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Figure 1: Our method offers a plug-and-play approach to improve the quantization
performance of diffusion models (including Flow-matching), enabling seamless
integration with existing PTQ methods without compromising inference speed.

ABSTRACT

Diffusion models deliver state-of-the-art image quality but are expensive to deploy.
Post-training quantization (PTQ) can shrink models and speed up inference, yet
residual quantization errors distort the diffusion distribution (the timestep-wise
marginal over x;), degrading sample quality. We propose a distribution-preserving
framework that absorbs quantization error into the generative process without
changing architecture or adding steps. (1) Distribution-Calibrated Noise Com-
pensation (DCNC) corrects the non-Gaussian kurtosis of quantization noise via a
calibrated uniform component, yielding a closer Gaussian approximation for robust
denoising. (2) Deformable Noise Scheduler (DNS) reinterprets quantization as a
principled timestep shift, mapping the quantized prediction distribution x; back
onto the original diffusion distribution so that the target marginal is preserved. Un-
like trajectory-preserving or noise-injection methods limited to stochastic samplers,
our approach preserves the distribution under both stochastic and deterministic
samplers and extends to flow-matching with Gaussian conditional paths. It is
plug-and-play and complements existing PTQ schemes. On DiT-XL (W4AS),
our method reduces FID from 9.83 to 8.51, surpassing the FP16 baseline (9.81),
demonstrating substantial quality gains without sacrificing the efficiency benefits
of quantization.
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1 INTRODUCTION

Diffusion models have become the leading paradigm for high-quality generative modeling, powering
applications across image synthesis (Ho et al., 2020; Rombach et al., 2022; Labs, 2024), style trans-
fer (Qi et al., 2024), video generation (Brooks et al., 2024), 3D reconstruction (Zhou et al., 2024), and
robotics (Chi et al., 2024). Their rapid scaling— from Stable Diffusion’s 800M parameters (Rombach
et al., 2022) to SDXL’s 2.6B (Podell et al., 2023), and most recently to FLUX.1’s 12B (Labs, 2024)—
has driven remarkable improvements in fidelity and controllability. However, these gains come at a
steep computational cost: inference with large models demands tens of gigabytes of GPU memory
and seconds per image, limiting deployment in real-time and resource-constrained settings.

Model quantization is a practical solution to this bottleneck. By reducing weights and activations from
floating-point to low-bit integer, quantization compresses model size and accelerates inference (Jacob
et al., 2017; Nagel et al., 2021). Recent post-training quantization (PTQ) methods have successfully
reduced diffusion models to 8- or even 4-bit precision (Li et al., 2023; Wu et al., 2024; Li et al.,
2025). Yet, unlike discriminative networks or autoregressive language models, diffusion models are
especially sensitive to quantization. Errors accumulate across iterative denoising steps, corrupting the
assumed Gaussian noise distribution and significantly degrading sample quality (He et al., 2023).

Existing approaches attempt to mitigate this challenge by either reshaping weight distributions to
reduce quantization error (Li et al., 2023; Wu et al., 2024; Li et al., 2025) or injecting approximated
Gaussian noise to absorb residual errors (He et al., 2023). However, these methods have important
limitations: weight-reshaping strategies only preserve stepwise predictions without addressing
distributional drift, while noise-injection methods are restricted to stochastic samplers and fail on
deterministic or flow-matching frameworks (Lipman et al., 2023). Moreover, quantization noise rarely
follows an ideal Gaussian distribution, undermining the robustness of Gaussian-based corrections.
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easily integrated with existing PTQ methods. Empirically, our method consistently improves genera-
tion quality across diverse backbones (see Fig. 2). For example, on DiT-XL our method reduces the
FID of PTQ4DiT (W4AS8) from 9.83 to 8.51, surpassing even the FP16 baseline (9.81).

In summary, our contributions are threefold: (1) A principled analysis showing that quantization can
be reinterpreted as timestep shifts in the diffusion process. (2) A deformable noise scheduler and
distribution-calibrated correction that preserve the generative distribution under quantization. (3)
Extensive experiments across LDM, DiT, and FLUX demonstrating consistent quality improvements
without sacrificing the efficiency benefits of quantization.

2 RELATED WORK

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) were origi-
nally formulated as stochastic processes for data generation. Denoising Diffusion Implicit Models
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(DDIM) (Song et al., 2022) later reduced the number of sampling steps, significantly accelerating the
generation process. More recently, Flow Matching (Lipman et al., 2023) has been introduced as a
deterministic alternative, powering state-of-the-art systems such as FLUX (Labs, 2024).

The backbone architecture of early diffusion models was primarily based on UNets (Rombach et al.,
2022). Diffusion Transformers (DiT) (Peebles & Xie, 2023) pioneered the use of pure transformer
architectures, leading to improved scalability and performance. Large-scale text-to-image models
such as Stable Diffusion (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al.,
2023), and FLUX (Labs, 2024) have since revolutionized content generation by pushing model sizes
larger to achieve better fidelity, diversity, and controllability.

Model Quantization for Diffusion models. Quantization reduces computational costs by represent-
ing model parameters and activations with lower-precision formats. Approaches generally fall into
two categories: quantization-aware training (QAT) (Jacob et al., 2017), which requires retraining
with quantization in the loop, and post-training quantization (PTQ) (Nagel et al., 2021), which adapts
pre-trained models with minimal calibration data. Due to the size and training cost of diffusion
models, PTQ methods are more practical and thus widely adopted.

Specialized PTQ techniques have been developed to address the unique challenges of diffusion
backbones. Q-Diffusion (Li et al., 2023) employs channel-wise quantization with explicit outlier
handling. PTQ4DM (Shang et al., 2023) and PTQ4DiT (Wu et al., 2024) design quantization
strategies tailored to their respective UNet and transformer backbones. MixDQ (Zhao et al., 2024)
adopts mixed precision to balance efficiency and quality. SVDQuant (Li et al., 2025) introduces
low-rank branches to capture residual information lost during quantization.

A different line of work, PTQD (He et al., 2023), proposes an “absorbing quantization error” strategy
that integrates quantization noise into the random noise term of stochastic samplers. While effective in
certain settings, this approach is fundamentally restricted to stochastic sampling and cannot be applied
to deterministic samplers or flow-matching frameworks that dominate modern implementations.
Moreover, the injected quantization noise often deviates from the expected Gaussian distribution,
which can misalign the diffusion process and degrade generation quality.

3 PRELIMINARY

3.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion Models (Ho et al., 2020; Song et al., 2022) are generative models based on a two-stage
process: a fixed forward noising process and a learnable reverse denoising process.

In the forward process, a clean data sample ¢ ~ g(x) is progressively corrupted by Gaussian noise
over T timesteps via a Markov chain with a predefined variance schedule {3;}/_,, where 0 < 3; < 1.
Define oy := 1 — By and a; := Hﬁzl «;. The forward transition distributions are given by:

q(@e | ®e—1) = N(Varzi—1, 1), q(@: | o) = N(Var o, (1 — au)I). 1)

The reverse process aims to recover & from 7 by learning a parametric approximation pg(:—1 | )
to the true reverse distribution. Ho et al. (2020) (DDPM) model this reverse process as a Gaussian
with fixed variance, trained to predict the noise added at each step. Song et al. (2022) (DDIM)
generalize this by introducing a family of non-Markovian reverse processes parameterized by a noise
schedule {o;}7_,, enabling faster sampling with deterministic or stochastic trajectories.

Specifically, for any ¢ > 1, the conditional distribution of x;_; given x; and clean sample x is:
qg'(mt71 | wt,mo) = N(ﬂt(mt,w0)7 Ut21) ) (2)
where o; > 0 controls the stochasticity of the reverse step and [ (x:, o) = /@ —1xo +

V1—ay 1 —o?- ”“717\/_@(;“ When oy = /(1 —ai—1)/(1 — &) - /1 — @& /a1, this recov-

ers the DDPM posterior; when o, = 0, the process becomes deterministic (DDIM).

Since x( is unknown during sampling, it is estimated from x; using a noise-prediction network
€g(x, t). The denoised estimate & is obtained via:

:f:o = \/]a(mt*\/lfatse(wt,t)). (3)
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The learned reverse process is then defined by substituting & for x in Eq. 2:
po(Ti—1 | @) = go (@1 | T+, 0), t>1. )

This leads to the unified sampling update rule:

. _ T — o &
Ti-1 = /-1 &0 + l—atfl—a,?%—&—atz, z ~ N(0,1). 3)
—

Flow matching (Lipman et al., 2023) generalizes diffusion via a continuous-time stochastic inter-
polant between Gaussian noise € ~ A(0, I') and data . A simple linear interpolant is

x: = (1 —t)zo +te, te]0,1]. (6)
The model learns a velocity field vg (¢, t) such that the probability flow ODE (PF-ODE)

e vo (@4, t) (7)
induces marginal distributions that match that of Eq. 6 for all time ¢ € [0, 1]. Sampling from the model
thus reduces to solving the PF-ODE in Eq. 7 using standard ODE solvers, e.g., Euler integration,
starting from Gaussian noise € ~ N(0, I') (Lipman et al., 2023). matches the ground-truth dynamics.
Sampling then amounts to integrating this ODE deterministically from noise to data. Flow matching,
owing to its high scalability, has already been adopted in modern text-to-image models such as
FLUX (Labs, 2024). Flow matching thus unifies diffusion-style objectives with a deterministic
transport formulation, and underlies modern large-scale systems such as FLUX (Labs, 2024).

3.2 QUANTIZATION NOISE CORRECTION AND ABSORPTION

Quantizing diffusion models inevitably introduces quantization error. This error can be systemati-
cally decomposed into two parts: (i) a correlated component that scales linearly with the original
network output ey (x4, t), and (ii) an independent component A’eq (¢, t) that is uncorrelated with the
prediction. This decomposition, referred to as Correlation Noise Correction (CNC), can be written as:

AEQ (il}z,t) = k’ée(wt,t) + A/EQ (%t,t) (8)

where Aeg (¢, t) denotes total quantization error, k is a scalar correlation coefficient, and A’eg (¢, t)
represents the residual independent component. PTQD (He et al., 2023) approximates A’eg(xy,t) as
Gaussian noise, but in practice this assumption is often inaccurate. The variance of the independent
noise, denoted 03, can instead be empirically estimated from representative data samples.

In stochastic sampling process, sampler involves adding random noise in Eq. 5. PTQD absorbs the
disentangled independent quantization error into this random term, effectively replacing:

/6t ’
_ A t 9
012 — 012 N A €o(x+,t) )
T'his leads to a modified update rule:
1 Bt ﬁt /
1= — - ,t - A ,t
1= s (mt mgg(mt )) tow Va1 —as(1+ k) éo(@e,t) 10

In summary, PTQD attempts to (i) preserve the injected noise distribution by treating the disentangled
quantization residual as Gaussian, while simultaneously (ii) preserving the stepwise prediction
trajectory. However, this hybrid objective can degrade performance and reduce robustness, and it is
applicable only to stochastic sampling. Moreover, empirical evidence shows that the independent
quantization residual A’ep has a large deviation from a Gaussian distribution. Directly using it may
undermine the theoretical assumptions of the method.

4 METHOD

To address these limitations, we develop a theoretical framework that analyzes how quantization
perturbs a diffusion model’s predictive distribution and derives distribution-preserving corrections for



Under review as a conference paper at ICLR 2026

N

m,:ﬁmg+\/176,s
A

t T t—1

Ae +e=¢'

Time

\
| Redesi
q(wf«) q(.’cT) : Sciezslf:r q(iﬂt—L)

1
DCNC & Transformation ®
| 1

DDIM w/ Quantization 1

q/(zt—l)

: —> Original
1 —> Quantization
1 —> DNS (Ours)

ety

AQE Timestep Shift

Figure 3: Overview of Deformable Noise Scheduler (DNS). (a) Top: Quantization perturbs the
noise prediction (red), shifting each step’s marginal away from the full-precision distribution (blue),
yielding € = € + Ae. These quantization errors are absorbed into the diffusion process, preserving
the original prediction distribution. (b) Bottom: DNS interprets effect as timestep shift. The quantized
distribution ¢'(x;_1) is mapped to original distribution ¢(x,) via DCNC and transformation ®.
Redesigning scheduler sets a new « so that 7 aligns with ¢ — 1, maintain original diffusion timesteps.

both the noise statistics and the time parameterization. In Sec. 4.1, we show that the uncorrelated
component of the quantization error is heavy-tailed (exhibits excess kurtosis relative to Gaussian
noise) and mitigate this mismatch by adding a calibrated uniform correction with lower kurtosis. In
Sec. 4.2, we prove that the distribution induced by a quantized model can be mapped to an equivalent
non-quantized distribution through an appropriate timestep shift (Fig. 3), enabling the approach to be
applied to any generative model with conditionally Gaussian marginals. A more detailed derivation is
provided in Appendix A.2.

4.1 GAUSSIAN APPROXIMATION OF QUANTIZATION NOISE

When the model is quantized, parameter perturbations introduce errors in the predicted noise. The
output of the quantized model can be expressed as:

eo(xi,t) = eo(@e,t) + Aeg (i, t) (11)
where Aeg (x4, t) is a quantization-induced error.

Prior work (He et al., 2023) applied a disentangling transformation (Eq. 8) to separate Aeg(x¢,t)
into an “independent” component A’ey(x;, ), which was then approximated as Gaussian noise and
absorbed into the stochastic sampling term. However, our empirical analysis (see Fig. 4) shows
that the residual noise obtained in this manner exhibits excess kurtosis relative to a true Gaussian
distribution, violating this assumption.

To correct this, we introduce a refined transformation 7" such that
T(ep(ae,t)) = eo(me, ) + A”e9(0,0¢,t) (12)

where the independent component A”¢y(0, o ;) is is explicitly calibrated to approximate a Gaussian
distribution with mean O and variance ait which depends on the timestep t. We refer to this
procedure as Distribution-Calibrated Noise Compensation (DCNC). DCNC ensures that the residual
quantization noise more faithfully matches the Gaussian assumption of the diffusion process, thereby
improving stability and generation quality.

Distribution-Calibrated Noise Compensation To drive the excess kurtosis of the residual toward
0 (i.e., make it behave more like Gaussian noise), we add a zero-mean uniform component. Let the
residual have variance o2 and excess kurtosis , > 0. Then the variance of the injected uniform term
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and the resulting total variance are (derivation in Appendix A.1):
02 =02 \/5ro /6, o2 =o2. (1 T \/550/6) (13)

As shown in Fig. 4 and Fig. 5, this uniform compensation substantially reduces the heavy-tailedness
of the uncorrelated quantization residual, bringing its excess kurtosis close to the Gaussian value
(0). Accurate variance estimation is important for applying Eq. 13 and for the marginal analysis
in Eq. 17. Because conventional estimators are sensitive to outliers, we use a robust IQR-based
estimate 62 = (IQR/1.349)2, where IQR = @3 — Q1 denotes the interquartile range, with ), and
Qs representing the first and third quartiles. Putting this together, our calibrated transformation is:

T(ey(we,1)) = (e, t) /(1 + k) + W, - U(0,02) (14)

where k (the correlation slope) and o2 are estimated during calibration, U (0, o) denotes a zero-mean
uniform random variable with variance o2, and W, € [0, 1] is a tunable weight that controls the
strength of the correction (see Sec. 5.3). Unless stated otherwise, all model outputs are passed through
T'(-) before subsequent analysis and sampling.

4.2 DEFORMATION OF SAMPLING WITH QUANTIZATION NOISE

After applying DCNC, the residual quantization error is well-approximated as zero-mean Gaussian.
We leverage this property to absorb quantization effects into the diffusion process via a timestep
shift: instead of introduced extra noise, we preserve distributional consistency via a timestep shift
T, aligning the quantized marginal distribution at t with the full-precision marginal distribution at
7. This distribution-perserving perspective removes the reliance on specific stochastic samplers and
generally applies across various generative models with Gaussian conditional paths.

Absorbing Quantization Error by Timestep Shift In diffusion models, the reverse process
po(xi—1 | @) reconstructs x;_1 from the noisy sample x; by leveraging an estimate &, of the clean
data x(, as formalized in Eq. 4. When the model is quantized, the prediction &g is perturbed by
quantization noise (Eq. 11), after correction (Eq. 12), yielding a modified estimate &{,. Consequently,
the reverse process distribution under quantization becomes:

po(Ti—1 | 1) = o (@1 | @e, 80) = N (2e—1;5 fue(@e, B0), (0F + CioZ,)I), 15)
where
A — o2\
Ci = Var — \/(1 T o¢)G: (16)
- t

and ait denotes the variance of the independent quantization residual at timestep ¢. Notably,
quantization noise does not alter the mean of the reverse distribution but inflates its variance by an
additive term C? af’t, reflecting the uncertainty introduced by model quantization.

Thus the induced conditional marginal distribution under quantization is

q/(mt_1|:1:0) = ./\f(mt_l; \/&t—l o, (1 — @t—l + 012062,,5)1) . (17)

We see that the mean matches the original forward process, but the variance includes an additional

quantization-dependent term C7o?,. As a result, quantized marginal distribution ¢’ (2¢_1|20) no

longer coincides with the forward marginal of any discrete timestep in the original diffusion schedule.
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To restore equivalence, we introduce a scaling factor Cs and a shifted timestep 7 > ¢ — 1 such that:
q(02m7|5130) :N(CQ:IET;CQ\/@T:EQ,CQQ(l — &T)I) . (18)

It can be shown that setting C = /1 + Cf02, and &, = & _1/C3 makes ¢/(;_1|xo) and

q(Cax,|xo) statistically equivalent. This establishes quantization as a timestep shift in diffusion
process.

Deformable Noise Scheduler Building on this insight, we introduce the Deformable Noise Sched-
uler (DNS), which maps quantized diffusion states to adjusted timesteps in the full-precision schedule.
From Eq. 18, the mapping ® is:

zr = P(xi—1) = a1 /Co. (19)

Direct application, however, faces two challenges: (i) 7 is typically non-integer, complicating
integration into discrete samplers, and (ii) rounding 7 introduces additional error and potentially extra
denoising steps.

To avoid this, we redesign the scheduler by redefining the variance schedule at the previous timestep
in the quantized process as a;_;. From Eq. 18, we obtain:

G = —t b (20)

Solving Eq. 20 for &}, aligns 7 with ¢ — 1, ensuring that quantized updates maintain consistent with
the original diffusion timesteps.

DNS thus dynamically adapts the noise schedule according to a?,t, preserving distributional equiv-

alence without introducing additional steps or overhead. By the same reasoning, DNS naturally
extends to flow-matching with Gaussian conditional paths (see Appendix A.3).

5 EXPERIMENTS

5.1 SETTINGS

Models and Datasets We benchmark our method using LDM-4 (Rombach et al., 2022), DiT-
XL (Peebles & Xie, 2023), and FLUX.1 (Labs, 2024) (Flow-matching). Following previous works (Li
et al., 2025), we randomly sample 3,000 text prompts from COCO Captions 2014 (Chen et al.,
2015) for calibration. This calibration set is used to determine the quantization parameters and
estimate noise characteristics across all models. For our evaluation datasets, we use ImageNet for
class-conditional generation. For text-to-image generation, we use the MJHQ-30K dataset (Li et al.,
2024). Our experiments were conducted on a NVIDIA A100-40G GPU. However, it should be noted
that our method does not require additional memory usage, as the main storage cost is about network
parameters. Both LDM and DIT-XL can run on smaller GPUs.

Baselines We compare our method with several PTQ techniques. (1) LDM-4: Tested with 20
steps, guidance scale 3.0, and 256x256 resolution. We compare the FP16 model, Q-Diffusion
(W4AS8) (Li et al., 2023), and its combination with PTQD (He et al., 2023). (2) DiT-XL: Evaluated
with 20 steps, guidance scale 1.5, and 256x256 resolution. We compare the FP16 model, PTQ4DiT
(WB8AS, W4A8) (Wu et al., 2024), and its combination with PTQD. (3) FLUX.1: Tested with 20
steps, guidance scale 3.5, and 256x256 resolution. We compare the FP16 model and SVDQuant
(W4A4) (Li et al., 2025). PTQD does not support flow-matching models.

Metrics Following previous works (Li et al., 2025), we evaluate generation quality using several
metrics. Fréchet Inception Distance (FID (Heusel et al., 2017; Parmar et al., 2022)) and sliding Fréchet
Inception Distance (sFID (Ding et al., 2022)) are particularly well-suited for reflecting distribution
similarity, as it measures the distance between feature distributions extracted from generated and real
data using a pre-trained neural network. Inception Score (IS (Salimans et al., 2016)) aims to assess
quality and diversity. CLIPScore (CLIP (Hessel et al., 2021)) aims to measure text-image alignment.
Image Reward (IR (Xu et al., 2023)) aims to approximate human judgment. We also employ Peak
Signal Noise Ratio (PSNR) to measures pixel-level trajectory difference, but this metric cannot
validate whether the final outputs achieve better distribution preservation or generation quality. Note
that in class-conditional generation we use the tag name with scientific nomenclature to calculate IR.
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Figure 7: We tested the results on several models (including diffusion and Flow-matching) and
compared the results of our method with FP, PTQ, PTQ+PTQD. Numbers in brackets are FID|.

Table 1: Performance comparison across different models

Evaluation Metrics
FID| sFID] ISt CLIPt IRT PSNR?
FP16 - 11.49 999 104.74 3191 0.134 -

LDM-4 W4A8 Q-Diffusion 10.68 13.71 101.95 3197 -0.014 22.84
W4A8  w/PTQD 1032 12.39 100.84 31.89 -0.031 23.13
WA4A8 w/ours 9.81 942 10240 3191 0.015 23.10

FP16 - 9.81 21.11 76.09 29.84 -0.349 -

PTQ4DiT  9.02 1842 76.18 29.85 -0.345 26.87
WS8A8  w/PTQD 8.03 1690 78.66 30.04 -0.338 26.04
w/ours 8.00 16.81 7898 30.00 -0.342 2643

PTQ4DiT  9.83 17.52 70.79 2992 -0.508 17.42
W4A8  w/PTQD  14.01 17.13 64.67 29.73 -0.609 16.32
w/ours 851 16.64 72.65 30.01 -0.484 17.43

BF16 - 22.64 5423 24.15 2930 0.900 -

W4A4 SVDQuant 2295 53.64 23.80 29.21 0.877 2221
W4A4 w/ours 22,78 53.15 24.01 2921 0.890 2192

Model Bit Method

DiT-XL

FLUX.1
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Table 2: Performance comparison of different

. L Table 3: Effect of different components
variance estimation methods

Model Method FID| IRT PSNR?T

Model Method FID] IRT  PSNRt
base 10.61 -0.01 22.81

M/_%D g.gg 8.812 gg-(l)g LDM.4 tCNC 1032 -0.031 23.13
. . . +DNS 10.02 0.009 22.83
LDM-4  IQR ~ 981 0.015 23.10 +DCNC 9.81 0.015 23.10

KUS 9.85 0016  23.12
KDE 9.83 0.012  23.10

5.2 MAIN RESULTS

We present our main results in Tab.l and Fig.7. Observing our experimental results, we find
substantial improvements in generation quality metrics including FID (8.1%-13.4% improvement), IS,
and IR, demonstrating that our method effectively preserves the original data distribution. Although
PSNR decreases slightly in some settings (0.1%-1.6%), CLIP scores remain essentially unchanged (
< 0.2%), confirming that semantic alignment with text conditions is preserved. Since CLIP scores
confirm semantic consistency, the PSNR differences reflect different high-quality sampling paths
under identical semantic constraints, not semantic drift(worse CLIP) or quality loss(worse FID).

Specifically, for LDM-4 quantized to W4A8 with Q-Diffusion, our approach outperforms both the
baseline quantized model and PTQD, improving FID from 10.68 to 9.81 and IR from -0.014 to 0.015.
For DiT-XL with PTQ4DiT at W8AS8 and W4AS8, PTQD is slightly stronger at W8AS but exhibits
marked instability at W4AS and fails to produce acceptable results; in contrast, our method is robust
at both precisions, improving FID from 9.02 to 8.20 (W8AS) and from 9.83 to 8.51 (W4AS8). For
FLUX.1 under flow matching with SVDQuant at W4A4, even where the baseline quantization method
performs exceptionally close to full precision, our method applies directly and further improves
results, reducing FID from 22.95 to 22.78 and increasing IR from 0.877 to 0.890. More visualizations
are provided in Appendix A 4.

5.3 ABLATION

Ablation of Optimization Methods As shown in Tab. 3, we conduct a systematic ablation study to
evaluate the contribution of each component in our framework. Starting from the W4AS8 baseline
quantized model (with Q-Diffusion) and applying CNC preprocessing, we progressively incorporate
our proposed techniques to demonstrate their effectiveness. First, the DNS absorbs quantization
noise through a timestep shift, adjusting the diffusion schedule to preserve the original denoising
distribution. Second, the DCNC refines noise estimation by more accurately modeling the statistical
properties of quantization errors.

Variance Estimation As shown in Tab. 2, we test five statistical methods for variance estimation:
standard deviation, mean absolute deviation (MAD), interquartile range (IQR), kurtosis-based cor-
rection (KUS), and kernel density estimation (KDE). It can be seen that IQR demonstrates best
performance on multiple metrics simultaneously.

Uniform Weight Fig. 6 shows our experiments with different strength of correction (W,,) ranging
from O to 1. We observed an interesting trade-off: higher W,, values improve generation quality (FID)
but reduce similarity to full-precision outputs (PSNR). We select W,, = 0.2 for our experiments,
as this value achieves a favorable balance between maintaining reasonable similarity while still
improving the generation quality.

6 CONCLUSION

In this paper, we have introduced a novel quantization error absorbing method for diffusion models
that effectively mitigates quality degradation after quantization. Unlike previous method, our method
is distribution-preserving: it explicitly aligns the quantized model’s process distribution with the
unquantized diffusion distribution. And our solution works across stochastic, deterministic, and
Flow-matching frameworks with Gaussian conditional probability paths. Extensive experiments
validate that our method significantly improves generation quality in quantized diffusion models
while maintaining computational efficiency.
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A APPENDIX

A.1 DETAILS OF KURTOSIS-BASED UNIFORM NOISE COMPENSATION

Kurtosis measures the "tailedness" of a probability distribution, indicating whether data has heavy
tails (more outliers) or light tails compared to a normal distribution. For a random variable X with
mean i, its kurtosis is defined as:

E[(X — )]

T EE R .

A positive kurtosis suggests heavier tails and a sharper peak, while a negative kurtosis indicates
lighter tails and a flatter distribution. For instance, a Gaussian variable has a kurtosis of O while that
of a uniform variable is -1.2.
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To compensate for the positive kurtosis #,, of residual noise with variance o2, we introduce uniform

noise with variance UZ and kurtosis «,, < 0. Given that the two are independent, the kurtosis of their
summation can be easily obtained:

HO~U§+KU-U§

Rnpew = (gg N 03)2 (22)
Setting K¢ to zero and substituting x,, = —1.2, we have:
Sko

o2 =o2. g (23)

Consequently, the compensated noise has a variance of 02, = 02 - (1 + 4/ 5%) and a kurtosis of
0, which can be regarded as a Gaussian distribution.

A.2 EXTENDED DETAILS AND SUPPLEMENTARY MATERIAL FOR THE MAIN DERIVATION

In Sec. 4.1, I derived the transformation function 7'. Next, I will provide a detailed derivation of the
transformation function 7.

From Eq. 8 and Eq. 11, we have:

Elg(mﬁt) _ (24)

Following the idea of PTQD, we can treat the latter term as random noise, % ~ 1. Exper-

iments show that 79 has higher kurtosis than Gaussian noise. Therefore, we introduce a uniform
distribution component. Combined with compensation using Eq. 13:

A,Eg (act, t)

T p s U000 = A6 (0,00:) ~ N(0,02,) (25)

In practice, we introduce a factor W, to control the final proportion added. The analysis of W, is
presented in Sec. 5.3. Thus, we can formulate our improved transformation 7" as Eq. 14:

_ GIQ(wh t)

T(eg(xe,t) = T T W U(0,02) (26)
ANeg(xy,t

= ep(x¢, 1) %;;) + W, -U(0,0,) 27

= eg(x¢,t) + AL (0,0¢¢) (28)

where o ; and k are statistically computed from the calibration.

When employing a quantized model, quantization introduces parameter perturbations that manifest as
errors in noise prediction. The noise predicted by quantized model can be represented as Eq. 11:

cle(wt’ t) = 66(:1:t7 t) + Aeg (mtv t)

where €g(x;, t) represents the original network prediction, € (., t) represents the quantized network
prediction, and A, (x;,t) captures the quantization-induced error.

To ensure that the noise distribution introduced by quantization errors approximates a Gaussian
distribution, we apply a transformation 7" to this error function Eq. 12:

T(Gg(wtﬂ t)) = €p (wta t) + A/E/g (07 Je,t)

where A” (0,0 ,) follows a Gaussian distribution with mean 0 and variance o2, that depends on the
timestep .
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Substituting Eq. 12 into Eq. 3, we obtain:

)= —(xr — V1 — aT(ep(x, 1)) (29)

-5~

—
(2, — VT — areg(@1,1) — Yt A (0,0,,) (30)

Vay
vi—-aoy
WAEB(O,UEJ) (31)

where the estimation of & using the quantized model, denoted as &{,. Consequently, the reverse
process under quantization is shown as Eq. 15:

/ Ty — /x|
pg(wt,l | ﬂ)t) :N <\/O_lt15136 + 1-— ap_1 — O't2 . H’o—?]l) (32)
-

=N <Wt_la:0 +4/1 =@, —o?- ””t_l\/ﬂ;”o + C1A” (0,0¢4), afI> (33)
- &g

=N <\/o7t_1a:0 /1=y —o?- % Vogwo a§1+cfa§t1) (34)
- G

When using the DDIM sampler for deterministic sampling, o; = 0.

2

=Ty —

Then we derive the marginal distribution ¢’ (2:_1|®¢) by integrating over the intermediate variable
Te:

¢ (mi1|ao) = / 4o (o], o) - qla|@o) dax: (35)

Rigorously deriving this integral is quite complex, so we first provide a simplified derivation. We
need to know that any linear combination and marginalization of Gaussian distributions remains
Gaussian, allowing us to consider the mean and variance of the integral result separately.

Observing Eq. 34, we find that quantization only affects the variance part of ¢’ (x:—1|x+, o), while
the mean part remains unchanged.

First is mean analysis: Since the added variance terms have zero mean, by the law of total expectation,
the marginal mean remains unchanged:

Elq (zi-1]z0)] = BBl (:—1|2t, 20)]|@0] = vVAr—120 (36)
Then is Variance Analysis: We apply the law of total variance:
Varlg (z1—1]a0)] = E[Varlg' (@121, @0)]|@o] + Varlg' (E[2i—1 |z, o)]|zo] (BN
since the first term’s independent of x;:
Eloi I + CiolIz|xo] = (07 + Ciol)1 (38)

Since the added variance terms have zero mean, the second term remains consistent with the original
diffusion process:
Var[E[q (21|21, o) |o] = (1 — &1 — )1 39)

Therefore, the final integral result is Eq. 17:

¢ (xi—1|wo) = N(24—1; VA 120, (1 — A1 + C02,)I)
Consequently, the quantized model marginal distribution ¢’ (s |xo) does not directly map the data
distribution of the original generative process.

To address this, we seek a transformation that maps it to the original diffusion marginal distribution
at other timesteps. We introduce a scaling factor C; and a new timestep 7 that together establish
an equivalence between the marginal distribution of the quantized model and that of the original
diffusion model. Specifically, we define Eq. 18:

q(Com-|0) = N'(Cozr; Cov/arao, C3 (1 — ar))
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Through multi-step denoising, this marginal distribution mapping ensures that the final generated
distribution matches the original model’s distribution. To make g(x}_;|z¢) and ¢(Cax,|x) in
Eq. 17 and Eq. 18 statistically equivalent, we set their means and variances equal respectively.

Therefore, we solve the system of equations:

{\/ﬁ = Cav/ar (mean equality) (40)

(1—a4-1)+ Cia?, = C3(1 — ;) (variance equality)

Solving this system yields:

Cy=1/1+C22, and a, = ag; (1)
2

While PTQD (He et al., 2023) also attempt to absorb quantization error into noise terms, our
method provides a principled mathematical framework that explicitly maps the quantized distribution
back to the forward diffusion process by timestep shift. The resulting compensation mechanism is
theoretically guaranteed to perform effectively across stochastic sampling, deterministic sampling,
and Flow-matching with Gaussian conditional probability paths. Through absorbing quantization
error by timestep shift, our approach provides a more fundamental understanding of quantization
in diffusion models while offering practical advantages in implementation flexibility and sampling
robustness.

Based on the above derivations, the implementation is given in Algorithm | and Algorithm 2.

Algorithm 1: Deformable Noise Scheduler Calibration

Input: Timesteps sequence { (¢, tprv) }, Calibration set C' = {xo}
Output: Calibrated alpha values {&f_(¢)}, slopes {k(t)}, uniform variances {o2(t)}

Initialize C, < (), Cac + 0;
for each (t, previous t) € timesteps do
for each xo € C do
¢ < AddNoise(zo, t);
eg(x+) < OriginalNetwork(x;);
€p(x¢) < QuantizedNetwork(z);
Aeg  ey(xs) — €g(x);
C..append(eg(x;)), Cac.append(Aey);
k(t),d(t) < LinearRegression(Cy, Cac);
Care < ComputeResiduals(Ce, Ca, k(t),d(t));
2,0 ¢ Variance(Care);

Ko < Kurtosis(Car¢);
x 1/ 282 Cpre 4 TransformationT (Cave, k(t), Wy, o2(t))

% ) Store al_, (t), k(t),

_ t=1_
1+C%U§,t

o
0'3 (t) — UeZ,t,o
0?2, + Variance(Carc) &f_; + NewtonSolve (o_zt_l =
A GE

return {af_,(t)}, {k(t)}, {o2(t)}

Note: Linear regression models Aeyg = k(t) - €9 + d(t) + residual, but d(t) is usually very close
to 0

A.3 DETAILS OF FLOW-MATCHING DERIVATION

In FLUX.1, the forward process is defined as:

mt:(l—Ut)'m0+Ut'5 (42)

where ¢ ~ N (0,I) and oy represents the noise level at time ¢.
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Algorithm 2: Deformable Noise Scheduler Inference

Input: Calibrated parameters {a] ,(t)}, {k(t)}, {o2(t)}, Timesteps sequence {(t, previous t)}
Output: Generated sample x

Initialize 1 ~ N (0, I);
Ty — TS
for each (t,_) € timesteps do
ey, t) < QuantizedNetwork (& current, t);
€p < TransformationT (e (x¢, t), k(t), Wy, 02(t)) &g « T =%c0 V\/lo%a“ee
a1 < DiffusionStep(x¢, &g, t,n—1 = af_,(t), 00 = 0) @4 < 413
return x;

Note: Next loop uses tprey (nOt tgrev) as the current timestep

The denoising process follows a discrete update rule:

mtnezt = Tt + AU * Vo (mi7 O-i) (43)

where Ao = oy — oy and vg(xy, 0y) is the velocity field predicted by the model.

next

When employing a quantized model, the velocity field prediction contains quantization-induced
errors:
vp (e, o) = vo(xt, 00) + Ave(xs, 01) (44)

To ensure that this error approximates a Gaussian distribution, we apply transformation 7":
T(Ué(a?t, o1)) = ve(xt,01) + A/UO(Q Tu,t) (45)

where A’vg (0, 0, ¢) ~ N(0, critl).

The denoising process with quantization errors becomes:

!

tnext

= ¢ + AO’ . [’U@(mt, O't) =+ Alvg((), Uv,t)]

/ (46)
= Ttpepr T Ao - A'vg (Oa Uv,t)
Substituting the forward process expression for x;:
Tt = (1= Otyeny) @0+ Oty €+ A0 - Avp(0,00,¢) 47)

Drawing from our diffusion derivation, we seek a transformation that maps w,@nm back to the
standard forward path. We introduce a scaling factor C and a new timestep 7 that together establish
an equivalence between the quantized output and a point on the original path. Specifically, we define:

Co-xr =C2-(1—0,)xo +C2- 0,6 48)

Then we can establish that when Co = (1 —o0y,,,,) +4/07 ., + Ac%0l ,and o = (Cy + 0y, —

1)/Cs, = and Cyx, become statistically equivalent, with matching coefficients for =y and
equivalent variance terms for the noise components oy, ., - € + Ao - A'vg(0, 0y 1).

Importantly, neural networks trained for flow-matching are designed to estimate the velocity field
pointing from any noisy sample toward the clean data. Since the network is trained to predict
vg(xs, 01) = Ele|xy, o] for any valid noise distribution, it can still function effectively when the
noise distribution changes from ¢ to ¢’. The model will naturally predict the velocity field that directs
x, toward x(, allowing our transformation to effectively absorb quantization errors.
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A.4 VISUALIZATION RESULTS

In this section, we demonstrate the visualisation results by different models. (1) LDM-4: Tested with
20 steps, guidance scale 3.0, and 256x256 resolution. We compare the FP16 model, Q-Diffusion
(W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 8.
(2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256x256 resolution. We compare the
FP16 model, PTQ4DiT (W4A8), its combination with PTQD and its combination with ours. The
results are shown in Fig. 9. (3) FLUX.1: Tested with guidance scale 3.5, 20 steps at 256x256 and
1024x1024. We compare the FP16 model SVDQuant (W4A4) and its combination with ours. PTQD
does not support Flow-matching. The results are shown in Fig. 10 and Fig. 11.

FP16 Q-Diffusion Q-Diffusion + PTQD  Q-Diffusion+ Ours

Label: great grey owl, great gray owl, Strix nebulosa

Label: robin, American robin, Turdus migratorius

Label: goldfish, Carassius auratus

Figure 8: Tested the LDM-4 model with Q-Diffusion quantization to W4AS8 precision. The resolution
of the generated image is 256
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PTQ4DiT PTQ4DIT + PTQD  PTQ4DiT + Ours

Label: great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

Label: white stork, Ciconia ciconia

Label: brown bear, bruin, Ursus arctos

Label: bee eater

Figure 9: Tested the DIT-XL model with PTQ4DiT quantization to W4AS8 precision. The resolution
of the generated image is 256
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SVDQuant SVDQuant + Ours

/|

Prompt: Palm trees, ocean, beach, beautiful surreal day, amazing sunset, relaxation, with lion on beach

Prompt: A portrait of a European Bee Eater, inspired by Henriette Grindat, insanely detailed and intricate

Prompt: A Good and friendly snowy owl in the land of ice and snow, image for a fairy tale book

Figure 10: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision. The resolution
of the generated image is 256
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BF16 SVDQuant

SVDQuant + Ours

Prompt: Dog driving sports car

Prompt: Face rooster funny black rooster very skinny and dirty talking with you on face time realistic 4k

Prompt: A white direwolf with crimson red eyes prowling around the red leaf forest on a cold and snowy winter day

Figure 11: Tested the FLUX.1 model with SVDQuant quantization to W4 A4 precision. The resolution
of the generated image is 1024
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Table 4: Additional experiments across various sampling steps and guidance scales

LDM-4 Method FID| sFID|] ISt CLIP{ IRt PSNR?t
FP16 1149 999 10474 3191 0.134 —

scale=3.0, steps=20 W4AS8 Q-Diffusion 10.68 13.71 101.95 31.97 -0.014 22.84
W4A8 w/PTQD 10.32 1239 100.84 31.89 -0.031 23.13
W4A8 w/ours 981 942 10240 3191 0.015 23.10

FP16 12.05 14.63 9842 3191 -0.095 —

scale=3.0, steps=10 W4AS8 Q-Diffusion 11.26 21.24 92.59 31.74 -0.298 24.88
W4A8 w/PTQD 13.31 38.89 85.60 31.45 -0.467 20.74
W4AS8 w/ours 10.43 14.94 93.29 31.76 -0.269 25.29

FP16 10.66 9.15 10632 31.81 0.215 —

scale=3.0, steps=40 W4AS8 Q-Diffusion 10.61 11.43 104.79 3195 0.093 21.88
W4A8 w/PTQD 10.85 1092 102.12 31.87 -0.047 22.05
W4A8 w/ours 932 841 10475 31.83 0.112 21.89

FP16 5194 1099 2191 20.01 -2.173 —

scale=0.0, steps=20 W4A8 Q-Diffusion 59.95 20.32 20.52 20.32 -2.192 26.67
W4AS8 w/PTQD 58.64 20.34 20.12 2047 -2.201 25.69
W4A8 w/ours 57.47 19.39 20.66 2030 -2.168 26.20

FP16 20.89 1531 11455 3198 0.382 —

scale=6.0, steps=20 W4A8 Q-Diffusion 20.18 15.77 114.34 32.16 0.289 19.55
W4A8 w/PTQD 1993 13.04 113.17 32.18 0.243 19.02
W4A8 w/ours 18.63 10.57 115.39 3233 0.322 19.22

We also conducted additional experiments across various sampling steps (10, 20, 40) and guidance
scales (0, 3.0, 6.0) and result is shown as Tab. 4.

Our supplementary experiments show that our method consistently maintains superior FID, sFID, IS,
and IR scores across all tested configurations. The results demonstrate that our approach remains
effective regardless of the number of DDIM steps or guidance scale settings, indicating robust
performance across different inference schedules.

The bold part indicates that w/ours is better than other W4A8 indicators.
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