

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ABSORBING QUANTIZATION ERROR BY DEFORMABLE NOISE SCHEDULER FOR DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

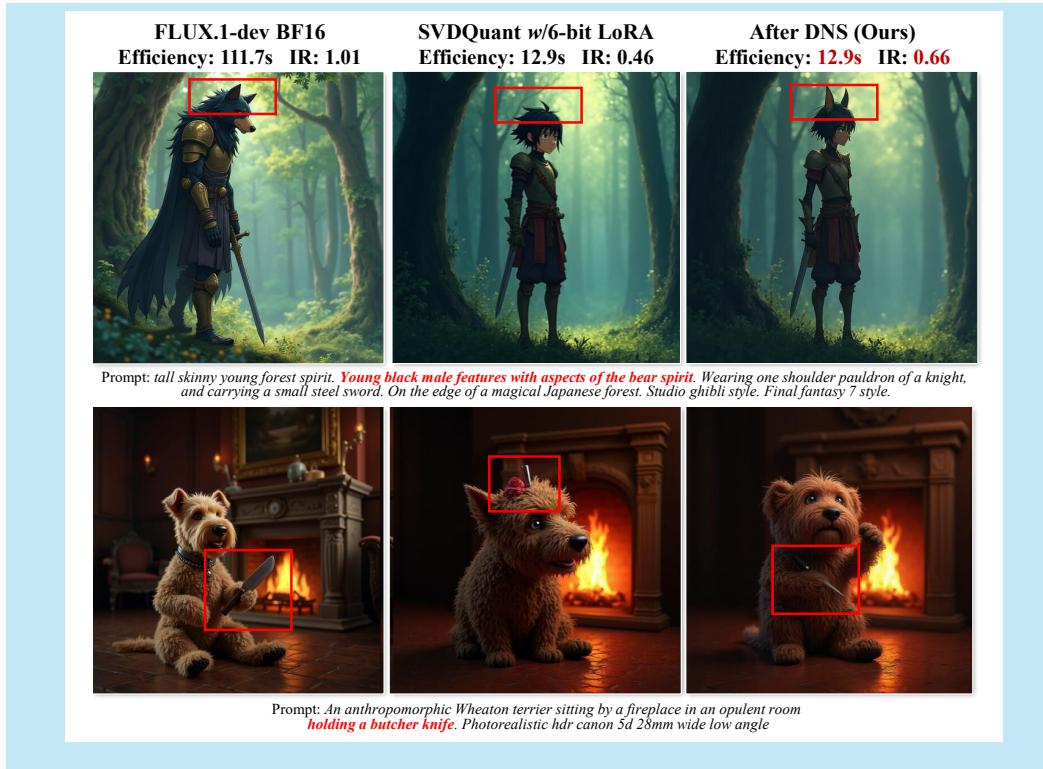


Figure 1: Our method offers a plug-and-play approach to improve the quantization performance of diffusion models (including Flow-matching), enabling seamless integration with existing PTQ methods without compromising inference speed.

ABSTRACT

Diffusion models deliver state-of-the-art image quality but are expensive to deploy. Post-training quantization (PTQ) can shrink models and speed up inference, yet residual quantization errors distort the diffusion distribution (the timestep-wise marginal over x_t), degrading sample quality. We propose a distribution-preserving framework that absorbs quantization error into the generative process without changing architecture or adding steps. (1) Distribution-Calibrated Noise Compensation (DCNC) corrects the non-Gaussian kurtosis of quantization noise via a calibrated uniform component, yielding a closer Gaussian approximation for robust denoising. (2) Deformable Noise Scheduler (DNS) reinterprets quantization as a principled timestep shift, mapping the quantized prediction distribution x_t back onto the original diffusion distribution so that the target marginal is preserved. Unlike trajectory-preserving or noise-injection methods limited to stochastic samplers, our approach preserves the distribution under both stochastic and deterministic samplers and extends to flow-matching with Gaussian conditional paths. It is plug-and-play and complements existing PTQ schemes. On DiT-XL (W4A8),

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
our method reduces FID from 9.83 to 8.51, surpassing the FP16 baseline (9.81), demonstrating substantial quality gains without sacrificing the efficiency benefits of quantization.

1 INTRODUCTION

Diffusion models have become the leading paradigm for high-quality generative modeling, powering applications across image synthesis (Ho et al., 2020; Rombach et al., 2022; Labs, 2024), style transfer (Qi et al., 2024), video generation (Brooks et al., 2024), 3D reconstruction (Zhou et al., 2024), and robotics (Chi et al., 2024). Their rapid scaling— from Stable Diffusion’s 800M parameters (Rombach et al., 2022) to SDXL’s 2.6B (Podell et al., 2023), and most recently to FLUX.1’s 12B (Labs, 2024)—has driven remarkable improvements in fidelity and controllability. However, these gains come at a steep computational cost: inference with large models demands tens of gigabytes of GPU memory and seconds per image, limiting deployment in real-time and resource-constrained settings.

Model quantization is a practical solution to this bottleneck. By reducing weights and activations from floating-point to low-bit integer, quantization compresses model size and accelerates inference (Jacob et al., 2017; Nagel et al., 2021). Recent post-training quantization (PTQ) methods have successfully reduced diffusion models to 8, 4 or even 1-bit precision (Li et al., 2023; Wu et al., 2024; Li et al., 2025); (Huang et al., 2024; Shang et al., 2023; Ye et al., 2024; Wang et al., 2024; Zheng et al., 2024). Yet, unlike discriminative networks or autoregressive language models, diffusion models are especially sensitive to quantization. Errors accumulate across iterative denoising steps, corrupting the assumed Gaussian noise distribution and significantly degrading sample quality (He et al., 2023).

Existing approaches attempt to mitigate this challenge by either reshaping weight distributions to reduce quantization error (Li et al., 2023; Wu et al., 2024; Li et al., 2025) or injecting approximated Gaussian noise to absorb residual errors (He et al., 2023). However, these methods have important limitations: weight-reshaping strategies only preserve stepwise predictions without addressing distributional drift, while noise-injection methods are restricted to stochastic samplers and fail on deterministic or flow-matching frameworks (Lipman et al., 2023). Moreover, quantization noise rarely follows an ideal Gaussian distribution, undermining the robustness of Gaussian-based corrections.

In this work, we introduce a distribution-preserving quantization framework that directly absorbs quantization error into the diffusion process. Our approach consists of two key components: (i) *Distribution-Calibrated Noise Compensation (DCNC)*: corrects the non-Gaussian kurtosis of quantization noise through a calibrated uniform component, yielding a more faithful Gaussian approximation. (ii) *Deformable Noise Scheduler (DNS)*: reinterprets quantization effects as a timestep shift in the diffusion process, aligning quantized prediction with the original diffusion distribution without modifying model architecture or adding inference overhead. This framework preserves the diffusion distribution under quantization, making it compatible with both stochastic and deterministic samplers as well as flow-matching models. It operates as a plug-and-play solution, easily integrated with existing PTQ methods. Empirically, our method consistently improves generation quality across diverse backbones (see Fig. 2). For example, on DiT-XL our method reduces the FID of PTQ4DiT (W4A8) from 9.83 to 8.51, surpassing even the FP16 baseline (9.81).

In summary, our contributions are threefold: (1) A principled analysis showing that quantization can be reinterpreted as timestep shifts in the diffusion process. (2) A deformable noise scheduler and distribution-calibrated correction that preserve the generative distribution under quantization. (3)

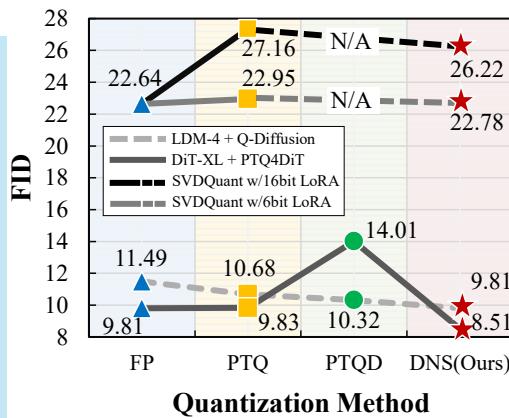


Figure 2: Comparison of FID scores across quantization methods for different backbones.

108 Extensive experiments across LDM, DiT, and FLUX demonstrating consistent quality improvements
 109 without sacrificing the efficiency benefits of quantization.
 110

111 2 RELATED WORK

112 **Diffusion Models.** Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) were originally
 113 formulated as stochastic processes for data generation. Denoising Diffusion Implicit Models
 114 (DDIM) (Song et al., 2022) later reduced the number of sampling steps, significantly accelerating the
 115 generation process. More recently, Flow Matching (Lipman et al., 2023) has been introduced as a
 116 deterministic alternative, powering state-of-the-art systems such as FLUX (Labs, 2024).
 117

118 The backbone architecture of early diffusion models was primarily based on UNets (Rombach et al.,
 119 2022). Diffusion Transformers (DiT) (Peebles & Xie, 2023) pioneered the use of pure transformer
 120 architectures, leading to improved scalability and performance. Large-scale text-to-image models
 121 such as Stable Diffusion (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al.,
 122 2023), and FLUX (Labs, 2024) have since revolutionized content generation by pushing model sizes
 123 larger to achieve better fidelity, diversity, and controllability.
 124

125 **Model Quantization for Diffusion models.** Quantization reduces computational costs by representing
 126 model parameters and activations with lower-precision formats. Approaches generally fall into
 127 two categories: quantization-aware training (QAT) (Jacob et al., 2017), which requires retraining
 128 with quantization in the loop, and post-training quantization (PTQ) (Nagel et al., 2021), which adapts
 129 pre-trained models with minimal calibration data. Due to the size and training cost of diffusion
 130 models, PTQ methods are more practical and thus widely adopted.
 131

132 Specialized PTQ techniques have been developed to address the unique challenges of diffusion
 133 backbones. Q-Diffusion (Li et al., 2023) employs channel-wise quantization with explicit outlier
 134 handling. PTQ4DM (Shang et al., 2023) and PTQ4DiT (Wu et al., 2024) design quantization
 135 strategies tailored to their respective UNet and transformer backbones. MixDQ (Zhao et al., 2024)
 136 adopts mixed precision to balance efficiency and quality. SVDQuant (Li et al., 2025) introduces
 137 low-rank branches to capture residual information lost during quantization.
 138

139 A different line of work, PTQD (He et al., 2023), proposes an “absorbing quantization error” strategy
 140 that integrates quantization noise into the random noise term of stochastic samplers. While effective in
 141 certain settings, this approach is fundamentally restricted to stochastic sampling and cannot be applied
 142 to deterministic samplers or flow-matching frameworks that dominate modern implementations.
 143 Moreover, the injected quantization noise often deviates from the expected Gaussian distribution,
 144 which can misalign the diffusion process and degrade generation quality.
 145

146 3 PRELIMINARY

147 3.1 DIFFUSION MODELS AND FLOW MATCHING

148 **Diffusion Models** (Ho et al., 2020; Song et al., 2022) are generative models based on a two-stage
 149 process: a fixed *forward* noising process and a learnable *reverse* denoising process.
 150

151 In the forward process, a clean data sample $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ is progressively corrupted by Gaussian noise
 152 over T timesteps via a Markov chain with a predefined variance schedule $\{\beta_t\}_{t=1}^T$, where $0 < \beta_t < 1$.
 153 Define $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{i=1}^t \alpha_i$. The forward transition distributions are given by:
 154

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{\alpha_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}), \quad q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}). \quad (1)$$

155 The reverse process aims to recover \mathbf{x}_0 from \mathbf{x}_T by learning a parametric approximation $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$
 156 to the true reverse distribution. Ho et al. (2020) (DDPM) model this reverse process as a Gaussian
 157 with fixed variance, trained to predict the noise added at each step. Song et al. (2022) (DDIM)
 158 generalize this by introducing a family of non-Markovian reverse processes parameterized by a noise
 159 schedule $\{\sigma_t\}_{t=1}^T$, enabling faster sampling with deterministic or stochastic trajectories.
 160

161 Specifically, for any $t > 1$, the conditional distribution of \mathbf{x}_{t-1} given \mathbf{x}_t and clean sample \mathbf{x}_0 is:
 162

$$q_\sigma(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\hat{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I}), \quad (2)$$

162 where $\sigma_t \geq 0$ controls the stochasticity of the reverse step and $\hat{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}}$. When $\sigma_t = \sqrt{(1 - \bar{\alpha}_{t-1})/(1 - \bar{\alpha}_t)} \cdot \sqrt{1 - \bar{\alpha}_t/\bar{\alpha}_{t-1}}$, this recovers the DDPM posterior; when $\sigma_t = 0$, the process becomes deterministic (DDIM).

166 Since \mathbf{x}_0 is unknown during sampling, it is estimated from \mathbf{x}_t using a noise-prediction network
167 $\epsilon_\theta(\mathbf{x}_t, t)$. The denoised estimate $\hat{\mathbf{x}}_0$ is obtained via:

$$168 \hat{\mathbf{x}}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(\mathbf{x}_t, t) \right). \quad (3)$$

170 The learned reverse process is then defined by substituting $\hat{\mathbf{x}}_0$ for \mathbf{x}_0 in Eq. 2:

$$171 p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = q_\sigma(\mathbf{x}_{t-1} | \mathbf{x}_t, \hat{\mathbf{x}}_0), \quad t > 1. \quad (4)$$

172 This leads to the unified sampling update rule:

$$174 \mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0}{\sqrt{1 - \bar{\alpha}_t}} + \sigma_t z, \quad z \sim \mathcal{N}(0, \mathbf{I}). \quad (5)$$

176 **Flow matching** (Lipman et al., 2023) generalizes diffusion via a continuous-time stochastic inter-
177 polant between Gaussian noise $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ and data \mathbf{x}_0 . A simple linear interpolant is

$$178 \mathbf{x}_t = (1 - t)\mathbf{x}_0 + t\epsilon, \quad t \in [0, 1]. \quad (6)$$

179 The model learns a velocity field $\mathbf{v}_\theta(\mathbf{x}_t, t)$ such that the probability flow ODE (PF-ODE)

$$181 \frac{d\mathbf{x}_t}{dt} = \mathbf{v}_\theta(\mathbf{x}_t, t) \quad (7)$$

183 induces marginal distributions that match that of Eq. 6 for all time $t \in [0, 1]$. Sampling from the model
184 thus reduces to solving the PF-ODE in Eq. 7 using standard ODE solvers, e.g., Euler integration,
185 starting from Gaussian noise $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ (Lipman et al., 2023), which matches the ground-truth
186 dynamics. Sampling then amounts to integrating this ODE deterministically from noise to data.
187 Flow matching, owing to its high scalability, has already been adopted in modern text-to-image
188 models such as FLUX (Labs, 2024). Flow matching thus unifies diffusion-style objectives with a
189 deterministic transport formulation, and underlies modern large-scale systems such as FLUX (Labs,
190 2024).

191 3.2 QUANTIZATION NOISE CORRECTION AND ABSORPTION

193 Quantizing diffusion models inevitably introduces quantization error. This error can be systemati-
194 cally decomposed into two parts: (i) a correlated component that scales linearly with the original
195 network output $\epsilon_\theta(\mathbf{x}_t, t)$, and (ii) an independent component $\Delta' \epsilon_\theta(\mathbf{x}_t, t)$ that is uncorrelated with the
196 prediction. This decomposition, referred to as Correlation Noise Correction (CNC), can be written as:

$$197 \Delta \epsilon_\theta(\mathbf{x}_t, t) = k \epsilon_\theta(\mathbf{x}_t, t) + \Delta' \epsilon_\theta(\mathbf{x}_t, t) \quad (8)$$

198 where $\Delta \epsilon_\theta(\mathbf{x}_t, t)$ denotes total quantization error, k is a scalar correlation coefficient, and $\Delta' \epsilon_\theta(\mathbf{x}_t, t)$
199 represents the residual independent component. PTQD (He et al., 2023) approximates $\Delta' \epsilon_\theta(\mathbf{x}_t, t)$ as
200 Gaussian noise, but in practice this assumption is often inaccurate. The variance of the independent
201 noise, denoted σ_q^2 , can instead be empirically estimated from representative data samples.

202 In stochastic sampling process, sampler involves adding random noise in Eq. 5. PTQD absorbs the
203 disentangled independent quantization error into this random term, effectively replacing:

$$205 \sigma_t z \rightarrow \sigma_t z - \frac{\beta_t}{\sqrt{\alpha_t} \sqrt{1 - \bar{\alpha}_t} (1 + k)} \Delta' \epsilon_\theta(\mathbf{x}_t, t) \quad (9)$$

207 This leads to a modified update rule:

$$209 \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{x}_t, t) \right) + \sigma_t z - \frac{\beta_t}{\sqrt{\alpha_t} \sqrt{1 - \bar{\alpha}_t} (1 + k)} \Delta' \epsilon_\theta(\mathbf{x}_t, t) \quad (10)$$

211 In summary, PTQD attempts to (i) preserve the injected noise distribution by treating the disentangled
212 quantization residual as Gaussian, while simultaneously (ii) preserving the stepwise prediction
213 trajectory. However, this hybrid objective can degrade performance and reduce robustness, and it is
214 applicable only to stochastic sampling. Moreover, empirical evidence shows that the independent
215 quantization residual $\Delta' \epsilon_\theta$ has a large deviation from a Gaussian distribution. Directly using it may
undermine the theoretical assumptions of the method.

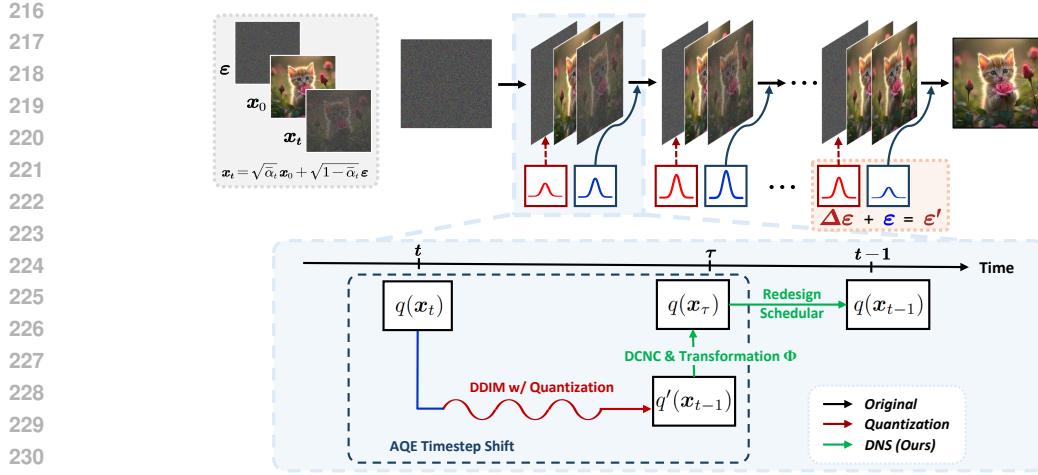


Figure 3: Overview of Deformable Noise Scheduler (DNS). (a) Top: Quantization perturbs the noise prediction (red), shifting each step’s marginal away from the full-precision distribution (blue), yielding $\epsilon' = \epsilon + \Delta\epsilon$. These quantization errors are absorbed into the diffusion process, preserving the original prediction distribution. (b) Bottom: DNS interprets effect as *timestep shift*. The quantized distribution $q'(x_{t-1})$ is mapped to original distribution $q(x_\tau)$ via DCNC and transformation Φ . Redesigning scheduler sets a new α so that τ aligns with $t - 1$, maintain original diffusion timesteps.

4 METHOD

To address these limitations, we develop a theoretical framework that analyzes how quantization perturbs a diffusion model’s predictive distribution and derives distribution-preserving corrections for both the noise statistics and the time parameterization. In Sec. 4.1, we show that the uncorrelated component of the quantization error is heavy-tailed (exhibits excess kurtosis relative to Gaussian noise) and mitigate this mismatch by adding a calibrated uniform correction with lower kurtosis. In Sec. 4.2, we prove that the distribution induced by a quantized model can be mapped to an equivalent non-quantized distribution through an appropriate timestep shift (Fig. 3), enabling the approach to be applied to any generative model with conditionally Gaussian marginals. A more detailed derivation is provided in Appendix A.2.

4.1 GAUSSIAN APPROXIMATION OF QUANTIZATION NOISE

When the model is quantized, parameter perturbations introduce errors in the predicted noise. The output of the quantized model can be expressed as:

$$\epsilon'_\theta(\mathbf{x}_t, t) = \epsilon_\theta(\mathbf{x}_t, t) + \Delta\epsilon_\theta(\mathbf{x}_t, t) \quad (11)$$

where $\Delta\epsilon_\theta(\mathbf{x}_t, t)$ is a quantization-induced error.

Prior work (He et al., 2023) applied a disentangling transformation (Eq. 8) to separate $\Delta\epsilon_\theta(\mathbf{x}_t, t)$ into an “independent” component $\Delta'\epsilon_\theta(\mathbf{x}_t, t)$, which was then approximated as Gaussian noise and absorbed into the stochastic sampling term. However, our empirical analysis (see Fig. 4) shows that the residual noise obtained in this manner exhibits excess kurtosis relative to a true Gaussian distribution, violating this assumption.

To correct this, we introduce a refined transformation T such that

$$T(\epsilon'_\theta(\mathbf{x}_t, t)) = \epsilon_\theta(\mathbf{x}_t, t) + \Delta''\epsilon_\theta(0, \sigma_{\epsilon, t}) \quad (12)$$

where the independent component $\Delta''\epsilon_\theta(0, \sigma_{\epsilon, t})$ is explicitly calibrated to approximate a Gaussian distribution with mean 0 and variance $\sigma_{\epsilon, t}^2$ which depends on the timestep t . We refer to this procedure as *Distribution-Calibrated Noise Compensation* (DCNC). DCNC ensures that the residual quantization noise more faithfully matches the Gaussian assumption of the diffusion process, thereby improving stability and generation quality.

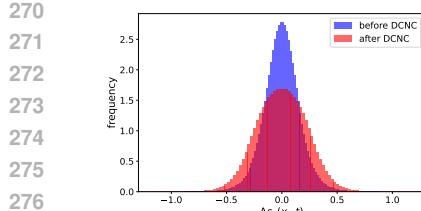


Figure 4: Quantization noise distribution before and after DCNC in timestep 250

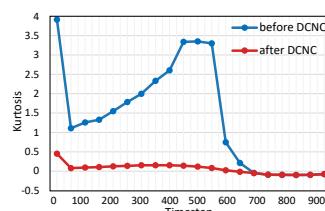


Figure 5: Kurtosis of quantization noise before and after DCNC

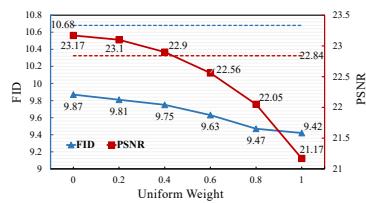


Figure 6: Performance comparison with different strength of correction

Distribution-Calibrated Noise Compensation To drive the excess kurtosis of the residual toward 0 (i.e., make it behave more like Gaussian noise), we add a zero-mean uniform component. Let the residual have variance σ_o^2 and excess kurtosis $\kappa_o > 0$. Then the variance of the injected uniform term and the resulting total variance are (derivation in Appendix A.1):

$$\sigma_u^2 = \sigma_o^2 \cdot \sqrt{5\kappa_o/6}, \quad \sigma_n^2 = \sigma_o^2 \cdot \left(1 + \sqrt{5\kappa_o/6}\right) \quad (13)$$

As shown in Fig. 4 and Fig. 5, this uniform compensation substantially reduces the heavy-tailedness of the uncorrelated quantization residual, bringing its excess kurtosis close to the Gaussian value (0). More higher-order moments are also collected in Appendix A.1 to demonstrate that residuals after DCNC are closer to a Gaussian. Accurate variance estimation is important for applying Eq. 13 and for the marginal analysis in Eq. 17. Because conventional estimators are sensitive to outliers, we use a robust IQR-based estimate $\hat{\sigma}^2 = (\text{IQR}/1.349)^2$, where $\text{IQR} = Q_3 - Q_1$ denotes the interquartile range, with Q_1 and Q_3 representing the first and third quartiles. Putting this together, our calibrated transformation is:

$$T(\epsilon'_\theta(\mathbf{x}_t, t)) = \epsilon'_\theta(\mathbf{x}_t, t)/(1 + k) + W_u \cdot U(0, \sigma_u^2) \quad (14)$$

where k (the correlation slope) and σ_u^2 are estimated during calibration, $U(0, \sigma_u^2)$ denotes a zero-mean uniform random variable with variance σ_u^2 , and $W_u \in [0, 1]$ is a tunable weight that controls the strength of the correction (see Sec. 5.3). Unless stated otherwise, all model outputs are passed through $T(\cdot)$ before subsequent analysis and sampling.

4.2 DEFORMATION OF SAMPLING WITH QUANTIZATION NOISE

After applying DCNC, the residual quantization error is well-approximated as zero-mean Gaussian. We leverage this property to *absorb* quantization effects into the diffusion process via a *timestep shift*: instead of introduced extra noise, we preserve distributional consistency via a timestep shift τ , aligning the quantized marginal distribution at t with the full-precision marginal distribution at τ . This distribution-preserving perspective removes the reliance on specific stochastic samplers and generally applies across various generative models with Gaussian conditional paths.

Absorbing Quantization Error by Timestep Shift In diffusion models, the reverse process $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$ reconstructs \mathbf{x}_{t-1} from the noisy sample \mathbf{x}_t by leveraging an estimate $\hat{\mathbf{x}}_0$ of the clean data \mathbf{x}_0 , as formalized in Eq. 4. When the model is quantized, the prediction $\hat{\mathbf{x}}_0$ is perturbed by quantization noise (Eq. 11), after correction (Eq. 12), yielding a modified estimate $\hat{\mathbf{x}}'_0$. Consequently, the reverse process distribution under quantization becomes:

$$p'_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = q_\sigma(\mathbf{x}_{t-1} | \mathbf{x}_t, \hat{\mathbf{x}}'_0) = \mathcal{N}(\mathbf{x}_{t-1}; \hat{\mu}_t(\mathbf{x}_t, \hat{\mathbf{x}}_0), (\sigma_t^2 + C_1^2 \sigma_{\epsilon, t}^2) \mathbf{I}), \quad (15)$$

where

$$C_1 = \sqrt{\bar{\alpha}_{t-1}} - \sqrt{\frac{(1 - \bar{\alpha}_{t-1} - \sigma_t^2) \bar{\alpha}_t}{1 - \bar{\alpha}_t}}, \quad (16)$$

and $\sigma_{\epsilon, t}^2$ denotes the variance of the independent quantization residual at timestep t . Notably, quantization noise does not alter the mean of the reverse distribution but inflates its variance by an additive term $C_1^2 \sigma_{\epsilon, t}^2$, reflecting the uncertainty introduced by model quantization.

324 Thus the induced conditional marginal distribution under quantization is
 325

$$326 \quad q'(\mathbf{x}_{t-1} | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1 - \bar{\alpha}_{t-1} + C_1^2 \sigma_{\epsilon,t}^2) \mathbf{I}). \quad (17)$$

327
 328 We see that the mean matches the original forward process, but the variance includes an additional
 329 quantization-dependent term $C_1^2 \sigma_{\epsilon,t}^2$. As a result, quantized marginal distribution $q'(\mathbf{x}_{t-1} | \mathbf{x}_0)$ no
 330 longer coincides with the forward marginal of any discrete timestep in the original diffusion schedule.

331 To restore equivalence, we introduce a scaling factor C_2 and a shifted timestep $\tau > t - 1$ such that:

$$332 \quad q(C_2 \mathbf{x}_\tau | \mathbf{x}_0) = \mathcal{N}(C_2 \mathbf{x}_\tau; C_2 \sqrt{\bar{\alpha}_\tau} \mathbf{x}_0, C_2^2 (1 - \bar{\alpha}_\tau) \mathbf{I}). \quad (18)$$

333
 334 It can be shown that setting $C_2 = \sqrt{1 + C_1^2 \sigma_{\epsilon,t}^2}$ and $\bar{\alpha}_\tau = \bar{\alpha}_{t-1} / C_2^2$ makes $q'(\mathbf{x}_{t-1} | \mathbf{x}_0)$ and
 335 $q(C_2 \mathbf{x}_\tau | \mathbf{x}_0)$ statistically equivalent. This establishes quantization as a *timestep shift* in diffusion
 336 process.

337
 338 **Deformable Noise Scheduler** Building on this insight, we introduce the *Deformable Noise Scheduler (DNS)*, which maps quantized diffusion states to adjusted timesteps in the full-precision schedule.
 339 From Eq. 18, the mapping Φ is:

$$341 \quad \mathbf{x}_\tau = \Phi(\mathbf{x}_{t-1}) = \mathbf{x}_{t-1} / C_2. \quad (19)$$

342 Direct application, however, faces two challenges: (i) τ is typically non-integer, complicating
 343 integration into discrete samplers, and (ii) rounding τ introduces additional error and potentially extra
 344 denoising steps.

345 To avoid this, we redesign the scheduler by redefining the variance schedule at the previous timestep
 346 in the quantized process as $\bar{\alpha}_{t-1}^q$. From Eq. 18, we obtain:

$$347 \quad \bar{\alpha}_\tau = \frac{\bar{\alpha}_{t-1}^q}{1 + C_1^2 \sigma_{\epsilon,t}^2}. \quad (20)$$

348 Solving Eq. 20 for $\bar{\alpha}_{t-1}^q$ aligns τ with $t - 1$, ensuring that quantized updates maintain consistent with
 349 the original diffusion timesteps.

350 DNS thus dynamically adapts the noise schedule according to $\sigma_{\epsilon,t}^2$, preserving distributional equivalence
 351 without introducing additional steps or overhead. By the same reasoning, DNS naturally
 352 extends to flow-matching with Gaussian conditional paths (see Appendix A.3).

353 5 EXPERIMENTS

354 5.1 SETTINGS

355 **Models and Datasets** We benchmark our method using LDM-4 (Rombach et al., 2022), DiT-
 356 XL (Peebles & Xie, 2023), and FLUX.1 (Labs, 2024) (Flow-matching). Following previous works (Li
 357 et al., 2025), we randomly sample 3,000 text prompts from COCO Captions 2014 (Chen et al.,
 358 2015) for calibration. This calibration set is used to determine the quantization parameters and
 359 estimate noise characteristics across all models. For our evaluation datasets, we use ImageNet for
 360 class-conditional generation. For text-to-image generation, we use the MJHQ-30K dataset (Li et al.,
 361 2024). Our experiments were conducted on a NVIDIA A100-40G GPU. However, it should be noted
 362 that our method does not require additional memory usage, as the main storage cost is about network
 363 parameters. Both LDM and DiT-XL can run on smaller GPUs.

364 **Baselines** We compare our method with several PTQ techniques. (1) LDM-4: Tested with 20 steps,
 365 guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8) (Li
 366 et al., 2023), and its combination with PTQD (He et al., 2023). (2) DiT-XL: Evaluated with 20
 367 steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W8A8,
 368 W4A8) (Wu et al., 2024), and its combination with PTQD. (3) FLUX.1: Tested with 20 steps, guid-
 369 ance scale 3.5, and 256×256 resolution. Since original SVDQuant have W4A4 Transformer and
 370 W16A16 LoRA without complete quantization, we further quantized the LoRA branch of SVDQuant
 371 to 6-bit weight. We compare the BP16 model and SVDQuant (W4A4) with W16A16 and W6A16
 372 LoRA (Li et al., 2025). PTQD does not support flow-matching models.

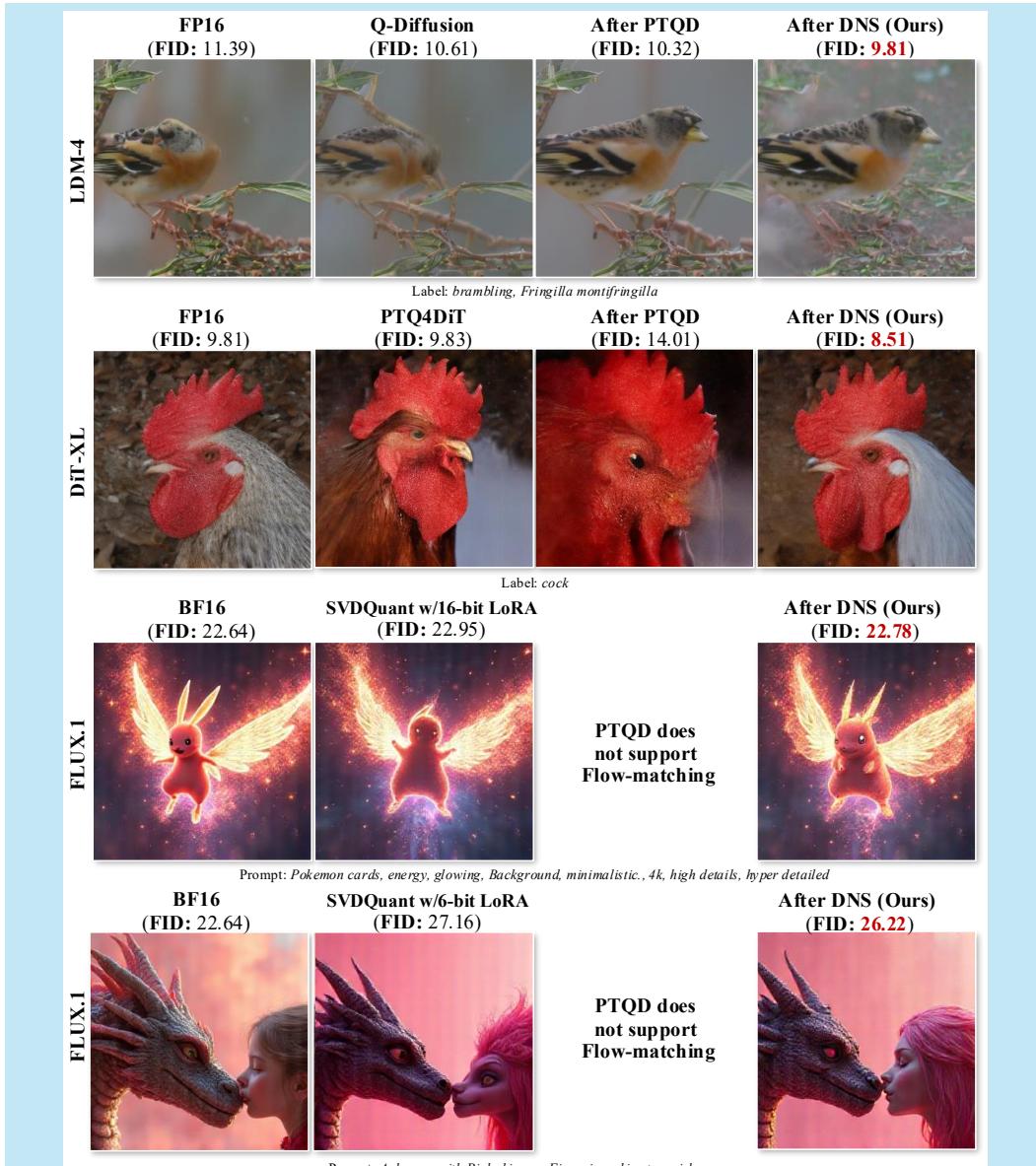


Figure 7: We tested the results on several models (including diffusion and Flow-matching) and compared the results of our method with FP, PTQ, PTQ+PTQD. Numbers in brackets are $\text{FID} \downarrow$.

Metrics Following previous works (Li et al., 2025), we evaluate generation quality using several metrics. Fréchet Inception Distance (FID) (Heusel et al., 2017; Parmar et al., 2022) and sliding Fréchet Inception Distance (sFID) (Ding et al., 2022) are particularly well-suited for reflecting distribution similarity, as it measures the distance between feature distributions extracted from generated and real data using a pre-trained neural network. Inception Score (IS) (Salimans et al., 2016) aims to assess quality and diversity. CLIPScore (CLIP) (Hessel et al., 2021) aims to measure text-image alignment. Image Reward (IR) (Xu et al., 2023) aims to approximate human judgment. We also employ Peak Signal Noise Ratio (PSNR) to measure pixel-level trajectory difference, but this metric cannot validate whether the final outputs achieve better distribution preservation or generation quality. Note that in class-conditional generation we use the tag name with scientific nomenclature to calculate IR.

Table 1: Performance comparison across different models

Model	Bit	Method	Evaluation Metrics				
			FID↓	sFID↓	IS↑	CLIP↑	IR↑
LDM-4	FP16	-	11.49	9.99	104.74	31.91	0.134
		Q-Diffusion	10.68	13.71	101.95	31.97	-0.014
		w/PTQD	10.32	12.39	100.84	31.89	-0.031
DiT-XL	W4A8	w/ours	9.81	9.42	102.40	31.91	0.015
		PTQ4DiT	9.02	18.42	76.18	29.85	-0.345
		w/PTQD	8.03	16.90	78.66	30.04	-0.338
FLUX.1	W8A8	w/ours	8.00	16.81	78.98	30.00	-0.342
		PTQ4DiT	9.83	17.52	70.79	29.92	-0.508
		w/PTQD	14.01	17.13	64.67	29.73	-0.609
FLUX.1	W4A8	w/ours	8.51	16.64	72.65	30.01	-0.484
		BF16	-	22.64	54.23	24.15	29.30
		W4A4	SVDQuant	22.95	53.64	23.80	29.21
FLUX.1	W4A4	w/W16 LoRA	w/ours	22.78	53.15	24.01	29.21
		W4A4	SVDQuant	27.16	58.15	22.68	28.89
		w/W6 LoRA	w/ours	26.22	57.36	23.58	29.01
						0.693	16.17
						0.709	15.87

5.2 MAIN RESULTS

We present our main results in Tab.1 and Fig.7. For class-conditional experiments we generate 30,000 images, and for text-to-image (MJHQ) we generate 10,000 images for evaluation. Observing our experimental results, we find substantial improvements in generation quality metrics including FID (8.1%-13.4% improvement), IS, and IR, demonstrating that our method effectively preserves the original data distribution. Although PSNR decreases slightly in some settings (0.1%-1.6%), CLIP scores remain essentially unchanged ($\leq 0.2\%$), confirming that semantic alignment with text conditions is preserved. Since CLIP scores confirm semantic consistency, the PSNR differences reflect different high-quality sampling paths under identical semantic constraints, not semantic drift(worse CLIP) or quality loss(worse FID).

Specifically, for LDM-4 quantized to W4A8 with Q-Diffusion, our approach outperforms both the baseline quantized model and PTQD, improving FID from 10.68 to 9.81 and IR from -0.014 to 0.015. For DiT-XL with PTQ4DiT at W8A8 and W4A8, PTQD is slightly stronger at W8A8 but exhibits marked instability at W4A8 and fails to produce acceptable results; in contrast, our method is robust at both precisions, improving FID from 9.02 to 8.20 (W8A8) and from 9.83 to 8.51 (W4A8). For FLUX.1 under flow matching with SVDQuant at W4A4 with full precision LoRA, even where the baseline quantization method performs exceptionally close to full precision, our method applies directly and further improves results, reducing FID from 22.95 to 22.78 and increasing IR from 0.877 to 0.890. For its with 6-bit LoRA, all weights required for network inference are 6 bits or less, LoRA branch quantized model increases FID from 22.64 to 27.16. After applying our DNS method decrease FID from 27.16 to 26.22. More visualizations are provided in Appendix A.4.

5.3 ABLATION

Ablation of Optimization Methods As shown in Tab. 3, we conduct a systematic ablation study to evaluate the contribution of each component in our framework. Starting from the W4A8 baseline quantized model (with Q-Diffusion) and applying CNC preprocessing, we progressively incorporate our proposed techniques to demonstrate their effectiveness. First, the DNS absorbs quantization noise through a timestep shift, adjusting the diffusion schedule to preserve the original denoising

486
487
488
489 Table 2: Performance comparison of different
variance estimation methods
490
491
492
493
494

Model	Method	FID↓	IR↑	PSNR↑
LDM-4	-	9.85	0.012	23.09
	MAD	9.83	0.014	23.10
	IQR	9.81	0.015	23.10
	KUS	9.85	0.016	23.12
	KDE	9.83	0.012	23.10

495
496
497
498
499 Table 3: Effect of different components
500
501
502
503
504
505
506
507

Model	Method	FID↓	IR↑	PSNR↑
LDM-4	base	10.61	-0.01	22.81
	+CNC	10.32	-0.031	23.13
	+DNS	10.02	0.009	22.83
	+DCNC	9.81	0.015	23.10

499 distribution. Second, the DCNC refines noise estimation by more accurately modeling the statistical
500 properties of quantization errors.
501

502 **Variance Estimation** As shown in Tab. 2, we test five statistical methods for variance estimation:
503 standard deviation, mean absolute deviation (MAD), interquartile range (IQR), kurtosis-based cor-
504 rection (KUS), and kernel density estimation (KDE). It can be seen that IQR demonstrates best
505 performance on multiple metrics simultaneously.
506

507 **Uniform Weight** Fig. 6 shows our experiments with different strength of correction (W_u) ranging
508 from 0 to 1. We observed an interesting trade-off: higher W_u values improve generation quality (FID)
509 but reduce similarity to full-precision outputs (PSNR). We select $W_u = 0.2$ for our experiments,
510 as this value achieves a favorable balance between maintaining reasonable similarity while still
511 improving the generation quality.
512

513 More ablation experiments are provided in Appendix A.5.

514 6 CONCLUSION

515 In this paper, we have introduced a novel quantization error absorbing method for diffusion models
516 that effectively mitigates quality degradation after quantization. Unlike previous method, our method
517 is distribution-preserving: it explicitly aligns the quantized model’s process distribution with the
518 unquantized diffusion distribution. And our solution works across stochastic, deterministic, and
519 Flow-matching frameworks with Gaussian conditional probability paths. Extensive experiments
520 validate that our method significantly improves generation quality in quantized diffusion models
521 while maintaining computational efficiency.

522 REFERENCES

523 Mikolaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
524 gans, 2021. URL <https://arxiv.org/abs/1801.01401>.

525 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
526 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
527 generation models as world simulators. 2024. URL [https://openai.com/research/
528 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).

529 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
530 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer
531 for photorealistic text-to-image synthesis, 2023. URL <https://arxiv.org/abs/2310.00426>.

532 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
533 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint
534 arXiv:1504.00325*, 2015.

535 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
536 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
537 International Journal of Robotics Research*, 2024.

538 Xin Ding, Yongwei Wang, Zuheng Xu, William J Welch, and Z Jane Wang. Continuous conditional
539 generative adversarial networks: Novel empirical losses and label input mechanisms. *IEEE
Transactions on Pattern Analysis and Machine Intelligence*, 45(7):8143–8158, 2022.

540 Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate
 541 post-training quantization for diffusion models. *arXiv preprint arXiv:2305.10657*, 2023.
 542

543 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPscore: A
 544 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
 545

546 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 547 GANs trained by a two time-scale update rule converge to a local Nash equilibrium. *Advances in
 548 neural information processing systems*, 30, 2017.

549 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
 550 <https://arxiv.org/abs/2006.11239>.
 551

552 Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal
 553 feature maintenance quantization for diffusion models, 2024. URL <https://arxiv.org/abs/2311.16503>.
 554

555 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
 556 Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
 557 integer-arithmetic-only inference, 2017. URL <https://arxiv.org/abs/1712.05877>.
 558

559 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
 560

561 Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
 562 v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024. URL
 563 <https://arxiv.org/abs/2402.17245>.
 564

565 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
 566 Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
 567 diffusion models, 2025. URL <https://arxiv.org/abs/2411.05007>.
 568

569 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
 570 Kurt Keutzer. Q-diffusion: Quantizing diffusion models, 2023. URL <https://arxiv.org/abs/2302.04304>.
 571

572 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 573 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.
 574

575 Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
 576 Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL <https://arxiv.org/abs/2106.08295>.
 577

578 Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
 579 GAN evaluation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 580 recognition*, pp. 11410–11420, 2022.

581 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.
 582

583 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 584 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 585 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.
 586

587 Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
 588 dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations,
 589 2024. URL <https://arxiv.org/abs/2403.06951>.
 590

591 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 592 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.
 593

594 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 595 Improved techniques for training GANs. *Advances in neural information processing systems*, 29,
 596 2016.

594 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 595 diffusion models, 2023. URL <https://arxiv.org/abs/2211.15736>.

596

597 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 598 learning using nonequilibrium thermodynamics, 2015. URL <https://arxiv.org/abs/1503.03585>.

599

600 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 601 <https://arxiv.org/abs/2010.02502>.

602

603 Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards
 604 accurate post-training quantization for diffusion models, 2024. URL <https://arxiv.org/abs/2305.18723>.

605

606 Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training quan-
 607 tization for diffusion transformers, 2024. URL <https://arxiv.org/abs/2405.16005>.

608

609 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 610 Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances
 611 in Neural Information Processing Systems*, 36:15903–15935, 2023.

612

613 Jiaojiao Ye, Zhen Wang, and Linnan Jiang. Pqd: Post-training quantization for efficient diffusion
 614 models, 2024. URL <https://arxiv.org/abs/2501.00124>.

615

616 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 617 effectiveness of deep features as a perceptual metric, 2018. URL <https://arxiv.org/abs/1801.03924>.

618

619 Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
 620 Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
 621 with metric-decoupled mixed precision quantization, 2024. URL <https://arxiv.org/abs/2405.17873>.

622

623 Xingyu Zheng, Xianglong Liu, Yichen Bian, Xudong Ma, Yulun Zhang, Jiakai Wang, Jinyang Guo,
 624 and Haotong Qin. Bidm: Pushing the limit of quantization for diffusion models, 2024. URL
 625 <https://arxiv.org/abs/2412.05926>.

626

627 Junsheng Zhou, Weiqi Zhang, and Yu-Shen Liu. Diffgs: Functional gaussian splatting diffusion,
 628 2024. URL <https://arxiv.org/abs/2410.19657>.

629

A APPENDIX

A.1 DETAILS OF KURTOSIS-BASED UNIFORM NOISE COMPENSATION

Kurtosis measures the "tailedness" of a probability distribution, indicating whether data has heavy tails (more outliers) or light tails compared to a normal distribution. For a random variable x with mean μ , its kurtosis is defined as:

$$\kappa_x = \frac{\mathbb{E}[(X - \mu)^4]}{(\mathbb{E}[(X - \mu)^2])^2} - 3 \quad (21)$$

A positive kurtosis suggests heavier tails and a sharper peak, while a negative kurtosis indicates lighter tails and a flatter distribution. For instance, a Gaussian variable has a kurtosis of 0 while that of a uniform variable is -1.2.

To compensate for the positive kurtosis κ_o of residual noise with variance σ_o^2 , we introduce uniform noise with variance σ_u^2 and kurtosis $\kappa_u < 0$. Given that the two are independent, the kurtosis of their summation can be easily obtained:

$$\kappa_{new} = \frac{\kappa_o \cdot \sigma_o^4 + \kappa_u \cdot \sigma_u^4}{(\sigma_o^2 + \sigma_u^2)^2} \quad (22)$$

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

Table 4: Statistical moments of quantization noise before and after DCNC

Timestep	Skewness	κ_x	$\kappa_x w/DCNC$	μ_5	κ_6	$\kappa_6 w/DCNC$
950	0.26×10^{-2}	-0.07	-0.07	1.03×10^{-8}	-0.47	-0.47
850	0.24×10^{-2}	-0.01	-0.10	0.03×10^{-8}	-0.85	-0.85
750	0.07×10^{-2}	-0.09	-0.09	0.39×10^{-8}	-0.40	-0.40
650	-0.51×10^{-2}	0.21	-0.02	-9.29×10^{-8}	9.18	0.81
550	-0.94×10^{-2}	3.30	0.08	-0.03×10^{-4}	81.38	6.28
450	-0.88×10^{-2}	3.34	0.14	-0.16×10^{-4}	145.49	9.45
350	-0.62×10^{-2}	2.33	0.15	-0.28×10^{-4}	138.41	9.75
250	-0.39×10^{-2}	1.78	0.14	-0.52×10^{-4}	101.13	8.82
150	-0.36×10^{-2}	1.33	0.10	-1.59×10^{-4}	68.45	7.23
50	-0.51×10^{-2}	1.11	0.08	-9.26×10^{-4}	48.54	5.82

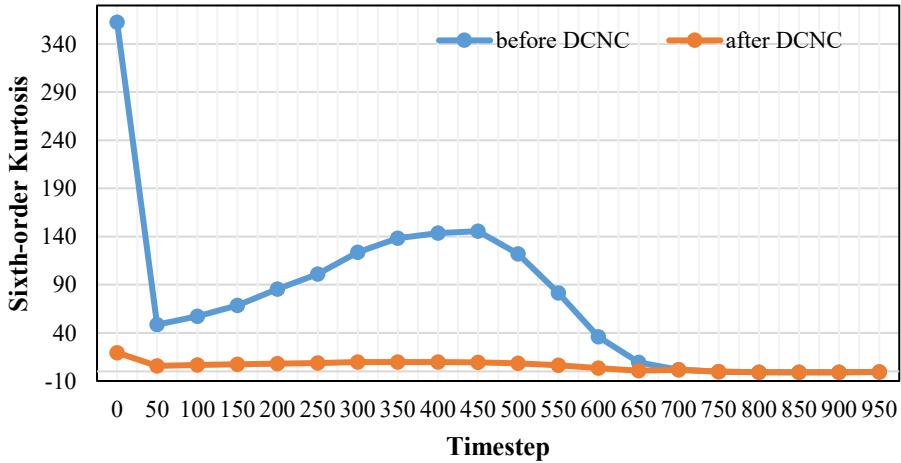


Figure 8: Sixth-order Kurtosis before and after DCNC.

Setting κ_{new} to zero and substituting $\kappa_u = -1.2$, we have:

$$\sigma_u^2 = \sigma_o^2 \cdot \sqrt{\frac{5\kappa_o}{6}} \quad (23)$$

Consequently, the compensated noise has a variance of $\sigma_{new}^2 = \sigma_o^2 \cdot \left(1 + \sqrt{\frac{5\kappa_o}{6}}\right)$ and a kurtosis of 0, which can be regarded as a Gaussian distribution.

The uniform distribution is an attractive choice for DCNC because it's kurtosis is very low(excess kurtosis -1.2) and can be sampled efficiently on standard hardware. Unless otherwise stated, all experiments in paper use uniform distribution as the compensation distribution in DCNC.

More Statistical Analysis In order to more clearly demonstrate that the compensated residual distribution is closer to a Gaussian, we further measure skewness and higher-order central moments of the residuals. excess kurtosis. Based on the definition of kurtosis, we also define a sixth-order excess kurtosis $\kappa_6 = \frac{\mu_6}{\sigma^6} - 15$ which equals 0 for a Gaussian distribution. We collect the outputs of the LDM-4 model with Q-Diffusion quantized to W4A8 and compute the above statistics over residuals. Results for part of representative timesteps are shown in Tab. 4.

We further visualize the comparison of Kurtosis and Sixth-order Kurtosis before and after DCNC in Fig. 4 and Fig. 8. We also summarize statistics over all timesteps with error bars in Tab. 5.

In these tables, the skewness and fifth-order central moment are collected after compensation, and sixth-order excess kurtosis κ_6 is collected both before and after compensation for comparison. The

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 5: Statistics over all timesteps with error bars.

Skewness ($\times 10^{-3}$)	κ_x	κ_x w/DCNC	μ_5 ($\times 10^{-4}$)	κ_6	κ_6 w/DCNC
-3.65 ± 4.15	1.42 ± 1.38	0.02 ± 0.12	-1.30 ± 2.85	76.09 ± 86.71	5.57 ± 5.25

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 6: Effect of different compensation distributions in DCNC

DCNC distribution	FID \downarrow	sFID \downarrow	IS \uparrow
Uniform	9.65	9.33	101.96
Triangular	9.60	9.14	102.30
Bimodal Gaussian mixture	9.77	9.69	101.60
Generalized Gaussian	9.66	9.35	102.04

results show that, after compensation, skewness and the fifth moment(odd-order moments) are close to zero, indicating that the residuals are nearly symmetric. At the same time, both excess kurtosis and sixth-order excess kurtosis κ_6 are substantially reduced, providing additional evidence that DCNC makes the residual distribution significantly closer to a Gaussian.

More Low-kurtosis Distribution Choices Besides uniform distribution, there exist many other low-kurtosis choices that can be used for compensation. In this work we consider four such noise distribution : uniform distribution $U(-a, a)$ ($\kappa=-1.2$), symmetric triangular distribution on $[-a, a]$ ($\kappa=-0.6$), bimodal Gaussian mixture ($\kappa=-0.5$ with $r=1$), and generalized Gaussian (exponential-power) distribution (thus $\kappa \approx -0.81$ with $\beta=4$). Ablation results over these distributions are shown in Tab. 6.

From this table, we observe that the triangular distribution achieves better overall performance than uniform distribution, indicating that using a triangular noise distribution for DCNC compensation is also a viable choice. Nevertheless, due to uniform distribution extremely simple and efficient sampling properties on standard hardware, we retain the uniform distribution as the default compensation distribution throughout this paper.

756 A.2 EXTENDED DETAILS AND SUPPLEMENTARY MATERIAL FOR THE MAIN DERIVATION
757758 In Sec. 4.1, I derived the transformation function T . Next, I will provide a detailed derivation of the
759 transformation function T .760 From Eq. 8 and Eq. 11, we have:
761

762
$$\frac{\epsilon'_\theta(\mathbf{x}_t, t)}{1+k} = \epsilon_\theta(\mathbf{x}_t, t) + \frac{\Delta'\epsilon_\theta(\mathbf{x}_t, t)}{1+k} \quad (24)$$

763
764

765 Following the idea of PTQD, we can treat the latter term as random noise, $\frac{\Delta'\epsilon_\theta(\mathbf{x}_t, t)}{1+k} \approx \eta_\theta$. Experiments
766 show that η_θ has higher kurtosis than Gaussian noise. Therefore, we introduce a uniform
767 distribution component. Combined with compensation using Eq. 13:
768

769
$$\frac{\Delta'\epsilon_\theta(\mathbf{x}_t, t)}{1+k} + U(0, \sigma_u^2) = \Delta''\epsilon_\theta(0, \sigma_{\epsilon, t}) \sim \mathcal{N}(0, \sigma_{\epsilon, t}^2) \quad (25)$$

770
771

772 In practice, we introduce a factor W_u to control the final proportion added. The analysis of W_u is
773 presented in Sec. 5.3. Thus, we can formulate our improved transformation T as Eq. 14:
774

775
776
$$T(\epsilon'_\theta(\mathbf{x}_t, t)) = \frac{\epsilon'_\theta(\mathbf{x}_t, t)}{1+k} + W_u \cdot U(0, \sigma_u^2) \quad (26)$$

777

778
$$= \epsilon_\theta(\mathbf{x}_t, t) + \frac{\Delta'\epsilon_\theta(\mathbf{x}_t, t)}{1+k} + W_u \cdot U(0, \sigma_u) \quad (27)$$

779

780
$$= \epsilon_\theta(\mathbf{x}_t, t) + \Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon, t}) \quad (28)$$

781
782

783 where $\sigma_{\epsilon, t}$ and k are statistically computed from the calibration.
784785 When employing a quantized model, quantization introduces parameter perturbations that manifest as
786 errors in noise prediction. The noise predicted by quantized model can be represented as Eq. 11:
787

788
$$\epsilon'_\theta(\mathbf{x}_t, t) = \epsilon_\theta(\mathbf{x}_t, t) + \Delta_{\epsilon_\theta}(\mathbf{x}_t, t)$$

789

790 where $\epsilon_\theta(\mathbf{x}_t, t)$ represents the original network prediction, $\epsilon'_\theta(\mathbf{x}_t, t)$ represents the quantized network
791 prediction, and $\Delta_{\epsilon_\theta}(\mathbf{x}_t, t)$ captures the quantization-induced error.
792793 To ensure that the noise distribution introduced by quantization errors approximates a Gaussian
794 distribution, we apply a transformation T to this error function Eq. 12:
795

796
797
$$T(\epsilon'_\theta(\mathbf{x}_t, t)) = \epsilon_\theta(\mathbf{x}_t, t) + \Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon, t})$$

798

800 where $\Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon, t})$ follows a Gaussian distribution with mean 0 and variance $\sigma_{\epsilon, t}^2$ that depends on the
801 timestep t .
802803 Substituting Eq. 12 into Eq. 3, we obtain:
804

805
$$\hat{\mathbf{x}}'_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} T(\epsilon'_\theta(\mathbf{x}_t, t))) \quad (29)$$

806

807
$$= \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(\mathbf{x}_t, t)) - \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon, t}) \quad (30)$$

808

809
$$= \hat{\mathbf{x}}_0 - \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon, t}) \quad (31)$$

810 where the estimation of \mathbf{x}_0 using the quantized model, denoted as $\hat{\mathbf{x}}'_0$. Consequently, the reverse
 811 process under quantization is shown as Eq. 15:
 812

$$813 \quad p'_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N} \left(\sqrt{\bar{\alpha}_{t-1}} \mathbf{x}'_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}'_0}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 I_1 \right) \quad (32)$$

$$815 \quad = \mathcal{N} \left(\sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}} + C_1 \Delta''_{\epsilon_\theta}(0, \sigma_{\epsilon,t}), \sigma_t^2 I \right) \quad (33)$$

$$817 \quad = \mathcal{N} \left(\sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 I_+ C_1^2 \sigma_{\epsilon,t}^2 I \right) \quad (34)$$

820 When using the DDIM sampler for deterministic sampling, $\sigma_t = 0$.
 821

822 Then we derive the marginal distribution $q'(\mathbf{x}_{t-1} | \mathbf{x}_0)$ by integrating over the intermediate variable
 823 \mathbf{x}_t :

$$824 \quad q'(\mathbf{x}_{t-1} | \mathbf{x}_0) = \int q_\sigma(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \cdot q(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_t \quad (35)$$

826 Rigorously deriving this integral is quite complex, so we first provide a simplified derivation. We
 827 need to know that any linear combination and marginalization of Gaussian distributions remains
 828 Gaussian, allowing us to consider the mean and variance of the integral result separately.

829 Observing Eq. 34, we find that quantization only affects the variance part of $q'(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$, while
 830 the mean part remains unchanged.

831 First is mean analysis: Since the added variance terms have zero mean, by the law of total expectation,
 832 the marginal mean remains unchanged:

$$834 \quad E[q'(\mathbf{x}_{t-1} | \mathbf{x}_0)] = E[E[q'(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)] | \mathbf{x}_0] = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 \quad (36)$$

835 Then is Variance Analysis: We apply the law of total variance:

$$837 \quad \text{Var}[q'(\mathbf{x}_{t-1} | \mathbf{x}_0)] = E[\text{Var}[q'(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)] | \mathbf{x}_0] + \text{Var}[q'(E[\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0]) | \mathbf{x}_0] \quad (37)$$

838 since the first term's independent of \mathbf{x}_t :

$$839 \quad E[\sigma_t^2 I_1 + C_t^2 \sigma_\epsilon^2 I_2 | \mathbf{x}_0] = (\sigma_t^2 + C_t^2 \sigma_\epsilon^2) \mathbf{I} \quad (38)$$

841 Since the added variance terms have zero mean, the second term remains consistent with the original
 842 diffusion process:

$$843 \quad \text{Var}[q'(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)] | \mathbf{x}_0 = (1 - \bar{\alpha}_{t-1} - \sigma_t^2) \mathbf{I} \quad (39)$$

845 Therefore, the final integral result is Eq. 17:

$$846 \quad q'(\mathbf{x}_{t-1} | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1 - \bar{\alpha}_{t-1} + C_1^2 \sigma_{\epsilon,t}^2) \mathbf{I})$$

848 Consequently, the quantized model marginal distribution $q'(\mathbf{x}_{t-1} | \mathbf{x}_0)$ does not directly map the data
 849 distribution of the original generative process.
 850

851 To address this, we seek a transformation that maps it to the original diffusion marginal distribution
 852 at other timesteps. We introduce a scaling factor C_2 and a new timestep τ that together establish
 853 an equivalence between the marginal distribution of the quantized model and that of the original
 854 diffusion model. Specifically, we define Eq. 18:

$$856 \quad q(C_2 \mathbf{x}_\tau | \mathbf{x}_0) = \mathcal{N}(C_2 \mathbf{x}_\tau; C_2 \sqrt{\bar{\alpha}_\tau} \mathbf{x}_0, C_2^2 (1 - \bar{\alpha}_\tau) \mathbf{I})$$

858 Through multi-step denoising, this marginal distribution mapping ensures that the final generated
 859 distribution matches the original model's distribution. To make $q(\mathbf{x}'_{t-1} | \mathbf{x}_0)$ and $q(C_2 \mathbf{x}_\tau | \mathbf{x}_0)$ in
 860 Eq. 17 and Eq. 18 statistically equivalent, we set their means and variances equal respectively.

861 Therefore, we solve the system of equations:

$$863 \quad \begin{cases} \sqrt{\bar{\alpha}_{t-1}} = C_2 \sqrt{\bar{\alpha}_\tau} & \text{(mean equality)} \\ (1 - \bar{\alpha}_{t-1}) + C_1^2 \sigma_{\epsilon,t}^2 = C_2^2 (1 - \bar{\alpha}_\tau) & \text{(variance equality)} \end{cases} \quad (40)$$

864 Solving this system yields:
 865

$$866 \quad C_2 = \sqrt{1 + C_1^2 \sigma_{\epsilon,t}^2} \quad \text{and} \quad \bar{\alpha}_\tau = \frac{\bar{\alpha}_{t-1}}{C_2^2} \quad (41)$$

868
 869 While PTQD (He et al., 2023) also attempt to absorb quantization error into noise terms, our
 870 method provides a principled mathematical framework that explicitly maps the quantized distribution
 871 back to the forward diffusion process by timestep shift. The resulting compensation mechanism is
 872 theoretically guaranteed to perform effectively across stochastic sampling, deterministic sampling,
 873 and Flow-matching with Gaussian conditional probability paths. Through absorbing quantization
 874 error by timestep shift, our approach provides a more fundamental understanding of quantization
 875 in diffusion models while offering practical advantages in implementation flexibility and sampling
 876 robustness.

877 Based on the above derivations, the implementation is given in Algorithm 1 and Algorithm 2.

878 **Algorithm 1:** Deformable Noise Scheduler Calibration

880 **Input:** Timesteps sequence $\{(t, t_{\text{prev}})\}$, Calibration set $C = \{\mathbf{x}_0\}$
 881 **Output:** Calibrated alpha values $\{\bar{\alpha}_{t-1}^q(t)\}$, slopes $\{k(t)\}$, uniform variances $\{\sigma_u^2(t)\}$

882 1 Initialize $C_\epsilon \leftarrow \emptyset$, $C_{\Delta\epsilon} \leftarrow \emptyset$;
 883 2 **for** each $(t, \text{previous } t) \in \text{timesteps}$ **do**
 884 3 **for** each $\mathbf{x}_0 \in C$ **do**
 885 4 $\mathbf{x}_t \leftarrow \text{AddNoise}(\mathbf{x}_0, t)$;
 886 5 $\epsilon_\theta(\mathbf{x}_t) \leftarrow \text{OriginalNetwork}(\mathbf{x}_t)$;
 887 6 $\epsilon'_\theta(\mathbf{x}_t) \leftarrow \text{QuantizedNetwork}(\mathbf{x}_t)$;
 888 7 $\Delta\epsilon_\theta \leftarrow \epsilon'_\theta(\mathbf{x}_t) - \epsilon_\theta(\mathbf{x}_t)$;
 889 8 $C_\epsilon.\text{append}(\epsilon_\theta(\mathbf{x}_t))$, $C_{\Delta\epsilon}.\text{append}(\Delta\epsilon_\theta)$;
 890 9 $k(t), d(t) \leftarrow \text{LinearRegression}(C_\epsilon, C_{\Delta\epsilon})$;
 891 10 $C_{\Delta'\epsilon} \leftarrow \text{ComputeResiduals}(C_\epsilon, C_{\Delta\epsilon}, k(t), d(t))$;
 892 11 $\sigma_{\epsilon,t,0}^2 \leftarrow \text{Variance}(C_{\Delta'\epsilon})$;
 893 12 $\kappa_0 \leftarrow \text{Kurtosis}(C_{\Delta'\epsilon})$;
 894 13 $\sigma_u^2(t) \leftarrow \sigma_{\epsilon,t,0}^2 \times \sqrt{\frac{5\kappa_0}{6}}$ $C_{\Delta''\epsilon} \leftarrow \text{TransformationT}(C_{\Delta'\epsilon}, k(t), W_u, \sigma_u^2(t))$
 895 14 $\sigma_{\epsilon,t}^2 \leftarrow \text{Variance}(C_{\Delta''\epsilon})$ $\bar{\alpha}_{t-1}^q \leftarrow \text{NewtonSolve} \left(\bar{\alpha}_{t-1} = \frac{\bar{\alpha}_{t-1}^q}{1 + C_1^2 \sigma_{\epsilon,t}^2} \right)$ Store $\bar{\alpha}_{t-1}^q(t)$, $k(t)$,
 896 15 $\sigma_u^2(t)$;
 897 14 **return** $\{\bar{\alpha}_{t-1}^q(t)\}, \{k(t)\}, \{\sigma_u^2(t)\}$

898 15 **Note:** Linear regression models $\Delta\epsilon_\theta = k(t) \cdot \epsilon_\theta + d(t) + \text{residual}$, but $d(t)$ is usually very close
 899 to 0

902

903

904 **Algorithm 2:** Deformable Noise Scheduler Inference

905 **Input:** Calibrated parameters $\{\bar{\alpha}_{t-1}^q(t)\}, \{k(t)\}, \{\sigma_u^2(t)\}$, Timesteps sequence $\{(t, \text{previous } t)\}$
 906 **Output:** Generated sample \mathbf{x}_0

907 1 Initialize $\mathbf{x}_T \sim \mathcal{N}(0, I)$;
 908 2 $\mathbf{x}_t \leftarrow \mathbf{x}_T$;
 909 3 **for** each $(t, _) \in \text{timesteps}$ **do**
 910 4 $\epsilon'_\theta(\mathbf{x}_t, t) \leftarrow \text{QuantizedNetwork}(\mathbf{x}_{\text{current}}, t)$;
 911 5 $\epsilon_\theta \leftarrow \text{TransformationT}(\epsilon'_\theta(\mathbf{x}_t, t), k(t), W_u, \sigma_u^2(t))$ $\hat{\mathbf{x}}_0 \leftarrow \frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta}{\sqrt{\bar{\alpha}_t}}$
 912 6 $\mathbf{x}_{t-1} \leftarrow \text{DiffusionStep}(\mathbf{x}_t, \hat{\mathbf{x}}_0, t, \alpha_{t-1} = \bar{\alpha}_{t-1}^q(t), \sigma_t = 0)$ $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1}$;
 913 6 **return** \mathbf{x}_t

914 7 **Note:** Next loop uses t_{prev} (not t_{prev}^q) as the current timestep

915 A side-by-side derivation comparing our DNS to PTQD is shown in Tab. 7.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 7: A side-by-side derivation comparing PTQD and our DNS.

PTQD (stochastic-sampling view)	DNS (ours, distribution-preserving view)
Both PTQD and our DNS first decompose the quantization error (Eq. 8) as	Both PTQD and our DNS first decompose the quantization error (Eq. 8) as
$\Delta\epsilon_\theta(x_t, t) = k\epsilon_\theta(x_t, t) + \Delta'\epsilon_\theta(x_t, t).$	$\Delta\epsilon_\theta(x_t, t) = k\epsilon_\theta(x_t, t) + \Delta'\epsilon_\theta(x_t, t).$
This yields the following quantized conditional:	This yields the following quantized conditional:
$p'_\theta(x_{t-1} x_t) = \mathcal{N}(x_{t-1}; \hat{\mu}_t(x_t, \hat{x}_0), \sigma_t^2 I) + \xi_t,$ $\xi_t \sim \mathcal{N}(0, C_1^2 \sigma_{\epsilon, t}^2 I),$	$p'_\theta(x_{t-1} x_t) = \mathcal{N}(x_{t-1}; \hat{\mu}_t(x_t, \hat{x}_0), \sigma_t^2 I) + \xi_t,$ $\xi_t \sim \mathcal{N}(0, C_1^2 \sigma_{\epsilon, t}^2 I),$
where ξ_t is the independent Gaussian component of the quantization noise.	where ξ_t is the independent Gaussian component of the quantization noise.
Using this decomposition and quantized conditional, PTQD then starts from the standard stochastic sampler (Eq. 5):	Our DNS derivation then starts from the corresponding quantized reverse conditional (Eq. 15), which folds the independent quantization noise into the reverse:
$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} x_t - \beta_t \frac{1}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) - \sigma_t^0 z,$ $z \sim \mathcal{N}(0, I).$	$p'_\theta(x_{t-1} x_t) = q_\sigma(x_{t-1} x_t, \hat{x}'_t)$ $= \mathcal{N}(x_{t-1}; \hat{\mu}_t(x_t, \hat{x}_0), (\sigma_t^2 + C_1^2 \sigma_{\epsilon, t}^2) I).$
Substituting the decomposed quantization error into Eq. 5 gives PTQD's stochastic update (Eq. 10):	Thus the induced conditional marginal distribution under quantization is (Eq. 17):
$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} x_t - \beta_t \frac{1}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t)$ $- \sigma_t z - \beta_t c_t \Delta'\epsilon_\theta(x_t, t),$	$q'(x_{t-1} x_0) = \mathcal{N}(x_{t-1}; \sqrt{\bar{\alpha}_{t-1}} x_0, (1 - \bar{\alpha}_{t-1} + C_1^2 \sigma_{\epsilon, t}^2) I).$
where c_t is a scalar (a function of $\alpha_t, \bar{\alpha}_t, k$), and the last two terms $-\sigma_t z - \beta_t c_t \Delta'\epsilon_\theta(x_t, t)$ jointly play the role of the original stochastic noise term $\sigma_t^0 z$ in Eq. 5. Thus $\Delta'\epsilon_\theta$ is treated as an extra stochastic noise term injected into the sampling process.	DNS then uses Eqs. 18–20 to construct a distributional map that identifies this quantized marginal with an unquantized marginal at a shifted time τ ; in particular, Eq. 18 gives
	$q'(x_{t-1} x_0) \longleftrightarrow q(C_2 x_\tau x_0),$
	and Eq. 20 defines the time shift τ and the corresponding time-shifted scheduler $\bar{\alpha}_{t-1}^{(q)} := \bar{\alpha}_\tau$, this explicitly constructs a distribution-preserving map that sends the quantized marginal to an original (unquantized) marginal at the shifted time τ .

Table 8: Concise comparison between DNS and prior work

Method	Parameter update?	Arch.changes or limits?	Plug-and-play over other PTQ?	Stoch.	Det.	FM
Q-Diffusion	Yes (Calibration, weight/quant update)	No	Not over SVDQuant	Yes	Yes	Yes
PTQ4DiT	Yes (Calibration, weight/quant update)	No Designed for DiT	Only DiT	Yes	Yes	Yes
SVDQuant	Yes (Weight update and FP16 finetune)	Add FP16 LoRA (Incomplete quant.)	Not over many model-changing PTQ	Yes	Yes	Yes
PTQD	No	No	Almost Yes	Yes	No	No
DNS (Ours)	No	No	Almost Yes	Yes	Yes	Yes

960
961
962
963
964
965
966
967
968
969
970
971
We also draw a concise comparison table to better compare our method with prior work, shown in Tab. 8

963
964
965
966
967
968
969
970
971
This highlights that DNS is both plug-and-play over many existing PTQ methods and applicable to stochastic(Stoch.), deterministic(Det.), and flow-matching(FM) samplers without architectural/weight changes or additional training.

972 A.3 DETAILS OF FLOW-MATCHING DERIVATION
973974 In FLUX.1, the forward process is defined as:
975

976
$$\mathbf{x}_t = (1 - \sigma_t) \cdot \mathbf{x}_0 + \sigma_t \cdot \varepsilon \quad (42)$$

977 where $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$ and σ_t represents the noise level at time t .
978979 The denoising process follows a discrete update rule:
980

981
$$\mathbf{x}_{t_{next}} = \mathbf{x}_t + \Delta\sigma \cdot v_\theta(\mathbf{x}_t, \sigma_t) \quad (43)$$

982 where $\Delta\sigma = \sigma_{t_{next}} - \sigma_t$ and $v_\theta(\mathbf{x}_t, \sigma_t)$ is the velocity field predicted by the model.
983984 When employing a quantized model, the velocity field prediction contains quantization-induced
985 errors:
986

$$v'_\theta(\mathbf{x}_t, \sigma_t) = v_\theta(\mathbf{x}_t, \sigma_t) + \Delta'v_\theta(\mathbf{x}_t, \sigma_t) \quad (44)$$

987 To ensure that this error approximates a Gaussian distribution, we apply transformation T :
988

989
$$T(v'_\theta(\mathbf{x}_t, \sigma_t)) = v_\theta(\mathbf{x}_t, \sigma_t) + \Delta'v_\theta(0, \sigma_{v,t}) \quad (45)$$

990 where $\Delta'v_\theta(0, \sigma_{v,t}) \sim \mathcal{N}(0, \sigma_{v,t}^2 \mathbf{I})$.
991992 The denoising process with quantization errors becomes:
993

994
$$\begin{aligned} \mathbf{x}'_{t_{next}} &= \mathbf{x}_t + \Delta\sigma \cdot [v_\theta(\mathbf{x}_t, \sigma_t) + \Delta'v_\theta(0, \sigma_{v,t})] \\ &= \mathbf{x}_{t_{next}} + \Delta\sigma \cdot \Delta'v_\theta(0, \sigma_{v,t}) \end{aligned} \quad (46)$$

995 Substituting the forward process expression for \mathbf{x}_t :
996

997
$$\mathbf{x}'_{t_{next}} = (1 - \sigma_{t_{next}}) \cdot \mathbf{x}_0 + \sigma_{t_{next}} \cdot \varepsilon + \Delta\sigma \cdot \Delta'v_\theta(0, \sigma_{v,t}) \quad (47)$$

1000 Drawing from our diffusion derivation, we seek a transformation that maps $\mathbf{x}'_{t_{next}}$ back to the
1001 standard forward path. We introduce a scaling factor C_2 and a new timestep τ that together establish
1002 an equivalence between the quantized output and a point on the original path. Specifically, we define:
1003

1004
$$C_2 \cdot \mathbf{x}_\tau = C_2 \cdot (1 - \sigma_\tau) \mathbf{x}_0 + C_2 \cdot \sigma_\tau \varepsilon' \quad (48)$$

1005 Then we can establish that when $C_2 = (1 - \sigma_{t_{next}}) + \sqrt{\sigma_{t_{next}}^2 + \Delta\sigma^2 \sigma_{v,t}^2}$ and $\sigma_\tau = (C_2 + \sigma_{t_{next}} - 1)/C_2$, $\mathbf{x}'_{t_{next}}$ and $C_2 \mathbf{x}_\tau$ become statistically equivalent, with matching coefficients for \mathbf{x}_0 and
1006 equivalent variance terms for the noise components $\sigma_{t_{next}} \cdot \varepsilon + \Delta\sigma \cdot \Delta'v_\theta(0, \sigma_{v,t})$.
10071008 Importantly, neural networks trained for flow-matching are designed to estimate the velocity field
1009 pointing from any noisy sample toward the clean data. Since the network is trained to predict
1010 $v_\theta(\mathbf{x}_t, \sigma_t) \approx \mathbb{E}[\varepsilon | \mathbf{x}_t, \sigma_t]$ for any valid noise distribution, it can still function effectively when the
1011 noise distribution changes from ε to ε' . The model will naturally predict the velocity field that directs
1012 \mathbf{x}_τ toward \mathbf{x}_0 , allowing our transformation to effectively absorb quantization errors.
10131014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027

A.4 VISUALIZATION RESULTS

1028
1029
1030
1031
1032
1033

In this section, we demonstrate the visualisation results by different models. (1) LDM-4: Tested with 20 steps, guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 9. (2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 10.

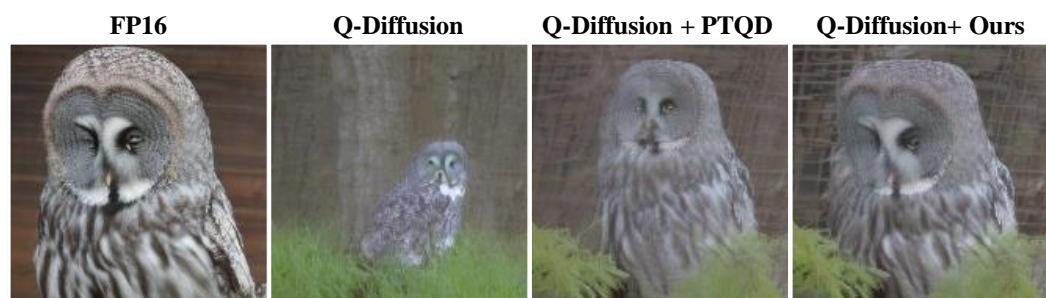
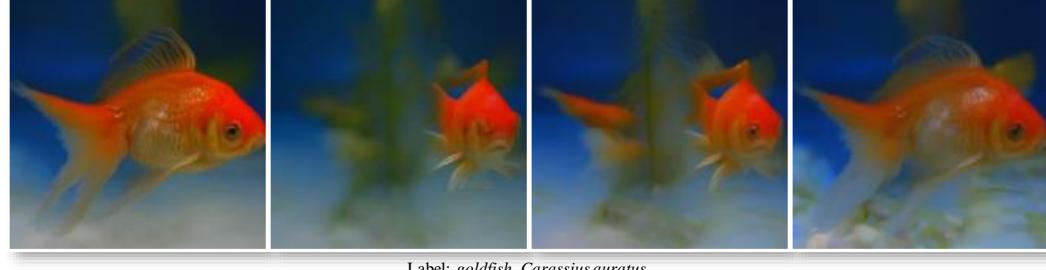
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043Label: great grey owl, great gray owl, *Strix nebulosa*1044
1045
1046
1047
1048
1049
1050
1051
1052Label: European fire salamander, *Salamandra salamandra*1053
1054
1055
1056
1057
1058
1059
1060
1061
1062Label: robin, American robin, *Turdus migratorius*1063
1064
1065
1066
1067
1068
1069
1070
1071Label: goldfish, *Carassius auratus*1072
1073
1074
1075
1076
1077
1078
1079

Figure 9: Tested the LDM-4 model with Q-Diffusion quantization to W4A8 precision. The resolution of the generated image is 256

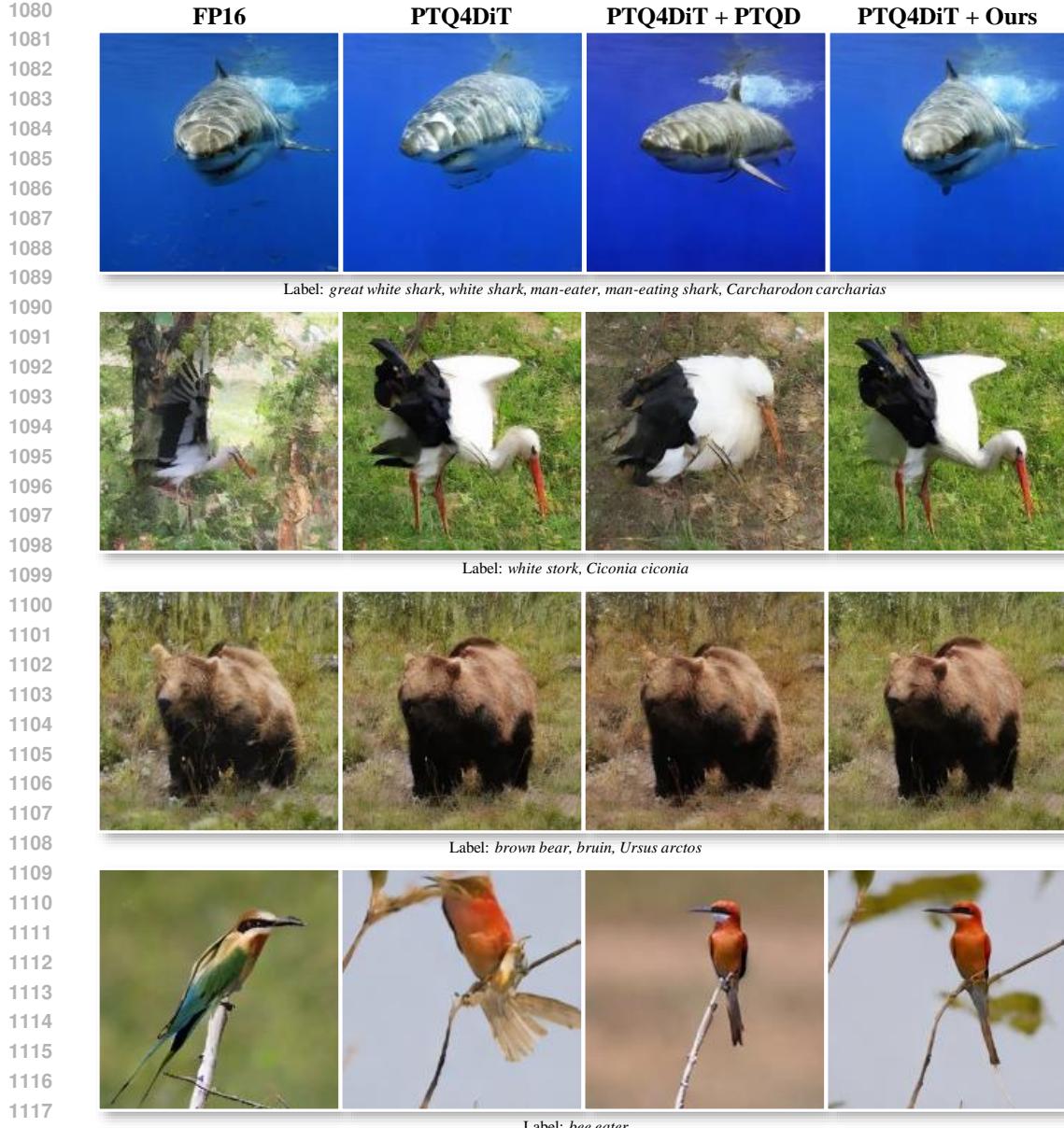
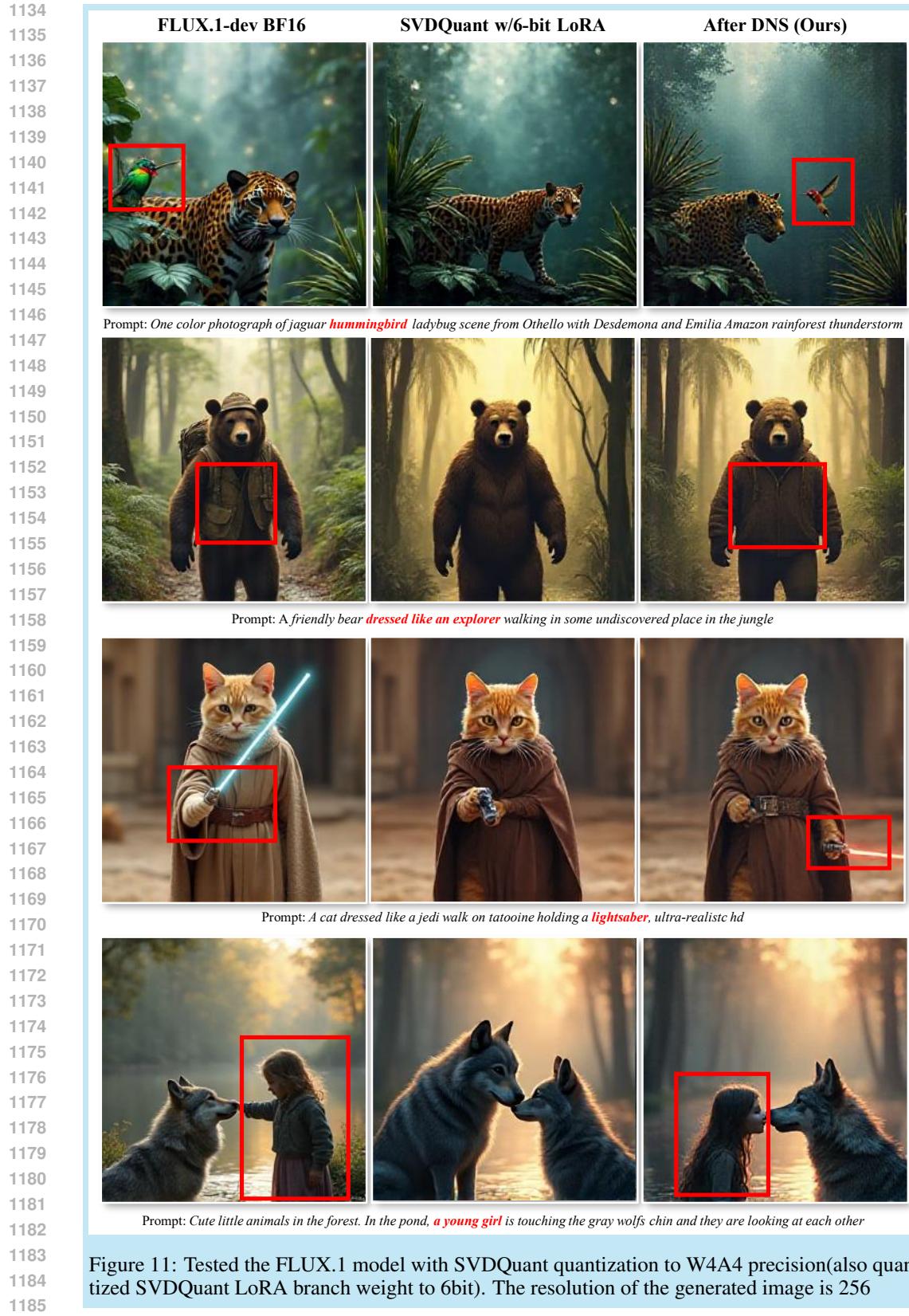


Figure 10: Tested the DIT-XL model with PTQ4DiT quantization to W4A8 precision. The resolution of the generated image is 256

(3) FLUX.1 : Tested with guidance scale 3.5, 20 steps at 256×256 and 1024×1024 . We compare the FP16 model, SVDQuant (W4A4) with quantized its LoRA branch weight to 6-bit and its combination with ours. PTQD does not support Flow-matching. The results are shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14 and Fig. 15. It can be seen that our method has good results in maintaining semantics, reducing artifacts, increasing details, and improving diversity, which shows that we have successfully achieved the goal of distribution preservation.

(4) FLUX.1 : We also try optimizing SVDQuant (W4A4) with FP16 LoRA branch. Tested with guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare FP16 model, SVDQuant (W4A4) with FP16 LoRA and its combination with ours. The results are shown in Fig. 16 and Fig. 17. Our method still has capability to improve under strong baseline.



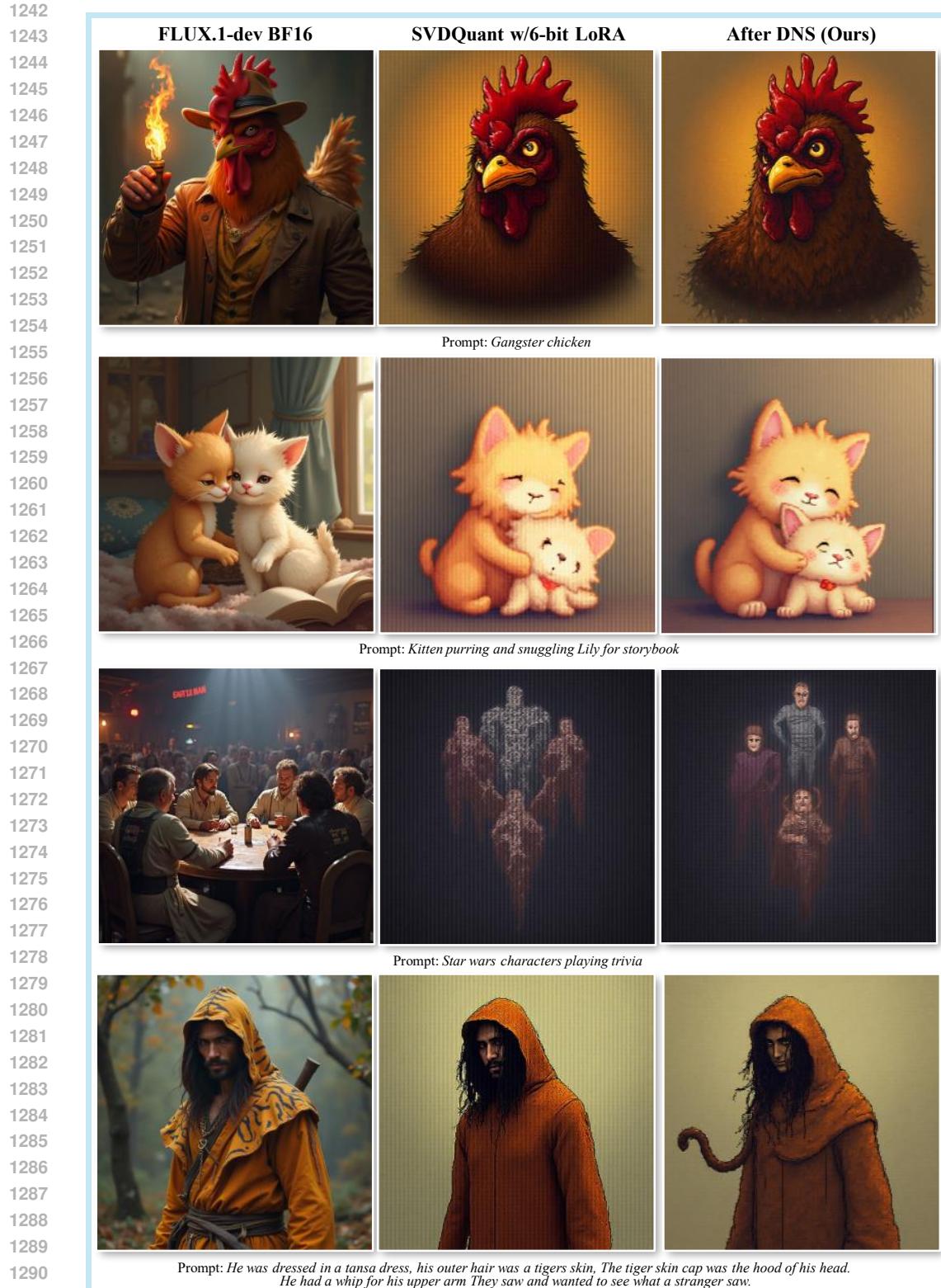


Figure 13: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quantized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It can be seen that we have successfully removed some artifacts, but the excessive artifacts introduced by quantization still cannot be completely removed.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

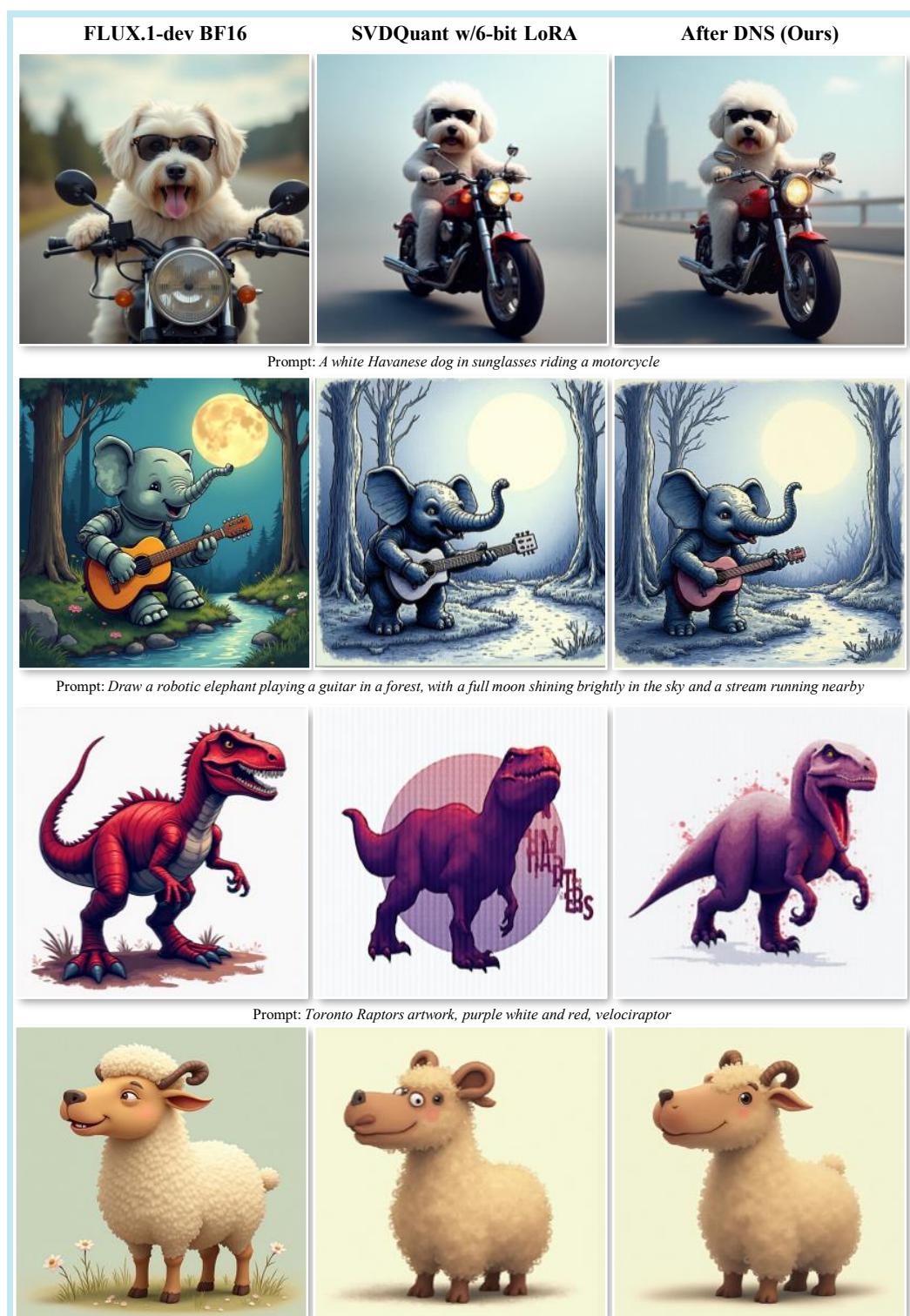


Figure 14: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quantized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It can be seen that we successfully added some details and improved the image quality.

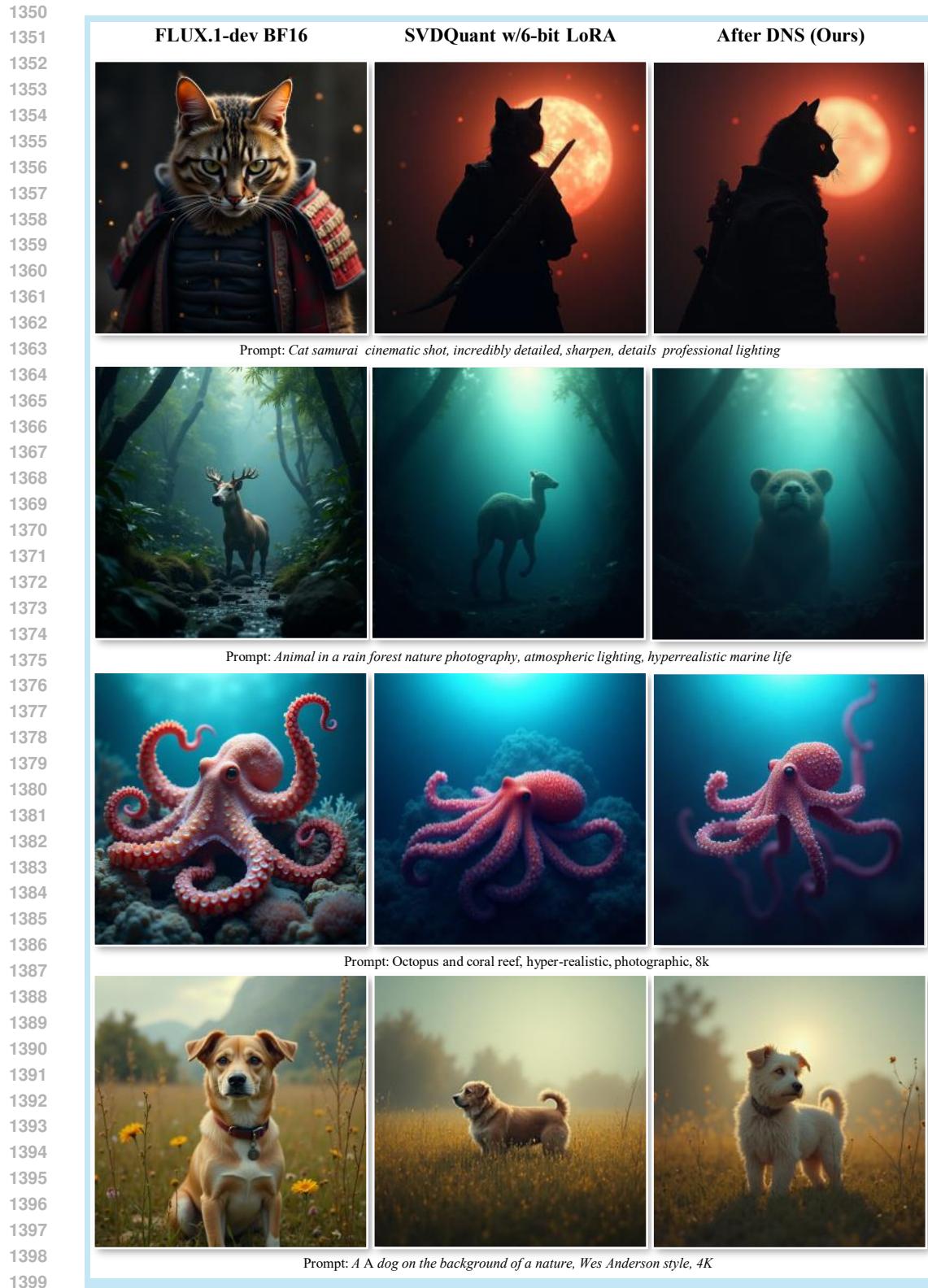


Figure 15: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(also quantized SVDQuant LoRA branch weight to 6bit). The resolution of the generated image is 1024. It can be seen that since we are using distribution preservation, some images will also move to other trajectories with the same(as quantized model) quality.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

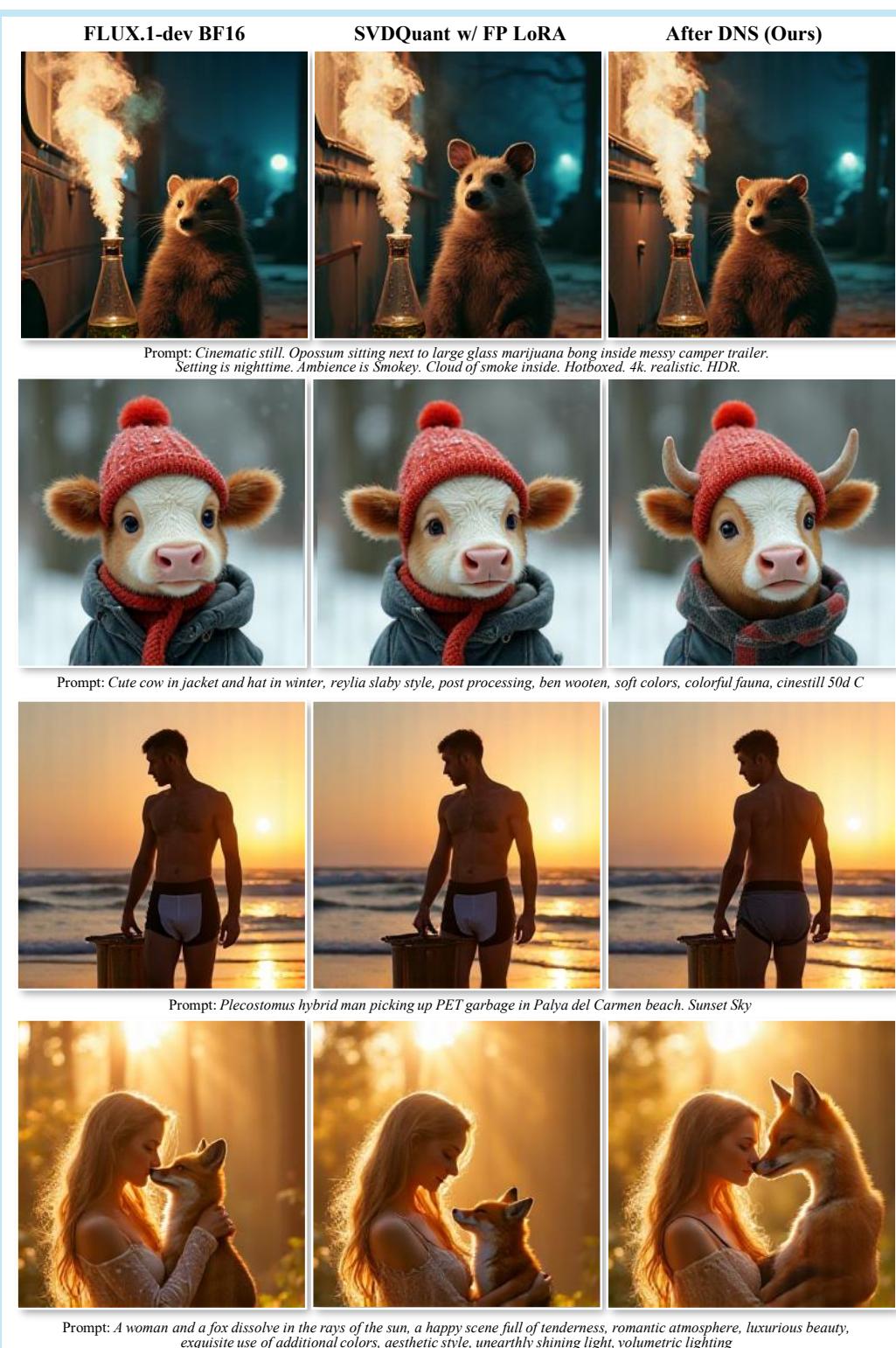


Figure 16: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 256

1458

1459

1460

1461

FLUX.1-dev BF16**SVDQuant w/ FP LoRA****After DNS (Ours)**Prompt: *The white cat and the cute girl are very surprised in the forest, their whole bodies*Prompt: *Dramatic portrait of an African cheetah looking at the camera while sitting on a rock, captured in the style of National Geographic, safari photography, 32k UHD*Prompt: *Chewbacca drinking coffee onboard a superyacht*Prompt: *A white dire wolf with crimson red eyes prowling around the red leaf forest on a cold and snowy winter day*

Figure 17: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision(maintain SVDQuant LoRA branch precision at W16A16). The resolution of the generated image is 1024

1509

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 9: CIFAR-10 (32×32) generation with TFMQ-DM (W4A8), 20 steps

Method	FID↓	sFID↓	KID×10 ³ ↓	IS↑	PSNR↑	LPIPS↓
FP16	7.32	7.35	—	9.27	—	—
TFMQ-DM	12.83	15.69	3.59	9.26	27.81	0.138
w/ours	11.12	13.03	2.20	9.50	28.66	0.120

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 10: Unconditional ImageNet-64 (64×64) generation with PTQ4DM(W8A8), 20 steps

Method	FID↓	sFID↓	KID×10 ³ ↓	IS↑	PSNR↑	LPIPS↓
FP16	17.89	10.48	—	15.05	—	—
PTQ4DM	25.36	18.13	8.12	15.10	19.88	0.232
w/ours	24.32	17.65	6.35	14.69	19.71	0.241

1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 11: CIFAR-10 (32×32) generation with APQ-DM(W6A6), 20 steps

Method	FID↓	sFID↓	KID×10 ³ ↓	IS↑	PSNR↑	LPIPS↓
FP16	11.32	8.88	—	8.50	—	—
APQ-DM	16.22	8.17	5.95	8.65	24.28	0.159
w/ours	15.11	7.98	3.86	8.56	26.38	0.150

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 12: Quantitative metrics with mean ± standard deviation.

Model	Method	FID↓	sFID↓	IS↑	PSNR↑
LDM-4	FP16	11.49 ± 0.009	9.99 ± 0.001	104.74 ± 0.020	—
	Q-Diffusion	10.68 ± 0.476	13.71 ± 1.998	101.95 ± 0.261	22.84 ± 0.269
	w/ours	9.81 ± 0.472	9.42 ± 0.126	102.40 ± 0.359	23.10 ± 0.438
CIFAR	FP16	7.32 ± 0.005	7.35 ± 0.003	9.27 ± 0.002	—
	TFMQ-DM	12.83 ± 0.002	15.69 ± 0.008	9.26 ± 0.006	27.81 ± 0.001
	w/ours	11.12 ± 0.042	13.03 ± 0.012	9.50 ± 0.006	28.66 ± 0.005
ImageNet64	FP16	17.89 ± 0.017	10.48 ± 0.005	15.05 ± 0.019	—
	PTQ4DM	25.36 ± 0.331	18.13 ± 0.132	15.10 ± 0.027	19.88 ± 0.214
	w/ours	24.32 ± 0.142	17.65 ± 0.170	14.69 ± 0.022	19.71 ± 0.212
CIFAR	FP16	11.32 ± 0.001	8.88 ± 0.003	8.50 ± 0.003	—
	APQ-DM	16.22 ± 0.400	8.17 ± 0.070	8.65 ± 0.003	24.28 ± 0.254
	w/ours	15.11 ± 0.160	7.98 ± 0.107	8.56 ± 0.001	26.38 ± 0.040

1553
1554
A.5 ADDITIONAL EXPERIMENTS RESULTS1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
More Backbones Experiments In addition to the main backbones quantized with Q-Diffusion, PTQ4DiT, and SVDQuant, we further evaluate DNS on other PTQ methods: TFMQ-DM, PTQ4DM, and APQ-DM. We follow exactly the same evaluation protocol and metrics as in Sec. 5.1 and results are shown as Tab. 9–Tab. 11.1560
1561
1562
1563
1564
1565
Robustness and Statistical Reliability of Experiments To further assess the robustness and statistical reliability of our results, we report mean ± standard deviation of three evaluation metrics for representative backbones, as summarized in Tab. 12.1560
1561
1562
1563
1564
1565
More Metrics In addition to FID, sFID, IS, IR, CLIP, and PSNR, we further evaluate Kernel Inception Distance (KID (Bińkowski et al., 2021)) and LPIPS (Zhang et al., 2018). KID is computed

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
Table 13: Additional experiments with KID and LPIPS across various backbones

Model	Bit	Method	KID $\times 10^3 \downarrow$	LPIPS \downarrow
LDM-4	W4A8	Q-Diffusion	4.56	0.205
		w/PTQD	3.89	0.206
		w/ours	3.01	0.220
DiT-XL	W4A8	PTQ4DiT	1.00	0.396
		w/PTQD	2.41	0.468
		w/ours	0.86	0.401
FLUX.1	W4A4	SVDQuant	0.08	0.197
		w/W16 LoRA	w/ours	0.08
	W4A4	SVDQuant	1.47	0.412
ImageNet64	W8A8	SVDQuant	1.22	0.431
		PTQ4DM	8.12	0.232
	w/ours		6.35	0.241
CIFAR-10	W4A8	TFMQ	3.59	0.138
		w/ours	2.20	0.120
	W6A6	APQ	5.95	0.159
	w/ours		3.86	0.150

as the squared Maximum Mean Discrepancy between the feature distributions of real and generated images, using the same Inception-V3 backbone as our FID computation. LPIPS measures perceptual distance between image pairs based on deep features from a VGG network, with lower values indicating closer perceptual similarity.

Our primary goal is distribution preservation. Accordingly, FID and KID are especially important, as they quantify distances between feature distributions of generated and FP images under a pre-trained network. By contrast, LPIPS follows the same trend as PSNR: both are pixel- or patch-level similarity metrics that capture per-sample trajectory differences with respect to the FP model and therefore cannot directly validate whether the final outputs achieve better distribution preservation or overall generation quality at the distribution level.

The results, computed under the same settings as in our main experiments for each backbone, are shown in Tab. 13.

To further assess the generality of our approach, we combine it with three representative PTQ methods: TFMQ-DM on CIFAR-10, PTQ4DM on ImageNet-64, and APQ-DM on CIFAR-10. In all three settings, our method consistently improves the generative quality(including FID, KID, etc) over the corresponding PTQ baselines. Concretely, we observe reductions in FID about 4%-13%, in sFID about 2%-17% and in KID about 21%-38% across these experiments. These consistent improvements indicate that our method is effective at preserving distribution under multiple PTQ schemes, leading to quantized model distribution more closely match the FP model distribution.

Ablation under Other Backbone In addition to the LDM-4 analysis already presented, we have extended the ablations to the DiT-XL backbone with PTQ4DiT(Setup is the same as the main result: Using DiT-XL model with PTQ4DiT W4A8 quantization, step=20). We perform the same component-wise ablations as in Sec. 5.3: The results are shown in Tab. 14, Tab. 15, and Fig. 18.

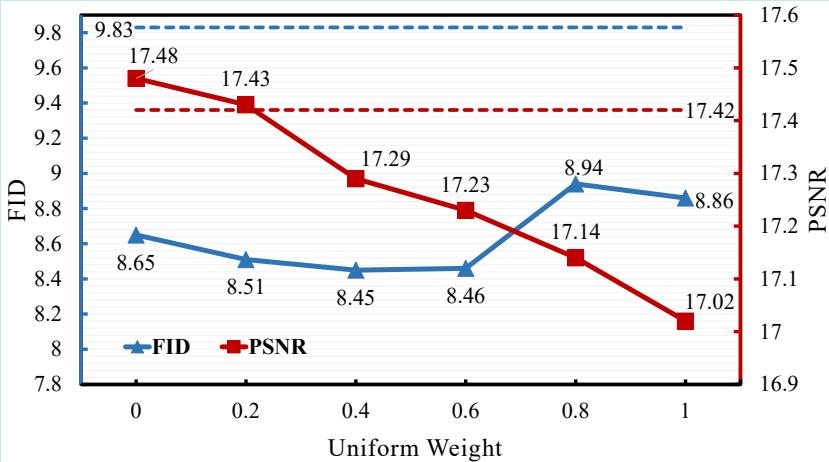
As we can see in Tab. 14, IQR-based variance estimation again performs the best. And in Tab. 15, DNS and especially DCNC consistently improve over the PTQ base model, even for a large-scale backbone like DiT-XL. In Fig. 18, the performance remains stable across a wide range of W_u values, and the same qualitative behavior holds across different architectures and datasets. Specifically, FID

1620
1621 Table 14: Performance comparison of different variance estimation methods in PTQ4DiT.
1622
1623
1624
1625
1626
1627
1628

Model	Method	FID↓	IR↑	PSNR↑
DiT-XL	–	8.55	-0.486	17.33
	mad	8.56	-0.484	17.34
	iqr	8.51	-0.484	17.43
	kus	8.55	-0.487	17.39
	kde	8.56	-0.485	17.33

1630
1631 Table 15: Effect of different components in PTQ4DiT.
1632
1633
1634
1635
1636
1637

Model	Method	FID↓	IR↑	PSNR↑
DiT-XL	base	9.83	-0.508	17.42
	+CNC	14.01	-0.609	16.32
	+DNS	9.78	-0.496	17.02
	+DCNC	8.51	-0.484	17.43

1654
1655 Figure 18: Performance comparison with different strength of correction in PTQ4DiT.
1656

1657 fluctuates somewhat but remains much smaller than before DNS(ours). PSNR decreases slowly as
1658 W_u increases. This is consistent with our goal distribution-preserving. Based on these observations,
1659 we adopt a single fixed default of $W_u=0.2$ for all models, without any per-model or per-dataset tuning.
1660

1661
1662 **Ablation about More Parameters** We also conducted additional experiments across various
1663 sampling steps (10, 20, 40) and guidance scales (0, 3.0, 6.0) and result is shown as Tab. 16.

1664 Our supplementary experiments show that our method consistently maintains superior FID, sFID, IS,
1665 and IR scores across all tested configurations. The results demonstrate that our approach remains
1666 effective regardless of the number of DDIM steps or guidance scale settings, indicating robust
1667 performance across different inference schedules.

1668 The bold part indicates that w/ours is better than other W4A8 indicators.
1669

1670
1671 **Time and Memory Consumption** Regarding our claims of “no extra steps” and “no additional
1672 memory”, More details are shown in Tab. 17. At inference time, the only additional computation
1673 introduced by DNS+DCNC is applying the transformation \mathcal{T} in Eq. 14 and using the pre-computed,
timestep-dependent scalar coefficients(Algorithm 2). These operations reduce to elementwise addi-

1674
1675
1676 Table 16: Additional experiments across various sampling steps and guidance scales
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

LDM-4	Method	FID \downarrow	sFID \downarrow	IS \uparrow	CLIP \uparrow	IR \uparrow	PSNR \uparrow
scale=3.0 steps=20	FP16	11.49	9.99	104.74	31.91	0.134	—
	W4A8 Q-Diffusion	10.68	13.71	101.95	31.97	-0.014	22.84
	W4A8 w/PTQD	10.32	12.39	100.84	31.89	-0.031	23.13
	W4A8 w/ours	9.81	9.42	102.40	31.91	0.015	23.10
scale=3.0 steps=10	FP16	12.05	14.63	98.42	31.91	-0.095	—
	W4A8 Q-Diffusion	11.26	21.24	92.59	31.74	-0.298	24.88
	W4A8 w/PTQD	13.31	38.89	85.60	31.45	-0.467	20.74
	W4A8 w/ours	10.43	14.94	93.29	31.76	-0.269	25.29
scale=3.0 steps=40	FP16	10.66	9.15	106.32	31.81	0.215	—
	W4A8 Q-Diffusion	10.61	11.43	104.79	31.95	0.093	21.88
	W4A8 w/PTQD	10.85	10.92	102.12	31.87	-0.047	22.05
	W4A8 w/ours	9.32	8.41	104.75	31.83	0.112	21.89
scale=0.0 steps=20	FP16	51.94	10.99	21.91	20.01	-2.173	—
	W4A8 Q-Diffusion	59.95	20.32	20.52	20.32	-2.192	26.67
	W4A8 w/PTQD	58.64	20.34	20.12	20.47	-2.201	25.69
	W4A8 w/ours	57.47	19.39	20.66	20.30	-2.168	26.20
scale=6.0 steps=20	FP16	20.89	15.31	114.55	31.98	0.382	—
	W4A8 Q-Diffusion	20.18	15.77	114.34	32.16	0.289	19.55
	W4A8 w/PTQD	19.93	13.04	113.17	32.18	0.243	19.02
	W4A8 w/ours	18.63	10.57	115.39	32.33	0.322	19.22

1701
1702 Table 17: Overview of calibration and inference overhead for our method (LDM-4 + Q-Diffusion).
1703
1704
1705
1706
1707
1708
1709

Item	Value
Calibration (3,000 images, including FP16 + quantized)	45 min
Calibration statistics only (CPU, excluding sampling)	214 s
Sampling 30k images with quantized model	5.1 h
Extra time for 30k samples with DNS	5.67 s
Peak memory usage	1.5 GB
Additional memory overhead	320 KB

1710
1711
1712 tions and multiplications; we do not introduce any extra network forward passes, matrix multiplica-
1713 tions, or large activation buffers.
17141715 On an A100-40G GPU, for LDM-4 + Q-Diffusion at 256×256 with 20 DDIM steps, generating
1716 30,000 images, enabling DNS+DCNC incurs only 5.67 seconds of additional wall-clock time
1717 compared to PTQ alone. In comparison, generating 30k samples with the quantized model alone already
1718 takes about 5.1 hours on our setup, proving that increasing time of our method is almost negligible.
1719 The extra runtime buffers required by DNS+DCNC are about 320 KB, and the stored calibration
1720 parameters across all timesteps occupy less than 1 KB in total. For calibration, using 3000 images (as
1721 in our main experiments), computing the required statistics can be done once on CPU in about 214
1722 seconds. Including both the FP16 and quantized forward passes needed to generate the calibration
1723 dataset, the entire calibration procedure takes approximately 45 mins on our setup (A100-40G GPU,
1724 LDM-4 + Q-Diffusion at 256×256 with 20 DDIM steps, sample 3000 images).
1725
1726
1727