid of the proposed GEMKML learning scheme.

Fig. 2. Details of the architecture of the proposed GEMKML framework. It consists of two subsystems: feature extraction, and image set classification. The
first part is constituted by a cascaded feature extractor, which contains a fully connected mapping layer, an orthonormal information preserving layer, a projection
mapping layer and a projection pooling layer for the purpose of producing more effective Grassmannian manifold-valued features. The second component is a
graph embedding scheme-guided multi-kernel metric learning framework designed to map the features output by the first subsystem into a lower dimensional, but
more discriminative common subspace for classification.

II. BACKGROUND THEORY

Before presenting our algorithm, we give a brief overview
of the Grassmannian manifold geometry, which provides the
foundations for the proposed algorithm.

Given an orthogonal matrix Q of size d-by-d, its equivalence
class [Q] can be expressed as follows,

[Q] =

{
Q

(
Qq 0
0 Qd−q

)
: Qq ∈ Oq, Qd−q ∈ Od−q

}
(1)

whose leading q columns form the same subspace as that
of Q. Here, On is an orthogonal group composed of d-by-d
orthogonal matrices. Actually, the equivalence class [Q] rep-
resents a point lying in the Grassmannian manifold G(q, d) =
Od/(Oq ×Od−q). In other words, a Grassmannian manifold
G(q, d) is spanned by a set of q-dimensional linear subspaces
of Rd×q. Each linear subspace, which is constituted by an or-
thonormal basis matrixY of size d× q, (Y TY = Iq, and Iq is an
identity matrix of size q × q), is known as an element of G(q, d).
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As shown in [14], [20], each Grassmannian manifold-valued
element corresponds to a unique projection matrix Y Y T of size
d× d with rank-q. Accordingly, a natural choice of inner prod-
uct can be made under a projection operator Φ(Y ) defined as
〈Y1, Y2〉Φ = tr(Φ(Y1)

T ,Φ(Y2)), inducing a geodesic distance
named Projection Metric [2],

dPM (Y1Y
T
1 , Y2Y

T
2 ) = 2−1/2‖Y1Y

T
1 − Y2Y

T
2 ‖F (2)

where ‖ · ‖F indicates the matrix Frobenius norm. Since the pro-
jection mapping is continuous and differentiable, the dimension-
ality of the flat space associated with the Grassmannian mani-
fold can be reduced by endowing it with a Riemannian metric.
To compute the inner product in this flat space, we can adopt a
Grassmannian kernel

kp(Y1Y
T
1 , Y2Y

T
2 ) = tr[(Y1Y

T
1 )(Y2Y

T
2 )] = ‖Y T

1 Y2‖2F (3)

Its validity has been proven in [2]. Please refer to [20] for the
mathematical theory underlying the Grassmannian geometry.

III. PROPOSED ALGORITHM

This section presents the proposed method. Section III-A dis-
cusses the details of the innovative cascaded feature extraction
architecture. We introduce the proposed GEMKML algorithm
in Section III-B. The optimization procedure is presented in Sec-
tion III-C. This is followed by the presentation of the classifi-
cation algorithm in Section III-D. Section III-E discusses the
computational complexity of our GEMKML. Lastly, we elab-
orate the relationship between the proposed algorithm and the
previous works.

A. Cascaded Feature Extraction Architecture for
Grassmannian Manifolds

Let T = [S1, S2, . . ., SN ] be the gallery composed of N
image sets, with L = [l1, l2, . . ., lN ] ∈ R1×N being the corre-
sponding label vector. In this gallery, Si = [s1i , s

2
i , . . ., s

ni
i ] ∈

Rd×ni is the i-th image set with ni frames, where i = 1→ N ,
and sji ∈ Rd×1 represents the j-th frame of the i-th image
set. From the previous studies [2], [14], [20] we know that, a
q-dimensional linear subspace formed by an orthonormal ba-
sis Yi ∈ Rd×q, s.t. SiS

T
i � YiΣiY

T
i can be considered to form

a Grassmannian manifold-valued feature representation of the
i-th image setSi, whereΣi andYi respectively denote the matrix
of q largest eigenvalues and its corresponding eigenvectors.

1) The Mapping Layer: In this paper, the cascaded feature
extraction architecture is basically designed to produce more
efficient and compact Grassmannian manifold-valued features.
Accordingly, we first design a fully connected mapping layer to
transform the input data via a mapping ffm, which is formulated
as:

Y 1
ir = f1

fm(Wr, Yi) = WT
r Yi (4)

where Yi ∈ G(q, d) is the i-th input orthonormal basis matrix
of the first layer, Wr ∈ Rd×d1 (d1 < d) is the r-th projection
matrix (connection weights) and Y 1

ir ∈ Rd1×q represents the r-
th new matrix generated by the first layer. Here, i = 1→ N ,

r = 1→ m1, and m1 denotes the number of feature maps in
the first layer.

To learn the connection weights, we first use
T ∗ = [Y1, Y2, . . ., YN ] ∈ Rd×qN to represent the gallery
T . Furthermore, we subtract the mean from each orthonormal
basis matrix Yi and obtain its centralized form Ȳi. By making a
combination of all the Ȳi, we get

X = [Ȳ1, Ȳ2, . . ., ȲN ] ∈ Rd×qN . (5)

Given the above definitions, PCA aims to minimize the following
reconstruction error within a group of orthonormal bases, i.e.,

min
M∈Rd×d1m1

‖X −MMTX‖2F , s.t. MTM = Id1m1
(6)

where Id1m1
is an identity matrix of size d1m1 × d1m1, and

d1m1 ≤ d. Obviously, the solution to Eq. (6) is made up of
d1m1 largest eigenvectors of XXT , such that the filters of the
first layer are expressed as:

Wr = divd,d1
(V (XXT )) ∈ Rd×d1 , r = 1, 2, . . .,m1 (7)

where V (XXT ) represents the d1m1 leading eigenvectors of
XXT , and divd,d1

(V ) is a function that can successively di-
vide V (XXT ) into m1 parts with each part composed of d1
eigenvectors.

However, the above learning process also raises a problem
which is how to guarantee the orthogonality of each resulting
matrix Y 1

ir in the first layer, thus forming a valid Grassmannian
manifold.

2) Orthonormal Maintaining Layer: To ensure the underly-
ing space of the resulting matrices is a true Grassmannian man-
ifold, we follow [13] to design a layer to normalize the input
matrix Y 1

ir by exploiting QR decomposition, so that the orthog-
onality of each column of the generated Y 2

ir is preserved. The
QR factorization of Y 1

ir can be described as:

Y 1
ir = Q1

irR
1
ir (8)

where Q1
ir ∈ Rd1×q is an orthonormal matrix comprised of q

leading columns, and squared matrix R1
ir is an invertible upper-

triangular matrix of size q × q. By utilizing the mathematical
properties ofQ1

ir andR1
ir, the input matrixY 1

ir can be normalized
to an orthonormal basis matrix Y 2

ir in the second layer as:

Y 2
ir = fom(Y 1

ir) = Y 1
ir(R

1
ir)
−1 = Q1

ir (9)

where r = 1→ m1, and i = 1→ N .
3) Projection Mapping Layer: As studied in [14], [20], each

Grassmannian point Y of size d× q uniquely corresponds to a
projection matrix Y Y T ∈ Rd×d, and thus can be used to rep-
resent Y . Thereby, we design the third layer to perform Grass-
mannian computing by adopting a projection mapping to each
input orthonormal matrix Y 2

ir ∈ Rd2×q with a function fpm for-
mulated as [13]:

P 3
ir = fmp(Y

2
ir) = Y 2

ir(Y
2
ir)

T , r = 1, 2, . . .,m1 (10)

where i = 1→ N , and P 3
ir ∈ Rd3×d3 are the resulting projec-

tion matrices.
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Now, each input data can be represented by m1 feature maps
in this layer. Taking the impact of the dimensionality on infor-
mation extraction into account, we further design a projection
pooling layer to make the resulting data compact.

4) Projection Pooling Layer: It is universally acknowledged
that pooling layers with max, min and mean operation func-
tions are often treated as a strategy to reduce the complexity of
the ConvNets and further improve the invariance property of the
learned features. Without loss of generality, we design the fourth
layer to design a pooling function for these learned Grassman-
nian feature representations, aided by the (2D)2PCA algorithm.
This pooling function fpp is expressed as.

P 4
ir = fpp(Z

r
1 , Z

r
2 , P

3
ir) = (Zr

1)
TP 3

irZ
r
2 (11)

where r = 1→ m1, i = 1→ N , P 4
ir ∈ Rd4×d4 are the gener-

ated lower-dimensional and more compact new projection ma-
trices, andZr

1 ∈ Rd3×d4 andZr
2 ∈ Rd3×d4 (d4 < d3) are the two

directional transformation matrices to be learned.
To make (2D)2PCA play a role, we first treat each input sym-

metric positive semi-definite (SPSD) projection matrix of the
fourth layer as a basic sample. Then, we formulate the sample
covariance matrix as:

C =
1

Nm1 − 1

N∑
i=1

m1∑
r=1

P̄ 3
ir

¯(P 3
ir)

T
(12)

where P̄ 3
ir denotes the centralized form of P 3

ir, and C ∈ Rd3×d3

is computed from the column direction (it is equal to the row
direction). 2D2PCA maximizes the following criterion to learn
the mapping A ∈ Rd3×d4m1 ,

A∗ = argmax
A

J(A), s.t. ATA = Id4m1
(13)

whereJ(A) = ATCA. In fact, this is an eigenvalue problem and
its solution is defined by a family of eigenvectors corresponding
to the d4m1 largest eigenvalues of C. Finally, each transforma-
tion matrix Zr

1 (here, Zr
1 is equal to Zr

2 ) can be described as:

Zr
1 = divd3,d4

(A) ∈ Rd3×d4 , r = 1, 2, . . .,m1 (14)

where the functiondivd3,d4
(A)plays the same role as introduced

in Eq. (7).

B. Graph Embedding Multi-Kernel Metric Learning

Now, we use Hr = [Hr
1 , H

r
2 , . . ., H

r
N ] to denote the resulting

r-th feature maps of the gallery. Hr
i ∈ Rd4×d4 is equivalent to

P 4
ir, which indicates the r-th feature map is extracted from Si.

Here, r = 1→ m1, and we set m1 = 3. Currently, a challenge
for us is how to make an efficient integration of such m1 feature
maps to mine more discriminative information for classification.
In the light of the proven success of kernel learning [26], we first
use the Grassmannian kernel to map all the Grassmannian fea-
ture maps into a high dimensional Reproducing Kernel Hilbert
Space (RKHS), and then compute the dot product in it. Here,
we use φr

i to represent the generated high dimensional feature of
Hr

i , and φ : Rd4 → F is the nonlinear mapping function, where
F indicates the transformed kernel space and Rd4 is the original

feature space. Though φ is usually implicit, we omit it for sim-
plicity. At this point, the distance between any two given image
sets Si and Sj in F is defined as:

d(Si, Sj) = tr

[
m1∑
r=1

ρr(φ
r
i )(φ

r
i − φr

j)
TE(φr

i − φr
j)ρr(φ

r
j)

]

(15)

where ρr(φr
i ) is a gating model defined to allocate different pos-

itive weights to different φr
i that will be introduced later, and E

is the Mahalanobis matrix to be learned. Due to the symmet-
ric positive semi-definite property of E, we seek a non-square
matrix B = [b1, b2, . . ., bdb

] to reconstruct it as E = BBT . Eq.
(15) can therefore be rewritten as.

d(Si, Sj)

= tr

[
BT

(
m1∑
r=1

ρr(φ
r
i )(φ

r
i − φr

j)(φ
r
i − φr

j)
T ρr(φ

r
j)

)
B

]

(16)

As shown in Fig. 2, our target is to learn the Mahalanobis matrix,
which is reduced to learning the transformation matrixB to map
the Hilbert space data into a common subspace. In this subspace
the between-class variations are expected to be maximized and
the within-class variations are expected to be shrunk, simultane-
ously. Inspired by the general graph embedding framework [15],
[24], [25], we first set up a graph to encode the local geometrical
structure of the original Grassmannian manifold G(q, d), which
is quantified as the following affinity matrix Λ ∈ RN×N com-
puted by making the use of the following intra-class similarity
graph Gw and the inter-class similarity graph Gb:

Gw(Yi, Yj) =

{
wij , if Yi ∈ Nw(Yj) or Yj ∈ Nw(Yi)

0, otherwise

(17)

Gb(Yi, Yj) =

{
wij , if Yi ∈ Nb(Yj) or Yj ∈ Nb(Yi)

0, otherwise
(18)

where wij = exp(−d2PM (YiY
T
i , YjY

T
j )/σ). Hence, the affin-

ity matrix Λ is defined as: Λ = Gw − αGb, where each entry
Λ(Yi, Yj) measures the notion of similarity between Yi and Yj ,
and α is used to balance the compactness of Gw and the dis-
persion of Gb. In Eq. (17), Nw(Yi) represents a collection of
Rw within-class nearest neighbors of Yi, while Nb(Yi) in Eq.
(18) indicates a collection of Rb between-class nearest neigh-
bors of Yi. Note that, we use the Projection Metric (PM) to
compute the nearest neighbors. In practice, the value of Rw is
configured to the minimum number of samples in a class, and
set Rb ≤ Rw. However, their specific values are determined by
cross-validation.

Having obtained this affinity matrix Λ, the objective function
of the designed graph embedding multi-kernel metric learning
framework is formulated as:

B∗ = argmin
B∈RN×db

Θ(B) = argmin
B∈RN×db

N∑
i,j=1

Λi,jd(Si, Sj) (19)
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As it is arduous to compute the distance d(Si, Sj) defined
in Eq. (16) due to the implicity of φ, we express the basis bk
as a linear combination of all the training instances in F , i.e.,
bk =

∑N
i=1 u

k
i φ

r
i , where uk

i are the representation coefficients.
Hence, we have.

m1∑
r=1

bTk φ
r
i =

N∑
i=1

m1∑
r=1

uk
i (φ

r
i )

Tφr
i =

m1∑
r=1

(uk)TKr
.i (20)

where uk ∈ RN×1 is a column vector and uk
i is its i-th entry.

Kr
.i is the i-th column of the r-th kernel matrix Kr. Here, Kr ∈

RN×N is computed from Hr using the Grassmannian kernel.
The above Eq. (20) is obtained by using the kernel trick [42].

Therefore, we can reformulate the minimization problem de-
fined in Eq. (19) as,

U ∗ = argmin
U∈RN×db

Θ(U) = argmin
U∈RN×db

N∑
i,j=1

Λi,jd
∗(Si, Sj) (21)

where

d∗(Si, Sj) = tr

[
UT

( m1∑
r=1

ρr(φ
r
i )(K

r
.i −Kr

.j)

(Kr
.i −Kr

.j)
T ρr(φ

r
j)

)
U

]
(22)

The subject of our next discussion is the gating model ρr(φr
i ).

In this study, its specific form is defined as in [26].

ρr(φ
r
i ) =

exp(gTr φ
r
i + hr)∑m1

v=1 exp(g
T
v φ

v
i + hv)

(23)

It is clear this model grows incrementally with the importance of
φr
i , and the softmax can guarantee nonnegativity of the resulting

weights. Since the form of φ is usually unknown, we induce this
model to play a part in a similar way to Eq. (17).

gTr φ
r
i = δTr (φ

r
i )

Tφr
i = δTr K

r
.i (24)

As a result, this gating model can be rewritten as,

ρr(φ
r
i ) =

exp(δTr K
r
.i + hr)∑m1

v=1 exp(δ
T
v K

v
.i + hv)

(25)

where δr ∈ RN×1 and hr ∈ R1 are the two parameters to be
learned.

C. Optimization

Owing to interdependence between U and (gr, hr), it is diffi-
cult to find a closed-form solution for the optimization problem
defined in Eq. (21). With this in mind, we use an iterative pro-
cedure to solve it. The basic idea is first to fix the values of δr
and hr to update U , and then update δr and hr with the updated
U . Finally, this staggered procedure iterates until convergence.

1. Computation ofU : In order to optimizeU , we first initialize
δr and hr with a small random vector of size N × 1 and a small
random constant respectively, and impose a unitary constraint
UTU = Idb

to U for restricting its scale. Generally speaking,
this optimization problem is on the Stiefel manifold [20], [27].
Note, the objective function Θ(U) is independent of the bases

spanned byU since it satisfiesΘ(U) = Θ(UQ). Here,Q ∈ Odb
,

and Odb
are an orthogonal group formed by a family of db × db

orthogonal matrices as introduced in Section II. As a result, this
optimization problem is actually on the Grassmannian mani-
fold [20], [27], and the nonlinear Grassmannian Conjugate Gra-
dient method [9], [20], [27] can be applied for its optimization.
The following is a brief summarization of the Conjugate Gradi-
ent method on the Grassmann manifold: (1) At the k-th iteration,
use the following formula to compute the Grassmannian gradi-
ent ∇UΘ(Uk) at current solution:

∇UΘ(Uk) = (IN − UUT )DUΘ(Uk) (26)

where DUΘ(Uk) denotes the Euclidean gradient of
Θ(Uk) with respect to Uk, and can be expressed as:
DUΘ(Uk) = 2

∑N
i,j=1 Λi,jΔUk. Here, the specific form

of Δ is given as follows;

Δ =

m1∑
r=1

ρr(φ
r
i )(K

r
.i −Kr

.j)(K
r
.i −Kr

.j)
T ρr(φ

r
j)) (27)

(2) Determine the new search direction Γk by integrating
the parallel update using τ(Γk−1, Uk−1, Uk) [9] of the previ-
ous search direction Γk−1 from Uk−1 to Uk with ∇UΘ(Uk).
In other words Γk ← −∇UΘ(Uk) + λτ(Γk−1, Uk−1, Uk); (3)
Find Uk = argminΘ(U) based on line search along the
geodesic on the Grassmannian manifold G from Uk with di-
rection Γk.

Then, repeat the above steps until one of the following con-
ditions is satisfied: 1) the objective function Θ(U) converges
to a local minimum; 2) reaches the maximum iterations. For
a more comprehensive introduction of this optimization algo-
rithm, please refer to [20], [27].

2. Computation of δr and hr: After updating U , we then re-
spectively compute the partial derivatives of Θ(U) with respect
to δr and hr as:

∂Θ(U)

∂δr
= UUT

N∑
i,j=1

Λi,j
∂Δ(δr, hr)

∂δr

= UUT
N∑

i,j=1

m1∑
k=1

Λi,jρk(φ
k
i )(K

k
.i −Kk

.j)

(Kk
.i −Kk

.j)
T ρk(φ

k
j )[K

r
.i(β

k
r − ρr(φ

r
i ))

+ Kr
.j(β

k
r − ρr(φ

r
j))] (28)

∂Θ(U)

∂hr
= UUT

N∑
i,j=1

Λi,j
∂Δ(δr, hr)

∂hr

= UUT
N∑

i,j=1

m1∑
k=1

Λi,jρk(φ
k
i )(K

k
.i −Kk

.j)

(Kk
.i −Kk

.j)
T ρk(φ

k
j )
[
βk
r − ρr(φ

r
i )

+ βk
r − ρr(φ

r
j)
]

(29)
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Algorithm 1: GEMKML
Input: Training image sets T , label vector L, m1 different
kernel matrices Kr (r = 1→ m1), number of iterations
G, target dimensionality db, affinity matrix Λ and
convergence error ε.

Output: Transformation matrix U and parameters δr, hr.
Step 1 (Initialization): Initialize δ0r with a small random
vector, and initialize h0

r with a small random constant.
Step 2 (Optimization):
For i = 1, 2, . . ., B, repeat
1: Solve the minimization problem in Eq. (21) using

Grassmannian Conjugate Gradient method, and get
U i = [u1, u2, . . ., udb

].
2: Compute ∂Θ(U)

∂δr
and ∂Θ(U)

∂hr
using Eq. (28) and Eq.

(29), respectively.
3: Update δr and hr using Eq. (30) and Eq. (31),

respectively.
4: Check convergence:

if i > 2, |δ(i+1)
r − δir| < ε and |h(i+1)

r − hi
r| < ε,

or |U i+1 − U i| < ε, turn to Step 3.
Step 3 (Output): Transformation matrix U , δr and hr

where βk
r = 1 if r = k and 0 otherwise. Here, the gradient de-

scent method is applied to train the gating model defined in Eq.
(25) as.

δt+1
r = δtr − η

∂Θ(U)

∂δr
and ht+1

r = ht
r − η

∂Θ(U)

∂hr
(30)

where η is the learning rate and set to 10−3 in our experiments.
Having obtained the new δr and hr, we first use them to re-

calculate ρr(φ
r
i ) and Δ in Eq. (22) and Eq. (27), respectively.

Then, the transformation matrix U can be updated by reusing
the Grassmannian Conjugate Gradient method. Finally, we it-
erate this alternating process until the conditions are met. We
summarize the proposed GEMKML algorithm in Algorithm 1.

D. Classification

In the test stage, the proposed cascaded feature extraction ar-
chitecture (CasArct) is firstly exploited to process a given test
image set Ste, and its m1 corresponding feature maps can there-
fore be produced, expressed as Hr

te, and r = 1→ m1. Then, we
measure the similarity between Ste and all the training image
sets using three kernel vectors calculated via the Grassmannian
kernel, each represented by Kr

.te. Therefore, the distance be-
tween Ste and each training image set Si can be computed as
follows:

d(Ste, Si) = tr

[(
m1∑
r=1

ρr(φ
r
te)(K

r
.te −Kr

.i)UUT

(Kr
.te −Kr

.i)
T ρr(φ

r
i )

)]
(31)

Lastly, we assign label li to Ste according to:

li = argmin
i

d(Ste, Si) (32)

where i = 1→ N .

E. Computational Complexity Analysis

The computational complexity in the training stage is deter-
mined by the following six factors: 1) the cost O(d2qN + d3)
of performing the PCA learning in the fully connected map-
ping layer; 2) the cost O(Nq2d1) of QR decomposition in
the orthonormal maintaining layer; 3) performing the pool-
ing operation in the projection mapping layer, which requires
O(2d33m1N + 2d23d4m1 N) operations; 4) building m1 ker-
nel matrices, which costs O(m1 N

2d34); 5) constructing the
graph, which requiresO(N2(d2q + d3)) operations; 6) the cost
O(2Jm1 N

2) for updating δr and hr. Here, J represents the
number of iterations. Considering that m1 � N , J � N2,
d1 ≤ d, d3 ≤ d1, and d4 ≤ d3, the computational complexity
of our algorithm is O(N2 d3).

F. Relationship With the Previous Works

Our method is similar to [13], [16], [23]. Here, we point out
some essential differences between the proposed GEMKML and
those introduced in [13], [16], [23] in the following three para-
graphs.

[13] is a Grassmannian deep learning network, which con-
sists of some elaborately designed spectral layers for extract-
ing Grassmannian manifold-valued features using deep network.
Our designed CasArct is motivated by [13], but the differences
lie in two respects: 1) we use PCA to perform unsupervised
learning, which means the training of CasArct is extremely easy
and efficient, while [13] depends on end-to-end learning with a
Riemannian matrix backpropagation computation; 2) We design
a projection pooling layer by using (2D)2PCA technique, which
not only refines the CasArct but also preserves the Riemannian
geometrical structure of the data. [13] exploits a mean pooling
operation for Grassmannian data.

Both the proposed model and [16] learn discriminative Eu-
clidean feature representations for Riemannian manifold-valued
data. Specifically, they first embed the Riemannian manifold
features into RKHS, and then learn a map from the explicit ker-
nel spaces into a lower-dimensional Euclidean space where the
discriminatory power is enhanced. However, they have some es-
sential differences in the mechanism of representation learning.
Firstly, [16] extracts the Grassmann manifold-valued features
for the ETH-80 dataset without any preprocessing steps while
the proposed method utilizes the newly designed CasArct to
learn hierarchical Grassmannian features. Secondly, the mul-
tiple explicit kernel spaces of [16] are generated by different
types of Grassmannian kernels. For the proposed approach, only
m1 projection kernels are used to perform the explicit kernel
space transformation. Thirdly, [16] considers the linear combi-
nations of the heterogeneous explicit kernel feature representa-
tions, while our algorithm works with kernel combinations in
the multi-kernel learning scheme. Finally, [16] formulates the
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discriminative feature representation learning problem in the
framework of the SVM theory. In contrast, the graph embedding
mechanism guided objective function is used to solve this prob-
lem in the proposed model. Note that, we do not select [16] as
the comparative method in the following experiments because it
uses one-vs-one scheme for multi-class classification problems,
which differs from the proposed algorithm.

Our approach and [23] not only focus on building reliable
image set models, but also on learning discriminative subspace
features. However, there are some differences between the two
approahces: 1) We use the proposed CasArct to automatically
learn the features, while [23] relies on the multiple statistics
based hand-crafted ones; 2) As the discriminability of each lo-
cal region in the resulting kernel spaces is different, this paper
integrates the multi-kernel learning scheme into the proposed
metric learning framework with the aim of learning adaptive
weight for each kernel. These differences are ignored in [23];
3) Regarding optimization, this paper first formulates the fea-
ture fusion problem using an elaborately designed graph embed-
ding mechanism-guided objective function, and then exploits
RCG [20], [27] and gradient descent method to solve it itera-
tively. [23] utilizes the LogDet divergence [32] based constraint
to formulate the feature fusion problem, and solves it with the
cyclic Bregman projection method [33]; 4) In this paper we eval-
uate the proposed algorithm on five different video-based clas-
sification tasks, and the extensive classification results demon-
strate its wider promise, while [23] concentrates on video-based
face recognition task.

IV. EXPERIMENTS

In this section, we assess the proposed GEMKML algorithm1

on four classification tasks, e.g., video-based face recognition,
video-based emotion recognition, dynamic scene classification
and set-based object categorization, respectively.

A. Comparative Methods and Settings

We compare the proposed GEMKML algorithm with some
representative image set classification methods including:
Grassmann Discriminant Analysis (GDA) [2], Grassmannian
Graph-Embedding Discriminant Analysis (GEDA) [15], Co-
variance Discriminative Learning (CDL) [4], Riemannian
Sparse Representation (RSR) [28], Projection Metric Learn-
ing (PML) [14], SPD Manifold Learning (SPDML) Based on
Affine-Invariant Metric (AIM) [9] and Stein Divergence [9],
Log-Euclidean Metric Learning (LEML) [7], Hybrid Euclidean-
and-Riemannian Metric Learning (HERML) [23], Localized
Multi-kernel Metric Learning (LMKML) [22], Symmetric Posi-
tive Definite (SPD) Network (SPDNet) [29], and Grassmannian
manifold Network (GrNet) [13].

We use the source codes of all the comparative methods pro-
vided by the original authors to conduct the experiments, except
for LMKML. Since the source code of LMKML is not avail-
able, we carefully implement it by referring to [22]. For a fair

1The source code will be released on: [Online]. Available: https://
github.com/GitWR

TABLE I
THE SUITABLE VALUES OF SOME FUNDAMENTAL GEMKML PARAMETERS

comparison, the parameters of all the methods were set in this
paper are empirically tuned according to the information pro-
vided in the original works. For CDL, the perturbation is set
to 10−3 × trace(C). For GDA and GEDA, the number of ba-
sis vectors for the subspace is determined by cross-validation.
Moreover, KDA is utilized to perform discriminative learning in
CDL and GDA. In PML, the number of iterations, the trade-off
coefficient α and the target dimensionality d are reported ac-
cording to the original work [14]. In LEML, we search the val-
ues of η and ζ in the range of [0.1,1,10] and [0.1 : 0.1 : 1], re-
spectively. In SPDNet, the number of iterations and the size
of input data are respectively set to 500 and 400×400, while
they are configured as 500 and 400×10 in GrNet. Other key
parameters in SPDNet and GrNet such as learning rate, batch
size and the size of the transformation matrices are chosen by
cross-validation. For RSR, the value of λ is tuned by sam-
pling the range [0.0001,0.001,0.01,0.1]. For SPDML-AIM and
SPDML-Stein, vw and vb are searched by referring to [9], while
the target dimensionality of the resulted new SPD manifold is set
by cross-validation. In HERML, we respectively tune γ and ζ
in the range of [0.001,0.01,0.1,1,10,100,100] and [0.1 : 0.1 : 1].
In LMKML, the learning rate α is set as 10−6. Note that, for the
parameters determined by cross-validation, we report the best
classification results for such methods in this paper.

To build the cascaded feature extraction architecture, we use
four layers: Yi → ffm → fom → fmp → fpp, shown in Fig. 2.
The recommended values of parameters q, d1, d4, andm1, which
are closely related to this architecture, are given in Table I. Here,
q represents the dimensionality of the original Grassmann mani-
fold, d1 and d4 respectively denote the dimensionality of the pro-
duced feature maps in the fully connected mapping layer and the
projection pooling layer, and m1 is the number of feature maps
in each layer. Note that, they are determined by cross-validation,
and we suggest to exploit fine tuning to choose suitable values
for new problems.

B. Datasets Description and Settings

In our experiments, the challenging and widely used YouTube
Celebrities (YTC) dataset [4], [5], [7], [23] is adopted for the task
of video-based face recognition. It contains 1,910 video clips of
47 subjects. Each clip is comprised of hundreds of face frames,
most of which exhibits large intra-class variations in expression,
pose, resolution and illumination. Some sample face images of
this dataset are shown in Fig. 3, and histogram equalization is
adopted to each face region of this dataset for eliminating the
lighting effects.

Dynamic scene classification in an unconstrained setting is a
fundamental and challenging task in computer vision. Recently,
image set classification has provided a new direction to address
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Fig. 3. Face frames of the YTC dataset.

Fig. 4. Dynamic scene images of the MDSD dataset.

Fig. 5. Examples of the ETH-80 dataset.

Fig. 6. Facial emotion images of the AFEW dataset.

this problem. In this paper, we use the MDSD dataset [35], [36],
[41] to evaluate the classification performance of the proposed
method on this task. As presented in Fig. 4, there are some
sample images of this dataset. This dataset is composed of 13
different categories of dynamic scenes. Each has 10 video se-
quences collected in an unconstrained setting, and they exhibit
large within-class diversity in resolution and morphology.

For the task of set-based object categorization, we use the
ETH-80 dataset [4], [5], [7], [22]. It consists of 8 classes such
as apples, cows, cups, dogs, horses, pears, tomatoes and cars,
with 10 subcategories per class, and each subcategory contains
41 instances collected from different perspectives. Fig. 5 shows
some examples of this dataset.

We further apply the proposed model to the emotion recog-
nition task using the Acted Facial Expression in Wild (AFEW)
dataset [13], [29], [34]. This dataset involves 1,345 video se-
quences of facial expressions collected from movies with close
to real world scenarios. Some examples of the AFEW dataset are
presented in Fig. 6. For evaluation, we follow the standard pro-
tocols of EmotiW2014 [34] and [13], [29] to split these training
video sequences into 1,746 small clips for data augmentation,
and report the recognition results on the validation set, as the
groundtruth of test set is not publicly available.

To keep consistent with the previous works [4], [5], [7], [13],
[14], [23], we conduct ten-fold cross validation experiments, i.e.,
randomly split each dataset into ten different pairs of gallery and
probes, and report the average classification accuracies of each
method on the YTC, MDSD and ETH-80 datasets. In particular,
for the YTC dataset, we randomly choose 9 video clips in each
subject with 3 for training and 6 for testing. For the MDSD
dataset, each class has 7 randomly selected videos for training
and the rest for the query set. For the ETH-80 dataset, each

TABLE II
AVERAGE RECOGNITION SCORES (%) OF DIFFERENT METHODS ON THE YTC

AND AFEW DATASETS

TABLE III
INVESTIGATION OF THE PROPOSED GEMKML WITH DIFFERENT COMPONENTS

Baseline methods are CasArct and GEMKML-woCA. Here, ‘woCA’ rep-
resents without utilizing CasArct, and ‘womkl’ indicates without utilizing
multi-kernel learning.

category has 5 randomly selected objects for gallery and the
remaining five for probes. Besides, each image in a given dataset
is normalized to a 20× 20 grayscale one.

C. Results and Discussions

The classification results of all the methods on the four
datasets are tabulated in Table II and Table III. We can make
some interesting observations about these classification results.
Firstly, the recognition scores of GDA are inferior to that of
GEDA on the YTC, AFEW and ETH-80 datasets, which demon-
strates the capability of the graph embedding scheme to ex-
tract discriminative local structural information when perform-
ing manifold discriminant analysis. Furthermore, it is evident
that the recognition rates of GDA and GEDA are both lower
than that of PML on the YTC and ETH-80 datasets. The main
reason is that PML performs dimensionality reduction by jointly
learning an embedding and a distance metric from the original
Grassmannian manifold, which retains the manifold property of
the original set data more comprehensively than the Euclidean
computation. Consequently, more powerful geometrical struc-
tural features are mined for improved classification. This reason
also explains the difference in the recognition ability between
CDL and LEML on the YTC and ETH-80 datasets. Since PML
and LEML depend on restricting the intra-class and inter-class
dispersion to learn the discriminative distance metrics, it is im-
possible for them to make effective distinctions between some
overlapping samples when there exists large within-class varia-
tions within the dataset. This may explain why the classification
results of PML and LEML are respectively a bit lower than that
of GEDA and CDL on the AFEW and MDSD datasets, which

Authorized licensed use limited to: Jiangnan University. Downloaded on September 19,2022 at 05:29:58 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: GRAPH EMBEDDING MULTI-KERNEL METRIC LEARNING FOR IMAGE SET CLASSIFICATION 237

in turn further verifies the effectiveness of the proposed graph
embedding mechanism.

Secondly, we also want to discuss the differences between
the results produced by SPDNet, GrNet, LEML, and PML on
the four datasets. It is notable that both SPDNet and GrNet show
relatively poor classification results than LEML, PML and other
image set classification methods on the ETH-80 dataset, while
on the relatively large scale AFEW and YTC datasets, they are
superior to LEML, PML, and other competitors. Meanwhile,
SPDNet and GrNet also achieve comparable classification per-
formance on the MDSD dataset, compared to the state-of-the-art
methods. As aforementioned, these four algorithms all aim at
transforming the high dimensional Riemannian manifolds into
the lower dimensional and more discriminative ones, such that
the geometrical structure of the input data is preserved. How-
ever, both SPDNet and GrNet depend on the end-to-end learning
framework to produce powerful Riemannian manifold-valued
feature representations. As a consequence, SPDNet and GrNet
are capable of parsing the manifold geometry more effectively
thanks to the deep features than other algorithms, and thus show
good classification ability on the complicated datasets. For the
ETH-80 dataset, its limited number of training samples may be
the root cause of the poor classification performance of SPDNet
and GrNet.

Thirdly, the comparison of classification performance of
LMKML, HERML, and the proposed GEMKML is of the main
interest. For HERML and LMKML, their similarities emanate
from two roots: 1) they both utilize multiple statistics to simul-
taneously encode the image set data; 2) to handle heterogeneous
feature representations, they exploit the advocated metric learn-
ing frameworks to merge them into a unified subspace for classi-
fication. It is easy to see that LMKML and HERML outperform
most of the comparative methods on the four test datasets, which
proves the complementarity of multiple statistics in image set
modeling helps to extract more discriminatory information than
single geometric model based methods. However, LMKML is
convincingly surpassed by HERML. The fundamental reason is
that LMKML applies the Euclidean metric based kernel func-
tion to the higher order statistics such as second-order statistics
and tensors, which does not preserve the Riemannian geome-
try of the original image set data as they typically reside in a
non-Euclidean space. On the contrary, HERML treats different
statistics with different kernel functions. As LMKML is very
time consuming, we did not experiment with it on the large
scale AFEW dataset. For HERML, as discussed before, the lack
of making quantitative distinction between different local kernel
regions is regarded as the main factor limiting its classification
performance.

It is clear to see that the proposed approach achieves state-
of-the-art classification performance on all the datasets. This is
attributed to the following factors:

1) The proposed cascaded feature extraction architecture
(CasArct) can not only reduce the dimensionality of
the input data, but also refine the learned Grassmannian
manifold-valued features via the novel pooling operation.
Consequently, the output of CasArct is more discrimina-
tive than the hand-crafted features.

TABLE IV
INVESTIGATION OF DIFFERENT SUBARCHITECTURES OF THE PROPOSED

CASACDED FEATURE EXTRACTOR (CASARCT) ON THE ETH-80, MDSD, AND

YTC DATASETS

2) The proposed within-class similarity graph Gw and the
between-class similarity graph Gb successfully mine the
local structural information of the image set data.

3) With the help of the proposed multi-kernel learning
scheme and the graph model, the metric learning frame-
work developed has the capacity to fuse these learned ge-
ometric features into a lower dimensional metric space,
where the intra-subject distances are minimized and the
inter-subject distances are maximized.

D. Ablation Study of the Proposed GEMKML Algorithm

The above experimental results demonstrate the effectiveness
of our algorithm for image set classification. To better evaluate
its properties, we study two baselines: 1) using just the cascaded
feature extractor (CasArct) to perform image set classification;
2) Excluding the CasArct from the proposed GEMKML frame-
work, we name it GEMKML-woCA. First we provide some
implementation details of CasArct and GEMKML-woCA: 1) to
complete the classification procedures of CasArct, we first vec-
torize each output of the projection pooling layer, then concate-
nate them together. Finally, they are fed into the Nearest Neigh-
bor (NN) classifier for classification; 2) To complete the learning
process of GEMKML-woCA, the Grassmannian manifold ker-
nel is first applied to the input orthonormal matrix Yi for Hilbert
space embedding. Then, the proposed metric learning frame-
work is utilized to carry out the discriminant subspace learning.
The classification accuracies obtained for the two baselines on
the four datasets are listed in Table IV. To assess the merits of
the multi-kernel learning scheme of the proposed GEMKML,
we further make experiments on the four datasets to investi-
gate the classification performance of our GEMKML without
using multi-kernel learning mechanism (GEMKML-womkl).
The classification results are given in Table IV. Distinctly, both
CasArct and GEMKML-woCA achieve is at least compara-
ble, or better on all the datasets, compared to the competitors
listed in Table II and Table III. The classification performance
of GEMKML-womkl is inferior to the proposed GEMKML on
the MDSD, YTC and AFEW datasets, while it surpasses the two
baselines. The above observations support the following three
point: 1) the effectiveness of the proposed CasArct in produc-
ing more efficient and compact Grassmannian manifold-valued
features; 2) the validity of the multi-kernel learning scheme in
alleviating the issue of within-class variations; 3) The poposed
GEMKML framework, which is organically integrated with
CasArct, can mine more powerful structured semantic infor-
mation for improved classification.
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TABLE V
AVERAGE COMPUTATION TIME (SECONDS) OF REPRESENTATIVE IMAGE SET

CLASSIFICATION METHODS ON THE YTC DATASET

Note that the testing time of each method is com-
puted by measuring the time required to classify
one image set (one video sequence) into the given
categories.

E. Ablation Study for the Proposed Cascaded Feature
Extractor (CasArct)

As aforementioned, the proposed lightweight cascaded fea-
ture extractor (CasArct) produces more efficient and compact
Grassmannian manifold-valued feature representations for the
image set data. In Section IV-D, we conducted experiments to
demonstrate that the classification ability of CasArct is com-
petitive with most of the comparative methods. In order to in-
vestigate the importance of each layer in CasArct, we perform
classification experiments on the ETH-80, MDSD, and YTC
datasets, respectively. The experimental results obtained by dif-
ferent subarchitectures of the suggested CasArct are presented
in Table V. From the table, we can find that the classification
score of CasArct-ffm, which just includes the fully connected
mapping layer, is much lower on the three datasets. The reasons
are two-fold: 1) the Grassmannian geometry of the generated
features have been destroyed; 2) the features produced contain
more redundancy. However, when the orthonormal structural in-
formation preserving layer is coupled with the fully connected
mapping layer, the classification ability of CasArct-ffm + fom
is improved. This demonstrates the importance of preserving the
geometrical structure of the transformed data in image set clas-
sification. On the basis of CasArct-ffm + fom, the projection
mapping layer is integrated into the tail of the orthonormal struc-
tural information preserving layer. As a result of this measure,
the classification performance of CasArct-ffm + fom + fpm
is lifted significantly. This suggests that endowing the ex-
tracted Grassmannian manifold-valued features with Grassman-
nian manifold computing enhances the discriminatory structural
information content of the extracted features. From Table V, we
can also note that when the projection pooling layer is incor-
porated with CasArct-ffm + fom + fpp, the recognition abil-
ity of CasArct-ffm + fom + fpm + fpp is further improved on
three datasets used in the experimental study. This confirms the
effectiveness of the designed pooling layer in producing an ef-
ficient and compact feature representation. The above obser-
vations demonstrate the significance of each CasArct layer for
image set classification.

Fig. 7. Mean classification results of GEMKML on the ETH-80 and MDSD
datasets under different parameter settings. The values of Rw and Rb are varied
in the range of {2, 3, 4, 5} and {4, 5, 6, 7} respectively.

F. Ablation Study for the Graph Model

Graph embedding scheme has been shown to be effective
in making use of the local geometrical structure of image set
data. In this context, choosing suitable values for Rw and Rb,
which respectively represent the number of within-class and
between-class nearest neighbors of Yi, is instrumental to im-
proving the discriminability of the extracted subspace features.
When constructing the graph model, the problem of data imbal-
ance is often encountered because the number of similar sample
pairs is much lower than that of dissimilar sample pairs. To
mitigate the impact of this problem on the classification per-
formance, it is important to set proper values for Rw and Rb.
With this motivation, we conducted experiments on the ETH-80
and MDSD datasets to study the influence of Rw and Rb on the
classification performance of the proposed method. The exper-
imental results are depicted in Fig. 7. According to the figure,
when Rb is larger than Rw and their gap is gradually increas-
ing, the classification performance of the proposed method gets
commensurately worse. This is caused by the aggravation of
data imbalance in the established graph model. Another obser-
vation worth noting from the results on the ETH-80 dataset is
the insensitivity of the proposed method to the parameters. For
the MDSD dataset, our algorithm is also insensitive when Rw

and Rb vary in the range of {5, 6, 7} and {4, 5, 6}. Accordingly,
we set Rw, Rb for the ETH-80 and MDSD datasets to 5, 3 and
5, 5, respectively. Their corresponding values on the AFEW
and YTC datasets are set as 16, 16 and 3, 2, respectively (see
Table I).

G. Ablation Study for the Convergence Behavior

As discussed in Section III-C, we expect to study the trans-
formation matrix U but have to infer δq and hq simultaneously.
Therefore, we use an iterative method to solve this optimization
problem, defined in Eq. (21). Although, it is difficult to provide
a theoretical proof of convergence of this optimization process,
our experience is that after several iterations the objective func-
tion Eq. (21) reaches a stable value. Fig. 8 was obtained using
the AFEW and YTC datasets. It is evident that with increas-
ing number of iterations, the value of objective function tends
to decrease and eventually fluctuates within a very small range.
This demonstrates the proposed model has a good convergence
properties. The maximum number of iterations we set for the
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Fig. 8. Convergence behavior of the proposed algorithm on the AFEW and
YTC datasets.

Fig. 9. Mean classification results of GEMKML on the ETH-80 and MDSD
datasets under different parameter settings. α and σ take values from the
sets {0.1, 0.2, 0.3, 0.4, 0.5} and {1, 2, 3, 4, 5, 6} for ETH-80. For the MDSD
dataset, they are take values from the sets {0.2, 0.3, 0.4, 0.5, 0.6} and
{1, 2, 3, 4, 5, 6}.

AFEW, YTC and ETH-80 datasets is 40, and for the MDSD 20
is sufficient.

H. Parameter Discussion

As described in Section III-B, the parameter α in the defined
affinity matrix Λ is used to balance the intra-class compactness
and the inter-class dispersion. σ impacts on the graph model
which controls the weight assigned to each pair of image sets. To
assess their influence, we experiment on the MDSD and ETH-80
datasets and measure the classification performance as a function
ofα andσ. From the results in Fig. 9, we note: 1) whenσ is fixed,
the classification performance of the proposed GEMKML tends
to increase first and then drop with increasingα on both datasets.
This suggest that α can play a part in balancing the within-
class compactness and the between-class dispersion; 2) When
changing both α and σ, the experimental results of our model
tend to change slowly, suggesting a fair degree of robustness.
The recommended values of the parameters that were used on
the four used datasets are given in Table I.

Recalling the foregoing discussion, in the proposed
GEMKML framework, the high dimensional Grassmann
manifold-valued features are fused in a db-dimensional com-
mon subspace. Since more discriminative representations often
reside in a lower dimensional feature space, it is indispensable
to find an appropriate value of db. Taking the MDSD dataset
as an example, we vary db and measure its impact on the clas-
sification rate in our experiments. The experimental results are
shown in Fig. 10. It is interesting to see that the classification
performance of the proposed method monotonically increases

Fig. 10. Mean classification results of GEMKML on the MDSD dataset
under different parameter settings, where db takes values from the range of
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}.

when db is in the range of 5∼25. Once it exceeds 25, the clas-
sification rate of our algorithm tends to change smoothly. The
top classification accuracy is achieved when db = 25. Increasing
the dimensionality to 91, its maximum value for this dataset, the
resulting classification rate of 30.26% is somewhat lower than
its maximum.

The behaviour of the results in Fig. 10 can be explained as
follows. When the value ofdb is low, the learned feature informa-
tion is insufficient to differentiate between similar and dissimi-
lar pairs, which compromises the classification ability. When the
value of db is high, the learned representation includes redundant
information, which also degrades the recognition performance.
The same analysis on the AFEW, YTC and ETH-80 datasets
suggests the values of db should be set set to 70, 70 and 10,
respectively (see Table I).

I. Computational Time Comparison

To evaluate the time efficiency of the proposed method, we
compare its average training and testing times with some repre-
sentative image set classification methods on the YTC dataset.
The experiments were run on Windows 10 Operating System
with 3.0 GHz PC and 16 GB RAM. We need to emphasise that
the CPU time is included in the running time. The testing time is
defined by measuring the time required to classify one image set
(one video sequence) into its category. The experimental results
for all the methods obtained with the Matlab2016a software are
shown in Table VI. From the table, we can see that the proposed
cascaded feature extraction architecture (CasArct) exhibits a sig-
nificantly reduced computational burden for both training and
testing, compared to all the competitors, which proves the mer-
its of using PCA and (2D)2PCA to train the model. Note also
that the testing time of the proposed GEMKML is higher than
that of SPDNet and GrNet, mainly because GEMKML requires
extra time to construct the m1 Grassmannian manifold kernel
matrices in the testing stage.

V. APPLICATION TO 3D HAND POSE ESTIMATION

While action recognition is a longstanding problem in the
computer vision community, the first-person view based 3D
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TABLE VI
RECOGNITION SCORES OF THE DIFFERENT METHODS ON THE FPHA DATASET

Fig. 11. Some 3D hand pose instances of the FPHA dataset.

hand pose estimation has made considerable advance since the
recent availability of RGB-D sensors. The task of 3D hand action
recognition is to estimate what kind of hand action is being per-
formed by comprehending a video sequence via 3D coordinates
of the joints. Because of the large occlusions and fast motion cre-
ated by an action, the hand action recognition from first-person
views pose a unique challenge. As each video sequence can be
viewed as an image set, we investigate the applicability of the
proposed approach to the FPHA dataset [45].

FPHA is a large and diverse first-person hand action dataset
for 3D hand pose estimation. It consists of 1,175 hand action
videos belonging to 45 different categories, performed by 6 ac-
tors in 3 different scenarios. In this dataset, a total of 105,459
RGB-D frames have been annotated with accurate hand poses
and action categories, and a wide range of intra-subject and
inter-subject variability of style, speed, scale, and viewpoint is
presented in each video. Some 3D hand pose instances of the
FPHA dataset are shown in Fig. 11. In this section, we fol-
low the standard protocol of [45] to conduct the experiments.
Specifically, we first normalize each video sequence to include
50 frames. Then, we characterize each hand gesture frame by
transferring it into a 63-dimensional vector using the 3D coor-
dinates of 21 hand joints provided. As a result, a feature matrix
Si ∈ R63×50 is obtained to represent a given hand pose video
clip Vi. Lastly, 600 hand action video sequences are utilized
to train the proposed model, and the remaining 575 action se-
quences are used for testing.

We compare the proposed approach with state-of-the-art
deep learning-based action recognition methods, such as con-
volutional two-stream network (Two stream) [46], Novel
View [47], hierarchical recurrent neural network (HBRNN) [48],

LSTM [49], temporal convolution network (TCN) [50], and uni-
fied hand and object model (H+O) [51]. We also include tran-
sition forests (TF) [52], jointly learning heterogeneous features
(JOULE) [53], PML [14], and GrNet [13] as the comparative
algorithms. The recognition results of the different methods are
listed in Table VII. Note that, we run the approaches of TCN,
PML, and GrNet with their publicly available codes, and report
their best recognition scores. The experimental results of H+O
and other competitors are from [51] and [45], respectively. As to
TCN, we run it with two different convolutional kernel lengths,
16 and 32, respectively. For the proposed GEMKML, the values
of the fundamental parameters q, d1, d4, m1, Rw, Rb, α, δ, and
db, are set to 10, 31, 15, 2, 10, 10, 0.45, 0.5, and 40, respectively.

From Table VII we find: 1) The Grassmannian manifold-
based learning approaches (PML and GrNet) exhibit comparable
classification performance. This provides further demonstration
of the effectiveness of Riemannian geometry in modeling the
nonlinear interactions of different frames within the video. 2)
The recognition score of the proposed cascaded feature extrac-
tor (CasArct) is 74.50%, lower than most of the competitors on
this dataset. The reason stems from its inherent unsupervised
learning mechanism and shallow architecture. 3) Although the
recognition ability of GEMKML is inferior to the H+O method,
our model is still competitive with most of the competitors on
this dataset, with the advantage of much lower computational
complexity. This validates the utility of the proposed image set
classification approach.

VI. CONCLUSION

In this paper, we developed a novel algorithm for image set
classification. Our contributions include a cascaded feature ex-
traction architecture constructed on the Grassmannian mani-
fold, and a new Grassmannian manifold-valued feature repre-
sentation, facilitating the final classification. We also proposed
a graph embedding multi-kernel metric learning framework to
learn an adaptive distance metric for combining the extracted
features. The results of extensive classification experiments on
five datasets demonstrate the superiority of the proposed ap-
proach over representative image set classification methods.

For future work, one possible direction is to study and inte-
grate Grassmannian deep learning networks into GEMKML for
the purpose of learning deep Grassmannian feature representa-
tion. Another is to investigate other metric learning methods to
further improve discriminatory power for more challenging sce-
narios. In addition, we plan to provide theoretical underpinning
of the convergence properties of the proposed GEMKML.
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