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FLUX.1-dev BF16

Efficiency: 111.7s   IR: 1.01

SVDQuant w/6-bit LoRA

Efficiency: 12.9s   IR: 0.46

After DNS (Ours)

Efficiency: 12.9s IR: 0.66

Prompt: tall skinny young forest spirit. Young black male features with aspects of the bear spirit. Wearing one shoulder pauldron of a knight, 
and carrying a small steel sword. On the edge of a magical Japanese forest. Studio ghibli style. Final fantasy 7 style.

Prompt: An anthropomorphic Wheaton terrier sitting by a fireplace in an opulent room
holding a butcher knife. Photorealistic hdr canon 5d 28mm wide low angle

Figure 1: Our method offers a plug-and-play approach to improve the quanti-
zation performance of diffusion models (including Flow-matching), enabling
seamless integration with existing PTQ methods without compromising infer-
ence speed.

ABSTRACT

Diffusion models deliver state-of-the-art image quality but are expensive to deploy.
Post-training quantization (PTQ) can shrink models and speed up inference, yet
residual quantization errors distort the diffusion distribution (the timestep-wise
marginal over xt), degrading sample quality. We propose a distribution-preserving
framework that absorbs quantization error into the generative process without
changing architecture or adding steps. (1) Distribution-Calibrated Noise Com-
pensation (DCNC) corrects the non-Gaussian kurtosis of quantization noise via a
calibrated uniform component, yielding a closer Gaussian approximation for robust
denoising. (2) Deformable Noise Scheduler (DNS) reinterprets quantization as a
principled timestep shift, mapping the quantized prediction distribution xt back
onto the original diffusion distribution so that the target marginal is preserved. Un-
like trajectory-preserving or noise-injection methods limited to stochastic samplers,
our approach preserves the distribution under both stochastic and deterministic
samplers and extends to flow-matching with Gaussian conditional paths. It is
plug-and-play and complements existing PTQ schemes. On DiT-XL (W4A8),
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our method reduces FID from 9.83 to 8.51, surpassing the FP16 baseline (9.81),
demonstrating substantial quality gains without sacrificing the efficiency benefits
of quantization.

1 INTRODUCTION

Diffusion models have become the leading paradigm for high-quality generative modeling, powering
applications across image synthesis (Ho et al., 2020; Rombach et al., 2022; Labs, 2024), style trans-
fer (Qi et al., 2024), video generation (Brooks et al., 2024), 3D reconstruction (Zhou et al., 2024), and
robotics (Chi et al., 2024). Their rapid scaling– from Stable Diffusion’s 800M parameters (Rombach
et al., 2022) to SDXL’s 2.6B (Podell et al., 2023), and most recently to FLUX.1’s 12B (Labs, 2024)–
has driven remarkable improvements in fidelity and controllability. However, these gains come at a
steep computational cost: inference with large models demands tens of gigabytes of GPU memory
and seconds per image, limiting deployment in real-time and resource-constrained settings.

Model quantization is a practical solution to this bottleneck. By reducing weights and activations from
floating-point to low-bit integer, quantization compresses model size and accelerates inference (Jacob
et al., 2017; Nagel et al., 2021). Recent post-training quantization (PTQ) methods have successfully
reduced diffusion models to 8, 4 or even 1-bit precision (Li et al., 2023; Wu et al., 2024; Li et al.,
2025); (Huang et al., 2024; Shang et al., 2023; Ye et al., 2024; Wang et al., 2024; Zheng et al.,
2024). Yet, unlike discriminative networks or autoregressive language models, diffusion models are
especially sensitive to quantization. Errors accumulate across iterative denoising steps, corrupting the
assumed Gaussian noise distribution and significantly degrading sample quality (He et al., 2023).

Existing approaches attempt to mitigate this challenge by either reshaping weight distributions to
reduce quantization error (Li et al., 2023; Wu et al., 2024; Li et al., 2025) or injecting approximated
Gaussian noise to absorb residual errors (He et al., 2023). However, these methods have important
limitations: weight-reshaping strategies only preserve stepwise predictions without addressing
distributional drift, while noise-injection methods are restricted to stochastic samplers and fail on
deterministic or flow-matching frameworks (Lipman et al., 2023). Moreover, quantization noise rarely
follows an ideal Gaussian distribution, undermining the robustness of Gaussian-based corrections.
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Figure 2: Comparison of FID scores across quan-
tization methods for different backbones.

In this work, we introduce a distribution-
preserving quantization framework that directly
absorbs quantization error into the diffusion pro-
cess. Our approach consists of two key compo-
nents: (i) Distribution-Calibrated Noise Com-
pensation (DCNC): corrects the non-Gaussian
kurtosis of quantization noise through a cal-
ibrated uniform component, yielding a more
faithful Gaussian approximation. (ii) De-
formable Noise Scheduler (DNS): reinterprets
quantization effects as a timestep shift in the
diffusion process, aligning quantized prediction
with the original diffusion distribution without
modifying model architecture or adding infer-
ence overhead. This framework preserves the
diffusion distribution under quantization, mak-
ing it compatible with both stochastic and de-
terministic samplers as well as flow-matching
models. It operates as a plug-and-play solution,
easily integrated with existing PTQ methods. Empirically, our method consistently improves genera-
tion quality across diverse backbones (see Fig. 2). For example, on DiT-XL our method reduces the
FID of PTQ4DiT (W4A8) from 9.83 to 8.51, surpassing even the FP16 baseline (9.81).

In summary, our contributions are threefold: (1) A principled analysis showing that quantization can
be reinterpreted as timestep shifts in the diffusion process. (2) A deformable noise scheduler and
distribution-calibrated correction that preserve the generative distribution under quantization. (3)
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Extensive experiments across LDM, DiT, and FLUX demonstrating consistent quality improvements
without sacrificing the efficiency benefits of quantization.

2 RELATED WORK

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) were origi-
nally formulated as stochastic processes for data generation. Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2022) later reduced the number of sampling steps, significantly accelerating the
generation process. More recently, Flow Matching (Lipman et al., 2023) has been introduced as a
deterministic alternative, powering state-of-the-art systems such as FLUX (Labs, 2024).

The backbone architecture of early diffusion models was primarily based on UNets (Rombach et al.,
2022). Diffusion Transformers (DiT) (Peebles & Xie, 2023) pioneered the use of pure transformer
architectures, leading to improved scalability and performance. Large-scale text-to-image models
such as Stable Diffusion (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al.,
2023), and FLUX (Labs, 2024) have since revolutionized content generation by pushing model sizes
larger to achieve better fidelity, diversity, and controllability.

Model Quantization for Diffusion models. Quantization reduces computational costs by represent-
ing model parameters and activations with lower-precision formats. Approaches generally fall into
two categories: quantization-aware training (QAT) (Jacob et al., 2017), which requires retraining
with quantization in the loop, and post-training quantization (PTQ) (Nagel et al., 2021), which adapts
pre-trained models with minimal calibration data. Due to the size and training cost of diffusion
models, PTQ methods are more practical and thus widely adopted.

Specialized PTQ techniques have been developed to address the unique challenges of diffusion
backbones. Q-Diffusion (Li et al., 2023) employs channel-wise quantization with explicit outlier
handling. PTQ4DM (Shang et al., 2023) and PTQ4DiT (Wu et al., 2024) design quantization
strategies tailored to their respective UNet and transformer backbones. MixDQ (Zhao et al., 2024)
adopts mixed precision to balance efficiency and quality. SVDQuant (Li et al., 2025) introduces
low-rank branches to capture residual information lost during quantization.

A different line of work, PTQD (He et al., 2023), proposes an “absorbing quantization error” strategy
that integrates quantization noise into the random noise term of stochastic samplers. While effective in
certain settings, this approach is fundamentally restricted to stochastic sampling and cannot be applied
to deterministic samplers or flow-matching frameworks that dominate modern implementations.
Moreover, the injected quantization noise often deviates from the expected Gaussian distribution,
which can misalign the diffusion process and degrade generation quality.

3 PRELIMINARY

3.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion Models (Ho et al., 2020; Song et al., 2022) are generative models based on a two-stage
process: a fixed forward noising process and a learnable reverse denoising process.

In the forward process, a clean data sample x0 ∼ q(x0) is progressively corrupted by Gaussian noise
over T timesteps via a Markov chain with a predefined variance schedule {βt}Tt=1, where 0 < βt < 1.
Define αt := 1− βt and ᾱt :=

∏t
i=1 αi. The forward transition distributions are given by:

q(xt | xt−1) = N
(√

αt xt−1, βtI
)
, q(xt | x0) = N

(√
ᾱt x0, (1− ᾱt)I

)
. (1)

The reverse process aims to recover x0 from xT by learning a parametric approximation pθ(xt−1 | xt)
to the true reverse distribution. Ho et al. (2020) (DDPM) model this reverse process as a Gaussian
with fixed variance, trained to predict the noise added at each step. Song et al. (2022) (DDIM)
generalize this by introducing a family of non-Markovian reverse processes parameterized by a noise
schedule {σt}Tt=1, enabling faster sampling with deterministic or stochastic trajectories.

Specifically, for any t > 1, the conditional distribution of xt−1 given xt and clean sample x0 is:

qσ(xt−1 | xt,x0) = N
(
µ̂t(xt,x0), σ

2
t I
)
, (2)
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where σt ≥ 0 controls the stochasticity of the reverse step and µ̂t(xt,x0) =
√
ᾱt−1 x0 +√

1− ᾱt−1 − σ2
t ·

xt−
√
ᾱt x0√

1−ᾱt
. When σt =

√
(1− ᾱt−1)/(1− ᾱt) ·

√
1− ᾱt/ᾱt−1, this recov-

ers the DDPM posterior; when σt = 0, the process becomes deterministic (DDIM).

Since x0 is unknown during sampling, it is estimated from xt using a noise-prediction network
ϵθ(xt, t). The denoised estimate x̂0 is obtained via:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt εθ(xt, t)

)
. (3)

The learned reverse process is then defined by substituting x̂0 for x0 in Eq. 2:
pθ(xt−1 | xt) = qσ(xt−1 | xt, x̂0), t > 1. (4)

This leads to the unified sampling update rule:

xt−1 =
√
ᾱt−1 x̂0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱt x̂0√

1− ᾱt

+ σt z, z ∼ N (0, I). (5)

Flow matching (Lipman et al., 2023) generalizes diffusion via a continuous-time stochastic inter-
polant between Gaussian noise ϵ ∼ N (0, I) and data x0. A simple linear interpolant is

xt = (1− t)x0 + tϵ, t ∈ [0, 1]. (6)

The model learns a velocity field vθ(xt, t) such that the probability flow ODE (PF-ODE)
dxt

dt
= vθ(xt, t) (7)

induces marginal distributions that match that of Eq. 6 for all time t ∈ [0, 1]. Sampling from the model
thus reduces to solving the PF-ODE in Eq. 7 using standard ODE solvers, e.g., Euler integration,
starting from Gaussian noise ε ∼ N (0, I) (Lipman et al., 2023), which matches the ground-truth
dynamics. Sampling then amounts to integrating this ODE deterministically from noise to data.
Flow matching, owing to its high scalability, has already been adopted in modern text-to-image
models such as FLUX (Labs, 2024). Flow matching thus unifies diffusion-style objectives with a
deterministic transport formulation, and underlies modern large-scale systems such as FLUX (Labs,
2024).

3.2 QUANTIZATION NOISE CORRECTION AND ABSORPTION

Quantizing diffusion models inevitably introduces quantization error. This error can be systemati-
cally decomposed into two parts: (i) a correlated component that scales linearly with the original
network output ϵθ(xt, t), and (ii) an independent component ∆′ϵθ(xt, t) that is uncorrelated with the
prediction. This decomposition, referred to as Correlation Noise Correction (CNC), can be written as:

∆ϵθ(xt, t) = kϵθ(xt, t) + ∆′ϵθ(xt, t) (8)

where ∆ϵθ(xt, t) denotes total quantization error, k is a scalar correlation coefficient, and ∆′ϵθ(xt, t)
represents the residual independent component. PTQD (He et al., 2023) approximates ∆′ϵθ(xt, t) as
Gaussian noise, but in practice this assumption is often inaccurate. The variance of the independent
noise, denoted σ2

q , can instead be empirically estimated from representative data samples.

In stochastic sampling process, sampler involves adding random noise in Eq. 5. PTQD absorbs the
disentangled independent quantization error into this random term, effectively replacing:

σtz → σtz − βt√
αt

√
1− ᾱt(1 + k)

∆′ϵθ(xt, t) (9)

This leads to a modified update rule:

xt−1 =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz − βt√

αt

√
1− ᾱt(1 + k)

∆′ϵθ(xt, t) (10)

In summary, PTQD attempts to (i) preserve the injected noise distribution by treating the disentangled
quantization residual as Gaussian, while simultaneously (ii) preserving the stepwise prediction
trajectory. However, this hybrid objective can degrade performance and reduce robustness, and it is
applicable only to stochastic sampling. Moreover, empirical evidence shows that the independent
quantization residual ∆′ϵθ has a large deviation from a Gaussian distribution. Directly using it may
undermine the theoretical assumptions of the method.
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Figure 3: Overview of Deformable Noise Scheduler (DNS). (a) Top: Quantization perturbs the
noise prediction (red), shifting each step’s marginal away from the full-precision distribution (blue),
yielding ϵ′ = ϵ+∆ϵ. These quantization errors are absorbed into the diffusion process, preserving
the original prediction distribution. (b) Bottom: DNS interprets effect as timestep shift. The quantized
distribution q′(xt−1) is mapped to original distribution q(xτ ) via DCNC and transformation Φ.
Redesigning scheduler sets a new α so that τ aligns with t− 1, maintain original diffusion timesteps.

4 METHOD

To address these limitations, we develop a theoretical framework that analyzes how quantization
perturbs a diffusion model’s predictive distribution and derives distribution-preserving corrections for
both the noise statistics and the time parameterization. In Sec. 4.1, we show that the uncorrelated
component of the quantization error is heavy-tailed (exhibits excess kurtosis relative to Gaussian
noise) and mitigate this mismatch by adding a calibrated uniform correction with lower kurtosis. In
Sec. 4.2, we prove that the distribution induced by a quantized model can be mapped to an equivalent
non-quantized distribution through an appropriate timestep shift (Fig. 3), enabling the approach to be
applied to any generative model with conditionally Gaussian marginals. A more detailed derivation is
provided in Appendix A.2.

4.1 GAUSSIAN APPROXIMATION OF QUANTIZATION NOISE

When the model is quantized, parameter perturbations introduce errors in the predicted noise. The
output of the quantized model can be expressed as:

ϵ′θ(xt, t) = ϵθ(xt, t) + ∆ϵθ(xt, t) (11)

where ∆ϵθ(xt, t) is a quantization-induced error.

Prior work (He et al., 2023) applied a disentangling transformation (Eq. 8) to separate ∆ϵθ(xt, t)
into an “independent” component ∆′ϵθ(xt, t), which was then approximated as Gaussian noise and
absorbed into the stochastic sampling term. However, our empirical analysis (see Fig. 4) shows
that the residual noise obtained in this manner exhibits excess kurtosis relative to a true Gaussian
distribution, violating this assumption.

To correct this, we introduce a refined transformation T such that

T (ϵ′θ(xt, t)) = ϵθ(xt, t) + ∆′′ϵθ(0, σϵ,t) (12)

where the independent component ∆′′ϵθ(0, σϵ,t) is explicitly calibrated to approximate a Gaussian
distribution with mean 0 and variance σ2

ϵ,t which depends on the timestep t. We refer to this
procedure as Distribution-Calibrated Noise Compensation (DCNC). DCNC ensures that the residual
quantization noise more faithfully matches the Gaussian assumption of the diffusion process, thereby
improving stability and generation quality.

5
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Distribution-Calibrated Noise Compensation To drive the excess kurtosis of the residual toward
0 (i.e., make it behave more like Gaussian noise), we add a zero-mean uniform component. Let the
residual have variance σ2

o and excess kurtosis κo > 0. Then the variance of the injected uniform term
and the resulting total variance are (derivation in Appendix A.1):

σ2
u = σ2

o ·
√

5κo/6 , σ2
n = σ2

o ·
(
1 +

√
5κo/6

)
(13)

As shown in Fig. 4 and Fig. 5, this uniform compensation substantially reduces the heavy-tailedness
of the uncorrelated quantization residual, bringing its excess kurtosis close to the Gaussian value (0).
More higher-order moments are also collected in Appendix.A.1 to demonstrate that residuals after
DCNC are closer to a Gaussian. Accurate variance estimation is important for applying Eq. 13 and
for the marginal analysis in Eq. 17. Because conventional estimators are sensitive to outliers, we use
a robust IQR-based estimate σ̂2 = (IQR/1.349)2, where IQR = Q3 −Q1 denotes the interquartile
range, with Q1 and Q3 representing the first and third quartiles. Putting this together, our calibrated
transformation is:

T (ϵ′θ(xt, t)) = ϵ′θ(xt, t)/(1 + k) +Wu · U(0, σ2
u) (14)

where k (the correlation slope) and σ2
u are estimated during calibration, U(0, σ2

u) denotes a zero-mean
uniform random variable with variance σ2

u, and Wu ∈ [0, 1] is a tunable weight that controls the
strength of the correction (see Sec. 5.3). Unless stated otherwise, all model outputs are passed through
T (·) before subsequent analysis and sampling.

4.2 DEFORMATION OF SAMPLING WITH QUANTIZATION NOISE

After applying DCNC, the residual quantization error is well-approximated as zero-mean Gaussian.
We leverage this property to absorb quantization effects into the diffusion process via a timestep
shift: instead of introduced extra noise, we preserve distributional consistency via a timestep shift
τ , aligning the quantized marginal distribution at t with the full-precision marginal distribution at
τ . This distribution-perserving perspective removes the reliance on specific stochastic samplers and
generally applies across various generative models with Gaussian conditional paths.

Absorbing Quantization Error by Timestep Shift In diffusion models, the reverse process
pθ(xt−1 | xt) reconstructs xt−1 from the noisy sample xt by leveraging an estimate x̂0 of the clean
data x0, as formalized in Eq. 4. When the model is quantized, the prediction x̂0 is perturbed by
quantization noise (Eq. 11), after correction (Eq. 12), yielding a modified estimate x̂′0. Consequently,
the reverse process distribution under quantization becomes:

p′θ(xt−1 | xt) = qσ(xt−1 | xt, x̂
′
0) = N

(
xt−1; µ̂t(xt, x̂0),

(
σ2
t + C2

1σ
2
ϵ,t

)
I
)
, (15)

where

C1 =
√
ᾱt−1 −

√
(1− ᾱt−1 − σ2

t )ᾱt

1− ᾱt
, (16)

and σ2
ϵ,t denotes the variance of the independent quantization residual at timestep t. Notably,

quantization noise does not alter the mean of the reverse distribution but inflates its variance by an
additive term C2

1σ
2
ϵ,t, reflecting the uncertainty introduced by model quantization.

6
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Thus the induced conditional marginal distribution under quantization is

q′(xt−1|x0) = N
(
xt−1;

√
ᾱt−1 x0, (1− ᾱt−1 + C2

1σ
2
ϵ,t)I

)
. (17)

We see that the mean matches the original forward process, but the variance includes an additional
quantization-dependent term C2

1σ
2
ϵ,t. As a result, quantized marginal distribution q′(xt−1|x0) no

longer coincides with the forward marginal of any discrete timestep in the original diffusion schedule.

To restore equivalence, we introduce a scaling factor C2 and a shifted timestep τ > t− 1 such that:

q(C2xτ |x0) = N
(
C2xτ ;C2

√
ᾱτx0, C

2
2 (1− ᾱτ )I

)
. (18)

It can be shown that setting C2 =
√

1 + C2
1σ

2
ϵ,t and ᾱτ = ᾱt−1/C

2
2 makes q′(xt−1|x0) and

q(C2xτ |x0) statistically equivalent. This establishes quantization as a timestep shift in diffusion
process.

Deformable Noise Scheduler Building on this insight, we introduce the Deformable Noise Sched-
uler (DNS), which maps quantized diffusion states to adjusted timesteps in the full-precision schedule.
From Eq. 18, the mapping Φ is:

xτ = Φ(xt−1) = xt−1/C2. (19)

Direct application, however, faces two challenges: (i) τ is typically non-integer, complicating
integration into discrete samplers, and (ii) rounding τ introduces additional error and potentially extra
denoising steps.

To avoid this, we redesign the scheduler by redefining the variance schedule at the previous timestep
in the quantized process as ᾱq

t−1. From Eq. 18, we obtain:

ᾱτ =
ᾱq
t−1

1 + C2
1σ

2
ϵ,t

. (20)

Solving Eq. 20 for ᾱq
t−1 aligns τ with t− 1, ensuring that quantized updates maintain consistent with

the original diffusion timesteps.

DNS thus dynamically adapts the noise schedule according to σ2
ϵ,t, preserving distributional equiv-

alence without introducing additional steps or overhead. By the same reasoning, DNS naturally
extends to flow-matching with Gaussian conditional paths (see Appendix A.3).

5 EXPERIMENTS

5.1 SETTINGS

Models and Datasets We benchmark our method using LDM-4 (Rombach et al., 2022), DiT-
XL (Peebles & Xie, 2023), and FLUX.1 (Labs, 2024) (Flow-matching). Following previous works (Li
et al., 2025), we randomly sample 3,000 text prompts from COCO Captions 2014 (Chen et al.,
2015) for calibration. This calibration set is used to determine the quantization parameters and
estimate noise characteristics across all models. For our evaluation datasets, we use ImageNet for
class-conditional generation. For text-to-image generation, we use the MJHQ-30K dataset (Li et al.,
2024). Our experiments were conducted on a NVIDIA A100-40G GPU. However, it should be noted
that our method does not require additional memory usage, as the main storage cost is about network
parameters. Both LDM and DIT-XL can run on smaller GPUs.

Baselines We compare our method with several PTQ techniques. (1) LDM-4: Tested with 20 steps,
guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8) (Li
et al., 2023), and its combination with PTQD (He et al., 2023). (2) DiT-XL: Evaluated with 20
steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W8A8,
W4A8) (Wu et al., 2024), and its combination with PTQD. (3) FLUX.1: Tested with 20 steps, guid-
ance scale 3.5, and 256×256 resolution. Since original SVDQuant have W4A4 Transformer and
W16A16 LoRA without complete quantization, we further quantized the LoRA branch of SVDQuant
to 6-bit weight. We compare the BP16 model and SVDQuant (W4A4) with W16A16 and W6A16
LoRA (Li et al., 2025). PTQD does not support flow-matching models.
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Figure 7: We tested the results on several models (including diffusion and Flow-matching) and
compared the results of our method with FP, PTQ, PTQ+PTQD. Numbers in brackets are FID↓.

Metrics Following previous works (Li et al., 2025), we evaluate generation quality using several
metrics. Fréchet Inception Distance (FID (Heusel et al., 2017; Parmar et al., 2022)) and sliding Fréchet
Inception Distance (sFID (Ding et al., 2022)) are particularly well-suited for reflecting distribution
similarity, as it measures the distance between feature distributions extracted from generated and real
data using a pre-trained neural network. Inception Score (IS (Salimans et al., 2016)) aims to assess
quality and diversity. CLIPScore (CLIP (Hessel et al., 2021)) aims to measure text-image alignment.
Image Reward (IR (Xu et al., 2023)) aims to approximate human judgment. We also employ Peak
Signal Noise Ratio (PSNR) to measures pixel-level trajectory difference, but this metric cannot
validate whether the final outputs achieve better distribution preservation or generation quality. Note
that in class-conditional generation we use the tag name with scientific nomenclature to calculate IR.
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Table 1: Performance comparison across different models

Model Bit Method Evaluation Metrics

FID↓ sFID↓ IS↑ CLIP↑ IR↑ PSNR↑

LDM-4

FP16 - 11.49 9.99 104.74 31.91 0.134 -

W4A8
Q-Diffusion 10.68 13.71 101.95 31.97 -0.014 22.84

w/PTQD 10.32 12.39 100.84 31.89 -0.031 23.13
w/ours 9.81 9.42 102.40 31.91 0.015 23.10

DiT-XL

FP16 - 9.81 21.11 76.09 29.84 -0.349 -

W8A8
PTQ4DiT 9.02 18.42 76.18 29.85 -0.345 26.87
w/PTQD 8.03 16.90 78.66 30.04 -0.338 26.04
w/ours 8.00 16.81 78.98 30.00 -0.342 26.43

W4A8
PTQ4DiT 9.83 17.52 70.79 29.92 -0.508 17.42
w/PTQD 14.01 17.13 64.67 29.73 -0.609 16.32
w/ours 8.51 16.64 72.65 30.01 -0.484 17.43

FLUX.1

BF16 - 22.64 54.23 24.15 29.30 0.900 -

W4A4
w/W16 LoRA

SVDQuant 22.95 53.64 23.80 29.21 0.877 22.21
w/ours 22.78 53.15 24.01 29.21 0.890 21.92

W4A4
w/W6 LoRA

SVDQuant 27.16 58.15 22.68 28.89 0.693 16.17
w/ours 26.22 57.36 23.58 29.01 0.709 15.87

5.2 MAIN RESULTS

We present our main results in Tab.1 and Fig.7. For class-conditional experiments we generate
30,000 images, and for text-to-image (MJHQ) we generate 10,000 images for evaluation. Observing
our experimental results, we find substantial improvements in generation quality metrics including
FID (8.1%-13.4% improvement), IS, and IR, demonstrating that our method effectively preserves
the original data distribution. Although PSNR decreases slightly in some settings (0.1%-1.6%),
CLIP scores remain essentially unchanged ( ⩽ 0.2%), confirming that semantic alignment with text
conditions is preserved. Since CLIP scores confirm semantic consistency, the PSNR differences reflect
different high-quality sampling paths under identical semantic constraints, not semantic drift(worse
CLIP) or quality loss(worse FID).

Specifically, for LDM-4 quantized to W4A8 with Q-Diffusion, our approach outperforms both the
baseline quantized model and PTQD, improving FID from 10.68 to 9.81 and IR from -0.014 to 0.015.
For DiT-XL with PTQ4DiT at W8A8 and W4A8, PTQD is slightly stronger at W8A8 but exhibits
marked instability at W4A8 and fails to produce acceptable results; in contrast, our method is robust
at both precisions, improving FID from 9.02 to 8.20 (W8A8) and from 9.83 to 8.51 (W4A8). For
FLUX.1 under flow matching with SVDQuant at W4A4 with full precision LoRA, even where the
baseline quantization method performs exceptionally close to full precision, our method applies
directly and further improves results, reducing FID from 22.95 to 22.78 and increasing IR from 0.877
to 0.890. For its with 6-bit LoRA, all weights required for network inference are 6 bits or less, LoRA
branch quantized model increases FID from 22.64 to 27.16. After applying our DNS method decrease
FID from 27.16 to 26.22. More visualizations are provided in Appendix A.4.

5.3 ABLATION

Ablation of Optimization Methods As shown in Tab. 3, we conduct a systematic ablation study to
evaluate the contribution of each component in our framework. Starting from the W4A8 baseline
quantized model (with Q-Diffusion) and applying CNC preprocessing, we progressively incorporate
our proposed techniques to demonstrate their effectiveness. First, the DNS absorbs quantization
noise through a timestep shift, adjusting the diffusion schedule to preserve the original denoising
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Table 2: Performance comparison of different
variance estimation methods

Model Method FID↓ IR↑ PSNR↑

LDM-4

- 9.85 0.012 23.09
MAD 9.83 0.014 23.10
IQR 9.81 0.015 23.10
KUS 9.85 0.016 23.12
KDE 9.83 0.012 23.10

Table 3: Effect of different components

Model Method FID↓ IR↑ PSNR↑

LDM-4

base 10.61 -0.01 22.81
+CNC 10.32 -0.031 23.13
+DNS 10.02 0.009 22.83

+DCNC 9.81 0.015 23.10

distribution. Second, the DCNC refines noise estimation by more accurately modeling the statistical
properties of quantization errors.

Variance Estimation As shown in Tab. 2, we test five statistical methods for variance estimation:
standard deviation, mean absolute deviation (MAD), interquartile range (IQR), kurtosis-based cor-
rection (KUS), and kernel density estimation (KDE). It can be seen that IQR demonstrates best
performance on multiple metrics simultaneously.

Uniform Weight Fig. 6 shows our experiments with different strength of correction (Wu) ranging
from 0 to 1. We observed an interesting trade-off: higher Wu values improve generation quality (FID)
but reduce similarity to full-precision outputs (PSNR). We select Wu = 0.2 for our experiments,
as this value achieves a favorable balance between maintaining reasonable similarity while still
improving the generation quality.

More ablation experiments are provided in Appendix A.5.

6 CONCLUSION

In this paper, we have introduced a novel quantization error absorbing method for diffusion models
that effectively mitigates quality degradation after quantization. Unlike previous method, our method
is distribution-preserving: it explicitly aligns the quantized model’s process distribution with the
unquantized diffusion distribution. And our solution works across stochastic, deterministic, and
Flow-matching frameworks with Gaussian conditional probability paths. Extensive experiments
validate that our method significantly improves generation quality in quantized diffusion models
while maintaining computational efficiency.
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A APPENDIX

A.1 DETAILS OF KURTOSIS-BASED UNIFORM NOISE COMPENSATION

Kurtosis measures the "tailedness" of a probability distribution, indicating whether data has heavy
tails (more outliers) or light tails compared to a normal distribution. For a random variable x with
mean µ, its kurtosis is defined as:

κx =
E[(X − µ)4]

(E[(X − µ)2])2
− 3 (21)

A positive kurtosis suggests heavier tails and a sharper peak, while a negative kurtosis indicates
lighter tails and a flatter distribution. For instance, a Gaussian variable has a kurtosis of 0 while that
of a uniform variable is -1.2.

To compensate for the positive kurtosis κo of residual noise with variance σ2
o , we introduce uniform

noise with variance σ2
u and kurtosis κu < 0. Given that the two are independent, the kurtosis of their

summation can be easily obtained:

κnew =
κo · σ4

o + κu · σ4
u

(σ2
o + σ2

u)
2 (22)
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Table 4: Statistical moments of quantization noise before and after DCNC

Timestep Skewness κx κx w /DCNC µ5 κ6 κ6 w /DCNC

950 0.26×10−2 -0.07 -0.07 1.03×10−8 -0.47 -0.47
850 0.24×10−2 -0.01 -0.10 0.03×10−8 -0.85 -0.85
750 0.07×10−2 -0.09 -0.09 0.39×10−8 -0.40 -0.40
650 -0.51×10−2 0.21 -0.02 -9.29×10−8 9.18 0.81
550 -0.94×10−2 3.30 0.08 -0.03×10−4 81.38 6.28
450 -0.88×10−2 3.34 0.14 -0.16×10−4 145.49 9.45
350 -0.62×10−2 2.33 0.15 -0.28×10−4 138.41 9.75
250 -0.39×10−2 1.78 0.14 -0.52×10−4 101.13 8.82
150 -0.36×10−2 1.33 0.10 -1.59×10−4 68.45 7.23
50 -0.51×10−2 1.11 0.08 -9.26×10−4 48.54 5.82
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Figure 8: Sixth-order Kurtosis before and after DCNC.

Setting κnew to zero and substituting κu = −1.2, we have:

σ2
u = σ2

o ·
√

5κo

6
(23)

Consequently, the compensated noise has a variance of σ2
new = σ2

o ·
(
1 +

√
5κo

6

)
and a kurtosis of

0, which can be regarded as a Gaussian distribution.

The uniform distribution is an attractive choice for DCNC because it’s kurtosis is very low(excess
kurtosis -1.2) and can be sampled efficiently on standard hardware. Unless otherwise stated, all
experiments in paper use uniform distribution as the compensation distribution in DCNC.

More Statistical Analysis In order to more clearly demonstrate that the compensated residual dis-
tribution is closer to a Gaussian, we further measure skewness and higher-order central moments of
the residuals. excess kurtosis. Based on the definition of kurtosis, we also define a sixth-order excess
kurtosis κ6 = µ6

σ6 − 15 which equals 0 for a Gaussian distribution. We collect the outputs of the
LDM-4 model with Q-Diffusion quantized to W4A8 and compute the above statistics over residuals.
Results for part of representative timesteps are shown in Tab. 4.

We further visualize the comparison of Kurtosis and Sixth-order Kurtosis before and after DCNC in
Fig. 4 and Fig. 8. We also summarize statistics over all timesteps with error bars in Tab. 5.

In these tables, the skewness and fifth-order central moment are collected after compensation, and
sixth-order excess kurtosis κ6 is collected both before and after compensation for comparison. The
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Table 5: Statistics over all timesteps with error bars.

Skewness
(×10−3)

κx κx w /DCNC µ5

(×10−4)
κ6 κ6 w /DCNC

−3.65± 4.15 1.42± 1.38 0.02± 0.12 −1.30± 2.85 76.09± 86.71 5.57± 5.25

Table 6: Effect of different compensation distributions in DCNC

DCNC distribution FID↓ sFID↓ IS↑
Uniform 9.65 9.33 101.96
Triangular 9.60 9.14 102.30
Bimodal Gaussian mixture 9.77 9.69 101.60
Generalized Gaussian 9.66 9.35 102.04

results show that, after compensation, skewness and the fifth moment(odd-order moments) are close
to zero, indicating that the residuals are nearly symmetric. At the same time, both excess kurtosis and
sixth-order excess kurtosis κ6 are substantially reduced, providing additional evidence that DCNC
makes the residual distribution significantly closer to a Gaussian.

More Low-kurtosis Distribution Choices Besides uniform distribution, there exist many other
low-kurtosis choices that can be used for compensation. In this work we consider four such noise
distribution : uniform distribution U(−a, a) (κ=-1.2), symmetric triangular distribution on [−a, a]
(κ=-0.6), bimodal Gaussian mixture (κ=-0.5 with r=1), and generalized Gaussian (exponential-power)
distribution(thus κ ≈-0.81 with β=4). Ablation results over these distributions are shown in Tab. 6.

From this table, we observe that the triangular distribution achieves better overall performance than
uniform distribution, indicating that using a triangular noise distribution for DCNC compensation is
also a viable choice. Nevertheless, due to uniform distribution extremely simple and efficient sampling
properties on standard hardware, we retain the uniform distribution as the default compensation
distribution throughout this paper.
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A.2 EXTENDED DETAILS AND SUPPLEMENTARY MATERIAL FOR THE MAIN DERIVATION

In Sec. 4.1, I derived the transformation function T . Next, I will provide a detailed derivation of the
transformation function T .

From Eq. 8 and Eq. 11, we have:

ϵ′θ(xt, t)

1 + k
= ϵθ(xt, t) +

∆′ϵθ(xt, t)

1 + k
(24)

Following the idea of PTQD, we can treat the latter term as random noise, ∆′ϵθ(xt,t)
1+k ≈ ηθ. Exper-

iments show that ηθ has higher kurtosis than Gaussian noise. Therefore, we introduce a uniform
distribution component. Combined with compensation using Eq. 13:

∆′ϵθ(xt, t)

1 + k
+ U(0, σ2

u) = ∆′′ϵθ(0, σϵ,t) ∼ N (0, σ2
ϵ,t) (25)

In practice, we introduce a factor Wu to control the final proportion added. The analysis of Wu is
presented in Sec. 5.3. Thus, we can formulate our improved transformation T as Eq. 14:

T (ϵ′θ(xt, t)) =
ϵ′θ(xt, t)

1 + k
+Wu · U(0, σ2

u) (26)

= ϵθ(xt, t) +
∆′ϵθ(xt, t)

1 + k
+Wu · U(0, σu) (27)

= ϵθ(xt, t) + ∆′′ϵθ (0, σϵ,t) (28)

where σϵ,t and k are statistically computed from the calibration.

When employing a quantized model, quantization introduces parameter perturbations that manifest as
errors in noise prediction. The noise predicted by quantized model can be represented as Eq. 11:

ϵ′θ(xt, t) = ϵθ(xt, t) + ∆ϵθ (xt, t)

where ϵθ(xt, t) represents the original network prediction, ϵ′θ(xt, t) represents the quantized network
prediction, and ∆ϵθ (xt, t) captures the quantization-induced error.

To ensure that the noise distribution introduced by quantization errors approximates a Gaussian
distribution, we apply a transformation T to this error function Eq. 12:

T (ϵ′θ(xt, t)) = ϵθ(xt, t) + ∆′′ϵθ (0, σϵ,t)

where ∆′′ϵθ (0, σϵ,t) follows a Gaussian distribution with mean 0 and variance σ2
ϵ,t that depends on the

timestep t.

Substituting Eq. 12 into Eq. 3, we obtain:

x̂′0 =
1√
ᾱt

(xt −
√
1− ᾱtT (ϵ

′
θ(xt, t))) (29)

=
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))−

√
1− ᾱt√
ᾱt

∆′′ϵθ (0, σϵ,t) (30)

= x̂0 −
√
1− ᾱt√
ᾱt

∆′′ϵθ (0, σϵ,t) (31)
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where the estimation of x0 using the quantized model, denoted as x̂′0. Consequently, the reverse
process under quantization is shown as Eq. 15:

p′θ(xt−1 | xt) = N
(
√
ᾱt−1x

′
0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx

′
0√

1− ᾱt
, σ2

t I1

)
(32)

= N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
+ C1∆

′′
ϵθ
(0, σϵ,t), σ

2
t I

)
(33)

= N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I+C
2
1σ

2
ϵ,tI

)
(34)

When using the DDIM sampler for deterministic sampling, σt = 0.

Then we derive the marginal distribution q′(xt−1|x0) by integrating over the intermediate variable
xt:

q′(xt−1|x0) =

∫
qσ(xt−1|xt,x0) · q(xt|x0) dxt (35)

Rigorously deriving this integral is quite complex, so we first provide a simplified derivation. We
need to know that any linear combination and marginalization of Gaussian distributions remains
Gaussian, allowing us to consider the mean and variance of the integral result separately.

Observing Eq. 34, we find that quantization only affects the variance part of q′(xt−1|xt,x0), while
the mean part remains unchanged.

First is mean analysis: Since the added variance terms have zero mean, by the law of total expectation,
the marginal mean remains unchanged:

E[q′(xt−1|x0)] = E[E[q′(xt−1|xt,x0)]|x0] =
√
ᾱt−1x0 (36)

Then is Variance Analysis: We apply the law of total variance:

Var[q′(xt−1|x0)] = E[Var[q′(xt−1|xt,x0)]|x0] + Var[q′(E[xt−1|xt,x0)]|x0] (37)

since the first term’s independent of xt:

E[σ2
t I1 + C2

t σ
2
ϵ I2|x0] = (σ2

t + C2
t σ

2
ϵ )I (38)

Since the added variance terms have zero mean, the second term remains consistent with the original
diffusion process:

Var[E[q′(xt−1|xt,x0)]|x0] = (1− ᾱt−1 − σ2
t )I (39)

Therefore, the final integral result is Eq. 17:

q′(xt−1|x0) = N (xt−1;
√
ᾱt−1x0, (1− ᾱt−1 + C2

1σ
2
ϵ,t)I)

Consequently, the quantized model marginal distribution q′(xt−1|x0) does not directly map the data
distribution of the original generative process.

To address this, we seek a transformation that maps it to the original diffusion marginal distribution
at other timesteps. We introduce a scaling factor C2 and a new timestep τ that together establish
an equivalence between the marginal distribution of the quantized model and that of the original
diffusion model. Specifically, we define Eq. 18:

q(C2xτ |x0) = N (C2xτ ;C2

√
ᾱτx0, C

2
2 (1− ᾱτ )I)

Through multi-step denoising, this marginal distribution mapping ensures that the final generated
distribution matches the original model’s distribution. To make q(x′t−1|x0) and q(C2xτ |x0) in
Eq. 17 and Eq. 18 statistically equivalent, we set their means and variances equal respectively.

Therefore, we solve the system of equations:{√
ᾱt−1 = C2

√
ᾱτ (mean equality)

(1− ᾱt−1) + C2
1σ

2
ϵ,t = C2

2 (1− ᾱτ ) (variance equality)
(40)
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Solving this system yields:

C2 =
√

1 + C2
1σ

2
ϵ,t and ᾱτ =

ᾱt−1

C2
2

(41)

While PTQD (He et al., 2023) also attempt to absorb quantization error into noise terms, our
method provides a principled mathematical framework that explicitly maps the quantized distribution
back to the forward diffusion process by timestep shift. The resulting compensation mechanism is
theoretically guaranteed to perform effectively across stochastic sampling, deterministic sampling,
and Flow-matching with Gaussian conditional probability paths. Through absorbing quantization
error by timestep shift, our approach provides a more fundamental understanding of quantization
in diffusion models while offering practical advantages in implementation flexibility and sampling
robustness.

Based on the above derivations, the implementation is given in Algorithm 1 and Algorithm 2.

Algorithm 1: Deformable Noise Scheduler Calibration
Input: Timesteps sequence {(t, tprev)}, Calibration set C = {x0}
Output: Calibrated alpha values {ᾱq

t−1(t)}, slopes {k(t)}, uniform variances {σ2
u (t)}

1 Initialize Cϵ ← ∅, C∆ϵ ← ∅;
2 for each (t, previous t) ∈ timesteps do
3 for each x0 ∈ C do
4 xt ← AddNoise(x0, t);
5 ϵθ(xt)← OriginalNetwork(xt);
6 ϵ′θ(xt)← QuantizedNetwork(xt);
7 ∆ϵθ ← ϵ′θ(xt)− ϵθ(xt);
8 Cϵ.append(ϵθ(xt)), C∆ϵ.append(∆ϵθ);
9 k(t), d(t)← LinearRegression(Cϵ, C∆ϵ);

10 C∆′ϵ ← ComputeResiduals(Cϵ, C∆ϵ, k(t), d(t));
11 σ2

ϵ,t,o ← Variance(C∆′ϵ);
12 κo ← Kurtosis(C∆′ϵ);

13 σ2
u (t)← σ2

ϵ,t,o ×
√

5κo
6 C∆′′ϵ ← TransformationT (C∆′ϵ, k(t),Wu, σ

2
u (t))

σ2
ϵ,t ← Variance(C∆′′ϵ) ᾱ

q
t−1 ← NewtonSolve

(
ᾱt−1 =

ᾱq
t−1

1+C2
1σ

2
ϵ,t

)
Store ᾱq

t−1(t), k(t),

σ2
u (t);

14 return {ᾱq
t−1(t)}, {k(t)}, {σ2

u (t)}
15 Note: Linear regression models ∆ϵθ = k(t) · ϵθ + d(t) + residual, but d(t) is usually very close

to 0

Algorithm 2: Deformable Noise Scheduler Inference
Input: Calibrated parameters {ᾱq

t−1(t)}, {k(t)}, {σ2
u (t)}, Timesteps sequence {(t, previous t)}

Output: Generated sample x0

1 Initialize xT ∼ N (0, I);
2 xt ← xT ;
3 for each (t, _) ∈ timesteps do
4 ϵ′θ(xt, t)← QuantizedNetwork(xcurrent, t);
5 ϵθ ← TransformationT (ϵ′θ(xt, t), k(t),Wu, σ

2
u (t)) x̂0 ← xt−

√
1−ᾱtϵθ√
ᾱt

xt−1 ← DiffusionStep(xt, x̂0, t, αt−1 = ᾱq
t−1(t), σt = 0) xt ← xt−1;

6 return xt

7 Note: Next loop uses tprev (not tqprev) as the current timestep

A side-by-side derivation comparing our DNS to PTQD is shown in Tab. 7.
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Table 7: A side-by-side derivation comparing PTQD and our DNS.

PTQD (stochastic-sampling view) DNS (ours, distribution-preserving view)

Both PTQD and our DNS first decompose the quantization error
(Eq. 8) as

∆ϵθ(xt, t) = k ϵθ(xt, t) + ∆
′
ϵθ(xt, t).

This yields the following quantized conditional:

p
′
θ(xt−1 | xt) = N

(
xt−1; µ̂t(xt, x̂0), σ

2
t I

)
+ ξt,

ξt ∼ N
(
0, C

2
1σ

2
ϵ,tI

)
,

where ξt is the independent Gaussian component of the quantization
noise.
Using this decomposition and quantized conditional, PTQD then
starts from the standard stochastic sampler (Eq. 5):

xt−1 =
1
√
αt

xt − βt
1

√
1− ᾱt

ϵθ(xt, t)− σ
0
t z,

z ∼ N (0, I).

Substituting the decomposed quantization error into Eq. 5 gives
PTQD’s stochastic update (Eq. 10):

xt−1 =
1
√
αt

xt − βt
1

√
1− ᾱt

ϵθ(xt, t)

− σtz − βt ct ∆
′
ϵθ(xt, t),

where ct is a scalar (a function of αt, ᾱt, k), and the last two
terms−σtz−βtct∆

′ϵθ(xt, t) jointly play the role of the original
stochastic noise term σ0

t z in Eq. 5. Thus ∆′ϵθ is treated as an extra
stochastic noise term injected into the sampling process.

Both PTQD and our DNS first decompose the quantization error
(Eq. 8) as

∆ϵθ(xt, t) = k ϵθ(xt, t) + ∆
′
ϵθ(xt, t).

This yields the following quantized conditional:

p
′
θ(xt−1 | xt) = N

(
xt−1; µ̂t(xt, x̂0), σ

2
t I

)
+ ξt,

ξt ∼ N
(
0, C

2
1σ

2
ϵ,tI

)
,

where ξt is the independent Gaussian component of the quantization
noise.
Our DNS derivation then starts from the corresponding quantized
reverse conditional (Eq. 15), which folds the independent quantization
noise into the reverse:

p
′
θ(xt−1 | xt) = qσ

(
xt−1 | xt, x̂

′
0

)
= N

(
xt−1; µ̂t(xt, x̂0),

(
σ
2
t + C

2
1σ

2
ϵ,t

)
I
)
.

Thus the induced conditional marginal distribution under quantization
is (Eq. 17):

q
′
(xt−1 | x0) = N

(
xt−1;

√
ᾱt−1 x0,

(
1−ᾱt−1+C

2
1σ

2
ϵ,t

)
I
)
.

DNS then uses Eqs. 18–20 to construct a distributional map that
identifies this quantized marginal with an unquantized marginal at a
shifted time τ ; in particular, Eq. 18 gives

q
′
(xt−1 | x0) ←→ q

(
C2xτ | x0

)
,

and Eq. 20 defines the time shift τ and the corresponding time-
shifted scheduler ᾱ

(q)
t−1 := ᾱτ , this explicitly constructs a

distribution-preserving map that sends the quantized marginal to
an original (unquantized) marginal at the shifted time τ .

Table 8: Concise comparison between DNS and prior work

Method Parameter update? Arch.changes
or limits?

Plug-and-play
over other PTQ? Stoch. Det. FM

Q-Diffusion Yes (Calibration,
weight/quant update) No Not over

SVDQuant Yes Yes Yes

PTQ4DiT Yes (Calibration,
weight/quant update)

No
Designed for DiT Only DiT Yes Yes Yes

SVDQuant Yes (Weight update
and FP16 finetune)

Add FP16 LoRA
(Incomplete quant.)

Not over many
model-changing PTQ Yes Yes Yes

PTQD No No Almost Yes Yes No No

DNS (Ours) No No Almost Yes Yes Yes Yes

We also draw a concise comparison table to better compare our method with prior work, shown in
Tab. 8

This highlights that DNS is both plug-and-play over many existing PTQ methods and applicable to
stochastic(Stoch.), deterministic(Det.), and flow-matching(FM) samplers without architectural/weight
changes or additional training.
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A.3 DETAILS OF FLOW-MATCHING DERIVATION

In FLUX.1, the forward process is defined as:

xt = (1− σt) · x0 + σt · ε (42)

where ε ∼ N (0, I) and σt represents the noise level at time t.

The denoising process follows a discrete update rule:

xtnext = xt +∆σ · vθ(xt, σt) (43)

where ∆σ = σtnext − σt and vθ(xt, σt) is the velocity field predicted by the model.

When employing a quantized model, the velocity field prediction contains quantization-induced
errors:

v′θ(xt, σt) = vθ(xt, σt) + ∆vθ(xt, σt) (44)

To ensure that this error approximates a Gaussian distribution, we apply transformation T :

T (v′θ(xt, σt)) = vθ(xt, σt) + ∆′vθ(0, σv,t) (45)

where ∆′vθ(0, σv,t) ∼ N (0, σ2
v,tI).

The denoising process with quantization errors becomes:

x′
tnext

= xt +∆σ · [vθ(xt, σt) + ∆′vθ(0, σv,t)]

= xtnext +∆σ ·∆′vθ(0, σv,t)
(46)

Substituting the forward process expression for xt:

x′
tnext

= (1− σtnext) · x0 + σtnext · ε+∆σ ·∆′vθ(0, σv,t) (47)

Drawing from our diffusion derivation, we seek a transformation that maps x′tnext
back to the

standard forward path. We introduce a scaling factor C2 and a new timestep τ that together establish
an equivalence between the quantized output and a point on the original path. Specifically, we define:

C2 · xτ = C2 · (1− στ )x0 + C2 · στε
′ (48)

Then we can establish that when C2 = (1−σtnext
)+

√
σ2
tnext

+∆σ2σ2
v,t and στ = (C2+σtnext

−
1)/C2, x′tnext

and C2xτ become statistically equivalent, with matching coefficients for x0 and
equivalent variance terms for the noise components σtnext

· ε+∆σ ·∆′vθ(0, σv,t).

Importantly, neural networks trained for flow-matching are designed to estimate the velocity field
pointing from any noisy sample toward the clean data. Since the network is trained to predict
vθ(xt, σt) ≈ E[ε|xt, σt] for any valid noise distribution, it can still function effectively when the
noise distribution changes from ε to ε′. The model will naturally predict the velocity field that directs
xτ toward x0, allowing our transformation to effectively absorb quantization errors.
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A.4 VISUALIZATION RESULTS

In this section, we demonstrate the visualisation results by different models. (1) LDM-4: Tested with
20 steps, guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion
(W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 9.
(2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256×256 resolution. We compare the
FP16 model, PTQ4DiT (W4A8), its combination with PTQD and its combination with ours. The
results are shown in Fig. 10.

FP16 Q-Diffusion Q-Diffusion+ Ours

Label: great grey owl, great gray owl, Strix nebulosa

Q-Diffusion + PTQD

Label: European fire salamander, Salamandra salamandra

Label: robin, American robin, Turdus migratorius

Label: goldfish, Carassius auratus

Figure 9: Tested the LDM-4 model with Q-Diffusion quantization to W4A8 precision. The resolution
of the generated image is 256
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FP16 PTQ4DiT PTQ4DiT + OursPTQ4DiT + PTQD

Label: great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

Label: white stork, Ciconia ciconia

Label: brown bear, bruin, Ursus arctos

Label: bee eater

Figure 10: Tested the DIT-XL model with PTQ4DiT quantization to W4A8 precision. The resolution
of the generated image is 256

(3) FLUX.1 : Tested with guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare the
FP16 model, SVDQuant (W4A4) with quantized its LoRA branch weight to 6-bit and its combination
with ours. PTQD does not support Flow-matching. The results are shown in Fig. 11, Fig. 12, Fig. 13.
Fig. 14 and Fig. 15. It can be seen that our method has good results in maintaining semantics, reducing
artifacts, increasing details, and improving diversity, which shows that we have successfully achieved
the goal of distribution preservation.

(4) FLUX.1 : We also try optimizing SVDQuant (W4A4) with FP16 LoRA branch. Tested with
guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare FP16 model, SVDQuant
(W4A4) with FP16 LoRA and its combination with ours. The results are shown in Fig. 16 and Fig. 17.
Our method still has capability to improve under strong baseline.
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FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Prompt: One color photograph of jaguar hummingbird ladybug scene from Othello with Desdemona and Emilia Amazon rainforest thunderstorm

Prompt: A cat dressed like a jedi walk on tatooine holding a lightsaber, ultra-realistc hd

Prompt: A friendly bear dressed like an explorer walking in some undiscovered place in the jungle

Prompt: Cute little animals in the forest. In the pond, a young girl is touching the gray wolfs chin and they are looking at each other 

Figure 11: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 256
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Prompt: A photo of a chicken with a can of beer in his back. 

Prompt: Cat walk in the centre of Strasbourg by a snow night 

Prompt: Show strange creatures in a forest hopping rabbit, fox, bee

Prompt: Fluffy white bunny as a Jedi, blue lightsaber, fierce expression

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 12: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we have successfully maintained and recovered some semantics.
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Prompt: Gangster chicken

Prompt: Kitten purring and snuggling Lily for storybook

Prompt: Star wars characters playing trivia 

Prompt: He was dressed in a tansa dress, his outer hair was a tigers skin, The tiger skin cap was the hood of his head. 
He had a whip for his upper arm They saw and wanted to see what a stranger saw.

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 13: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we have successfully removed some artifacts, but the excessive artifacts introduced
by quantization still cannot be completely removed.
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Prompt: A white Havanese dog in sunglasses riding a motorcycle

Prompt: Draw a robotic elephant playing a guitar in a forest, with a full moon shining brightly in the sky and a stream running nearby

Prompt: Toronto Raptors artwork, purple white and red, velociraptor 

Prompt: A hybrid of a capybara and a sheep, stuido ghibli style 

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 14: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we successfully added some details and improved the image quality.
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FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Prompt: Cat samurai  cinematic shot, incredibly detailed, sharpen, details  professional lighting

Prompt: Animal in a rain forest nature photography, atmospheric lighting, hyperrealistic marine life 

Prompt: Octopus and coral reef, hyper-realistic, photographic, 8k 

Prompt: A A dog on the background of a nature, Wes Anderson style, 4K

Figure 15: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that since we are using distribution preservation, some images will also move to other
trajectories with the same(as quantized model) quality.
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FLUX.1-dev BF16 SVDQuant w/ FP LoRA After DNS (Ours)

Prompt: Cinematic still. Opossum sitting next to large glass marijuana bong inside messy camper trailer.
 Setting is nighttime. Ambience is Smokey. Cloud of smoke inside. Hotboxed. 4k. realistic. HDR.

Prompt: Cute cow in jacket and hat in winter, reylia slaby style, post processing, ben wooten, soft colors, colorful fauna, cinestill 50d C

Prompt: Plecostomus hybrid man picking up PET garbage in Palya del Carmen beach. Sunset Sky

Prompt: A woman and a fox dissolve in the rays of the sun, a happy scene full of tenderness, romantic atmosphere, luxurious beauty, 
exquisite use of additional colors, aesthetic style, unearthly shining light, volumetric lighting 

Figure 16: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain
SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 256
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FLUX.1-dev BF16 SVDQuant w/ FP LoRA After DNS (Ours)

Prompt: The white cat and the cute girl are very surprised in the forest, their whole bodies

Prompt: A white dire wolf with crimson red eyes prowling around the red leaf forest on a cold and snowy winter day

Prompt: Dramatic portrait of an African cheetah looking at the camera while sitting on a rock, captured in the style of 
National Geographic, safari photography, 32k UHD 

Prompt: Chewbacca drinking coffee onboard a superyacht

Figure 17: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain
SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 1024
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Table 9: CIFAR-10 (32×32) generation with TFMQ-DM (W4A8), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 7.32 7.35 – 9.27 – –
TFMQ-DM 12.83 15.69 3.59 9.26 27.81 0.138
w/ours 11.12 13.03 2.20 9.50 28.66 0.120

Table 10: Unconditional ImageNet-64 (64×64) generation with PTQ4DM(W8A8), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 17.89 10.48 – 15.05 – –
PTQ4DM 25.36 18.13 8.12 15.10 19.88 0.232
w/ours 24.32 17.65 6.35 14.69 19.71 0.241

Table 11: CIFAR-10 (32×32) generation with APQ-DM(W6A6), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 11.32 8.88 – 8.50 – –
APQ-DM 16.22 8.17 5.95 8.65 24.28 0.159
w/ours 15.11 7.98 3.86 8.56 26.38 0.150

Table 12: Quantitative metrics with mean ± standard deviation.

Model Method FID↓ sFID↓ IS↑ PSNR↑

LDM-4
FP16 11.49 ± 0.009 9.99 ± 0.001 104.74 ± 0.020 –

Q-Diffusion 10.68 ± 0.476 13.71 ± 1.998 101.95 ± 0.261 22.84 ± 0.269
w/ours 9.81 ± 0.472 9.42 ± 0.126 102.40 ± 0.359 23.10 ± 0.438

CIFAR
FP16 7.32 ± 0.005 7.35 ± 0.003 9.27 ± 0.002 –

TFMQ-DM 12.83 ± 0.002 15.69 ± 0.008 9.26 ± 0.006 27.81 ± 0.001
w/ours 11.12 ± 0.042 13.03 ± 0.012 9.50 ± 0.006 28.66 ± 0.005

ImageNet64
FP16 17.89 ± 0.017 10.48 ± 0.005 15.05 ± 0.019 –

PTQ4DM 25.36 ± 0.331 18.13 ± 0.132 15.10 ± 0.027 19.88 ± 0.214
w/ours 24.32 ± 0.142 17.65 ± 0.170 14.69 ± 0.022 19.71 ± 0.212

CIFAR
FP16 11.32 ± 0.001 8.88 ± 0.003 8.50 ± 0.003 –

APQ-DM 16.22 ± 0.400 8.17 ± 0.070 8.65 ± 0.003 24.28 ± 0.254
w/ours 15.11 ± 0.160 7.98 ± 0.107 8.56 ± 0.001 26.38 ± 0.040

A.5 ADDITIONAL EXPERIMENTS RESULTS

More Backbones Experiments In addition to the main backbones quantized with Q-Diffusion,
PTQ4DiT, and SVDQuant, we further evaluate DNS on other PTQ methods: TFMQ-DM, PTQ4DM,
and APQ-DM. We follow exactly the same evaluation protocol and metrics as in Sec. 5.1 and results
are shown as Tab. 9-Tab. 11.

Robustness and Statistical Reliability of Experiments To further assess the robustness and statis-
tical reliability of our results, we report mean ± standard deviation of three evaluation metrics for
representative backbones, as summarized in Tab. 12.

More Metrics In addition to FID, sFID, IS, IR, CLIP, and PSNR, we further evaluate Kernel In-
ception Distance (KID (Bińkowski et al., 2021)) and LPIPS (Zhang et al., 2018). KID is computed
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Table 13: Additional experiments with KID and LPIPS across various backbones

Model Bit Method KID×103 ↓ LPIPS↓

LDM-4 W4A8
Q-Diffusion 4.56 0.205
w/PTQD 3.89 0.206
w/ours 3.01 0.220

DiT-XL W4A8
PTQ4DiT 1.00 0.396
w/PTQD 2.41 0.468
w/ours 0.86 0.401

FLUX.1

W4A4
w/W16 LoRA

SVDQuant 0.08 0.197
w/ours 0.08 0.214

W4A4
w/W6 LoRA

SVDQuant 1.47 0.412
w/ours 1.22 0.431

ImageNet64 W8A8 PTQ4DM 8.12 0.232
w/ours 6.35 0.241

CIFAR-10
W4A8 TFMQ 3.59 0.138

w/ours 2.20 0.120

W6A6 APQ 5.95 0.159
w/ours 3.86 0.150

as the squared Maximum Mean Discrepancy between the feature distributions of real and generated
images, using the same Inception-V3 backbone as our FID computation. LPIPS measures percep-
tual distance between image pairs based on deep features from a VGG network, with lower values
indicating closer perceptual similarity.

Our primary goal is distribution preservation. Accordingly, FID and KID are especially important, as
they quantify distances between feature distributions of generated and FP images under a pre-trained
network. By contrast, LPIPS follows the same trend as PSNR: both are pixel- or patch-level similar-
ity metrics that capture per-sample trajectory differences with respect to the FP model and therefore
cannot directly validate whether the final outputs achieve better distribution preservation or overall
generation quality at the distribution level.

The results, computed under the same settings as in our main experiments for each backbone, are
shown in Tab. 13.

To further assess the generality of our approach, we combine it with three representative PTQ meth-
ods: TFMQ-DM on CIFAR-10, PTQ4DM on ImageNet-64, and APQ-DM on CIFAR-10. In all three
settings, our method consistently improves the generative quality(including FID, KID, etc) over the
corresponding PTQ baselines. Concretely, we observe reductions in FID about 4%-13%, in sFID
about 2%-17% and in KID about 21%-38% across these experiments. These consistent improvements
indicate that our method is effective at preserving distribution under multiple PTQ schemes, leading
to quantized model distribution more closely match the FP model distribution.

Ablation under Other Backbone In addition to the LDM-4 analysis already presented, we have
extended the ablations to the DiT-XL backbone with PTQ4DiT(Setup is the same as the main result:
Using DiT-XL model with PTQ4DiT W4A8 quantization, step=20). We perform the same compo-
nent-wise ablations as in Sec. 5.3: The results are shown in Tab. 14, Tab. 15, and Fig. 18.

As we can see in Tab. 14, IQR-based variance estimation again performs the best. And in Tab. 15,
DNS and especially DCNC consistently improve over the PTQ base model, even for a large-scale
backbone like DiT-XL. In Fig. 18, the performance remains stable across a wide range of Wu values,
and the same qualitative behavior holds across different architectures and datasets. Specifically, FID
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Table 14: Performance comparison of different variance estimation methods in PTQ4DiT.

Model Method FID↓ IR↑ PSNR↑

DiT-XL

– 8.55 -0.486 17.33
mad 8.56 -0.484 17.34
iqr 8.51 -0.484 17.43
kus 8.55 -0.487 17.39
kde 8.56 -0.485 17.33

Table 15: Effect of different components in PTQ4DiT.

Model Method FID↓ IR↑ PSNR↑

DiT-XL

base 9.83 -0.508 17.42
+CNC 14.01 -0.609 16.32
+DNS 9.78 -0.496 17.02

+DCNC 8.51 -0.484 17.43
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Figure 18: Performance comparison with different strength of correction in PTQ4DiT.

fluctuates somewhat but remains much smaller than before DNS(ours). PSNR decreases slowly as
Wu increases. This is consistent with our goal distribution-preserving. Based on these observations,
we adopt a single fixed default of Wu=0.2 for all models, without any per-model or per-dataset tuning.

Ablation about More Parameters We also conducted additional experiments across various
sampling steps (10, 20, 40) and guidance scales (0, 3.0, 6.0) and result is shown as Tab. 16.

Our supplementary experiments show that our method consistently maintains superior FID, sFID, IS,
and IR scores across all tested configurations. The results demonstrate that our approach remains
effective regardless of the number of DDIM steps or guidance scale settings, indicating robust
performance across different inference schedules.

The bold part indicates that w/ours is better than other W4A8 indicators.

Time and Memory Consumption Regarding our claims of “no extra steps” and “no additional
memory”, More details are shown in Tab. 17. At inference time, the only additional computation
introduced by DNS+DCNC is applying the transformation T in Eq. 14 and using the pre-computed,
timestep-dependent scalar coefficients(Algorithm 2). These operations reduce to elementwise addi-
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Table 16: Additional experiments across various sampling steps and guidance scales

LDM-4 Method FID↓ sFID↓ IS↑ CLIP↑ IR↑ PSNR↑

scale=3.0
steps=20

FP16 11.49 9.99 104.74 31.91 0.134 —

W4A8 Q-Diffusion 10.68 13.71 101.95 31.97 -0.014 22.84
W4A8 w/PTQD 10.32 12.39 100.84 31.89 -0.031 23.13
W4A8 w/ours 9.81 9.42 102.40 31.91 0.015 23.10

scale=3.0
steps=10

FP16 12.05 14.63 98.42 31.91 -0.095 —

W4A8 Q-Diffusion 11.26 21.24 92.59 31.74 -0.298 24.88
W4A8 w/PTQD 13.31 38.89 85.60 31.45 -0.467 20.74
W4A8 w/ours 10.43 14.94 93.29 31.76 -0.269 25.29

scale=3.0
steps=40

FP16 10.66 9.15 106.32 31.81 0.215 —

W4A8 Q-Diffusion 10.61 11.43 104.79 31.95 0.093 21.88
W4A8 w/PTQD 10.85 10.92 102.12 31.87 -0.047 22.05
W4A8 w/ours 9.32 8.41 104.75 31.83 0.112 21.89

scale=0.0
steps=20

FP16 51.94 10.99 21.91 20.01 -2.173 —

W4A8 Q-Diffusion 59.95 20.32 20.52 20.32 -2.192 26.67
W4A8 w/PTQD 58.64 20.34 20.12 20.47 -2.201 25.69
W4A8 w/ours 57.47 19.39 20.66 20.30 -2.168 26.20

scale=6.0
steps=20

FP16 20.89 15.31 114.55 31.98 0.382 —

W4A8 Q-Diffusion 20.18 15.77 114.34 32.16 0.289 19.55
W4A8 w/PTQD 19.93 13.04 113.17 32.18 0.243 19.02
W4A8 w/ours 18.63 10.57 115.39 32.33 0.322 19.22

Table 17: Overview of calibration and inference overhead for our method (LDM-4 + Q-Diffusion).

Item Value

Calibration (3,000 images, including FP16 + quantized) 45 min
Calibration statistics only (CPU, excluding sampling) 214 s
Sampling 30k images with quantized model 5.1 h
Extra time for 30k samples with DNS 5.67 s
Peak memory usage 1.5 GB
Additional memory overhead 320 KB

tions and multiplications; we do not introduce any extra network forward passes, matrix multiplica-
tions, or large activation buffers.

On an A100-40G GPU, for LDM-4 + Q-Diffusion at 256× 256 with 20 DDIM steps, generating
30,000 images, enabling DNS+DCNC incurs only 5.67 seconds of additional wall-clock time com-
pared to PTQ alone. In comparison, generating 30k samples with the quantized model alone already
takes about 5.1 hours on our setup, proving that increasing time of our method is almost negligible.
The extra runtime buffers required by DNS+DCNC are about 320 KB, and the stored calibration pa-
rameters across all timesteps occupy less than 1 KB in total. For calibration, using 3000 images (as
in our main experiments), computing the required statistics can be done once on CPU in about 214
seconds. Including both the FP16 and quantized forward passes needed to generate the calibration
dataset, the entire calibration procedure takes approximately 45 mins on our setup (A100-40G GPU,
LDM-4 + Q-Diffusion at 256× 256 with 20 DDIM steps, sample 3000 images).
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