ABSORBING QUANTIZATION ERROR BY DEFORMABLE NOISE SCHEDULER FOR DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

Figure 1: Our method offers a plug-and-play approach to improve the quantization performance of diffusion models (including Flow-matching), enabling seamless integration with existing PTQ methods without compromising inference speed.

ABSTRACT

Diffusion models deliver state-of-the-art image quality but are expensive to deploy. Post-training quantization (PTQ) can shrink models and speed up inference, yet residual quantization errors distort the diffusion distribution (the timestep-wise marginal over x_t), degrading sample quality. We propose a distribution-preserving framework that absorbs quantization error into the generative process without changing architecture or adding steps. (1) Distribution-Calibrated Noise Compensation (DCNC) corrects the non-Gaussian kurtosis of quantization noise via a calibrated uniform component, yielding a closer Gaussian approximation for robust denoising. (2) Deformable Noise Scheduler (DNS) reinterprets quantization as a principled timestep shift, mapping the quantized prediction distribution x_t back onto the original diffusion distribution so that the target marginal is preserved. Unlike trajectory-preserving or noise-injection methods limited to stochastic samplers, our approach preserves the distribution under both stochastic and deterministic samplers and extends to flow-matching with Gaussian conditional paths. It is plug-and-play and complements existing PTQ schemes. On DiT-XL (W4A8), our method reduces FID from 9.83 to 8.51, surpassing the FP16 baseline (9.81), demonstrating substantial quality gains without sacrificing the efficiency benefits of quantization.

1 Introduction

Diffusion models have become the leading paradigm for high-quality generative modeling, powering applications across image synthesis (Ho et al., 2020; Rombach et al., 2022; Labs, 2024), style transfer (Qi et al., 2024), video generation (Brooks et al., 2024), 3D reconstruction (Zhou et al., 2024), and robotics (Chi et al., 2024). Their rapid scaling—from Stable Diffusion's 800M parameters (Rombach et al., 2022) to SDXL's 2.6B (Podell et al., 2023), and most recently to FLUX.1's 12B (Labs, 2024)—has driven remarkable improvements in fidelity and controllability. However, these gains come at a steep computational cost: inference with large models demands tens of gigabytes of GPU memory and seconds per image, limiting deployment in real-time and resource-constrained settings.

Model quantization is a practical solution to this bottleneck. By reducing weights and activations from floating-point to low-bit integer, quantization compresses model size and accelerates inference (Jacob et al., 2017; Nagel et al., 2021). Recent post-training quantization (PTQ) methods have successfully reduced diffusion models to 8- or even 4-bit precision (Li et al., 2023; Wu et al., 2024; Li et al., 2025). Yet, unlike discriminative networks or autoregressive language models, diffusion models are especially sensitive to quantization. Errors accumulate across iterative denoising steps, corrupting the assumed Gaussian noise distribution and significantly degrading sample quality (He et al., 2023).

Existing approaches attempt to mitigate this challenge by either reshaping weight distributions to reduce quantization error (Li et al., 2023; Wu et al., 2024; Li et al., 2025) or injecting approximated Gaussian noise to absorb residual errors (He et al., 2023). However, these methods have important limitations: weight-reshaping strategies only preserve stepwise predictions without addressing distributional drift, while noise-injection methods are restricted to stochastic samplers and fail on deterministic or flow-matching frameworks (Lipman et al., 2023). Moreover, quantization noise rarely follows an ideal Gaussian distribution, undermining the robustness of Gaussian-based corrections.

In this work, we introduce a distributionpreserving quantization framework that directly absorbs quantization error into the diffusion process. Our approach consists of two key components: (i) Distribution-Calibrated Noise Compensation (DCNC): corrects the non-Gaussian kurtosis of quantization noise through a calibrated uniform component, yielding a more faithful Gaussian approximation. formable Noise Scheduler (DNS): reinterprets quantization effects as a timestep shift in the diffusion process, aligning quantized prediction with the original diffusion distribution without modifying model architecture or adding inference overhead. This framework preserves the diffusion distribution under quantization, making it compatible with both stochastic and deterministic samplers as well as flow-matching models. It operates as a plug-and-play solution,

Figure 2: Comparison of FID scores across quantization methods for different backbones.

easily integrated with existing PTQ methods. Empirically, our method consistently improves generation quality across diverse backbones (see Fig. 2). For example, on DiT-XL our method reduces the FID of PTQ4DiT (W4A8) from 9.83 to 8.51, surpassing even the FP16 baseline (9.81).

In summary, our contributions are threefold: (1) A principled analysis showing that quantization can be reinterpreted as timestep shifts in the diffusion process. (2) A deformable noise scheduler and distribution-calibrated correction that preserve the generative distribution under quantization. (3) Extensive experiments across LDM, DiT, and FLUX demonstrating consistent quality improvements without sacrificing the efficiency benefits of quantization.

2 RELATED WORK

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) were originally formulated as stochastic processes for data generation. Denoising Diffusion Implicit Models

(DDIM) (Song et al., 2022) later reduced the number of sampling steps, significantly accelerating the generation process. More recently, Flow Matching (Lipman et al., 2023) has been introduced as a deterministic alternative, powering state-of-the-art systems such as FLUX (Labs, 2024).

The backbone architecture of early diffusion models was primarily based on UNets (Rombach et al., 2022). Diffusion Transformers (DiT) (Peebles & Xie, 2023) pioneered the use of pure transformer architectures, leading to improved scalability and performance. Large-scale text-to-image models such as Stable Diffusion (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al., 2023), and FLUX (Labs, 2024) have since revolutionized content generation by pushing model sizes larger to achieve better fidelity, diversity, and controllability.

Model Quantization for Diffusion models. Quantization reduces computational costs by representing model parameters and activations with lower-precision formats. Approaches generally fall into two categories: quantization-aware training (QAT) (Jacob et al., 2017), which requires retraining with quantization in the loop, and post-training quantization (PTQ) (Nagel et al., 2021), which adapts pre-trained models with minimal calibration data. Due to the size and training cost of diffusion models, PTQ methods are more practical and thus widely adopted.

Specialized PTQ techniques have been developed to address the unique challenges of diffusion backbones. Q-Diffusion (Li et al., 2023) employs channel-wise quantization with explicit outlier handling. PTQ4DM (Shang et al., 2023) and PTQ4DiT (Wu et al., 2024) design quantization strategies tailored to their respective UNet and transformer backbones. MixDQ (Zhao et al., 2024) adopts mixed precision to balance efficiency and quality. SVDQuant (Li et al., 2025) introduces low-rank branches to capture residual information lost during quantization.

A different line of work, PTQD (He et al., 2023), proposes an "absorbing quantization error" strategy that integrates quantization noise into the random noise term of stochastic samplers. While effective in certain settings, this approach is fundamentally restricted to stochastic sampling and cannot be applied to deterministic samplers or flow-matching frameworks that dominate modern implementations. Moreover, the injected quantization noise often deviates from the expected Gaussian distribution, which can misalign the diffusion process and degrade generation quality.

3 PRELIMINARY

3.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion Models (Ho et al., 2020; Song et al., 2022) are generative models based on a two-stage process: a fixed *forward* noising process and a learnable *reverse* denoising process.

In the forward process, a clean data sample $x_0 \sim q(x_0)$ is progressively corrupted by Gaussian noise over T timesteps via a Markov chain with a predefined variance schedule $\{\beta_t\}_{t=1}^T$, where $0 < \beta_t < 1$. Define $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{i=1}^t \alpha_i$. The forward transition distributions are given by:

$$q(\boldsymbol{x}_t \mid \boldsymbol{x}_{t-1}) = \mathcal{N}(\sqrt{\alpha_t} \, \boldsymbol{x}_{t-1}, \, \beta_t \mathbf{I}), \qquad q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \, \boldsymbol{x}_0, \, (1 - \bar{\alpha}_t) \mathbf{I}). \tag{1}$$

The reverse process aims to recover x_0 from x_T by learning a parametric approximation $p_{\theta}(x_{t-1} \mid x_t)$ to the true reverse distribution. Ho et al. (2020) (DDPM) model this reverse process as a Gaussian with fixed variance, trained to predict the noise added at each step. Song et al. (2022) (DDIM) generalize this by introducing a family of non-Markovian reverse processes parameterized by a noise schedule $\{\sigma_t\}_{t=1}^T$, enabling faster sampling with deterministic or stochastic trajectories.

Specifically, for any t > 1, the conditional distribution of x_{t-1} given x_t and clean sample x_0 is:

$$q_{\sigma}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{x}_0) = \mathcal{N}(\hat{\mu}_t(\boldsymbol{x}_t, \boldsymbol{x}_0), \sigma_t^2 \mathbf{I}),$$
(2)

where $\sigma_t \geq 0$ controls the stochasticity of the reverse step and $\hat{\mu}_t(\boldsymbol{x}_t, \boldsymbol{x}_0) = \sqrt{\bar{\alpha}_{t-1}} \, \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t} \, \boldsymbol{x}_0}{\sqrt{1 - \bar{\alpha}_t}}$. When $\sigma_t = \sqrt{(1 - \bar{\alpha}_{t-1})/(1 - \bar{\alpha}_t)} \cdot \sqrt{1 - \bar{\alpha}_t/\bar{\alpha}_{t-1}}$, this recovers the DDPM posterior; when $\sigma_t = 0$, the process becomes deterministic (DDIM).

Since x_0 is unknown during sampling, it is estimated from x_t using a noise-prediction network $\epsilon_{\theta}(x_t, t)$. The denoised estimate \hat{x}_0 is obtained via:

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \Big(\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \, \varepsilon_{\theta}(\boldsymbol{x}_t, t) \Big). \tag{3}$$

The learned reverse process is then defined by substituting \hat{x}_0 for x_0 in Eq. 2:

$$p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t) = q_{\sigma}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \hat{\boldsymbol{x}}_0), \quad t > 1.$$

$$(4)$$

This leads to the unified sampling update rule:

$$\boldsymbol{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \, \hat{\boldsymbol{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \, \frac{\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t} \, \hat{\boldsymbol{x}}_0}{\sqrt{1 - \bar{\alpha}_t}} + \sigma_t \, z, \quad z \sim \mathcal{N}(0, \mathbf{I}). \tag{5}$$

Flow matching (Lipman et al., 2023) generalizes diffusion via a continuous-time stochastic interpolant between Gaussian noise $\epsilon \sim \mathcal{N}(0, I)$ and data x_0 . A simple linear interpolant is

$$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{\epsilon}, \quad t \in [0,1]. \tag{6}$$

The model learns a velocity field $v_{\theta}(x_t, t)$ such that the probability flow ODE (PF-ODE)

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_{\theta}(\mathbf{x}_t, t) \tag{7}$$

induces marginal distributions that match that of Eq. 6 for all time $t \in [0,1]$. Sampling from the model thus reduces to solving the PF-ODE in Eq. 7 using standard ODE solvers, e.g., Euler integration, starting from Gaussian noise $\varepsilon \sim \mathcal{N}(0, I)$ (Lipman et al., 2023). matches the ground-truth dynamics. Sampling then amounts to integrating this ODE deterministically from noise to data. Flow matching, owing to its high scalability, has already been adopted in modern text-to-image models such as FLUX (Labs, 2024). Flow matching thus unifies diffusion-style objectives with a deterministic transport formulation, and underlies modern large-scale systems such as FLUX (Labs, 2024).

3.2 QUANTIZATION NOISE CORRECTION AND ABSORPTION

Quantizing diffusion models inevitably introduces quantization error. This error can be systematically decomposed into two parts: (i) a correlated component that scales linearly with the original network output $\epsilon_{\theta}(\boldsymbol{x}_t,t)$, and (ii) an independent component $\Delta'\epsilon_{\theta}(\boldsymbol{x}_t,t)$ that is uncorrelated with the prediction. This decomposition, referred to as Correlation Noise Correction (CNC), can be written as:

$$\Delta \epsilon_{\theta}(\boldsymbol{x}_{t}, t) = k \epsilon_{\theta}(\boldsymbol{x}_{t}, t) + \Delta' \epsilon_{\theta}(\boldsymbol{x}_{t}, t)$$
(8)

where $\Delta \epsilon_{\theta}(\boldsymbol{x}_t,t)$ denotes total quantization error, k is a scalar correlation coefficient, and $\Delta' \epsilon_{\theta}(\boldsymbol{x}_t,t)$ represents the residual independent component. PTQD (He et al., 2023) approximates $\Delta' \epsilon_{\theta}(\boldsymbol{x}_t,t)$ as Gaussian noise, but in practice this assumption is often inaccurate. The variance of the independent noise, denoted σ_q^2 , can instead be empirically estimated from representative data samples.

In stochastic sampling process, sampler involves adding random noise in Eq. 5. PTQD absorbs the disentangled independent quantization error into this random term, effectively replacing:

$$\sigma_t z \to \sigma_t z - \frac{\beta_t}{\sqrt{\alpha_t}\sqrt{1-\bar{\alpha}_t}(1+k)} \Delta' \epsilon_\theta(\boldsymbol{x}_t, t)$$
 (9)

This leads to a modified update rule:

$$\boldsymbol{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\boldsymbol{x}_t, t) \right) + \sigma_t z - \frac{\beta_t}{\sqrt{\alpha_t} \sqrt{1 - \bar{\alpha}_t} (1 + k)} \Delta' \epsilon_{\theta}(\boldsymbol{x}_t, t)$$
(10)

In summary, PTQD attempts to (i) preserve the injected noise distribution by treating the disentangled quantization residual as Gaussian, while simultaneously (ii) preserving the stepwise prediction trajectory. However, this hybrid objective can degrade performance and reduce robustness, and it is applicable only to stochastic sampling. Moreover, empirical evidence shows that the independent quantization residual $\Delta'\epsilon_{\theta}$ has a large deviation from a Gaussian distribution. Directly using it may undermine the theoretical assumptions of the method.

4 METHOD

To address these limitations, we develop a theoretical framework that analyzes how quantization perturbs a diffusion model's predictive distribution and derives distribution-preserving corrections for

Figure 3: Overview of Deformable Noise Scheduler (DNS). (a) Top: Quantization perturbs the noise prediction (red), shifting each step's marginal away from the full-precision distribution (blue), yielding $\epsilon' = \epsilon + \Delta \epsilon$. These quantization errors are absorbed into the diffusion process, preserving the original prediction distribution. (b) Bottom: DNS interprets effect as *timestep shift*. The quantized distribution $q'(\boldsymbol{x}_{t-1})$ is mapped to original distribution $q(\boldsymbol{x}_{\tau})$ via DCNC and transformation Φ . Redesigning scheduler sets a new α so that τ aligns with t-1, maintain original diffusion timesteps.

both the noise statistics and the time parameterization. In Sec. 4.1, we show that the uncorrelated component of the quantization error is heavy-tailed (exhibits excess kurtosis relative to Gaussian noise) and mitigate this mismatch by adding a calibrated uniform correction with lower kurtosis. In Sec. 4.2, we prove that the distribution induced by a quantized model can be mapped to an equivalent non-quantized distribution through an appropriate timestep shift (Fig. 3), enabling the approach to be applied to any generative model with conditionally Gaussian marginals. A more detailed derivation is provided in Appendix A.2.

4.1 Gaussian Approximation of Quantization Noise

When the model is quantized, parameter perturbations introduce errors in the predicted noise. The output of the quantized model can be expressed as:

$$\epsilon_{\theta}'(\boldsymbol{x}_t, t) = \epsilon_{\theta}(\boldsymbol{x}_t, t) + \Delta \epsilon_{\theta}(\boldsymbol{x}_t, t) \tag{11}$$

where $\Delta \epsilon_{\theta}(\boldsymbol{x}_t, t)$ is a quantization-induced error.

Prior work (He et al., 2023) applied a disentangling transformation (Eq. 8) to separate $\Delta\epsilon_{\theta}(x_t,t)$ into an "independent" component $\Delta'\epsilon_{\theta}(x_t,t)$, which was then approximated as Gaussian noise and absorbed into the stochastic sampling term. However, our empirical analysis (see Fig. 4) shows that the residual noise obtained in this manner exhibits excess kurtosis relative to a true Gaussian distribution, violating this assumption.

To correct this, we introduce a refined transformation T such that

$$T(\epsilon_{\theta}'(\boldsymbol{x}_{t},t)) = \epsilon_{\theta}(\boldsymbol{x}_{t},t) + \Delta''\epsilon_{\theta}(0,\sigma_{\epsilon,t})$$
(12)

where the independent component $\Delta'' \epsilon_{\theta}(0, \sigma_{\epsilon, t})$ is is explicitly calibrated to approximate a Gaussian distribution with mean 0 and variance $\sigma_{\epsilon, t}^2$ which depends on the timestep t. We refer to this procedure as *Distribution-Calibrated Noise Compensation* (DCNC). DCNC ensures that the residual quantization noise more faithfully matches the Gaussian assumption of the diffusion process, thereby improving stability and generation quality.

Distribution-Calibrated Noise Compensation To drive the excess kurtosis of the residual toward 0 (i.e., make it behave more like Gaussian noise), we add a zero-mean uniform component. Let the residual have variance σ_a^2 and excess kurtosis $\kappa_o > 0$. Then the variance of the injected uniform term

271

272

273 274

275

276

277 278

279 280 281

282

283

284 285

287

288

289

290

291 292

293

295

296 297

298 299

300

301

302

303

304 305

306

307

308

310

311

312

313

314 315

316

317

318

319

320

321

322

323

tribution before and after DCNC

Figure 4: Quantization noise dis- Figure 5: Kurtosis of quantization noise before and after DCNC

Figure 6: Performance comparison with different strength of correction

and the resulting total variance are (derivation in Appendix A.1):

$$\sigma_u^2 = \sigma_o^2 \cdot \sqrt{5\kappa_o/6} , \qquad \sigma_n^2 = \sigma_o^2 \cdot \left(1 + \sqrt{5\kappa_o/6}\right)$$
 (13)

As shown in Fig. 4 and Fig. 5, this uniform compensation substantially reduces the heavy-tailedness of the uncorrelated quantization residual, bringing its excess kurtosis close to the Gaussian value (0). Accurate variance estimation is important for applying Eq. 13 and for the marginal analysis in Eq. 17. Because conventional estimators are sensitive to outliers, we use a robust IQR-based estimate $\hat{\sigma}^2 = (IQR/1.349)^2$, where $IQR = Q_3 - Q_1$ denotes the interquartile range, with Q_1 and Q_3 representing the first and third quartiles. Putting this together, our calibrated transformation is:

$$T(\epsilon_{\theta}'(\boldsymbol{x}_t, t)) = \epsilon_{\theta}'(\boldsymbol{x}_t, t)/(1 + k) + W_u \cdot U(0, \sigma_u^2)$$
(14)

where k (the correlation slope) and σ_y^2 are estimated during calibration, $U(0, \sigma_y^2)$ denotes a zero-mean uniform random variable with variance σ_u^2 , and $W_u \in [0,1]$ is a tunable weight that controls the strength of the correction (see Sec. 5.3). Unless stated otherwise, all model outputs are passed through $T(\cdot)$ before subsequent analysis and sampling.

4.2 Deformation of Sampling with Quantization Noise

After applying DCNC, the residual quantization error is well-approximated as zero-mean Gaussian. We leverage this property to absorb quantization effects into the diffusion process via a timestep shift: instead of introduced extra noise, we preserve distributional consistency via a timestep shift τ , aligning the quantized marginal distribution at t with the full-precision marginal distribution at τ . This distribution-perserving perspective removes the reliance on specific stochastic samplers and generally applies across various generative models with Gaussian conditional paths.

Absorbing Quantization Error by Timestep Shift In diffusion models, the reverse process $p_{\theta}(x_{t-1} \mid x_t)$ reconstructs x_{t-1} from the noisy sample x_t by leveraging an estimate \hat{x}_0 of the clean data x_0 , as formalized in Eq. 4. When the model is quantized, the prediction \hat{x}_0 is perturbed by quantization noise (Eq. 11), after correction (Eq. 12), yielding a modified estimate \hat{x}'_0 . Consequently, the reverse process distribution under quantization becomes:

$$p_{\theta}'(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = q_{\sigma}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \hat{\mathbf{x}}_0') = \mathcal{N}(\mathbf{x}_{t-1}; \hat{\mu}_t(\mathbf{x}_t, \hat{\mathbf{x}}_0), (\sigma_t^2 + C_1^2 \sigma_{\epsilon, t}^2) \mathbf{I}),$$
(15)

where

$$C_1 = \sqrt{\bar{\alpha}_{t-1}} - \sqrt{\frac{(1 - \bar{\alpha}_{t-1} - \sigma_t^2)\bar{\alpha}_t}{1 - \bar{\alpha}_t}},$$
(16)

and $\sigma_{\epsilon,t}^2$ denotes the variance of the independent quantization residual at timestep t. Notably, quantization noise does not alter the mean of the reverse distribution but inflates its variance by an additive term $C_1^2 \sigma_{\epsilon,t}^2$, reflecting the uncertainty introduced by model quantization.

Thus the induced conditional marginal distribution under quantization is

$$q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \, \boldsymbol{x}_0, (1 - \bar{\alpha}_{t-1} + C_1^2 \sigma_{\epsilon,t}^2) \mathbf{I}). \tag{17}$$

We see that the mean matches the original forward process, but the variance includes an additional quantization-dependent term $C_1^2 \sigma_{\epsilon,t}^2$. As a result, quantized marginal distribution $q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)$ no longer coincides with the forward marginal of any discrete timestep in the original diffusion schedule. To restore equivalence, we introduce a scaling factor C_2 and a shifted timestep $\tau > t-1$ such that:

$$q(C_2 \boldsymbol{x}_{\tau} | \boldsymbol{x}_0) = \mathcal{N}\left(C_2 \boldsymbol{x}_{\tau}; C_2 \sqrt{\bar{\alpha}_{\tau}} \boldsymbol{x}_0, C_2^2 (1 - \bar{\alpha}_{\tau}) \mathbf{I}\right). \tag{18}$$

It can be shown that setting $C_2=\sqrt{1+C_1^2\sigma_{\epsilon,t}^2}$ and $\bar{\alpha}_{\tau}=\bar{\alpha}_{t-1}/C_2^2$ makes $q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)$ and $q(C_2\boldsymbol{x}_{\tau}|\boldsymbol{x}_0)$ statistically equivalent. This establishes quantization as a *timestep shift* in diffusion process.

Deformable Noise Scheduler Building on this insight, we introduce the *Deformable Noise Scheduler (DNS)*, which maps quantized diffusion states to adjusted timesteps in the full-precision schedule. From Eq. 18, the mapping Φ is:

$$\mathbf{x}_{\tau} = \Phi(\mathbf{x}_{t-1}) = \mathbf{x}_{t-1}/C_2.$$
 (19)

Direct application, however, faces two challenges: (i) τ is typically non-integer, complicating integration into discrete samplers, and (ii) rounding τ introduces additional error and potentially extra denoising steps.

To avoid this, we redesign the scheduler by redefining the variance schedule at the previous timestep in the quantized process as $\bar{\alpha}_{t-1}^q$. From Eq. 18, we obtain:

$$\bar{\alpha}_{\tau} = \frac{\bar{\alpha}_{t-1}^{q}}{1 + C_{1}^{2} \sigma_{\epsilon, t}^{2}}.$$
(20)

Solving Eq. 20 for $\bar{\alpha}_{t-1}^q$ aligns τ with t-1, ensuring that quantized updates maintain consistent with the original diffusion timesteps.

DNS thus dynamically adapts the noise schedule according to $\sigma_{\epsilon,t}^2$, preserving distributional equivalence without introducing additional steps or overhead. By the same reasoning, DNS naturally extends to flow-matching with Gaussian conditional paths (see Appendix A.3).

5 EXPERIMENTS

5.1 SETTINGS

Models and Datasets We benchmark our method using LDM-4 (Rombach et al., 2022), DiT-XL (Peebles & Xie, 2023), and FLUX.1 (Labs, 2024) (Flow-matching). Following previous works (Li et al., 2025), we randomly sample 3,000 text prompts from COCO Captions 2014 (Chen et al., 2015) for calibration. This calibration set is used to determine the quantization parameters and estimate noise characteristics across all models. For our evaluation datasets, we use ImageNet for class-conditional generation. For text-to-image generation, we use the MJHQ-30K dataset (Li et al., 2024). Our experiments were conducted on a NVIDIA A100-40G GPU. However, it should be noted that our method does not require additional memory usage, as the main storage cost is about network parameters. Both LDM and DIT-XL can run on smaller GPUs.

Baselines We compare our method with several PTQ techniques. (1) LDM-4: Tested with 20 steps, guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8) (Li et al., 2023), and its combination with PTQD (He et al., 2023). (2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W8A8, W4A8) (Wu et al., 2024), and its combination with PTQD. (3) FLUX.1: Tested with 20 steps, guidance scale 3.5, and 256×256 resolution. We compare the FP16 model and SVDQuant (W4A4) (Li et al., 2025). PTQD does not support flow-matching models.

Metrics Following previous works (Li et al., 2025), we evaluate generation quality using several metrics. Fréchet Inception Distance (FID (Heusel et al., 2017; Parmar et al., 2022)) and sliding Fréchet Inception Distance (sFID (Ding et al., 2022)) are particularly well-suited for reflecting distribution similarity, as it measures the distance between feature distributions extracted from generated and real data using a pre-trained neural network. Inception Score (IS (Salimans et al., 2016)) aims to assess quality and diversity. CLIPScore (CLIP (Hessel et al., 2021)) aims to measure text-image alignment. Image Reward (IR (Xu et al., 2023)) aims to approximate human judgment. We also employ Peak Signal Noise Ratio (PSNR) to measures pixel-level trajectory difference, but this metric cannot validate whether the final outputs achieve better distribution preservation or generation quality. Note that in class-conditional generation we use the tag name with scientific nomenclature to calculate IR.

Figure 7: We tested the results on several models (including diffusion and Flow-matching) and compared the results of our method with FP, PTQ, PTQ+PTQD. Numbers in brackets are FID↓.

Table 1: Performance comparison across different models

Model	Bit	Method	Evaluation Metrics						
1110401			FID↓	sFID↓	IS↑	CLIP↑	IR↑	PSNR↑	
LDM-4	FP16	-	11.49	9.99	104.74	31.91	0.134	-	
	W4A8	Q-Diffusion	10.68	13.71	101.95	31.97	-0.014	22.84	
	W4A8	w/PTQD	10.32	12.39	100.84	31.89	-0.031	23.13	
	W4A8	w/ours	9.81	9.42	102.40	31.91	0.015	23.10	
DiT-XL	FP16	-	9.81	21.11	76.09	29.84	-0.349	-	
	W8A8	PTQ4DiT	9.02	18.42	76.18	29.85	-0.345	26.87	
		w/PTQD	8.03	16.90	78.66	30.04	-0.338	26.04	
		w/ours	8.00	16.81	78.98	30.00	-0.342	26.43	
	W4A8	PTQ4DiT	9.83	17.52	70.79	29.92	-0.508	17.42	
		w/PTQD	14.01	17.13	64.67	29.73	-0.609	16.32	
		w/ours	8.51	16.64	72.65	30.01	-0.484	17.43	
FLUX.1	BF16	-	22.64	54.23	24.15	29.30	0.900	=	
	W4A4	SVDQuant	22.95	53.64	23.80	29.21	0.877	22.21	
	W4A4	w/ours	22.78	53.15	24.01	29.21	0.890	21.92	

Table 2: Performance comparison of different variance estimation methods

Model	Method	FID↓	IR↑	PSNR↑
	-	9.85	0.012	23.09
	MAD	9.83	0.014	23.10
LDM-4	IQR	9.81	0.015	23.10
	KUS	9.85	0.016	23.12
	KDE	9.83	0.012	23.10

Table 3: Effect of different components

Model	Method	FID↓	IR↑	PSNR↑
LDM-4	base +CNC +DNS +DCNC	10.32 10.02	0.009	23.13 22.83

5.2 MAIN RESULTS

We present our main results in Tab.1 and Fig.7. Observing our experimental results, we find substantial improvements in generation quality metrics including FID (8.1%-13.4% improvement), IS, and IR, demonstrating that our method effectively preserves the original data distribution. Although PSNR decreases slightly in some settings (0.1%-1.6%), CLIP scores remain essentially unchanged ($\leq 0.2\%$), confirming that semantic alignment with text conditions is preserved. Since CLIP scores confirm semantic consistency, the PSNR differences reflect different high-quality sampling paths under identical semantic constraints, not semantic drift(worse CLIP) or quality loss(worse FID).

Specifically, for LDM-4 quantized to W4A8 with Q-Diffusion, our approach outperforms both the baseline quantized model and PTQD, improving FID from 10.68 to 9.81 and IR from -0.014 to 0.015. For DiT-XL with PTQ4DiT at W8A8 and W4A8, PTQD is slightly stronger at W8A8 but exhibits marked instability at W4A8 and fails to produce acceptable results; in contrast, our method is robust at both precisions, improving FID from 9.02 to 8.20 (W8A8) and from 9.83 to 8.51 (W4A8). For FLUX.1 under flow matching with SVDQuant at W4A4, even where the baseline quantization method performs exceptionally close to full precision, our method applies directly and further improves results, reducing FID from 22.95 to 22.78 and increasing IR from 0.877 to 0.890. More visualizations are provided in Appendix A.4.

5.3 ABLATION

Ablation of Optimization Methods As shown in Tab. 3, we conduct a systematic ablation study to evaluate the contribution of each component in our framework. Starting from the W4A8 baseline quantized model (with Q-Diffusion) and applying CNC preprocessing, we progressively incorporate our proposed techniques to demonstrate their effectiveness. First, the DNS absorbs quantization noise through a timestep shift, adjusting the diffusion schedule to preserve the original denoising distribution. Second, the DCNC refines noise estimation by more accurately modeling the statistical properties of quantization errors.

Variance Estimation As shown in Tab. 2, we test five statistical methods for variance estimation: standard deviation, mean absolute deviation (MAD), interquartile range (IQR), kurtosis-based correction (KUS), and kernel density estimation (KDE). It can be seen that IQR demonstrates best performance on multiple metrics simultaneously.

Uniform Weight Fig. 6 shows our experiments with different strength of correction (W_u) ranging from 0 to 1. We observed an interesting trade-off: higher W_u values improve generation quality (FID) but reduce similarity to full-precision outputs (PSNR). We select $W_u = 0.2$ for our experiments, as this value achieves a favorable balance between maintaining reasonable similarity while still improving the generation quality.

6 Conclusion

In this paper, we have introduced a novel quantization error absorbing method for diffusion models that effectively mitigates quality degradation after quantization. Unlike previous method, our method is distribution-preserving: it explicitly aligns the quantized model's process distribution with the unquantized diffusion distribution. And our solution works across stochastic, deterministic, and Flow-matching frameworks with Gaussian conditional probability paths. Extensive experiments validate that our method significantly improves generation quality in quantized diffusion models while maintaining computational efficiency.

REFERENCES

- Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. 2024. URL https://openai.com/research/video-generation-models-as-world-simulators.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.00426.
- Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint arXiv:1504.00325*, 2015.
- Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, 2024.
- Xin Ding, Yongwei Wang, Zuheng Xu, William J Welch, and Z Jane Wang. Continuous conditional generative adversarial networks: Novel empirical losses and label input mechanisms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(7):8143–8158, 2022.
- Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-training quantization for diffusion models. *arXiv preprint arXiv:2305.10657*, 2023.
- Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPscore: A reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL https://arxiv.org/abs/2006.11239.
- Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference, 2017. URL https://arxiv.org/abs/1712.05877.
- Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
- Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024. URL https://arxiv.org/abs/2402.17245.
- Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng, Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit diffusion models, 2025. URL https://arxiv.org/abs/2411.05007.
- Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer. Q-diffusion: Quantizing diffusion models, 2023. URL https://arxiv.org/abs/2302.04304.
- Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.
- Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL https://arxiv.org/abs/2106.08295.
- Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in GAN evaluation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11410–11420, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https://arxiv.org/abs/2212.09748.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yongdong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations, 2024. URL https://arxiv.org/abs/2403.06951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/abs/2112.10752.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training GANs. *Advances in neural information processing systems*, 29, 2016.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion models, 2023. URL https://arxiv.org/abs/2211.15736.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL https://arxiv.org/abs/2010.02502.

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training quantization for diffusion transformers, 2024. URL https://arxiv.org/abs/2405.16005.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan, Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models with metric-decoupled mixed precision quantization, 2024. URL https://arxiv.org/abs/2405.17873.

Junsheng Zhou, Weiqi Zhang, and Yu-Shen Liu. Diffgs: Functional gaussian splatting diffusion, 2024. URL https://arxiv.org/abs/2410.19657.

A APPENDIX

A.1 DETAILS OF KURTOSIS-BASED UNIFORM NOISE COMPENSATION

Kurtosis measures the "tailedness" of a probability distribution, indicating whether data has heavy tails (more outliers) or light tails compared to a normal distribution. For a random variable X with mean μ , its kurtosis is defined as:

$$\kappa_X = \frac{\mathbb{E}[(X - \mu)^4]}{(\mathbb{E}[(X - \mu)^2])^2} - 3 \tag{21}$$

A positive kurtosis suggests heavier tails and a sharper peak, while a negative kurtosis indicates lighter tails and a flatter distribution. For instance, a Gaussian variable has a kurtosis of 0 while that of a uniform variable is -1.2.

To compensate for the positive kurtosis κ_o of residual noise with variance σ_o^2 , we introduce uniform noise with variance σ_u^2 and kurtosis $\kappa_u < 0$. Given that the two are independent, the kurtosis of their summation can be easily obtained:

$$\kappa_{new} = \frac{\kappa_o \cdot \sigma_o^4 + \kappa_u \cdot \sigma_u^4}{\left(\sigma_o^2 + \sigma_u^2\right)^2} \tag{22}$$

Setting κ_{new} to zero and substituting $\kappa_u = -1.2$, we have:

$$\sigma_u^2 = \sigma_o^2 \cdot \sqrt{\frac{5\kappa_o}{6}} \tag{23}$$

Consequently, the compensated noise has a variance of $\sigma_{new}^2 = \sigma_o^2 \cdot \left(1 + \sqrt{\frac{5\kappa_o}{6}}\right)$ and a kurtosis of 0, which can be regarded as a Gaussian distribution.

A.2 EXTENDED DETAILS AND SUPPLEMENTARY MATERIAL FOR THE MAIN DERIVATION

In Sec. 4.1, I derived the transformation function T. Next, I will provide a detailed derivation of the transformation function T.

From Eq. 8 and Eq. 11, we have:

$$\frac{\epsilon_{\theta}'(\boldsymbol{x}_{t},t)}{1+k} = \epsilon_{\theta}(\boldsymbol{x}_{t},t) + \frac{\Delta'\epsilon_{\theta}(\boldsymbol{x}_{t},t)}{1+k}$$
(24)

Following the idea of PTQD, we can treat the latter term as random noise, $\frac{\Delta'\epsilon_{\theta}(x_t,t)}{1+k}\approx\eta_{\theta}$. Experiments show that η_{θ} has higher kurtosis than Gaussian noise. Therefore, we introduce a uniform distribution component. Combined with compensation using Eq. 13:

$$\frac{\Delta' \epsilon_{\theta}(\boldsymbol{x}_{t}, t)}{1 + k} + U(0, \sigma_{u}^{2}) = \Delta'' \epsilon_{\theta}(0, \sigma_{\epsilon, t}) \sim \mathcal{N}(0, \sigma_{\epsilon, t}^{2})$$
(25)

In practice, we introduce a factor W_u to control the final proportion added. The analysis of W_u is presented in Sec. 5.3. Thus, we can formulate our improved transformation T as Eq. 14:

$$T(\epsilon_{\theta}'(\boldsymbol{x}_t, t)) = \frac{\epsilon_{\theta}'(\boldsymbol{x}_t, t)}{1 + k} + W_u \cdot U(0, \sigma_u^2)$$
(26)

$$= \epsilon_{\theta}(\boldsymbol{x}_{t}, t) + \frac{\Delta' \epsilon_{\theta}(\boldsymbol{x}_{t}, t)}{1 + k} + W_{u} \cdot U(0, \sigma_{u})$$
(27)

$$= \epsilon_{\theta}(\boldsymbol{x}_{t}, t) + \Delta_{\epsilon_{\theta}}^{"}(0, \sigma_{\epsilon, t})$$
(28)

where $\sigma_{\epsilon,t}$ and k are statistically computed from the calibration.

When employing a quantized model, quantization introduces parameter perturbations that manifest as errors in noise prediction. The noise predicted by quantized model can be represented as Eq. 11:

$$\epsilon'_{\theta}(\boldsymbol{x}_t, t) = \epsilon_{\theta}(\boldsymbol{x}_t, t) + \Delta_{\epsilon_{\theta}}(\boldsymbol{x}_t, t)$$

where $\epsilon_{\theta}(\boldsymbol{x}_t,t)$ represents the original network prediction, $\epsilon'_{\theta}(\boldsymbol{x}_t,t)$ represents the quantized network prediction, and $\Delta_{\epsilon_{\theta}}(\boldsymbol{x}_t,t)$ captures the quantization-induced error.

To ensure that the noise distribution introduced by quantization errors approximates a Gaussian distribution, we apply a transformation T to this error function Eq. 12:

$$T(\epsilon'_{\theta}(\boldsymbol{x}_t, t)) = \epsilon_{\theta}(\boldsymbol{x}_t, t) + \Delta''_{\epsilon_{\theta}}(0, \sigma_{\epsilon, t})$$

where $\Delta_{\epsilon_{\theta}}''(0, \sigma_{\epsilon, t})$ follows a Gaussian distribution with mean 0 and variance $\sigma_{\epsilon, t}^2$ that depends on the timestep t.

Substituting Eq. 12 into Eq. 3, we obtain:

$$\hat{\boldsymbol{x}}_0' = \frac{1}{\sqrt{\bar{\alpha}_t}} (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} T(\epsilon_\theta'(\boldsymbol{x}_t, t)))$$
(29)

$$= \frac{1}{\sqrt{\bar{\alpha}_t}} (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(\boldsymbol{x}_t, t)) - \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \Delta_{\epsilon_{\theta}}^{"}(0, \sigma_{\epsilon, t})$$
(30)

$$=\hat{\boldsymbol{x}}_{0} - \frac{\sqrt{1-\bar{\alpha}_{t}}}{\sqrt{\bar{\alpha}_{t}}} \Delta_{\epsilon_{\theta}}^{"}(0, \sigma_{\epsilon, t})$$
(31)

where the estimation of x_0 using the quantized model, denoted as \hat{x}'_0 . Consequently, the reverse process under quantization is shown as Eq. 15:

$$p_{\theta}'(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t) = \mathcal{N}\left(\sqrt{\bar{\alpha}_{t-1}}\boldsymbol{x}_0' + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t}\boldsymbol{x}_0'}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 I_1\right)$$
(32)

$$= \mathcal{N}\left(\sqrt{\bar{\alpha}_{t-1}}\boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t}\boldsymbol{x}_0}{\sqrt{1 - \bar{\alpha}_t}} + C_1 \Delta_{\epsilon_{\theta}}^{"}(0, \sigma_{\epsilon, t}), \sigma_t^2 I\right)$$
(33)

$$= \mathcal{N}\left(\sqrt{\bar{\alpha}_{t-1}}\boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \frac{\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t}\boldsymbol{x}_0}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 I_+ C_1^2 \sigma_{\epsilon, t}^2 I\right)$$
(34)

When using the DDIM sampler for deterministic sampling, $\sigma_t = 0$.

Then we derive the marginal distribution $q'(x_{t-1}|x_0)$ by integrating over the intermediate variable x_t :

$$q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0) = \int q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0) \cdot q(\boldsymbol{x}_t|\boldsymbol{x}_0) d\boldsymbol{x}_t$$
(35)

Rigorously deriving this integral is quite complex, so we first provide a simplified derivation. We need to know that any linear combination and marginalization of Gaussian distributions remains Gaussian, allowing us to consider the mean and variance of the integral result separately.

Observing Eq. 34, we find that quantization only affects the variance part of $q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)$, while the mean part remains unchanged.

First is mean analysis: Since the added variance terms have zero mean, by the law of total expectation, the marginal mean remains unchanged:

$$E[q'(\mathbf{x}_{t-1}|\mathbf{x}_0)] = E[E[q'(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)]|\mathbf{x}_0] = \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0$$
(36)

Then is Variance Analysis: We apply the law of total variance:

$$Var[q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)] = E[Var[q'(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)]|\boldsymbol{x}_0] + Var[q'(E[\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)]|\boldsymbol{x}_0]$$
(37)

since the first term's independent of x_t :

$$E[\sigma_t^2 I_1 + C_t^2 \sigma_\epsilon^2 I_2 | \mathbf{x}_0] = (\sigma_t^2 + C_t^2 \sigma_\epsilon^2) \mathbf{I}$$
(38)

Since the added variance terms have zero mean, the second term remains consistent with the original diffusion process:

$$Var[E[q'(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)]|\mathbf{x}_0] = (1 - \bar{\alpha}_{t-1} - \sigma_t^2)\mathbf{I}$$
(39)

Therefore, the final integral result is Eq. 17:

$$q'(\mathbf{x}_{t-1}|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0, (1 - \bar{\alpha}_{t-1} + C_1^2 \sigma_{\epsilon, t}^2)\mathbf{I})$$

Consequently, the quantized model marginal distribution $q'(x_{t-1}|x_0)$ does not directly map the data distribution of the original generative process.

To address this, we seek a transformation that maps it to the original diffusion marginal distribution at other timesteps. We introduce a scaling factor C_2 and a new timestep τ that together establish an equivalence between the marginal distribution of the quantized model and that of the original diffusion model. Specifically, we define Eq. 18:

$$q(C_2 \boldsymbol{x}_{\tau} | \boldsymbol{x}_0) = \mathcal{N}(C_2 \boldsymbol{x}_{\tau}; C_2 \sqrt{\bar{\alpha}_{\tau}} \boldsymbol{x}_0, C_2^2 (1 - \bar{\alpha}_{\tau}) \mathbf{I})$$

Through multi-step denoising, this marginal distribution mapping ensures that the final generated distribution matches the original model's distribution. To make $q(x'_{t-1}|x_0)$ and $q(C_2x_T|x_0)$ in Eq. 17 and Eq. 18 statistically equivalent, we set their means and variances equal respectively.

Therefore, we solve the system of equations:

$$\begin{cases} \sqrt{\bar{\alpha}_{t-1}} = C_2 \sqrt{\bar{\alpha}_{\tau}} & \text{(mean equality)} \\ (1 - \bar{\alpha}_{t-1}) + C_1^2 \sigma_{\epsilon,t}^2 = C_2^2 (1 - \bar{\alpha}_{\tau}) & \text{(variance equality)} \end{cases}$$
(40)

Solving this system yields:

$$C_2 = \sqrt{1 + C_1^2 \sigma_{\epsilon,t}^2}$$
 and $\bar{\alpha}_{\tau} = \frac{\bar{\alpha}_{t-1}}{C_2^2}$ (41)

While PTQD (He et al., 2023) also attempt to absorb quantization error into noise terms, our method provides a principled mathematical framework that explicitly maps the quantized distribution back to the forward diffusion process by timestep shift. The resulting compensation mechanism is theoretically guaranteed to perform effectively across stochastic sampling, deterministic sampling, and Flow-matching with Gaussian conditional probability paths. Through absorbing quantization error by timestep shift, our approach provides a more fundamental understanding of quantization in diffusion models while offering practical advantages in implementation flexibility and sampling robustness.

Based on the above derivations, the implementation is given in Algorithm 1 and Algorithm 2.

```
Algorithm 1: Deformable Noise Scheduler Calibration
```

```
725
726
                 Input: Timesteps sequence \{(t, t_{prev})\}, Calibration set C = \{x_0\}
727
                 Output: Calibrated alpha values \{\bar{\alpha}_{t-1}^q(t)\}, slopes \{k(t)\}, uniform variances \{\sigma_{\mu}^2(t)\}
728
             1 Initialize C_{\epsilon} \leftarrow \emptyset, C_{\Delta \epsilon} \leftarrow \emptyset;
729
             2 for each (t, previous \ t) \in timesteps do
730
                         for each x_0 \in C do
731
                                 x_t \leftarrow AddNoise(x_0, t);
732
                                 \epsilon_{\theta}(\boldsymbol{x}_t) \leftarrow \text{OriginalNetwork}(\boldsymbol{x}_t);
733
                                 \epsilon_{\theta}'(\boldsymbol{x}_t) \leftarrow \text{QuantizedNetwork}(\boldsymbol{x}_t);
734
                                 \Delta \epsilon_{\theta} \leftarrow \epsilon_{\theta}'(\boldsymbol{x}_t) - \epsilon_{\theta}(\boldsymbol{x}_t);
735
                                C_{\epsilon}.append(\epsilon_{\theta}(\boldsymbol{x}_t)), C_{\Delta \epsilon}.append(\Delta \epsilon_{\theta});
736
                         k(t), d(t) \leftarrow \text{LinearRegression}(C_{\epsilon}, C_{\Delta \epsilon});
737
                         C_{\Delta'\epsilon} \leftarrow \text{ComputeResiduals}(C_{\epsilon}, C_{\Delta\epsilon}, k(t), d(t));
                         \sigma_{\epsilon,t,o}^2 \leftarrow \text{Variance}(C_{\Delta'\epsilon});
739
                         \kappa_{o} \leftarrow \text{Kurtosis}(C_{\Delta' \epsilon});
            12
740
                        \sigma_{\mathbf{u}}^2(t) \leftarrow \sigma_{\epsilon,t,\mathbf{o}}^2 \times \sqrt{\frac{5\kappa_{\mathbf{o}}}{6}} \ C_{\Delta''\epsilon} \leftarrow \mathrm{Transformation} T(C_{\Delta'\epsilon}, k(t), W_{\mathbf{u}}, \sigma_{\mathbf{u}}^2(t))
741
                           \sigma_{\epsilon,t}^2 \leftarrow \text{Variance}(C_{\Delta''\epsilon}) \ \bar{\alpha}_{t-1}^q \leftarrow \text{NewtonSolve}\left(\bar{\alpha}_{t-1} = \frac{\bar{\alpha}_{t-1}^q}{1+C_1^2\sigma_{\epsilon,t}^2}\right) \text{Store } \bar{\alpha}_{t-1}^q(t), k(t),
742
743
744
           14 return \{\bar{\alpha}_{t-1}^q(t)\}, \{k(t)\}, \{\sigma_u^2(t)\}
745
746
           15 Note: Linear regression models \Delta \epsilon_{\theta} = k(t) \cdot \epsilon_{\theta} + d(t) + \text{residual}, but d(t) is usually very close
747
                  to 0
```

A.3 Details of Flow-matching Derivation

In FLUX.1, the forward process is defined as:

$$\boldsymbol{x}_t = (1 - \sigma_t) \cdot \boldsymbol{x}_0 + \sigma_t \cdot \boldsymbol{\varepsilon} \tag{42}$$

where $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$ and σ_t represents the noise level at time t.

Algorithm 2: Deformable Noise Scheduler Inference

Input: Calibrated parameters $\{\bar{a}_{t-1}^q(t)\}$, $\{k(t)\}$, $\{\sigma_{\mathtt{u}}^2(t)\}$, Timesteps sequence $\{(t,\overline{\mathsf{previous}\;t)}\}$ **Output:** Generated sample \boldsymbol{x}_0

- 1 Initialize $x_T \sim \mathcal{N}(0, I)$;
- $oldsymbol{x}_t \leftarrow oldsymbol{x}_T;$

- 762 3 **for** each $(t, _) \in timesteps$ **do**
 - $\epsilon'_{\theta}(\boldsymbol{x}_t,t) \leftarrow \text{QuantizedNetwork}(\boldsymbol{x}_{\text{current}},t);$
 - $\begin{array}{c} \mathbf{f} \\ \mathbf$
 - $_{\mathbf{6}}$ return $oldsymbol{x}_{t}$
 - **Note:** Next loop uses t_{prev} (not t_{prev}^q) as the current timestep

The denoising process follows a discrete update rule:

$$\boldsymbol{x}_{t_{next}} = \boldsymbol{x}_t + \Delta \sigma \cdot v_{\theta}(\boldsymbol{x}_t, \sigma_t)$$
(43)

where $\Delta \sigma = \sigma_{t_{next}} - \sigma_t$ and $v_{\theta}(\mathbf{x}_t, \sigma_t)$ is the velocity field predicted by the model.

When employing a quantized model, the velocity field prediction contains quantization-induced errors:

$$v_{\theta}'(\boldsymbol{x}_t, \sigma_t) = v_{\theta}(\boldsymbol{x}_t, \sigma_t) + \Delta v_{\theta}(\boldsymbol{x}_t, \sigma_t)$$
(44)

To ensure that this error approximates a Gaussian distribution, we apply transformation T:

$$T(v_{\theta}'(\boldsymbol{x}_t, \sigma_t)) = v_{\theta}(\boldsymbol{x}_t, \sigma_t) + \Delta' v_{\theta}(0, \sigma_{v,t})$$
(45)

where $\Delta' v_{\theta}(0, \sigma_{v,t}) \sim \mathcal{N}(0, \sigma_{v,t}^2 \mathbf{I})$.

The denoising process with quantization errors becomes:

$$\mathbf{x}'_{t_{next}} = \mathbf{x}_t + \Delta \sigma \cdot [v_{\theta}(\mathbf{x}_t, \sigma_t) + \Delta' v_{\theta}(0, \sigma_{v,t})]$$

$$= \mathbf{x}_{t_{next}} + \Delta \sigma \cdot \Delta' v_{\theta}(0, \sigma_{v,t})$$
(46)

Substituting the forward process expression for x_t :

$$\mathbf{x}'_{t_{next}} = (1 - \sigma_{t_{next}}) \cdot \mathbf{x}_0 + \sigma_{t_{next}} \cdot \varepsilon + \Delta \sigma \cdot \Delta' v_{\theta}(0, \sigma_{v, t})$$
(47)

Drawing from our diffusion derivation, we seek a transformation that maps $x'_{t_{next}}$ back to the standard forward path. We introduce a scaling factor C_2 and a new timestep τ that together establish an equivalence between the quantized output and a point on the original path. Specifically, we define:

$$C_2 \cdot \boldsymbol{x}_{\tau} = C_2 \cdot (1 - \sigma_{\tau}) \boldsymbol{x}_0 + C_2 \cdot \sigma_{\tau} \varepsilon' \tag{48}$$

Then we can establish that when $C_2 = (1 - \sigma_{t_{next}}) + \sqrt{\sigma_{t_{next}}^2 + \Delta \sigma^2 \sigma_{v,t}^2}$ and $\sigma_{\tau} = (C_2 + \sigma_{t_{next}} - 1)/C_2$, $\boldsymbol{x}'_{t_{next}}$ and $C_2 \boldsymbol{x}_{\tau}$ become statistically equivalent, with matching coefficients for \boldsymbol{x}_0 and equivalent variance terms for the noise components $\sigma_{t_{next}} \cdot \varepsilon + \Delta \sigma \cdot \Delta' v_{\theta}(0, \sigma_{v,t})$.

Importantly, neural networks trained for flow-matching are designed to estimate the velocity field pointing from any noisy sample toward the clean data. Since the network is trained to predict $v_{\theta}(\boldsymbol{x}_t, \sigma_t) \approx \mathbb{E}[\varepsilon|\boldsymbol{x}_t, \sigma_t]$ for any valid noise distribution, it can still function effectively when the noise distribution changes from ε to ε' . The model will naturally predict the velocity field that directs \boldsymbol{x}_{τ} toward \boldsymbol{x}_0 , allowing our transformation to effectively absorb quantization errors.

A.4 VISUALIZATION RESULTS

In this section, we demonstrate the visualisation results by different models. (1) LDM-4: Tested with 20 steps, guidance scale 3.0, and 256×256 resolution. We compare the FP16 model, Q-Diffusion (W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 8. (2) DiT-XL: Evaluated with 20 steps, guidance scale 1.5, and 256×256 resolution. We compare the FP16 model, PTQ4DiT (W4A8), its combination with PTQD and its combination with ours. The results are shown in Fig. 9. (3) FLUX.1: Tested with guidance scale 3.5, 20 steps at 256×256 and 1024×1024. We compare the FP16 model SVDQuant (W4A4) and its combination with ours. PTQD does not support Flow-matching. The results are shown in Fig. 10 and Fig. 11.

Figure 8: Tested the LDM-4 model with Q-Diffusion quantization to W4A8 precision. The resolution of the generated image is 256

Figure 9: Tested the DIT-XL model with PTQ4DiT quantization to W4A8 precision. The resolution of the generated image is 256

Prompt: Bunny jedi, white, fluffy, cute, upright, blue lightsaber, epic background

Prompt: Palm trees, ocean, beach, beautiful surreal day, amazing sunset, relaxation, with lion on beach

 $\label{thm:prompt:approx} \textbf{Prompt: } \textit{A portrait of a European Bee Eater, inspired by Henriette Grindat, insanely detailed and intricate} \\$

Prompt: A Good and friendly snowy owl in the land of ice and snow, image for a fairy tale book

Figure 10: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision. The resolution of the generated image is 256

Figure 11: Tested the FLUX.1 model with SVDQuant quantization to W4A4 precision. The resolution

1024

1025

of the generated image is 1024

Table 4: Additional experiments across various sampling steps and guidance scales

LDM-4	Method	$\text{FID}{\downarrow}$	$\text{sFID}{\downarrow}$	IS↑	CLIP↑	IR↑	PSNR↑
	FP16	11.49	9.99	104.74	31.91	0.134	_
scale=3.0, steps=20	W4A8 Q-Diffusion	10.68	13.71	101.95	31.97	-0.014	22.84
	W4A8 w/PTQD	10.32	12.39	100.84	31.89	-0.031	23.13
	W4A8 w/ours	9.81	9.42	102.40	31.91	0.015	23.10
	FP16	12.05	14.63	98.42	31.91	-0.095	_
scale=3.0, steps=10	W4A8 Q-Diffusion	11.26	21.24	92.59	31.74	-0.298	24.88
	W4A8 w/PTQD	13.31	38.89	85.60	31.45	-0.467	20.74
	W4A8 w/ours	10.43	14.94	93.29	31.76	-0.269	25.29
	FP16	10.66	9.15	106.32	31.81	0.215	_
scale=3.0, steps=40	W4A8 Q-Diffusion	10.61	11.43	104.79	31.95	0.093	21.88
•	W4A8 w/PTQD	10.85	10.92	102.12	31.87	-0.047	22.05
	W4A8 w/ours	9.32	8.41	104.75	31.83	0.112	21.89
	FP16	51.94	10.99	21.91	20.01	-2.173	_
scale=0.0, steps=20	W4A8 Q-Diffusion	59.95	20.32	20.52	20.32	-2.192	26.67
•	W4A8 w/PTQD	58.64	20.34	20.12	20.47	-2.201	25.69
	W4A8 w/ours	57.47	19.39	20.66	20.30	-2.168	26.20
	FP16	20.89	15.31	114.55	31.98	0.382	_
scale=6.0, steps=20	W4A8 Q-Diffusion	20.18	15.77	114.34	32.16	0.289	19.55
	W4A8 w/PTQD	19.93	13.04	113.17	32.18	0.243	19.02
	W4A8 w/ours	18.63	10.57	115.39	32.33	0.322	19.22

We also conducted additional experiments across various sampling steps (10, 20, 40) and guidance scales (0, 3.0, 6.0) and result is shown as Tab. 4.

Our supplementary experiments show that our method consistently maintains superior FID, sFID, IS, and IR scores across all tested configurations. The results demonstrate that our approach remains effective regardless of the number of DDIM steps or guidance scale settings, indicating robust performance across different inference schedules.

The bold part indicates that w/ours is better than other W4A8 indicators.