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Abstract

One of the most recent applications of automated reasoning is program synthe-
sis or program generation. Namely, given specific requirements in the form of
input/output pairs, we would like to train a machine learning model to discover a
program that satisfies those requirements. A recent class of methods exploit combi-
natorial search procedures and deep learning. However, they usually generate only
toy programs using a domain-specific language that does not provide any sophis-
ticated features, such as function arguments, which reduces their applicability in
real-world settings. We extend upon a state of the art model, AlphaNPI, by learning
to generate functions that can accept arguments. This improvement will enable us
to move closer to real computer programs. Moreover, we investigate employing
an approximate version of Monte Carlo Tree Search to speed up convergence.
We benchmarked our approach by trying to learn a standard sorting algorithm,
QuickSort.

1 Introduction

The ability to autonomously synthesize programs from data is one of the main goals in developing
intelligent systems. Namely, given specific requirements, such as input/output pairs or more formal
specifications, the model must learn a program that meets those demands. Several approaches to
try to solve this task are based on the neural controller - interface framework, in which a neural
network interacts with an external structured environment by using primitives, such as read/write
heads or other atomic functions [1, 2, 3, 4, 5, 6]. Neural Turing Machines [3], and Differentiable
Neural Computers [4] can learn simple procedures by training on input/output pairs. These models
use external memory, and they are differentiable, which means that they can be trained end-to-end by
gradient descent. However, they are essentially black boxes since it is non-trivial to inspect them to
understand their discovered algorithm. More importantly, supervision is provided at the level of full
program outputs only, making training strongly susceptible to overfitting as shown for the priority
sort task of [3].

Neural-Programmer interpreters (NPI) [2] use a reinforcement learning paradigm to learn highly
compositional programs by exploiting execution traces. An execution trace is an ordered list of
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Figure 1: Program Synthesis Pipeline. The final model is able to synthetize a program that resembles
a real-world algorithm.

commands that, if executed, solve a given task. Execution traces provide finer-grain supervision
during training, encouraging convergence towards more accurate programs. NPI assumes to have at
hand a large dataset of execution traces for the given problem, substantially limiting its applicability
in real-world scenarios, where an oracle capable of providing such a dataset could be unavailable. A
recent model, named AlphaNPI, shows how to train NPI without execution traces. AlphaNPI can
solve both discrete and continuous control problems ([5, 6]), and it works by combining NPI with
Monte Carlo Tree Search (MCTS), which is used to discover the execution traces. This approach
showed outstanding results, both in terms of generalization and interpretability of the final models.
However, the spectrum of tasks it can learn is still somewhat limited since it generates programs
that use an ad-hoc language that does not present any high-level construct of a formal programming
language such as loops, variables or function arguments. This work presents some promising results
towards generalized neural interpreters and discusses additional future challenges that still need to
be addressed. The main contribution is the following: we propose a new version of the AlphaNPI
model, which brings us closer to learning real-world programs by learning functions that also accept
arguments.

2 Problem Statement and Original Setting

We consider the problem of learning a complex algorithm, such as Quicksort, by having an agent
interacting with an environment e by choosing actions p. The initial actions are called atomic actions.
In the Quicksort case, the environment is a list of integers, and the atomic actions are element swaps
and one-step pointer moves. The agent learns to leverage and to combine these atomic actions to
produce higher-level programs. These learnt programs are then added to the collection of available
actions. Therefore, the agent can benefit from both atomic and more complex actions to produce
advanced algorithmic behaviour. Each action has assigned a level. The level 0 actions are the atomic
actions that do not need to be learned. Discovered programs have positive levels. Each program
can only call lower-level action or lower-level learned programs. In addition, each program and
atomic action has associated pre-conditions, in the form of boolean constraints, conditioned on the
environment state. Pre-conditions ensures we are consistently generating programs that are correct
and feasible. For instance, the pre-condition of the Quicksort program is that all pointers must
be at the beginning of the list. Pre-conditions are not learned, but they are provided beforehand.
The objective is to learn a library of programs organized into a hierarchy. In our case, each task
corresponds to learning a single program (e.g., the partition function of Quicksort). The reward
function returns 1 if the program is correct, 0 otherwise. The goal of the agent is to maximize the
expected reward for all the tasks. This goal configures as a multi-task reinforcement learning and as a
discrete search problem. The search space is sparse since there exist many possible programs but
very few viable ones. It also makes the reward function sparse since we get a positive reward and
thus learn if and only if we obtain the correct program.
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3 Novel Setting

We change the original setting by making actions and programs accept arguments, a. Each ac-
tion/program can take an ordered list of at most three arguments. In our environment, these arguments
are the pointers used to manipulate the list. For example, the quicksort program accepts two
arguments, the pointer placed at the beginning of the list and the pointer placed at the end of the
list. Additionally, an action/program can also accept no arguments, such as the stop action, which
terminates the execution of the simulation. As for the pre-conditions, the maximum number of
arguments that a program can accept is given apriori. We also extend the pre-conditions to consider
the arguments to decide if a program is feasible. For example, the swap pointer action cannot be
called by giving as argument the same pointer twice.

3.1 Architecture

We start from the architecture developed by [5], and adapt it to the novel setting by introducing an
additional module, farguments. Thanks to this new module, we learn compact programs that can
adapt their behaviour by accepting arguments instead of learning a separate program for each possible
value of the arguments. For example, we can learn a move action to shift pointers that can operate on
multiple pointers at the same time, move(pointer_1,pointer_3). With the original method, we
would have had to learn two separate actions, move_pointer_1 and move_pointer_3.

The architecture consists of six modules: an encoder (fenc), a programs matrix (Mprog), an LSTM
core (flstm), a program network (fprogram), an arguments network (farguments) and a value network
(fvalue). The encoder takes as input an environment et and encodes it as a set of features st. The
program matrix takes as input an index it and returns the corresponding program embedding pt. The
LSTM core executes programs while conditioning on pt, the feature set st and its internal state ht−1.
The program and arguments networks take the LSTM output, ht, and return probabilities over the
action space, πp, and argument space, πa, respectively. Lastly, the value network takes instead the
LSTM output to estimate the value function V . The equation of the architecture are the following:

st = fenc(et) pt =Mprog[it] ht = flstm(st, pt, ht−1) (1)
πp = fprogram(ht) πa = farguments(ht) V = fvalue(ht) (2)

4 Training

During a training iteration, the agent selects a program pt to learn. It executes nep episodes by
exploring the search space with MCTS. The data gathered during the episodes are aggregated to
construct the tree policy vectors for both programs and arguments, πmcts

p and πmcts
a . After each

successful episode, we collect the observations, the hidden states, the task indexes, the rewards, πmcts
p

and πmcts
a into an execution trace. More formally, an execution trace for a given program pt is a

tuple (eI , pt, ht, eO, rt, πmcts
p , πmcts

a ). An execution trace gives the exact sequence of actions that, if
applied to the input eI , produce the output eO. The final discovered execution traces are stored in a
replay buffer. Then, a mini-batch is sampled from the replay buffer, and the agent is trained on this
data to minimize this adjusted loss function:

l =
∑
batch

− (πmcts
p )T log πp︸ ︷︷ ︸

lpolicy

− (πmcts
a )T log πa︸ ︷︷ ︸
larguments

+(V − r)2︸ ︷︷ ︸
lvalue

(3)

We want to push the network to reproduce the execution traces found by jointly minimizing the cross-
entropy between the policies discovered by MCTS and the policies generated by the network. lpolicy
minimizes the cross-entropy between the program policies, πmcts

p and πp. larguments minimizes the
same cross-entropy but between the two arguments policies, πmcts

a and πa. Instead, lvalue pushes the
network to generate the correct value function V . We also employ curriculum learning [7] to focus on
learning programs by following the hierarchy, such as to learn lower-level programs first. Moreover,
curriculum learning ensures choosing the next program to learn by looking at the success rate of the
single programs. This rule means that programs that fail often are picked more often for learning.
Given the environment state, the agent emits a program policy πp and an argument policy πa. The
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policies are such that
∑

M π(i) = 1, where M is the total number of available programs or arguments.
The best program/arguments pair (p∗, a∗) is given by p∗ = arg max(πp) and a∗ = arg max(πa).

Table 1: Generalization accuracy of the learned programs by varying the length of the list. Each
model was tested on 50 different random lists for each given length. The accuracy gives the fraction
of lists correctly sorted. The bold values indicate the best results for that given list length.

Program List Length Malphanpi Ms
alphanpi Malphaargs Ms

alphaargs

partition_update 5 1.00 1.00 1.00 0.96
10 1.00 1.00 1.00 0.98
20 1.00 0.98 1.00 0.96
40 1.00 1.00 1.00 0.94
60 1.00 1.00 1.00 0.96

partition

5 1.00 0.98 1.00 0.96
10 1.00 0.78 0.98 0.78
20 1.00 0.80 1.00 0.70
40 1.00 0.80 1.00 0.82
60 1.00 0.76 0.98 0.80

quicksort_update

5 0.72 0.58 1.00 0.60
10 0.64 0.42 0.96 0.48
20 0.56 0.34 0.90 0.56
40 0.36 0.30 0.98 0.40
60 0.38 0.26 0.94 0.44

quicksort

5 0.10 0.02 1.00 0.06
10 0 0 0.66 0
20 0 0 0.42 0
40 0 0 0.22 0
60 0 0 0.02 0

5 Experiments

We tested our approach on a sorting task. It is a familiar setting used by many others [2, 5, 3]. We
focused on learning the hierarchy of programs needed to perform the Quicksort algorithm. Unlike
the Bubblesort algorithm used in previous works [5], Quicksort is more refined and it cannot be
easily written without functions that can accept arguments. Therefore, we choose it as the target
for our experiments. We consider an environment composed of three main components: a list of n
integers, three pointers that can reference the list’s elements and a stack that can save and retrieve
the pointers’ current positions. The programs can accept at most three arguments. Each argument
represents a reference to one of the three pointers available in the environment. We also added an
empty value to signal arguments that the given function has to ignore. Additionally, as in regular
programming languages, the arguments order count (e.g., function(a,b,c) has a different meaning from
function(b,c,a)). We trained the architecture with lists from 2 to 7 elements. The list’s elements were
integers, and we constrained them between 0 and 10. We trained four different models. Malphanpi is
the baseline, and it uses the vanilla architecture from [5]. Ms

alphanpi is again a baseline model which
uses an approximate MCTS instead (A-MCTS). More details about A-MCTS can be found in the
Appendix. Malphaargs and Ms

alphaargs employ our custom architecture presented in the previous
sections. The former uses the standard MCTS, and the latter uses A-MCTS instead. The higher-
level programs that compose our hierarchy and which will be learned are: partition_update,
partition, quicksort_update and quicksort. They correspond to certain pieces of the original
Quicksort algorithm. The complete lists and descriptions of learnable programs and atomic actions
can be found in the Appendix. The Malphanpi and Ms

alphanpi models learn functions that do not
accept arguments. Therefore, we provided them with an augmented set of atomic actions, which
we built by taking the cartesian product between the atomic actions and the possible arguments
they can accept. As further evaluation studies, we validated the trained models on lists of up to 60
elements to investigate the generalization capabilities. Table 1 presents the validation results for
all the learnable programs. From the results, the Malphaargs is the only model which can learn the
Quicksort algorithm correctly, whereas the other models fail. It also shows some generalization
capacities since it can sort lists with a different length than those used for training. We can also see
how the various models struggled when learning the quicksort_update function.
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6 Conclusion

This work presents some initial results to improve program synthesis by generating more human-like
programs starting from input/output examples. We propose an improved AlphaNPI architecture to
learn programs that can accept arguments to diversify their behaviour. The support for arguments
enables our revised architecture to produce richer programs and learn more complex algorithms
with respect to the original work. It also generates code that is more similar to the one produced
with current high-level programming languages. We benchmarked our method by learning a well-
known sorting algorithm, Quicksort, showing how our approach manages to learn it effectively while
AlphaNPI fails to converge. We also show how the learned program generalizes when sorting lists of
increasing length. Many open issues are still to be addressed. For instance, in this work only atomic
actions can accept arguments, whereas higher-level programs can accept only the “empty" argument.
This behaviour happens because all methods operate in the same environment, and there is no proper
program scope. Additional studies are required to add this notion of program space.
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Figure 2: 1. Each simulation explores the tree by selecting those actions that maximize a target
objective. 2. If we find a new node that is not an atomic function, we run A-MCTS recursively
by resetting to zero the LSTM state. 3. Given the expanded leaf node, we compute the program
and actions policies (πmcts

p and πmcts
a ). We sample from the two policies to add n new child nodes

(n << M where M is the total possible child nodes ). 4. We return the value V, and we propagate it
back in the tree.

A Appendix

A.1 Code for the experiments

The anonymized repository with the code used for the experiments can be found at this link https:
//anonymous.4open.science/r/learning_programs_with_arguments-AIPLANS-2021/
README.md. The code is released to ensure better peer review and reproducibility.

A.2 Re-train over failed environments

We noticed that a small fraction of training environments are substantially harder to solve and are
thus mostly neglected when optimizing average performance during training. The result is that sub-
optimal programs are learned, and the performance degradation becomes apparent when programs
are evaluated on the longer lists used for testing. To tackle this problem and improve robustness and
generalization, we implemented a function g(pi) to re-train over previously failed environments.

Namely, given a task Ti to learn, if we get a 0 reward, we will store the used environment eI into a
buffer called efailed. Then, if we happen to try to learn the task Ti again, we will run A-MCTS by
sampling with a small probability ε an environment from efailed in which the model had failed to
solve in previous iterations. In the other case, we sample the next state from a normal distribution
over the environment conditioned on the task T .

g(pi) =

{
eI ∼ efailed ε

eI ∼ N 1− ε (4)

The buffer efailed implements some curriculum learning since, given task Ti, if we use previously
failed states, we will sample the failed states by looking at the success rate. If a state fails more often
than others, then it will be sampled more frequently.

A.3 Approximate Monte Carlo Tree Search

Monte Carlo Tree Search [8, 9] is an algorithm to search large combinatorial spaces represented by
trees efficiently. It was successfully used to solve many tasks, such as mastering complex games and
protein folding [10, 11]. The original method is made by four phases: selection, recursion, expansion
and backup. Many different flavours of MCTS are available (for instance, [12, 13, 14]). In this work,
we build upon the recursive MCTS developed by [5]. We propose an Approximate MCTS (A-MCTS)
by extending the expansion phase not to expand all the possible nodes available. This improvement
is needed to account for larger search spaces that would be prohibitive to explore thoroughly. In
our setting, we have discrete arguments, and the original MCTS requires creating a node for each
program/argument pair available. If we increase the number of available arguments, the number of
program/argument combinations grows significantly.
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Figure 3: Total node expanded by models (top) and the corresponding accuracy (bottom) while
training. The node count is expressed with the log scale. In some cases, the Approximate MTCS
shows to enable convergence by exploring fewer nodes. Moreover, once the models learn a program,
the node expansion slows down. Interestingly, it seems that the quicksort_update function is
harder to learn. Unfortunately, only one model is able to learn the complete Quicksort procedure.

In our setting, each node of the tree represents the environment’s state at time t and each transition
represents a program call. Figure 2 shows a description of the A-MCTS algorithm. Given the policies
πmcts
p and πmcts

a , we add Dirichlet noise to foster exploration and we sample n program/arguments
pairs, (pi, ai), (n is a hyperparameter of the model) and we add them as possible future available
actions. The simulation phase will be shorter with fewer nodes. By exploring fewer nodes, we reward
immediately good solutions. Thanks to the random perturbations, we will eventually explore all the
available configurations if good solutions are sparse.

A.4 Evaluation of the Approximate Monte Carlo Tree Search

While training, we also recorded the total number of nodes expanded by the MCTS and A-MCTS
procedures after each training step. The idea is to check if we can converge to a solution by doing an
approximate exploration of the search space by expanding fewer nodes.

Interestingly, the models trained with the approximate procedure A-MTCS show similar convergence
rates to those trained with MCTS. They also show good generalization performances, albeit not
reaching the level of the original MCTS. From Figure 3, we can look at the total nodes expanded
by both the approximate and exact procedures. For specific programs, such as partition_update
or partition, the A-MCTS can converge to a solution by exploring fewer nodes with respect to
the counterpart. However, the A-MCTS behaviour seems to be less stable than MCTS, and further
investigations are required to be able to exploit its exploration efficiency without losing robustness.

A.5 Quicksort Program Hierarchies and Pre-conditions

Table 2 and 3 show the complete hierarchy of programs. The former shows programs for the
Malphanpi and MS

alphanpi models. The latter shows programs for the Malphaargs and MS
alphaargs

models. Table 4 shows the programs preconditions.
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Table 2: Hierarchy of the programs for Quicksort. In this case, the programs cannot accept arguments.
The level 0 programs are not learned and they are the atomic actions.

Program Description Level
quicksort Sort the list. 5
quicksort_update Execute partition call and populate the stack with the next pointers. 4
partition Order a sub-array and return the pivot for the next operation. 2
partition_update Swap the elements pointed by p3 (pivot) and p1 if p3 pointed value is

less than p2 pointed value.
1

save_ptr_1 Save pointer 1 position into the temporary registry. 0
load_ptr_1 Load the temporary registry value into the pointer 1 position. 0
push Push pointers values inside the stack. 0
pop Pop and restore pointers values from the stack. 0
swap Swap elements pointed by pointer 1 and by pointer 2. 0
swap_pivot Swap elements pointed by pointer 1 and by pointer 3 (pivot). 0
ptr_i_left Move pointer i (where i ∈ {1, 2, 3}) one step left. 0
ptr_i_right Move pointer i (where i ∈ {1, 2, 3}) one step right. 0

Table 3: Hierarchy of the programs for Quicksort. In this case, the atomic actions can accept
arguments. The level 0 programs are not learned and they are the atomic actions.

Program Description Arguments Level
quicksort Sort the list. 0 5
quicksort_update Execute partition call and populate the stack with the next pointers. 0 4
partition Order a sub-array and return the pivot for the next operation. 0 2
partition_update Swap the elements pointed by p3 (pivot) and p1 if p3 pointed value is less than p2 pointed value. 0 1
save_ptr Save a given pointer position into the temporary registry. 1 0
load_ptr Load the temporary registry value into the given pointer position. 1 0
push Push pointers values inside the stack. 0 0
pop Pop and restore pointers values from the stack. 0 0
swap Given two pointers, swap the corresponding elements 2 0
ptr_left Move pointer one, two or all three pointers one step left. 3 0
ptr_right Move pointer one, two or all three pointers one step right. 3 0

Table 4: Pre-conditions associated to each Quicksort program.

Program Pre-condition
quicksort Pointer 1 and 3 are at the extreme left of the list. Pointer 2 is at the

extreme right of the list. The stack is empty.
quicksort_update The stack is not empty and the temporary registry is empty.
partition The temporary registry must contain Pointer 1 position.
partition_update Pointer 1 position must be lower than Pointer 3 position. Pointer 3

position must be lower than Pointer 2 position. The temporary registry
must be not empty.

save_ptr_1 No pre-condition.
load_ptr_1 The temporary stack must not be empty.
push Check custom boolean condition (p1 + 1 < p2) ∨ (p1 − 1 > 0 ∧ p3 <

p1 − 1).
pop The stack must not be empty.
swap Pointer 1 position must be different than pointer 2 position.
swap_pivot Pointer 1 position must be different than pointer 3 position.
ptr_i_left Pointer i (where i ∈ {1, 2, 3}) is not at the extreme left of the list.
ptr_i_right Pointer i (where i ∈ {1, 2, 3}) is not at the extreme right of the list.
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