
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ABSORBING QUANTIZATION ERROR BY
DEFORMABLE NOISE SCHEDULER FOR DIFFUSION
MODELS

Anonymous authors
Paper under double-blind review

FLUX.1-dev BF16

Efficiency: 111.7s IR: 1.01

SVDQuant w/6-bit LoRA

Efficiency: 12.9s IR: 0.46

After DNS (Ours)

Efficiency: 12.9s IR: 0.66

Prompt: tall skinny young forest spirit. Young black male features with aspects of the bear spirit. Wearing one shoulder pauldron of a knight,
and carrying a small steel sword. On the edge of a magical Japanese forest. Studio ghibli style. Final fantasy 7 style.

Prompt: An anthropomorphic Wheaton terrier sitting by a fireplace in an opulent room
holding a butcher knife. Photorealistic hdr canon 5d 28mm wide low angle

Figure 1: Our method offers a plug-and-play approach to improve the quanti-
zation performance of diffusion models (including Flow-matching), enabling
seamless integration with existing PTQ methods without compromising infer-
ence speed.

ABSTRACT

Diffusion models deliver state-of-the-art image quality but are expensive to deploy.
Post-training quantization (PTQ) can shrink models and speed up inference, yet
residual quantization errors distort the diffusion distribution (the timestep-wise
marginal over xt), degrading sample quality. We propose a distribution-preserving
framework that absorbs quantization error into the generative process without
changing architecture or adding steps. (1) Distribution-Calibrated Noise Com-
pensation (DCNC) corrects the non-Gaussian kurtosis of quantization noise via a
calibrated uniform component, yielding a closer Gaussian approximation for robust
denoising. (2) Deformable Noise Scheduler (DNS) reinterprets quantization as a
principled timestep shift, mapping the quantized prediction distribution xt back
onto the original diffusion distribution so that the target marginal is preserved. Un-
like trajectory-preserving or noise-injection methods limited to stochastic samplers,
our approach preserves the distribution under both stochastic and deterministic
samplers and extends to flow-matching with Gaussian conditional paths. It is
plug-and-play and complements existing PTQ schemes. On DiT-XL (W4A8),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

our method reduces FID from 9.83 to 8.51, surpassing the FP16 baseline (9.81),
demonstrating substantial quality gains without sacrificing the efficiency benefits
of quantization.

1 INTRODUCTION

Diffusion models have become the leading paradigm for high-quality generative modeling, powering
applications across image synthesis (Ho et al., 2020; Rombach et al., 2022; Labs, 2024), style trans-
fer (Qi et al., 2024), video generation (Brooks et al., 2024), 3D reconstruction (Zhou et al., 2024), and
robotics (Chi et al., 2024). Their rapid scaling– from Stable Diffusion’s 800M parameters (Rombach
et al., 2022) to SDXL’s 2.6B (Podell et al., 2023), and most recently to FLUX.1’s 12B (Labs, 2024)–
has driven remarkable improvements in fidelity and controllability. However, these gains come at a
steep computational cost: inference with large models demands tens of gigabytes of GPU memory
and seconds per image, limiting deployment in real-time and resource-constrained settings.

Model quantization is a practical solution to this bottleneck. By reducing weights and activations from
floating-point to low-bit integer, quantization compresses model size and accelerates inference (Jacob
et al., 2017; Nagel et al., 2021). Recent post-training quantization (PTQ) methods have successfully
reduced diffusion models to 8, 4 or even 1-bit precision (Li et al., 2023; Wu et al., 2024; Li et al.,
2025); (Huang et al., 2024; Shang et al., 2023; Ye et al., 2024; Wang et al., 2024; Zheng et al.,
2024). Yet, unlike discriminative networks or autoregressive language models, diffusion models are
especially sensitive to quantization. Errors accumulate across iterative denoising steps, corrupting the
assumed Gaussian noise distribution and significantly degrading sample quality (He et al., 2023).

Existing approaches attempt to mitigate this challenge by either reshaping weight distributions to
reduce quantization error (Li et al., 2023; Wu et al., 2024; Li et al., 2025) or injecting approximated
Gaussian noise to absorb residual errors (He et al., 2023). However, these methods have important
limitations: weight-reshaping strategies only preserve stepwise predictions without addressing
distributional drift, while noise-injection methods are restricted to stochastic samplers and fail on
deterministic or flow-matching frameworks (Lipman et al., 2023). Moreover, quantization noise rarely
follows an ideal Gaussian distribution, undermining the robustness of Gaussian-based corrections.

8

10

12

14

16

18

20

22

24

26

28

FP PTQ PTQD DNS(Ours)

F
ID

Quantization Method

11.49 10.68

10.32

9.81

9.81 9.83

14.01

8.51

22.64

27.16
26.22

LDM-4 + Q-Diffusion

DiT-XL + PTQ4DiT

SVDQuant w/16bit LoRA

N/A

22.95

22.78

SVDQuant w/6bit LoRA

N/A

Figure 2: Comparison of FID scores across quan-
tization methods for different backbones.

In this work, we introduce a distribution-
preserving quantization framework that directly
absorbs quantization error into the diffusion pro-
cess. Our approach consists of two key compo-
nents: (i) Distribution-Calibrated Noise Com-
pensation (DCNC): corrects the non-Gaussian
kurtosis of quantization noise through a cal-
ibrated uniform component, yielding a more
faithful Gaussian approximation. (ii) De-
formable Noise Scheduler (DNS): reinterprets
quantization effects as a timestep shift in the
diffusion process, aligning quantized prediction
with the original diffusion distribution without
modifying model architecture or adding infer-
ence overhead. This framework preserves the
diffusion distribution under quantization, mak-
ing it compatible with both stochastic and de-
terministic samplers as well as flow-matching
models. It operates as a plug-and-play solution,
easily integrated with existing PTQ methods. Empirically, our method consistently improves genera-
tion quality across diverse backbones (see Fig. 2). For example, on DiT-XL our method reduces the
FID of PTQ4DiT (W4A8) from 9.83 to 8.51, surpassing even the FP16 baseline (9.81).

In summary, our contributions are threefold: (1) A principled analysis showing that quantization can
be reinterpreted as timestep shifts in the diffusion process. (2) A deformable noise scheduler and
distribution-calibrated correction that preserve the generative distribution under quantization. (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Extensive experiments across LDM, DiT, and FLUX demonstrating consistent quality improvements
without sacrificing the efficiency benefits of quantization.

2 RELATED WORK

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) were origi-
nally formulated as stochastic processes for data generation. Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2022) later reduced the number of sampling steps, significantly accelerating the
generation process. More recently, Flow Matching (Lipman et al., 2023) has been introduced as a
deterministic alternative, powering state-of-the-art systems such as FLUX (Labs, 2024).

The backbone architecture of early diffusion models was primarily based on UNets (Rombach et al.,
2022). Diffusion Transformers (DiT) (Peebles & Xie, 2023) pioneered the use of pure transformer
architectures, leading to improved scalability and performance. Large-scale text-to-image models
such as Stable Diffusion (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al.,
2023), and FLUX (Labs, 2024) have since revolutionized content generation by pushing model sizes
larger to achieve better fidelity, diversity, and controllability.

Model Quantization for Diffusion models. Quantization reduces computational costs by represent-
ing model parameters and activations with lower-precision formats. Approaches generally fall into
two categories: quantization-aware training (QAT) (Jacob et al., 2017), which requires retraining
with quantization in the loop, and post-training quantization (PTQ) (Nagel et al., 2021), which adapts
pre-trained models with minimal calibration data. Due to the size and training cost of diffusion
models, PTQ methods are more practical and thus widely adopted.

Specialized PTQ techniques have been developed to address the unique challenges of diffusion
backbones. Q-Diffusion (Li et al., 2023) employs channel-wise quantization with explicit outlier
handling. PTQ4DM (Shang et al., 2023) and PTQ4DiT (Wu et al., 2024) design quantization
strategies tailored to their respective UNet and transformer backbones. MixDQ (Zhao et al., 2024)
adopts mixed precision to balance efficiency and quality. SVDQuant (Li et al., 2025) introduces
low-rank branches to capture residual information lost during quantization.

A different line of work, PTQD (He et al., 2023), proposes an “absorbing quantization error” strategy
that integrates quantization noise into the random noise term of stochastic samplers. While effective in
certain settings, this approach is fundamentally restricted to stochastic sampling and cannot be applied
to deterministic samplers or flow-matching frameworks that dominate modern implementations.
Moreover, the injected quantization noise often deviates from the expected Gaussian distribution,
which can misalign the diffusion process and degrade generation quality.

3 PRELIMINARY

3.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion Models (Ho et al., 2020; Song et al., 2022) are generative models based on a two-stage
process: a fixed forward noising process and a learnable reverse denoising process.

In the forward process, a clean data sample x0 ∼ q(x0) is progressively corrupted by Gaussian noise
over T timesteps via a Markov chain with a predefined variance schedule {βt}Tt=1, where 0 < βt < 1.
Define αt := 1− βt and ᾱt :=

∏t
i=1 αi. The forward transition distributions are given by:

q(xt | xt−1) = N
(√

αt xt−1, βtI
)
, q(xt | x0) = N

(√
ᾱt x0, (1− ᾱt)I

)
. (1)

The reverse process aims to recover x0 from xT by learning a parametric approximation pθ(xt−1 | xt)
to the true reverse distribution. Ho et al. (2020) (DDPM) model this reverse process as a Gaussian
with fixed variance, trained to predict the noise added at each step. Song et al. (2022) (DDIM)
generalize this by introducing a family of non-Markovian reverse processes parameterized by a noise
schedule {σt}Tt=1, enabling faster sampling with deterministic or stochastic trajectories.

Specifically, for any t > 1, the conditional distribution of xt−1 given xt and clean sample x0 is:

qσ(xt−1 | xt,x0) = N
(
µ̂t(xt,x0), σ

2
t I
)
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where σt ≥ 0 controls the stochasticity of the reverse step and µ̂t(xt,x0) =
√
ᾱt−1 x0 +√

1− ᾱt−1 − σ2
t ·

xt−
√
ᾱt x0√

1−ᾱt
. When σt =

√
(1− ᾱt−1)/(1− ᾱt) ·

√
1− ᾱt/ᾱt−1, this recov-

ers the DDPM posterior; when σt = 0, the process becomes deterministic (DDIM).

Since x0 is unknown during sampling, it is estimated from xt using a noise-prediction network
ϵθ(xt, t). The denoised estimate x̂0 is obtained via:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt εθ(xt, t)

)
. (3)

The learned reverse process is then defined by substituting x̂0 for x0 in Eq. 2:
pθ(xt−1 | xt) = qσ(xt−1 | xt, x̂0), t > 1. (4)

This leads to the unified sampling update rule:

xt−1 =
√
ᾱt−1 x̂0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱt x̂0√

1− ᾱt

+ σt z, z ∼ N (0, I). (5)

Flow matching (Lipman et al., 2023) generalizes diffusion via a continuous-time stochastic inter-
polant between Gaussian noise ϵ ∼ N (0, I) and data x0. A simple linear interpolant is

xt = (1− t)x0 + tϵ, t ∈ [0, 1]. (6)

The model learns a velocity field vθ(xt, t) such that the probability flow ODE (PF-ODE)
dxt

dt
= vθ(xt, t) (7)

induces marginal distributions that match that of Eq. 6 for all time t ∈ [0, 1]. Sampling from the model
thus reduces to solving the PF-ODE in Eq. 7 using standard ODE solvers, e.g., Euler integration,
starting from Gaussian noise ε ∼ N (0, I) (Lipman et al., 2023), which matches the ground-truth
dynamics. Sampling then amounts to integrating this ODE deterministically from noise to data.
Flow matching, owing to its high scalability, has already been adopted in modern text-to-image
models such as FLUX (Labs, 2024). Flow matching thus unifies diffusion-style objectives with a
deterministic transport formulation, and underlies modern large-scale systems such as FLUX (Labs,
2024).

3.2 QUANTIZATION NOISE CORRECTION AND ABSORPTION

Quantizing diffusion models inevitably introduces quantization error. This error can be systemati-
cally decomposed into two parts: (i) a correlated component that scales linearly with the original
network output ϵθ(xt, t), and (ii) an independent component ∆′ϵθ(xt, t) that is uncorrelated with the
prediction. This decomposition, referred to as Correlation Noise Correction (CNC), can be written as:

∆ϵθ(xt, t) = kϵθ(xt, t) + ∆′ϵθ(xt, t) (8)

where ∆ϵθ(xt, t) denotes total quantization error, k is a scalar correlation coefficient, and ∆′ϵθ(xt, t)
represents the residual independent component. PTQD (He et al., 2023) approximates ∆′ϵθ(xt, t) as
Gaussian noise, but in practice this assumption is often inaccurate. The variance of the independent
noise, denoted σ2

q , can instead be empirically estimated from representative data samples.

In stochastic sampling process, sampler involves adding random noise in Eq. 5. PTQD absorbs the
disentangled independent quantization error into this random term, effectively replacing:

σtz → σtz − βt√
αt

√
1− ᾱt(1 + k)

∆′ϵθ(xt, t) (9)

This leads to a modified update rule:

xt−1 =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz − βt√

αt

√
1− ᾱt(1 + k)

∆′ϵθ(xt, t) (10)

In summary, PTQD attempts to (i) preserve the injected noise distribution by treating the disentangled
quantization residual as Gaussian, while simultaneously (ii) preserving the stepwise prediction
trajectory. However, this hybrid objective can degrade performance and reduce robustness, and it is
applicable only to stochastic sampling. Moreover, empirical evidence shows that the independent
quantization residual ∆′ϵθ has a large deviation from a Gaussian distribution. Directly using it may
undermine the theoretical assumptions of the method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Time

DDIM w/ Quantization

Redesign
Schedular

+ =

DCNC & Transformation Ф

AQE Timestep Shift

Quantization

DNS (Ours)

Original

Figure 3: Overview of Deformable Noise Scheduler (DNS). (a) Top: Quantization perturbs the
noise prediction (red), shifting each step’s marginal away from the full-precision distribution (blue),
yielding ϵ′ = ϵ+∆ϵ. These quantization errors are absorbed into the diffusion process, preserving
the original prediction distribution. (b) Bottom: DNS interprets effect as timestep shift. The quantized
distribution q′(xt−1) is mapped to original distribution q(xτ) via DCNC and transformation Φ.
Redesigning scheduler sets a new α so that τ aligns with t− 1, maintain original diffusion timesteps.

4 METHOD

To address these limitations, we develop a theoretical framework that analyzes how quantization
perturbs a diffusion model’s predictive distribution and derives distribution-preserving corrections for
both the noise statistics and the time parameterization. In Sec. 4.1, we show that the uncorrelated
component of the quantization error is heavy-tailed (exhibits excess kurtosis relative to Gaussian
noise) and mitigate this mismatch by adding a calibrated uniform correction with lower kurtosis. In
Sec. 4.2, we prove that the distribution induced by a quantized model can be mapped to an equivalent
non-quantized distribution through an appropriate timestep shift (Fig. 3), enabling the approach to be
applied to any generative model with conditionally Gaussian marginals. A more detailed derivation is
provided in Appendix A.2.

4.1 GAUSSIAN APPROXIMATION OF QUANTIZATION NOISE

When the model is quantized, parameter perturbations introduce errors in the predicted noise. The
output of the quantized model can be expressed as:

ϵ′θ(xt, t) = ϵθ(xt, t) + ∆ϵθ(xt, t) (11)

where ∆ϵθ(xt, t) is a quantization-induced error.

Prior work (He et al., 2023) applied a disentangling transformation (Eq. 8) to separate ∆ϵθ(xt, t)
into an “independent” component ∆′ϵθ(xt, t), which was then approximated as Gaussian noise and
absorbed into the stochastic sampling term. However, our empirical analysis (see Fig. 4) shows
that the residual noise obtained in this manner exhibits excess kurtosis relative to a true Gaussian
distribution, violating this assumption.

To correct this, we introduce a refined transformation T such that

T (ϵ′θ(xt, t)) = ϵθ(xt, t) + ∆′′ϵθ(0, σϵ,t) (12)

where the independent component ∆′′ϵθ(0, σϵ,t) is explicitly calibrated to approximate a Gaussian
distribution with mean 0 and variance σ2

ϵ,t which depends on the timestep t. We refer to this
procedure as Distribution-Calibrated Noise Compensation (DCNC). DCNC ensures that the residual
quantization noise more faithfully matches the Gaussian assumption of the diffusion process, thereby
improving stability and generation quality.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1.0 0.5 0.0 0.5 1.0
(xt, t)

0.0

0.5

1.0

1.5

2.0

2.5

fre
qu

en
cy

before DCNC
after DCNC

Figure 4: Quantization noise dis-
tribution before and after DCNC in
timestep 250

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 101 201 301 401 501 601 701 801 901

before DCNC

after DCNC

K
u

rt
o

si
s

0 100 200 300 400 500 600 700 800 900
Timestep

Figure 5: Kurtosis of quantization
noise before and after DCNC

9.87
9.81

9.75
9.63

9.47

9.42

10.68

23.17 23.1 22.9

22.56

22.05

21.17

22.84

21

21.5

22

22.5

23

23.5

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

0 0.2 0.4 0.6 0.8 1

P
S

N
R

F
ID

Uniform Weight

FID PSNR

Figure 6: Performance comparison
with different strength of correction

Distribution-Calibrated Noise Compensation To drive the excess kurtosis of the residual toward
0 (i.e., make it behave more like Gaussian noise), we add a zero-mean uniform component. Let the
residual have variance σ2

o and excess kurtosis κo > 0. Then the variance of the injected uniform term
and the resulting total variance are (derivation in Appendix A.1):

σ2
u = σ2

o ·
√

5κo/6 , σ2
n = σ2

o ·
(
1 +

√
5κo/6

)
(13)

As shown in Fig. 4 and Fig. 5, this uniform compensation substantially reduces the heavy-tailedness
of the uncorrelated quantization residual, bringing its excess kurtosis close to the Gaussian value (0).
More higher-order moments are also collected in Appendix.A.1 to demonstrate that residuals after
DCNC are closer to a Gaussian. Accurate variance estimation is important for applying Eq. 13 and
for the marginal analysis in Eq. 17. Because conventional estimators are sensitive to outliers, we use
a robust IQR-based estimate σ̂2 = (IQR/1.349)2, where IQR = Q3 −Q1 denotes the interquartile
range, with Q1 and Q3 representing the first and third quartiles. Putting this together, our calibrated
transformation is:

T (ϵ′θ(xt, t)) = ϵ′θ(xt, t)/(1 + k) +Wu · U(0, σ2
u) (14)

where k (the correlation slope) and σ2
u are estimated during calibration, U(0, σ2

u) denotes a zero-mean
uniform random variable with variance σ2

u, and Wu ∈ [0, 1] is a tunable weight that controls the
strength of the correction (see Sec. 5.3). Unless stated otherwise, all model outputs are passed through
T (·) before subsequent analysis and sampling.

4.2 DEFORMATION OF SAMPLING WITH QUANTIZATION NOISE

After applying DCNC, the residual quantization error is well-approximated as zero-mean Gaussian.
We leverage this property to absorb quantization effects into the diffusion process via a timestep
shift: instead of introduced extra noise, we preserve distributional consistency via a timestep shift
τ , aligning the quantized marginal distribution at t with the full-precision marginal distribution at
τ . This distribution-perserving perspective removes the reliance on specific stochastic samplers and
generally applies across various generative models with Gaussian conditional paths.

Absorbing Quantization Error by Timestep Shift In diffusion models, the reverse process
pθ(xt−1 | xt) reconstructs xt−1 from the noisy sample xt by leveraging an estimate x̂0 of the clean
data x0, as formalized in Eq. 4. When the model is quantized, the prediction x̂0 is perturbed by
quantization noise (Eq. 11), after correction (Eq. 12), yielding a modified estimate x̂′0. Consequently,
the reverse process distribution under quantization becomes:

p′θ(xt−1 | xt) = qσ(xt−1 | xt, x̂
′
0) = N

(
xt−1; µ̂t(xt, x̂0),

(
σ2
t + C2

1σ
2
ϵ,t

)
I
)
, (15)

where

C1 =
√
ᾱt−1 −

√
(1− ᾱt−1 − σ2

t)ᾱt

1− ᾱt
, (16)

and σ2
ϵ,t denotes the variance of the independent quantization residual at timestep t. Notably,

quantization noise does not alter the mean of the reverse distribution but inflates its variance by an
additive term C2

1σ
2
ϵ,t, reflecting the uncertainty introduced by model quantization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Thus the induced conditional marginal distribution under quantization is

q′(xt−1|x0) = N
(
xt−1;

√
ᾱt−1 x0, (1− ᾱt−1 + C2

1σ
2
ϵ,t)I

)
. (17)

We see that the mean matches the original forward process, but the variance includes an additional
quantization-dependent term C2

1σ
2
ϵ,t. As a result, quantized marginal distribution q′(xt−1|x0) no

longer coincides with the forward marginal of any discrete timestep in the original diffusion schedule.

To restore equivalence, we introduce a scaling factor C2 and a shifted timestep τ > t− 1 such that:

q(C2xτ |x0) = N
(
C2xτ ;C2

√
ᾱτx0, C

2
2 (1− ᾱτ)I

)
. (18)

It can be shown that setting C2 =
√

1 + C2
1σ

2
ϵ,t and ᾱτ = ᾱt−1/C

2
2 makes q′(xt−1|x0) and

q(C2xτ |x0) statistically equivalent. This establishes quantization as a timestep shift in diffusion
process.

Deformable Noise Scheduler Building on this insight, we introduce the Deformable Noise Sched-
uler (DNS), which maps quantized diffusion states to adjusted timesteps in the full-precision schedule.
From Eq. 18, the mapping Φ is:

xτ = Φ(xt−1) = xt−1/C2. (19)

Direct application, however, faces two challenges: (i) τ is typically non-integer, complicating
integration into discrete samplers, and (ii) rounding τ introduces additional error and potentially extra
denoising steps.

To avoid this, we redesign the scheduler by redefining the variance schedule at the previous timestep
in the quantized process as ᾱq

t−1. From Eq. 18, we obtain:

ᾱτ =
ᾱq
t−1

1 + C2
1σ

2
ϵ,t

. (20)

Solving Eq. 20 for ᾱq
t−1 aligns τ with t− 1, ensuring that quantized updates maintain consistent with

the original diffusion timesteps.

DNS thus dynamically adapts the noise schedule according to σ2
ϵ,t, preserving distributional equiv-

alence without introducing additional steps or overhead. By the same reasoning, DNS naturally
extends to flow-matching with Gaussian conditional paths (see Appendix A.3).

5 EXPERIMENTS

5.1 SETTINGS

Models and Datasets We benchmark our method using LDM-4 (Rombach et al., 2022), DiT-
XL (Peebles & Xie, 2023), and FLUX.1 (Labs, 2024) (Flow-matching). Following previous works (Li
et al., 2025), we randomly sample 3,000 text prompts from COCO Captions 2014 (Chen et al.,
2015) for calibration. This calibration set is used to determine the quantization parameters and
estimate noise characteristics across all models. For our evaluation datasets, we use ImageNet for
class-conditional generation. For text-to-image generation, we use the MJHQ-30K dataset (Li et al.,
2024). Our experiments were conducted on a NVIDIA A100-40G GPU. However, it should be noted
that our method does not require additional memory usage, as the main storage cost is about network
parameters. Both LDM and DIT-XL can run on smaller GPUs.

Baselines We compare our method with several PTQ techniques. (1) LDM-4: Tested with 20 steps,
guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8) (Li
et al., 2023), and its combination with PTQD (He et al., 2023). (2) DiT-XL: Evaluated with 20
steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W8A8,
W4A8) (Wu et al., 2024), and its combination with PTQD. (3) FLUX.1: Tested with 20 steps, guid-
ance scale 3.5, and 256×256 resolution. Since original SVDQuant have W4A4 Transformer and
W16A16 LoRA without complete quantization, we further quantized the LoRA branch of SVDQuant
to 6-bit weight. We compare the BP16 model and SVDQuant (W4A4) with W16A16 and W6A16
LoRA (Li et al., 2025). PTQD does not support flow-matching models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

FP16

(FID: 11.39)

Q-Diffusion

(FID: 10.61)

After DNS (Ours)

(FID: 9.81)

Label: brambling, Fringilla montifringilla

After PTQD

(FID: 10.32)

L
D

M
-4

FP16

(FID: 9.81)

After DNS (Ours)

(FID: 8.51)

After PTQD

(FID: 14.01)

Label: cock

PTQ4DiT

(FID: 9.83)

D
iT

-X
L

Prompt: Pokemon cards, energy, glowing, Background, minimalistic., 4k, high details, hyper detailed

F
L

U
X

.1

BF16

(FID: 22.64)

SVDQuant w/16-bit LoRA

(FID: 22.95)
After DNS (Ours)

(FID: 22.78)

PTQD does

not support
 Flow-matching

PTQD does

not support
 Flow-matching

Prompt: A dragon with Pink skin , no Fire, give a kiss to a girl

BF16

(FID: 22.64)
SVDQuant w/6-bit LoRA

(FID: 27.16)
After DNS (Ours)

(FID: 26.22)

F
L

U
X

.1

Figure 7: We tested the results on several models (including diffusion and Flow-matching) and
compared the results of our method with FP, PTQ, PTQ+PTQD. Numbers in brackets are FID↓.

Metrics Following previous works (Li et al., 2025), we evaluate generation quality using several
metrics. Fréchet Inception Distance (FID (Heusel et al., 2017; Parmar et al., 2022)) and sliding Fréchet
Inception Distance (sFID (Ding et al., 2022)) are particularly well-suited for reflecting distribution
similarity, as it measures the distance between feature distributions extracted from generated and real
data using a pre-trained neural network. Inception Score (IS (Salimans et al., 2016)) aims to assess
quality and diversity. CLIPScore (CLIP (Hessel et al., 2021)) aims to measure text-image alignment.
Image Reward (IR (Xu et al., 2023)) aims to approximate human judgment. We also employ Peak
Signal Noise Ratio (PSNR) to measures pixel-level trajectory difference, but this metric cannot
validate whether the final outputs achieve better distribution preservation or generation quality. Note
that in class-conditional generation we use the tag name with scientific nomenclature to calculate IR.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different models

Model Bit Method Evaluation Metrics

FID↓ sFID↓ IS↑ CLIP↑ IR↑ PSNR↑

LDM-4

FP16 - 11.49 9.99 104.74 31.91 0.134 -

W4A8
Q-Diffusion 10.68 13.71 101.95 31.97 -0.014 22.84

w/PTQD 10.32 12.39 100.84 31.89 -0.031 23.13
w/ours 9.81 9.42 102.40 31.91 0.015 23.10

DiT-XL

FP16 - 9.81 21.11 76.09 29.84 -0.349 -

W8A8
PTQ4DiT 9.02 18.42 76.18 29.85 -0.345 26.87
w/PTQD 8.03 16.90 78.66 30.04 -0.338 26.04
w/ours 8.00 16.81 78.98 30.00 -0.342 26.43

W4A8
PTQ4DiT 9.83 17.52 70.79 29.92 -0.508 17.42
w/PTQD 14.01 17.13 64.67 29.73 -0.609 16.32
w/ours 8.51 16.64 72.65 30.01 -0.484 17.43

FLUX.1

BF16 - 22.64 54.23 24.15 29.30 0.900 -

W4A4
w/W16 LoRA

SVDQuant 22.95 53.64 23.80 29.21 0.877 22.21
w/ours 22.78 53.15 24.01 29.21 0.890 21.92

W4A4
w/W6 LoRA

SVDQuant 27.16 58.15 22.68 28.89 0.693 16.17
w/ours 26.22 57.36 23.58 29.01 0.709 15.87

5.2 MAIN RESULTS

We present our main results in Tab.1 and Fig.7. For class-conditional experiments we generate
30,000 images, and for text-to-image (MJHQ) we generate 10,000 images for evaluation. Observing
our experimental results, we find substantial improvements in generation quality metrics including
FID (8.1%-13.4% improvement), IS, and IR, demonstrating that our method effectively preserves
the original data distribution. Although PSNR decreases slightly in some settings (0.1%-1.6%),
CLIP scores remain essentially unchanged (⩽ 0.2%), confirming that semantic alignment with text
conditions is preserved. Since CLIP scores confirm semantic consistency, the PSNR differences reflect
different high-quality sampling paths under identical semantic constraints, not semantic drift(worse
CLIP) or quality loss(worse FID).

Specifically, for LDM-4 quantized to W4A8 with Q-Diffusion, our approach outperforms both the
baseline quantized model and PTQD, improving FID from 10.68 to 9.81 and IR from -0.014 to 0.015.
For DiT-XL with PTQ4DiT at W8A8 and W4A8, PTQD is slightly stronger at W8A8 but exhibits
marked instability at W4A8 and fails to produce acceptable results; in contrast, our method is robust
at both precisions, improving FID from 9.02 to 8.20 (W8A8) and from 9.83 to 8.51 (W4A8). For
FLUX.1 under flow matching with SVDQuant at W4A4 with full precision LoRA, even where the
baseline quantization method performs exceptionally close to full precision, our method applies
directly and further improves results, reducing FID from 22.95 to 22.78 and increasing IR from 0.877
to 0.890. For its with 6-bit LoRA, all weights required for network inference are 6 bits or less, LoRA
branch quantized model increases FID from 22.64 to 27.16. After applying our DNS method decrease
FID from 27.16 to 26.22. More visualizations are provided in Appendix A.4.

5.3 ABLATION

Ablation of Optimization Methods As shown in Tab. 3, we conduct a systematic ablation study to
evaluate the contribution of each component in our framework. Starting from the W4A8 baseline
quantized model (with Q-Diffusion) and applying CNC preprocessing, we progressively incorporate
our proposed techniques to demonstrate their effectiveness. First, the DNS absorbs quantization
noise through a timestep shift, adjusting the diffusion schedule to preserve the original denoising

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different
variance estimation methods

Model Method FID↓ IR↑ PSNR↑

LDM-4

- 9.85 0.012 23.09
MAD 9.83 0.014 23.10
IQR 9.81 0.015 23.10
KUS 9.85 0.016 23.12
KDE 9.83 0.012 23.10

Table 3: Effect of different components

Model Method FID↓ IR↑ PSNR↑

LDM-4

base 10.61 -0.01 22.81
+CNC 10.32 -0.031 23.13
+DNS 10.02 0.009 22.83

+DCNC 9.81 0.015 23.10

distribution. Second, the DCNC refines noise estimation by more accurately modeling the statistical
properties of quantization errors.

Variance Estimation As shown in Tab. 2, we test five statistical methods for variance estimation:
standard deviation, mean absolute deviation (MAD), interquartile range (IQR), kurtosis-based cor-
rection (KUS), and kernel density estimation (KDE). It can be seen that IQR demonstrates best
performance on multiple metrics simultaneously.

Uniform Weight Fig. 6 shows our experiments with different strength of correction (Wu) ranging
from 0 to 1. We observed an interesting trade-off: higher Wu values improve generation quality (FID)
but reduce similarity to full-precision outputs (PSNR). We select Wu = 0.2 for our experiments,
as this value achieves a favorable balance between maintaining reasonable similarity while still
improving the generation quality.

More ablation experiments are provided in Appendix A.5.

6 CONCLUSION

In this paper, we have introduced a novel quantization error absorbing method for diffusion models
that effectively mitigates quality degradation after quantization. Unlike previous method, our method
is distribution-preserving: it explicitly aligns the quantized model’s process distribution with the
unquantized diffusion distribution. And our solution works across stochastic, deterministic, and
Flow-matching frameworks with Gaussian conditional probability paths. Extensive experiments
validate that our method significantly improves generation quality in quantized diffusion models
while maintaining computational efficiency.

REFERENCES

Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans, 2021. URL https://arxiv.org/abs/1801.01401.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.
00426.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, 2024.

Xin Ding, Yongwei Wang, Zuheng Xu, William J Welch, and Z Jane Wang. Continuous conditional
generative adversarial networks: Novel empirical losses and label input mechanisms. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(7):8143–8158, 2022.

10

https://arxiv.org/abs/1801.01401
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/2310.00426
https://arxiv.org/abs/2310.00426

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate
post-training quantization for diffusion models. arXiv preprint arXiv:2305.10657, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal
feature maintenance quantization for diffusion models, 2024. URL https://arxiv.org/
abs/2311.16503.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference, 2017. URL https://arxiv.org/abs/1712.05877.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024. URL
https://arxiv.org/abs/2402.17245.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
diffusion models, 2025. URL https://arxiv.org/abs/2411.05007.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models, 2023. URL https://arxiv.org/
abs/2302.04304.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL https://
arxiv.org/abs/2106.08295.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
GAN evaluation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11410–11420, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations,
2024. URL https://arxiv.org/abs/2403.06951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. Advances in neural information processing systems, 29,
2016.

11

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2311.16503
https://arxiv.org/abs/2311.16503
https://arxiv.org/abs/1712.05877
https://github.com/black-forest-labs/flux
https://arxiv.org/abs/2402.17245
https://arxiv.org/abs/2411.05007
https://arxiv.org/abs/2302.04304
https://arxiv.org/abs/2302.04304
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2403.06951
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models, 2023. URL https://arxiv.org/abs/2211.15736.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/
1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards
accurate post-training quantization for diffusion models, 2024. URL https://arxiv.org/
abs/2305.18723.

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training quan-
tization for diffusion transformers, 2024. URL https://arxiv.org/abs/2405.16005.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903–15935, 2023.

Jiaojiao Ye, Zhen Wang, and Linnan Jiang. Pqd: Post-training quantization for efficient diffusion
models, 2024. URL https://arxiv.org/abs/2501.00124.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018. URL https://arxiv.org/abs/
1801.03924.

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
with metric-decoupled mixed precision quantization, 2024. URL https://arxiv.org/abs/
2405.17873.

Xingyu Zheng, Xianglong Liu, Yichen Bian, Xudong Ma, Yulun Zhang, Jiakai Wang, Jinyang Guo,
and Haotong Qin. Bidm: Pushing the limit of quantization for diffusion models, 2024. URL
https://arxiv.org/abs/2412.05926.

Junsheng Zhou, Weiqi Zhang, and Yu-Shen Liu. Diffgs: Functional gaussian splatting diffusion,
2024. URL https://arxiv.org/abs/2410.19657.

A APPENDIX

A.1 DETAILS OF KURTOSIS-BASED UNIFORM NOISE COMPENSATION

Kurtosis measures the "tailedness" of a probability distribution, indicating whether data has heavy
tails (more outliers) or light tails compared to a normal distribution. For a random variable x with
mean µ, its kurtosis is defined as:

κx =
E[(X − µ)4]

(E[(X − µ)2])2
− 3 (21)

A positive kurtosis suggests heavier tails and a sharper peak, while a negative kurtosis indicates
lighter tails and a flatter distribution. For instance, a Gaussian variable has a kurtosis of 0 while that
of a uniform variable is -1.2.

To compensate for the positive kurtosis κo of residual noise with variance σ2
o , we introduce uniform

noise with variance σ2
u and kurtosis κu < 0. Given that the two are independent, the kurtosis of their

summation can be easily obtained:

κnew =
κo · σ4

o + κu · σ4
u

(σ2
o + σ2

u)
2 (22)

12

https://arxiv.org/abs/2211.15736
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2305.18723
https://arxiv.org/abs/2305.18723
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2501.00124
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/2405.17873
https://arxiv.org/abs/2405.17873
https://arxiv.org/abs/2412.05926
https://arxiv.org/abs/2410.19657

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Statistical moments of quantization noise before and after DCNC

Timestep Skewness κx κx w /DCNC µ5 κ6 κ6 w /DCNC

950 0.26×10−2 -0.07 -0.07 1.03×10−8 -0.47 -0.47
850 0.24×10−2 -0.01 -0.10 0.03×10−8 -0.85 -0.85
750 0.07×10−2 -0.09 -0.09 0.39×10−8 -0.40 -0.40
650 -0.51×10−2 0.21 -0.02 -9.29×10−8 9.18 0.81
550 -0.94×10−2 3.30 0.08 -0.03×10−4 81.38 6.28
450 -0.88×10−2 3.34 0.14 -0.16×10−4 145.49 9.45
350 -0.62×10−2 2.33 0.15 -0.28×10−4 138.41 9.75
250 -0.39×10−2 1.78 0.14 -0.52×10−4 101.13 8.82
150 -0.36×10−2 1.33 0.10 -1.59×10−4 68.45 7.23
50 -0.51×10−2 1.11 0.08 -9.26×10−4 48.54 5.82

-10

40

90

140

190

240

290

340

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

S
ix

th
-o

rd
er

 K
u

rt
o

si
s

Timestep

before DCNC after DCNC

Figure 8: Sixth-order Kurtosis before and after DCNC.

Setting κnew to zero and substituting κu = −1.2, we have:

σ2
u = σ2

o ·
√

5κo

6
(23)

Consequently, the compensated noise has a variance of σ2
new = σ2

o ·
(
1 +

√
5κo

6

)
and a kurtosis of

0, which can be regarded as a Gaussian distribution.

The uniform distribution is an attractive choice for DCNC because it’s kurtosis is very low(excess
kurtosis -1.2) and can be sampled efficiently on standard hardware. Unless otherwise stated, all
experiments in paper use uniform distribution as the compensation distribution in DCNC.

More Statistical Analysis In order to more clearly demonstrate that the compensated residual dis-
tribution is closer to a Gaussian, we further measure skewness and higher-order central moments of
the residuals. excess kurtosis. Based on the definition of kurtosis, we also define a sixth-order excess
kurtosis κ6 = µ6

σ6 − 15 which equals 0 for a Gaussian distribution. We collect the outputs of the
LDM-4 model with Q-Diffusion quantized to W4A8 and compute the above statistics over residuals.
Results for part of representative timesteps are shown in Tab. 4.

We further visualize the comparison of Kurtosis and Sixth-order Kurtosis before and after DCNC in
Fig. 4 and Fig. 8. We also summarize statistics over all timesteps with error bars in Tab. 5.

In these tables, the skewness and fifth-order central moment are collected after compensation, and
sixth-order excess kurtosis κ6 is collected both before and after compensation for comparison. The

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Statistics over all timesteps with error bars.

Skewness
(×10−3)

κx κx w /DCNC µ5

(×10−4)
κ6 κ6 w /DCNC

−3.65± 4.15 1.42± 1.38 0.02± 0.12 −1.30± 2.85 76.09± 86.71 5.57± 5.25

Table 6: Effect of different compensation distributions in DCNC

DCNC distribution FID↓ sFID↓ IS↑
Uniform 9.65 9.33 101.96
Triangular 9.60 9.14 102.30
Bimodal Gaussian mixture 9.77 9.69 101.60
Generalized Gaussian 9.66 9.35 102.04

results show that, after compensation, skewness and the fifth moment(odd-order moments) are close
to zero, indicating that the residuals are nearly symmetric. At the same time, both excess kurtosis and
sixth-order excess kurtosis κ6 are substantially reduced, providing additional evidence that DCNC
makes the residual distribution significantly closer to a Gaussian.

More Low-kurtosis Distribution Choices Besides uniform distribution, there exist many other
low-kurtosis choices that can be used for compensation. In this work we consider four such noise
distribution : uniform distribution U(−a, a) (κ=-1.2), symmetric triangular distribution on [−a, a]
(κ=-0.6), bimodal Gaussian mixture (κ=-0.5 with r=1), and generalized Gaussian (exponential-power)
distribution(thus κ ≈-0.81 with β=4). Ablation results over these distributions are shown in Tab. 6.

From this table, we observe that the triangular distribution achieves better overall performance than
uniform distribution, indicating that using a triangular noise distribution for DCNC compensation is
also a viable choice. Nevertheless, due to uniform distribution extremely simple and efficient sampling
properties on standard hardware, we retain the uniform distribution as the default compensation
distribution throughout this paper.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EXTENDED DETAILS AND SUPPLEMENTARY MATERIAL FOR THE MAIN DERIVATION

In Sec. 4.1, I derived the transformation function T . Next, I will provide a detailed derivation of the
transformation function T .

From Eq. 8 and Eq. 11, we have:

ϵ′θ(xt, t)

1 + k
= ϵθ(xt, t) +

∆′ϵθ(xt, t)

1 + k
(24)

Following the idea of PTQD, we can treat the latter term as random noise, ∆′ϵθ(xt,t)
1+k ≈ ηθ. Exper-

iments show that ηθ has higher kurtosis than Gaussian noise. Therefore, we introduce a uniform
distribution component. Combined with compensation using Eq. 13:

∆′ϵθ(xt, t)

1 + k
+ U(0, σ2

u) = ∆′′ϵθ(0, σϵ,t) ∼ N (0, σ2
ϵ,t) (25)

In practice, we introduce a factor Wu to control the final proportion added. The analysis of Wu is
presented in Sec. 5.3. Thus, we can formulate our improved transformation T as Eq. 14:

T (ϵ′θ(xt, t)) =
ϵ′θ(xt, t)

1 + k
+Wu · U(0, σ2

u) (26)

= ϵθ(xt, t) +
∆′ϵθ(xt, t)

1 + k
+Wu · U(0, σu) (27)

= ϵθ(xt, t) + ∆′′ϵθ (0, σϵ,t) (28)

where σϵ,t and k are statistically computed from the calibration.

When employing a quantized model, quantization introduces parameter perturbations that manifest as
errors in noise prediction. The noise predicted by quantized model can be represented as Eq. 11:

ϵ′θ(xt, t) = ϵθ(xt, t) + ∆ϵθ (xt, t)

where ϵθ(xt, t) represents the original network prediction, ϵ′θ(xt, t) represents the quantized network
prediction, and ∆ϵθ (xt, t) captures the quantization-induced error.

To ensure that the noise distribution introduced by quantization errors approximates a Gaussian
distribution, we apply a transformation T to this error function Eq. 12:

T (ϵ′θ(xt, t)) = ϵθ(xt, t) + ∆′′ϵθ (0, σϵ,t)

where ∆′′ϵθ (0, σϵ,t) follows a Gaussian distribution with mean 0 and variance σ2
ϵ,t that depends on the

timestep t.

Substituting Eq. 12 into Eq. 3, we obtain:

x̂′0 =
1√
ᾱt

(xt −
√
1− ᾱtT (ϵ

′
θ(xt, t))) (29)

=
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))−

√
1− ᾱt√
ᾱt

∆′′ϵθ (0, σϵ,t) (30)

= x̂0 −
√
1− ᾱt√
ᾱt

∆′′ϵθ (0, σϵ,t) (31)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where the estimation of x0 using the quantized model, denoted as x̂′0. Consequently, the reverse
process under quantization is shown as Eq. 15:

p′θ(xt−1 | xt) = N
(
√
ᾱt−1x

′
0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx

′
0√

1− ᾱt
, σ2

t I1

)
(32)

= N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
+ C1∆

′′
ϵθ
(0, σϵ,t), σ

2
t I

)
(33)

= N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I+C
2
1σ

2
ϵ,tI

)
(34)

When using the DDIM sampler for deterministic sampling, σt = 0.

Then we derive the marginal distribution q′(xt−1|x0) by integrating over the intermediate variable
xt:

q′(xt−1|x0) =

∫
qσ(xt−1|xt,x0) · q(xt|x0) dxt (35)

Rigorously deriving this integral is quite complex, so we first provide a simplified derivation. We
need to know that any linear combination and marginalization of Gaussian distributions remains
Gaussian, allowing us to consider the mean and variance of the integral result separately.

Observing Eq. 34, we find that quantization only affects the variance part of q′(xt−1|xt,x0), while
the mean part remains unchanged.

First is mean analysis: Since the added variance terms have zero mean, by the law of total expectation,
the marginal mean remains unchanged:

E[q′(xt−1|x0)] = E[E[q′(xt−1|xt,x0)]|x0] =
√
ᾱt−1x0 (36)

Then is Variance Analysis: We apply the law of total variance:

Var[q′(xt−1|x0)] = E[Var[q′(xt−1|xt,x0)]|x0] + Var[q′(E[xt−1|xt,x0)]|x0] (37)

since the first term’s independent of xt:

E[σ2
t I1 + C2

t σ
2
ϵ I2|x0] = (σ2

t + C2
t σ

2
ϵ)I (38)

Since the added variance terms have zero mean, the second term remains consistent with the original
diffusion process:

Var[E[q′(xt−1|xt,x0)]|x0] = (1− ᾱt−1 − σ2
t)I (39)

Therefore, the final integral result is Eq. 17:

q′(xt−1|x0) = N (xt−1;
√
ᾱt−1x0, (1− ᾱt−1 + C2

1σ
2
ϵ,t)I)

Consequently, the quantized model marginal distribution q′(xt−1|x0) does not directly map the data
distribution of the original generative process.

To address this, we seek a transformation that maps it to the original diffusion marginal distribution
at other timesteps. We introduce a scaling factor C2 and a new timestep τ that together establish
an equivalence between the marginal distribution of the quantized model and that of the original
diffusion model. Specifically, we define Eq. 18:

q(C2xτ |x0) = N (C2xτ ;C2

√
ᾱτx0, C

2
2 (1− ᾱτ)I)

Through multi-step denoising, this marginal distribution mapping ensures that the final generated
distribution matches the original model’s distribution. To make q(x′t−1|x0) and q(C2xτ |x0) in
Eq. 17 and Eq. 18 statistically equivalent, we set their means and variances equal respectively.

Therefore, we solve the system of equations:{√
ᾱt−1 = C2

√
ᾱτ (mean equality)

(1− ᾱt−1) + C2
1σ

2
ϵ,t = C2

2 (1− ᾱτ) (variance equality)
(40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Solving this system yields:

C2 =
√

1 + C2
1σ

2
ϵ,t and ᾱτ =

ᾱt−1

C2
2

(41)

While PTQD (He et al., 2023) also attempt to absorb quantization error into noise terms, our
method provides a principled mathematical framework that explicitly maps the quantized distribution
back to the forward diffusion process by timestep shift. The resulting compensation mechanism is
theoretically guaranteed to perform effectively across stochastic sampling, deterministic sampling,
and Flow-matching with Gaussian conditional probability paths. Through absorbing quantization
error by timestep shift, our approach provides a more fundamental understanding of quantization
in diffusion models while offering practical advantages in implementation flexibility and sampling
robustness.

Based on the above derivations, the implementation is given in Algorithm 1 and Algorithm 2.

Algorithm 1: Deformable Noise Scheduler Calibration
Input: Timesteps sequence {(t, tprev)}, Calibration set C = {x0}
Output: Calibrated alpha values {ᾱq

t−1(t)}, slopes {k(t)}, uniform variances {σ2
u (t)}

1 Initialize Cϵ ← ∅, C∆ϵ ← ∅;
2 for each (t, previous t) ∈ timesteps do
3 for each x0 ∈ C do
4 xt ← AddNoise(x0, t);
5 ϵθ(xt)← OriginalNetwork(xt);
6 ϵ′θ(xt)← QuantizedNetwork(xt);
7 ∆ϵθ ← ϵ′θ(xt)− ϵθ(xt);
8 Cϵ.append(ϵθ(xt)), C∆ϵ.append(∆ϵθ);
9 k(t), d(t)← LinearRegression(Cϵ, C∆ϵ);

10 C∆′ϵ ← ComputeResiduals(Cϵ, C∆ϵ, k(t), d(t));
11 σ2

ϵ,t,o ← Variance(C∆′ϵ);
12 κo ← Kurtosis(C∆′ϵ);

13 σ2
u (t)← σ2

ϵ,t,o ×
√

5κo
6 C∆′′ϵ ← TransformationT (C∆′ϵ, k(t),Wu, σ

2
u (t))

σ2
ϵ,t ← Variance(C∆′′ϵ) ᾱ

q
t−1 ← NewtonSolve

(
ᾱt−1 =

ᾱq
t−1

1+C2
1σ

2
ϵ,t

)
Store ᾱq

t−1(t), k(t),

σ2
u (t);

14 return {ᾱq
t−1(t)}, {k(t)}, {σ2

u (t)}
15 Note: Linear regression models ∆ϵθ = k(t) · ϵθ + d(t) + residual, but d(t) is usually very close

to 0

Algorithm 2: Deformable Noise Scheduler Inference
Input: Calibrated parameters {ᾱq

t−1(t)}, {k(t)}, {σ2
u (t)}, Timesteps sequence {(t, previous t)}

Output: Generated sample x0

1 Initialize xT ∼ N (0, I);
2 xt ← xT ;
3 for each (t, _) ∈ timesteps do
4 ϵ′θ(xt, t)← QuantizedNetwork(xcurrent, t);
5 ϵθ ← TransformationT (ϵ′θ(xt, t), k(t),Wu, σ

2
u (t)) x̂0 ← xt−

√
1−ᾱtϵθ√
ᾱt

xt−1 ← DiffusionStep(xt, x̂0, t, αt−1 = ᾱq
t−1(t), σt = 0) xt ← xt−1;

6 return xt

7 Note: Next loop uses tprev (not tqprev) as the current timestep

A side-by-side derivation comparing our DNS to PTQD is shown in Tab. 7.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: A side-by-side derivation comparing PTQD and our DNS.

PTQD (stochastic-sampling view) DNS (ours, distribution-preserving view)

Both PTQD and our DNS first decompose the quantization error
(Eq. 8) as

∆ϵθ(xt, t) = k ϵθ(xt, t) + ∆
′
ϵθ(xt, t).

This yields the following quantized conditional:

p
′
θ(xt−1 | xt) = N

(
xt−1; µ̂t(xt, x̂0), σ

2
t I

)
+ ξt,

ξt ∼ N
(
0, C

2
1σ

2
ϵ,tI

)
,

where ξt is the independent Gaussian component of the quantization
noise.
Using this decomposition and quantized conditional, PTQD then
starts from the standard stochastic sampler (Eq. 5):

xt−1 =
1
√
αt

xt − βt
1

√
1− ᾱt

ϵθ(xt, t)− σ
0
t z,

z ∼ N (0, I).

Substituting the decomposed quantization error into Eq. 5 gives
PTQD’s stochastic update (Eq. 10):

xt−1 =
1
√
αt

xt − βt
1

√
1− ᾱt

ϵθ(xt, t)

− σtz − βt ct ∆
′
ϵθ(xt, t),

where ct is a scalar (a function of αt, ᾱt, k), and the last two
terms−σtz−βtct∆

′ϵθ(xt, t) jointly play the role of the original
stochastic noise term σ0

t z in Eq. 5. Thus ∆′ϵθ is treated as an extra
stochastic noise term injected into the sampling process.

Both PTQD and our DNS first decompose the quantization error
(Eq. 8) as

∆ϵθ(xt, t) = k ϵθ(xt, t) + ∆
′
ϵθ(xt, t).

This yields the following quantized conditional:

p
′
θ(xt−1 | xt) = N

(
xt−1; µ̂t(xt, x̂0), σ

2
t I

)
+ ξt,

ξt ∼ N
(
0, C

2
1σ

2
ϵ,tI

)
,

where ξt is the independent Gaussian component of the quantization
noise.
Our DNS derivation then starts from the corresponding quantized
reverse conditional (Eq. 15), which folds the independent quantization
noise into the reverse:

p
′
θ(xt−1 | xt) = qσ

(
xt−1 | xt, x̂

′
0

)
= N

(
xt−1; µ̂t(xt, x̂0),

(
σ
2
t + C

2
1σ

2
ϵ,t

)
I
)
.

Thus the induced conditional marginal distribution under quantization
is (Eq. 17):

q
′
(xt−1 | x0) = N

(
xt−1;

√
ᾱt−1 x0,

(
1−ᾱt−1+C

2
1σ

2
ϵ,t

)
I
)
.

DNS then uses Eqs. 18–20 to construct a distributional map that
identifies this quantized marginal with an unquantized marginal at a
shifted time τ ; in particular, Eq. 18 gives

q
′
(xt−1 | x0) ←→ q

(
C2xτ | x0

)
,

and Eq. 20 defines the time shift τ and the corresponding time-
shifted scheduler ᾱ

(q)
t−1 := ᾱτ , this explicitly constructs a

distribution-preserving map that sends the quantized marginal to
an original (unquantized) marginal at the shifted time τ .

Table 8: Concise comparison between DNS and prior work

Method Parameter update? Arch.changes
or limits?

Plug-and-play
over other PTQ? Stoch. Det. FM

Q-Diffusion Yes (Calibration,
weight/quant update) No Not over

SVDQuant Yes Yes Yes

PTQ4DiT Yes (Calibration,
weight/quant update)

No
Designed for DiT Only DiT Yes Yes Yes

SVDQuant Yes (Weight update
and FP16 finetune)

Add FP16 LoRA
(Incomplete quant.)

Not over many
model-changing PTQ Yes Yes Yes

PTQD No No Almost Yes Yes No No

DNS (Ours) No No Almost Yes Yes Yes Yes

We also draw a concise comparison table to better compare our method with prior work, shown in
Tab. 8

This highlights that DNS is both plug-and-play over many existing PTQ methods and applicable to
stochastic(Stoch.), deterministic(Det.), and flow-matching(FM) samplers without architectural/weight
changes or additional training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 DETAILS OF FLOW-MATCHING DERIVATION

In FLUX.1, the forward process is defined as:

xt = (1− σt) · x0 + σt · ε (42)

where ε ∼ N (0, I) and σt represents the noise level at time t.

The denoising process follows a discrete update rule:

xtnext = xt +∆σ · vθ(xt, σt) (43)

where ∆σ = σtnext − σt and vθ(xt, σt) is the velocity field predicted by the model.

When employing a quantized model, the velocity field prediction contains quantization-induced
errors:

v′θ(xt, σt) = vθ(xt, σt) + ∆vθ(xt, σt) (44)

To ensure that this error approximates a Gaussian distribution, we apply transformation T :

T (v′θ(xt, σt)) = vθ(xt, σt) + ∆′vθ(0, σv,t) (45)

where ∆′vθ(0, σv,t) ∼ N (0, σ2
v,tI).

The denoising process with quantization errors becomes:

x′
tnext

= xt +∆σ · [vθ(xt, σt) + ∆′vθ(0, σv,t)]

= xtnext +∆σ ·∆′vθ(0, σv,t)
(46)

Substituting the forward process expression for xt:

x′
tnext

= (1− σtnext) · x0 + σtnext · ε+∆σ ·∆′vθ(0, σv,t) (47)

Drawing from our diffusion derivation, we seek a transformation that maps x′tnext
back to the

standard forward path. We introduce a scaling factor C2 and a new timestep τ that together establish
an equivalence between the quantized output and a point on the original path. Specifically, we define:

C2 · xτ = C2 · (1− στ)x0 + C2 · στε
′ (48)

Then we can establish that when C2 = (1−σtnext
)+

√
σ2
tnext

+∆σ2σ2
v,t and στ = (C2+σtnext

−
1)/C2, x′tnext

and C2xτ become statistically equivalent, with matching coefficients for x0 and
equivalent variance terms for the noise components σtnext

· ε+∆σ ·∆′vθ(0, σv,t).

Importantly, neural networks trained for flow-matching are designed to estimate the velocity field
pointing from any noisy sample toward the clean data. Since the network is trained to predict
vθ(xt, σt) ≈ E[ε|xt, σt] for any valid noise distribution, it can still function effectively when the
noise distribution changes from ε to ε′. The model will naturally predict the velocity field that directs
xτ toward x0, allowing our transformation to effectively absorb quantization errors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4 VISUALIZATION RESULTS

In this section, we demonstrate the visualisation results by different models. (1) LDM-4: Tested with
20 steps, guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion
(W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 9.
(2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256×256 resolution. We compare the
FP16 model, PTQ4DiT (W4A8), its combination with PTQD and its combination with ours. The
results are shown in Fig. 10.

FP16 Q-Diffusion Q-Diffusion+ Ours

Label: great grey owl, great gray owl, Strix nebulosa

Q-Diffusion + PTQD

Label: European fire salamander, Salamandra salamandra

Label: robin, American robin, Turdus migratorius

Label: goldfish, Carassius auratus

Figure 9: Tested the LDM-4 model with Q-Diffusion quantization to W4A8 precision. The resolution
of the generated image is 256

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

FP16 PTQ4DiT PTQ4DiT + OursPTQ4DiT + PTQD

Label: great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

Label: white stork, Ciconia ciconia

Label: brown bear, bruin, Ursus arctos

Label: bee eater

Figure 10: Tested the DIT-XL model with PTQ4DiT quantization to W4A8 precision. The resolution
of the generated image is 256

(3) FLUX.1 : Tested with guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare the
FP16 model, SVDQuant (W4A4) with quantized its LoRA branch weight to 6-bit and its combination
with ours. PTQD does not support Flow-matching. The results are shown in Fig. 11, Fig. 12, Fig. 13.
Fig. 14 and Fig. 15. It can be seen that our method has good results in maintaining semantics, reducing
artifacts, increasing details, and improving diversity, which shows that we have successfully achieved
the goal of distribution preservation.

(4) FLUX.1 : We also try optimizing SVDQuant (W4A4) with FP16 LoRA branch. Tested with
guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare FP16 model, SVDQuant
(W4A4) with FP16 LoRA and its combination with ours. The results are shown in Fig. 16 and Fig. 17.
Our method still has capability to improve under strong baseline.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Prompt: One color photograph of jaguar hummingbird ladybug scene from Othello with Desdemona and Emilia Amazon rainforest thunderstorm

Prompt: A cat dressed like a jedi walk on tatooine holding a lightsaber, ultra-realistc hd

Prompt: A friendly bear dressed like an explorer walking in some undiscovered place in the jungle

Prompt: Cute little animals in the forest. In the pond, a young girl is touching the gray wolfs chin and they are looking at each other

Figure 11: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 256

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt: A photo of a chicken with a can of beer in his back.

Prompt: Cat walk in the centre of Strasbourg by a snow night

Prompt: Show strange creatures in a forest hopping rabbit, fox, bee

Prompt: Fluffy white bunny as a Jedi, blue lightsaber, fierce expression

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 12: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we have successfully maintained and recovered some semantics.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt: Gangster chicken

Prompt: Kitten purring and snuggling Lily for storybook

Prompt: Star wars characters playing trivia

Prompt: He was dressed in a tansa dress, his outer hair was a tigers skin, The tiger skin cap was the hood of his head.
He had a whip for his upper arm They saw and wanted to see what a stranger saw.

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 13: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we have successfully removed some artifacts, but the excessive artifacts introduced
by quantization still cannot be completely removed.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt: A white Havanese dog in sunglasses riding a motorcycle

Prompt: Draw a robotic elephant playing a guitar in a forest, with a full moon shining brightly in the sky and a stream running nearby

Prompt: Toronto Raptors artwork, purple white and red, velociraptor

Prompt: A hybrid of a capybara and a sheep, stuido ghibli style

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Figure 14: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that we successfully added some details and improved the image quality.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

FLUX.1-dev BF16 SVDQuant w/6-bit LoRA After DNS (Ours)

Prompt: Cat samurai cinematic shot, incredibly detailed, sharpen, details professional lighting

Prompt: Animal in a rain forest nature photography, atmospheric lighting, hyperrealistic marine life

Prompt: Octopus and coral reef, hyper-realistic, photographic, 8k

Prompt: A A dog on the background of a nature, Wes Anderson style, 4K

Figure 15: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quan-
tized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It
can be seen that since we are using distribution preservation, some images will also move to other
trajectories with the same(as quantized model) quality.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

FLUX.1-dev BF16 SVDQuant w/ FP LoRA After DNS (Ours)

Prompt: Cinematic still. Opossum sitting next to large glass marijuana bong inside messy camper trailer.
 Setting is nighttime. Ambience is Smokey. Cloud of smoke inside. Hotboxed. 4k. realistic. HDR.

Prompt: Cute cow in jacket and hat in winter, reylia slaby style, post processing, ben wooten, soft colors, colorful fauna, cinestill 50d C

Prompt: Plecostomus hybrid man picking up PET garbage in Palya del Carmen beach. Sunset Sky

Prompt: A woman and a fox dissolve in the rays of the sun, a happy scene full of tenderness, romantic atmosphere, luxurious beauty,
exquisite use of additional colors, aesthetic style, unearthly shining light, volumetric lighting

Figure 16: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain
SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 256

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

FLUX.1-dev BF16 SVDQuant w/ FP LoRA After DNS (Ours)

Prompt: The white cat and the cute girl are very surprised in the forest, their whole bodies

Prompt: A white dire wolf with crimson red eyes prowling around the red leaf forest on a cold and snowy winter day

Prompt: Dramatic portrait of an African cheetah looking at the camera while sitting on a rock, captured in the style of
National Geographic, safari photography, 32k UHD

Prompt: Chewbacca drinking coffee onboard a superyacht

Figure 17: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain
SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 1024

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 9: CIFAR-10 (32×32) generation with TFMQ-DM (W4A8), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 7.32 7.35 – 9.27 – –
TFMQ-DM 12.83 15.69 3.59 9.26 27.81 0.138
w/ours 11.12 13.03 2.20 9.50 28.66 0.120

Table 10: Unconditional ImageNet-64 (64×64) generation with PTQ4DM(W8A8), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 17.89 10.48 – 15.05 – –
PTQ4DM 25.36 18.13 8.12 15.10 19.88 0.232
w/ours 24.32 17.65 6.35 14.69 19.71 0.241

Table 11: CIFAR-10 (32×32) generation with APQ-DM(W6A6), 20 steps

Method FID↓ sFID↓ KID×103 ↓ IS↑ PSNR↑ LPIPS↓
FP16 11.32 8.88 – 8.50 – –
APQ-DM 16.22 8.17 5.95 8.65 24.28 0.159
w/ours 15.11 7.98 3.86 8.56 26.38 0.150

Table 12: Quantitative metrics with mean ± standard deviation.

Model Method FID↓ sFID↓ IS↑ PSNR↑

LDM-4
FP16 11.49 ± 0.009 9.99 ± 0.001 104.74 ± 0.020 –

Q-Diffusion 10.68 ± 0.476 13.71 ± 1.998 101.95 ± 0.261 22.84 ± 0.269
w/ours 9.81 ± 0.472 9.42 ± 0.126 102.40 ± 0.359 23.10 ± 0.438

CIFAR
FP16 7.32 ± 0.005 7.35 ± 0.003 9.27 ± 0.002 –

TFMQ-DM 12.83 ± 0.002 15.69 ± 0.008 9.26 ± 0.006 27.81 ± 0.001
w/ours 11.12 ± 0.042 13.03 ± 0.012 9.50 ± 0.006 28.66 ± 0.005

ImageNet64
FP16 17.89 ± 0.017 10.48 ± 0.005 15.05 ± 0.019 –

PTQ4DM 25.36 ± 0.331 18.13 ± 0.132 15.10 ± 0.027 19.88 ± 0.214
w/ours 24.32 ± 0.142 17.65 ± 0.170 14.69 ± 0.022 19.71 ± 0.212

CIFAR
FP16 11.32 ± 0.001 8.88 ± 0.003 8.50 ± 0.003 –

APQ-DM 16.22 ± 0.400 8.17 ± 0.070 8.65 ± 0.003 24.28 ± 0.254
w/ours 15.11 ± 0.160 7.98 ± 0.107 8.56 ± 0.001 26.38 ± 0.040

A.5 ADDITIONAL EXPERIMENTS RESULTS

More Backbones Experiments In addition to the main backbones quantized with Q-Diffusion,
PTQ4DiT, and SVDQuant, we further evaluate DNS on other PTQ methods: TFMQ-DM, PTQ4DM,
and APQ-DM. We follow exactly the same evaluation protocol and metrics as in Sec. 5.1 and results
are shown as Tab. 9-Tab. 11.

Robustness and Statistical Reliability of Experiments To further assess the robustness and statis-
tical reliability of our results, we report mean ± standard deviation of three evaluation metrics for
representative backbones, as summarized in Tab. 12.

More Metrics In addition to FID, sFID, IS, IR, CLIP, and PSNR, we further evaluate Kernel In-
ception Distance (KID (Bińkowski et al., 2021)) and LPIPS (Zhang et al., 2018). KID is computed

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 13: Additional experiments with KID and LPIPS across various backbones

Model Bit Method KID×103 ↓ LPIPS↓

LDM-4 W4A8
Q-Diffusion 4.56 0.205
w/PTQD 3.89 0.206
w/ours 3.01 0.220

DiT-XL W4A8
PTQ4DiT 1.00 0.396
w/PTQD 2.41 0.468
w/ours 0.86 0.401

FLUX.1

W4A4
w/W16 LoRA

SVDQuant 0.08 0.197
w/ours 0.08 0.214

W4A4
w/W6 LoRA

SVDQuant 1.47 0.412
w/ours 1.22 0.431

ImageNet64 W8A8 PTQ4DM 8.12 0.232
w/ours 6.35 0.241

CIFAR-10
W4A8 TFMQ 3.59 0.138

w/ours 2.20 0.120

W6A6 APQ 5.95 0.159
w/ours 3.86 0.150

as the squared Maximum Mean Discrepancy between the feature distributions of real and generated
images, using the same Inception-V3 backbone as our FID computation. LPIPS measures percep-
tual distance between image pairs based on deep features from a VGG network, with lower values
indicating closer perceptual similarity.

Our primary goal is distribution preservation. Accordingly, FID and KID are especially important, as
they quantify distances between feature distributions of generated and FP images under a pre-trained
network. By contrast, LPIPS follows the same trend as PSNR: both are pixel- or patch-level similar-
ity metrics that capture per-sample trajectory differences with respect to the FP model and therefore
cannot directly validate whether the final outputs achieve better distribution preservation or overall
generation quality at the distribution level.

The results, computed under the same settings as in our main experiments for each backbone, are
shown in Tab. 13.

To further assess the generality of our approach, we combine it with three representative PTQ meth-
ods: TFMQ-DM on CIFAR-10, PTQ4DM on ImageNet-64, and APQ-DM on CIFAR-10. In all three
settings, our method consistently improves the generative quality(including FID, KID, etc) over the
corresponding PTQ baselines. Concretely, we observe reductions in FID about 4%-13%, in sFID
about 2%-17% and in KID about 21%-38% across these experiments. These consistent improvements
indicate that our method is effective at preserving distribution under multiple PTQ schemes, leading
to quantized model distribution more closely match the FP model distribution.

Ablation under Other Backbone In addition to the LDM-4 analysis already presented, we have
extended the ablations to the DiT-XL backbone with PTQ4DiT(Setup is the same as the main result:
Using DiT-XL model with PTQ4DiT W4A8 quantization, step=20). We perform the same compo-
nent-wise ablations as in Sec. 5.3: The results are shown in Tab. 14, Tab. 15, and Fig. 18.

As we can see in Tab. 14, IQR-based variance estimation again performs the best. And in Tab. 15,
DNS and especially DCNC consistently improve over the PTQ base model, even for a large-scale
backbone like DiT-XL. In Fig. 18, the performance remains stable across a wide range of Wu values,
and the same qualitative behavior holds across different architectures and datasets. Specifically, FID

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 14: Performance comparison of different variance estimation methods in PTQ4DiT.

Model Method FID↓ IR↑ PSNR↑

DiT-XL

– 8.55 -0.486 17.33
mad 8.56 -0.484 17.34
iqr 8.51 -0.484 17.43
kus 8.55 -0.487 17.39
kde 8.56 -0.485 17.33

Table 15: Effect of different components in PTQ4DiT.

Model Method FID↓ IR↑ PSNR↑

DiT-XL

base 9.83 -0.508 17.42
+CNC 14.01 -0.609 16.32
+DNS 9.78 -0.496 17.02

+DCNC 8.51 -0.484 17.43

8.65
8.51

8.45 8.46

8.94

8.86

9.83

17.48
17.43

17.29

17.23

17.14

17.02

17.42

16.9

17

17.1

17.2

17.3

17.4

17.5

17.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

0 0.2 0.4 0.6 0.8 1
P

S
N

R

F
ID

Uniform Weight

FID PSNR

Figure 18: Performance comparison with different strength of correction in PTQ4DiT.

fluctuates somewhat but remains much smaller than before DNS(ours). PSNR decreases slowly as
Wu increases. This is consistent with our goal distribution-preserving. Based on these observations,
we adopt a single fixed default of Wu=0.2 for all models, without any per-model or per-dataset tuning.

Ablation about More Parameters We also conducted additional experiments across various
sampling steps (10, 20, 40) and guidance scales (0, 3.0, 6.0) and result is shown as Tab. 16.

Our supplementary experiments show that our method consistently maintains superior FID, sFID, IS,
and IR scores across all tested configurations. The results demonstrate that our approach remains
effective regardless of the number of DDIM steps or guidance scale settings, indicating robust
performance across different inference schedules.

The bold part indicates that w/ours is better than other W4A8 indicators.

Time and Memory Consumption Regarding our claims of “no extra steps” and “no additional
memory”, More details are shown in Tab. 17. At inference time, the only additional computation
introduced by DNS+DCNC is applying the transformation T in Eq. 14 and using the pre-computed,
timestep-dependent scalar coefficients(Algorithm 2). These operations reduce to elementwise addi-

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 16: Additional experiments across various sampling steps and guidance scales

LDM-4 Method FID↓ sFID↓ IS↑ CLIP↑ IR↑ PSNR↑

scale=3.0
steps=20

FP16 11.49 9.99 104.74 31.91 0.134 —

W4A8 Q-Diffusion 10.68 13.71 101.95 31.97 -0.014 22.84
W4A8 w/PTQD 10.32 12.39 100.84 31.89 -0.031 23.13
W4A8 w/ours 9.81 9.42 102.40 31.91 0.015 23.10

scale=3.0
steps=10

FP16 12.05 14.63 98.42 31.91 -0.095 —

W4A8 Q-Diffusion 11.26 21.24 92.59 31.74 -0.298 24.88
W4A8 w/PTQD 13.31 38.89 85.60 31.45 -0.467 20.74
W4A8 w/ours 10.43 14.94 93.29 31.76 -0.269 25.29

scale=3.0
steps=40

FP16 10.66 9.15 106.32 31.81 0.215 —

W4A8 Q-Diffusion 10.61 11.43 104.79 31.95 0.093 21.88
W4A8 w/PTQD 10.85 10.92 102.12 31.87 -0.047 22.05
W4A8 w/ours 9.32 8.41 104.75 31.83 0.112 21.89

scale=0.0
steps=20

FP16 51.94 10.99 21.91 20.01 -2.173 —

W4A8 Q-Diffusion 59.95 20.32 20.52 20.32 -2.192 26.67
W4A8 w/PTQD 58.64 20.34 20.12 20.47 -2.201 25.69
W4A8 w/ours 57.47 19.39 20.66 20.30 -2.168 26.20

scale=6.0
steps=20

FP16 20.89 15.31 114.55 31.98 0.382 —

W4A8 Q-Diffusion 20.18 15.77 114.34 32.16 0.289 19.55
W4A8 w/PTQD 19.93 13.04 113.17 32.18 0.243 19.02
W4A8 w/ours 18.63 10.57 115.39 32.33 0.322 19.22

Table 17: Overview of calibration and inference overhead for our method (LDM-4 + Q-Diffusion).

Item Value

Calibration (3,000 images, including FP16 + quantized) 45 min
Calibration statistics only (CPU, excluding sampling) 214 s
Sampling 30k images with quantized model 5.1 h
Extra time for 30k samples with DNS 5.67 s
Peak memory usage 1.5 GB
Additional memory overhead 320 KB

tions and multiplications; we do not introduce any extra network forward passes, matrix multiplica-
tions, or large activation buffers.

On an A100-40G GPU, for LDM-4 + Q-Diffusion at 256× 256 with 20 DDIM steps, generating
30,000 images, enabling DNS+DCNC incurs only 5.67 seconds of additional wall-clock time com-
pared to PTQ alone. In comparison, generating 30k samples with the quantized model alone already
takes about 5.1 hours on our setup, proving that increasing time of our method is almost negligible.
The extra runtime buffers required by DNS+DCNC are about 320 KB, and the stored calibration pa-
rameters across all timesteps occupy less than 1 KB in total. For calibration, using 3000 images (as
in our main experiments), computing the required statistics can be done once on CPU in about 214
seconds. Including both the FP16 and quantized forward passes needed to generate the calibration
dataset, the entire calibration procedure takes approximately 45 mins on our setup (A100-40G GPU,
LDM-4 + Q-Diffusion at 256× 256 with 20 DDIM steps, sample 3000 images).

32

	Introduction
	Related Work
	Preliminary
	Diffusion models and Flow matching
	Quantization Noise Correction and Absorption

	Method
	Gaussian Approximation of Quantization Noise
	Deformation of Sampling with Quantization Noise

	Experiments
	Settings
	Main Results
	Ablation

	Conclusion
	Appendix
	Details of Kurtosis-Based Uniform Noise Compensation
	Extended Details and Supplementary Material for the Main Derivation
	Details of Flow-matching Derivation
	Visualization Results
	Additional Experiments Results

