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ABSTRACT

The rapid advancement of Large Multi-modal Foundation Models (LMM) has
paved the way for the possible Explainable Image Quality Assessment (EIQA)
with instruction tuning from two perspectives: overall quality explanation, and
attribute-wise perception answering. However, existing works usually overlooked
the conflicts between these two types of perception explanations during joint
instruction tuning, leading to insufficient perception understanding. To mitigate
this, we propose a new paradigm for perception-oriented instruction tuning, i.e.,
Q-Adapt, which aims to eliminate the conflicts and achieve the synergy between
these two EIQA tasks when adapting LMM, resulting in enhanced multi-faceted
explanations of IQA. Particularly, we propose a progressive instruction tuning
strategy by dividing the adaption process of LMM for EIQA into two stages,
where the first stage empowers the LMM with universal perception knowledge
tailored for two tasks using an efficient transfer learning strategy, i.e., LoRA,
and the second stage introduces the instruction-adaptive visual prompt tuning to
dynamically adapt visual features for the different instructions from two tasks. In
this way, our proposed Q-Adapt can achieve a lightweight visual quality perceiver,
demonstrating comparable performance and, in some instances, superior results
across perceptual-related benchmarks and commonly-used IQA databases.

1 INTRODUCTION

Figure 1: The effect of
different task instruction
tuning for quality expla-
nation task.

Figure 2: The effect of
different task instruction
tuning for perception an-
swering task.

Image Quality Assessment (IQA) aims to evaluate whether the image
fidelity satisfies the human visual experience (Moller et al., 2009; Reiter
et al., 2014), which has been used to various image processing techniques
such as image compression (Yang & Mandt, 2024; Wu et al., 2021),
restoration (Liang et al., 2021; Xia et al., 2023). However, despite that
most IQA metrics, e.g., DEIQT (Qin et al., 2023), LIPIPS (Zhang et al.,
2018) can provide an accurate quality score, they cannot explain the
reasons in terms of distortions and contents behind the corresponding
score. With the advancement of Large Multi-modal Foundation Models
(LMM), Explainable Image Quality Assessment (EIQA) has become
feasible due to the multi-modal reasoning and interaction capabilities of
LMMs. A series of preliminary attempts have been made to excavate
the low-level perception capability for images using LMMs (Wu et al.,
2023a; Zhu et al., 2024; Wu et al., 2023b).

Existing works on LMM-based IQA can be roughly divided into two
types. The first type aims to adapt the pre-trained LMMs to downstream
IQA tasks by designing prompt templates, i.e., prompt engineering, while
freezing the parameters of LMMs. For instance, simply quality-aware
prompt design can enable the GPT-4V (OpenAI, 2023; Wu et al., 2023a;
Zhang et al., 2024) with great low-level visual perception capability.
Despite the efficient adaptation, the frozen parameters limit the adequate
low-level perception knowledge excavation required by downstream IQA tasks. The second type of
works (Wu et al., 2023b; 2024a; You et al., 2023) relies on instruction tuning, which aims to empower
the pre-trained LMMs with overall quality explanation capability (i.e., the left part of Fig. 3) and
attribute-wise perception answering (i.e., the right part of Fig. 3) capability by tuning the LMMs,
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Ω

When comparing the quality of the two images, the 
first image has better quality than the second 
image. Although the first image has low clarity, 
weak lighting, and some noise, it does not have the 
same level of blurriness as the second image. The 
second image has a very blurry subject, poor 
composition, and a lot of noise, which significantly 
reduces its quality. Therefore, the first image is of 
better quality than the second image.

x
Co-Instruct

The first image utilizes artistic blurring to convey 
movement and excitement, focusing on capturing 
the feeling of action rather than clear details. It's 
dynamic but less detailed.
The second image, by contrast, focuses on clarity 
and detail, offering a crisp view of the subject in a 
calm and static setting. It's more personal and 
evokes an emotional response related to pets and 
travel. Each image excels in its aim, with the first 
emphasizing action and the second emphasizing 
emotion and detail.

GPT-4v

The second image has better quality than the 
first image. Although the second image has 
some issues such as poor clarity, noise, and 
blurriness, it still allows the viewer to 
identify the main subject (a small dog) and 
some details of the background (a suitcase). 
On the other hand, the first image has severe 
motion blur, making it difficult to identify the 
main subject (a person) and the background, 
resulting in a very poor quality image.

√

Q-Adapt

Describe and compare the 
quality among the two images.

User User
Which person in the image has the most vibrant colors?
A. The woman in the bottom right corner of the image
B. The person in the bottom left corner of the image
C. The person on the right side of the image, wearing a red outfit

GPT-4v

Q-Adapt
A

Q-Instruct
B

C

Are the flowers in focus 
in this picture?

GPT-4v

Q-Adapt

Yes

Q-Instruct
No

Yes

What is the most apparent 
distortion of the ceiling in 

this image?

User GPT-4v

Q-Adapt
Noise

Q-Instruct
Over-

exposure

barrel 
distortion

User

Overall Quality Explanation Task Attribute-wise Perception Answering Task
(a) multiple-choice

(b) Yes/No (c) What/How

x

x

√

x

x

√

x x

x

√

√

Figure 3: The comprison between existed LMMs and our proposed Q-Adapt on two EIQA tasks (i.e.,
the overall quality explanation task, and the attribute-wise perception answering task). Our proposed
Q-Adapt can generate more accurate response, benefiting from the reduction of task conflicts and the
enhanced synergy between the two tasks, achieved through progressive instruction tuning.

preliminarily bridging the path to explainable IQA from two explanation perspectives. From Fig. 1
and Fig. 2, we observe that focusing exclusively on the explanation task improves performance
compared to joint tuning of both tasks. Additionally, as illustrated in Fig. 3, Co-Instruct and GPT-4V
exhibit instances of visual hallucinations in the question answering task. These observations highlight
two fundamental challenges in LMM-based explainable image quality assessment: (i) The conflicts
between these two EIQA tasks are overlooked during instruction tuning, caused from the bias towards
attribute-wise perception knowledge and the degradation of universal perception knowledge. (ii) The
insufficient cross-modal interaction restricts the adaptability to the synergy between these two EIQA
tasks. As Fig. 3 illustrates, insufficient reasoning capability and inflexible task instruction adaptation
lead to misleading and spurious responses.

To address the above issues, we propose Q-Adapt, a new paradigm for perception-oriented instruction
tuning. Q-Adapt aims to eliminate task conflicts and achieve synergy between the two EIQA tasks,
thereby enhancing the multifaceted explanations of IQA when adapting LMM as visual quality
perceiver. Specifically, we propose a progressive instruction tuning by dividing the adaptation process
of LMM for EIQA into two stages, continously enhancing perception knowledge for both tasks. The
first stage involves the acquisition of universal perception knowledge in a parameter-efficient manner
(i.e., LoRA (Hu et al., 2021)), establishing a powerful foundation that supports the different instruction
requirements of both EIQA tasks. Building on the universal perception knowledge acquired in the
first stage, we can more easily achieve adaptability for instructions across different tasks. However,
the limited multimodal interactions (Dong et al., 2024) within the layers of the LMM’s language
decoder are insufficient for adaptively capturing the visual knowledge specified by the instructions
across both tasks. To overcome this dilemma, we introduce instruction-adaptive visual prompt tuning,
which dynamically adapts visual features to the different instructions, thereby enhancing the synergy
between the two EIQA tasks. In particular, to develop a visual prompt with powerful instruction
adaptive capabilities, we employ bi-directional multimodal interactions to obtain an instruction-
adaptive visual prompt, which consists of a vision-text (V-T) generator to fuse perception-related
visual knowledge required by instructions into textual feature, and a text-vision (T-V) prompter
that projects the textual feature back into the visual space. The obtained instruction-adaptive visual
prompt can guide the original visual feature through gated residual addition to highlight the crucial
information specified by different instructions. Unlike uni-directional multimodal interactions (e.g.,
Q-Former (Dai et al., 2024)), which capture condensed semantic information (Yao et al., 2024) but
lose fine-grained visual details, our bi-directional multimodal interaction module effectively acquires
task-adaptive visual knowledge and refines the original visual feature without losing visual details. In
summary, the contributions of this paper are summarized as follows:
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• We point out that simultaneously tuning LMMs with two types of Explainable Image quality
Assessment (EIQA) tasks (i.e., overall quality explanation and attribute-wise perception answering),
can lead to potential task conflicts and insufficient perception understanding.

• To alleviate the above task conflicts, we introduce a new paradigm for perception-oriented instruc-
tion tuning, namely Q-Adapt. Q-Adapt employs a progressive instruction tuning which consists of
two stages for adaption process for LMM: the universal perception knowledge learning stage and
the instruction-adaptive visual prompting stage. This approach achieves synergy between the two
EIQA tasks and enhances the multifaceted explanations of IQA.

• Experimental results on perceptual-related benchmarks and commonly-used IQA databases demon-
strate that Q-Adapt achieves comparable and in some cases superior, performance, even when
utilizing a lightweight LMM model (i.e., Bunny-3B (He et al., 2024)).

2 RELATED WORK

Large Multimodality Foundation Model The large language models (LLM) have shown the
powerful ability to act as a universal interface for a general-purpose assistant (Zhang et al., 2023b).
Following the step of LLM, LMMs are extended to conduct visual language tasks, which have
achieved remarkable progress in multiple visual recognition and reasoning tasks (Chen et al., 2023a;
Peng et al., 2023; Ren et al., 2023; Liu et al., 2023). The cutting-edge works (Liu et al., 2023; Li et al.,
2022; Dai et al., 2024) of LMM mainly bridge the visual encoder and LLM with a cross-modality
connector to achieve the multimodal understanding ability. The milestone achievement, LLava (Liu
et al., 2023) introduces visual instruction tuning to advance towards a general-purpose assistant. And
the following works in LMM can be divided into two categories: i) enhance visual perception, ii)
enhance the interaction between visual and text representation. For the first category, current works
primarily optimize the visual representation by scaling the visual extractor or combining multiple
visual experts. From the perspective of the parameter scale of visual encoder, InternVL (Chen et al.,
2023b) scales up the visual encoder to match the parameter scale of LLM and proposes a progressive
alignment strategy to harmonize the multimodal representations, which achieves outstanding ability
in many vision-language tasks. Due to the limitation of CLIP visual encoder, Tong et. al (Tong et al.,
2024) interleaves the image feature from CLIP visual encoder and DINO (Caron et al., 2021; Darcet
et al., 2023) to enhance the visual grounding capabilities. Sphinx (Lin et al., 2023) mixes image
features from various visual encoders to achieve a versatile visual understanding ability. As for the
second category, existing methods primarily focus on aligning visual and textual features before
feeding into LLM, or conducting visual-text collaboration/interaction within the deeper layers of the
LLM. To align visual features with task-specific instructions, InstructBLIP (Dai et al., 2024) excavates
the instruction-aware multimodal feature through Q-Former before integration into the LLM. To
implement multimodal collaboration, mPLUG-Owl2 (Ye et al., 2023) processes visual and text
features through different modules in each layer of LLM. With the same inspiration, CogVLM (Wang
et al., 2023b) inserts the visual expert in each layer of LLM for deep alignment between two modalities.
Inspired by the above two improvements, we aim to enhance the task-instruction adaptability of
visual representation for multi-modal shallow alignment, thereby enabling the adaptive selection of
the required granularity of perceptual knowledge to facilitate the reasoning process in LLMs.
Large Multimodal Foudation Model for IQA LMM for Image Quality Assessment (IQA) can
be divided into tree main streams. The first is to apply LMM to align the quality feature into text
space. LIQE (Zhang et al., 2023c) fine-tuned the CLIP (Radford et al., 2021) model with fidelity
loss to perceive the semantic-level scene, low-level distortion, and quality-level score. Inspired by
prompt learning for CLIP (Zhou et al., 2022), CLIPIQA (Wang et al., 2023a) assesses quality scores
by constructing prompt pairs with antonyms to evaluate the model’s preference probability for score
tokens. Through text generation, Q-Align (Wu et al., 2023c) enables LMM to evaluate quality scores
that align with human opinions. The second is using the prompt engineering technique to activate
the quality perception ability of LMM. Zhu et. al (Zhu et al., 2024) employ two alternative forced
choice (2AFC) prompting for multiple LMMs to explore their quality assessment ability. To study
more prompt strategy on LMM for quality assessment, Wu et. al (Wu et al., 2024b) explores the
chain-of-thought, in-context prompt to conduct the pair-wise image quality comparison. The third
is to activate the instruction-following ability of LMM for explainable image quality assessment
(EIQA). This line of research begins with the development of fine-grained low-level perceptual-related
benchmark (Huang et al., 2024; Wu et al., 2023a; Zhang et al., 2024), to evaluate the performance
of both open-source (Zhu et al., 2023; Zhang et al., 2023a; Ye et al., 2023; Liu et al., 2023) and
proprietary large multimodal models (OpenAI, 2023; Google, 2023). Subsequently, it involves the
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creation of the instruction datasets (Wu et al., 2023b; 2024a) that consists of the overall quality
explanation task and attribute-wise perception answering task. These efforts aim to enhance the
instruction-following ability of advanced multimodal large models for low-level vision. These
approaches bridge the existing gap in IQA models regarding the capability for textual reasoning
and interaction in an explainable manner. In contrast to these approaches, our method facilitates
the adaptation of LMMs to visual quality perception through efficient training. By mitigating the
conflicts between the two EIQA tasks, we aim to achieve a more comprehensive understanding of
visual quality perception.

LoRA

Is the first image more blur 
than the second image?

Attribute-wise  Perception 
Answering Instruction

LoRA

Yes

Attribute-wise  Perception 
Answering Response

Overall Quality 
Explanation Response

The first photo has lower clarity, 
lacks rich details and textures, 
especially in the contact areas of 
the ground and vehicles. …… 
Overall, the quality of the second 
photo is relatively higher

Learnable Queries

Attribute-wise Perception 
Answering Instruction

V-T Generator
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Cross-A
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Connector
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Overall Quality
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quality of these two images.

Overall Quality 
Explanation Instruction

Figure 4: The overview for our proposed Q-Adapt, which employs progressive instruction tuning to
achieve the synergy between two EIQA tasks. Concretely, the progressive instruction tuning strategy
comprises two stages: the universal perception knowledge requiring stage (i.e., the first stage) tailored
for building a powerful base for two tasks, and the instruction-adaptive visual prompting stage for
dynamically adapting visual features for task instruction. Additionally, the second stage incorporates
the V-T Generator and T-V Prompter to achieve the bi-directional multimodal interactions.

3 METHOD

3.1 PRELIMINARIES

The primary objective of the Large Multi-modality Foundation Model (LMM) is to perceive visual
signals and engage in reasoning through interactions with textual instructions, thereby addressing a
variety of visual-language tasks. The structure of the current LMM can be primarily summarized
into three parts: the visual encoder, large language model (LLM), and multi-modal connector for
bridging the visual and textual modality. As for Explainable Image Quality Assessment (EIQA) task,
given an image v and perceptual-related instruction I , we extract the image feature Fv ∈ Rn×dv

through the visual encoder, where n is the number of visual tokens, and dv is the channel dimension.
These features are subsequently processed through a connector fvt, which maps them into the textual
space, resulting in Fvt ∈ Rn×dt , where dt represents the channel dimension, aligning with that
of the text tokens.. The transformed features, along with the instruction embedding FI ∈ Rm×dt ,
where m denotes the number of the text tokens, are then fed into the Large Language Model (LLM).
Optimization is performed using a language modeling loss based on next-token prediction (Liu et al.,
2023; Touvron et al., 2023), which models the likelihood of the generated response conditioned on
the provided images and instructions:

L(r, v, I) = −
L1∑
l=1

log (P (rl|v, I, r<l)) (1)

Where rl represents the generated response token, conditioned on the input image v, instruction I ,
and previously generated response tokens r<l.
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3.2 TASK CONFLICTS FOR EXPLAINABLE IMAGE QUALITY ASSESSMENT

The Explainable Image Quality Assessment (EIQA) contain two tasks (Wu et al., 2023a): overall
quality explanation (Wu et al., 2023b; You et al., 2023), and attribute-wise perception answering (Wu
et al., 2023b; 2024a). As shown in Fig. 3, The first task requires a long-text response detailing
an overall quality explanation that integrates multiple low-level attributes and concludes with a
final quality score. The second task includes three types of perceptual-related visual question
answering: multiple-choice, yes/no, and what/how questions, requiring brief answers for specific
attributes/dimensions. From Fig. 2, we observe that tuning solely on the overall quality explanation
task results in increased performance in the attribute-wise perception answering task, when compared
to joint tuning on two tasks. It indicates that (i) an inherent conflict exists between the two tasks, since
attribute-wise knowledge derived from training on the perception answering task tends to narrow
the focus of the LMM towards localized/specific dimensions, lacking universal reasoning ability;
(ii ) the universal perception knowledge acquired through training on the quality explanation task
explicitly assists in enhancing the reasoning capabilities for visual quality perception, which can
build a powerful foundation for the two tasks.

3.3 PROGRESSIVE INSTRUCTION TUNING

3.3.1 UNIVERSAL PERCEPTION KNOWLEDGE LEARNING STAGE

To address the conflicts between the two EIQA tasks, we introduce the progressive instruction tuning
strategy to enhance perception knowledge for the two EIQA tasks. It consists of two stages for
perceptual-related instruction tuning on two tasks. Based on the above observation, we are inspired
to utilize the universal perception knowledge acquired from the overall quality explanation task to
facilitate subsequent task adaption for different instructions. Therefore, the first stage involves the
instruction tuning on the quality explanation tasks for universal perception knowledge acquisition. To
effectively learn the universal perception knowledge, this stage involves fine-tuning with a multimodal
connector and utilizing the parameter-efficient LoRA (Hu et al., 2021) technique on both the LLM
and visual encoder. Specifically, the loss function of stage1 can be formulated as:

Lstage1(aq, v, Iq) = −
L1∑
l=1

log
(
PΦ0+∆Φ(θ)(aq,l|v, Iq, aq,<l)

)
(2)

where Φ0 and ∆Φ(θ) are referred to the parameters of frozen LMM and learnable LoRA parameters,
respectively. And the subscript q denotes the overall quality explanation task. aq,l represents the l-th
token of the answer, and Iq denotes the instruction of the overall quality explanation task. The aq,<l

represents the generated answer token.
3.3.2 INSTRUCTION-GUIDED VISUAL PROMPT TUNING STAGE

In the second stage, to effectively enhance the perceptual knowledge for two EIQA tasks, two critical
conditions must be fulfilled: (i) It is essential to adaptively select the required perception knowledge
based on task instructions, which can alleviate the conflicts between the above two tasks. (ii) It is
vital to ensure that the universal perception knowledge is not compromised by the attribute-wise
knowledge from the attribute-wise perception answering task, thus enhancing the optimization of
both tasks. Therefore, this stage requires fixing the parameters of the LLM and visual encoder, with
the connector trainable, to prevent interference from biases towards specific perceptual knowledge
for the single/localized dimension.

Also, the self-attention mechanism in the LLM decoder treats visual and textual tokens equivalently
across all layers (Dong et al., 2024), which limits its flexibility in extracting task-specific knowledge
from visual features due to the insufficient cross-modal interactions. Therefore, we propose the
instruction-adaptive visual prompt tuning to excavate the essential knowledge required for the
instruction for specific tasks. Concretely, we utilize the bidirectional interaction between instruction
and visual features, which results in a prompt module comprising two specialized components: the V-
T Generator, designed for vision-to-text interaction, and the T-V Prompter, tailored for text-to-vision
interaction.

V-T Generator Due to the powerful vision-text interaction ability of the cross-attention-assisted
transformer (e.g., Q-Former) (Dai et al., 2024), we leverage the Q-Former to enhance instruction
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representation with visual feature, enabling it to focus on informative visual knowledge for task
instruction. Specifically, we input both the instruction representation Ft and a fixed number of
learnable queries Q into the Q-Former. This process yields an instruction representation Ft that is
enriched with visual features Fv , effectively bridging visual and textual representations and injecting
the visual knowledge related to the instructions. The formulation of Q-Former is listed as follows:

Fvt = G(Q,Ft, f(Fv)) (3)
Where, Q ∈ Rm,d denotes the learnable queries, f(Fv) represents the projection for visual feature
Fv ∈ Rn,dv to match the dimension d. And the final obtained visual-guided instruction feature is
Fvt ∈ Rm,d. The V-T Generator, based on Q-Former, extracts instruction-adaptive visual features
and maps them into the textual space, aggregating highly compressed perceptual information (Yao
et al., 2024) via a limited number of learnable queries, which results in a loss of fine-grained visual
details. We then employ T-V Prompter to refine the original visual features, enabling the dynamic
capture of task-related perceptual knowledge.

T-V Prompter To enhance the knowledge adaptation of the original visual features, we introduce
a second stage of text-vision interaction. As depicted in Fig. 10, this stage employs a gated fusion
process to generate an instruction-adaptive visual prompt. Specifically, we utilize cross-attention
to integrate the information from highly-condensed multimodal feature Fvt into the original visual
feature Fv, facilitating the dynamic modulation of the original visual feature. Subsequently, a
sigmoid-gated fusion mechanism is applied to merge the intermediate feature F̃tv ∈ Rn,dv with the
original visual feature Fv ∈ Rn,dv .

F̃tv = CA(Fv, f(Fvt), f(Fvt)) (4)

Ftv = (1− σ([f(F̃tv), f(Fv)]))F̃tv + σ([f(F̃tv), f(Fv)])Fv (5)
Where f(·) is utilized to map the channel dimension d of Fvt to dv. CA denotes the cross attention
mechanism between Fv and f(Fvt). And σ(·) computes the weights for gated fusion. Through the
above operations, we can modulate the original visual features through the gated residual addition,
effectively integrating the instruction-adaptive visual prompt to refine the original visual feature.
Therefore, the optimization loss for the second stage can be updated as follows:

Lstage2(a, v, I) = −
L1∑
l=1

log (PΦ2(aq,l|v, Iq,<l, aq,<l)) −
L2∑
l=1

log (PΦ2(aa,l|v, Ia,<l, aa,<l)) (6)

where, Φ2 = Φ1 +Θp, Θp is denoted as the parameters of our learnable prompt modules.

Question: Which object is 
emphasized in the 
composition of the image? 

Question: What level of 
blurriness does this warning 
sign have?

Question: Is the first 
image more realistic?

Question: Describe and 
evaluate the quality of this 
image. 

Question: Describe and 
evaluate the quality of this 
image. 

Question: Describe and 
compare  the quality among 
the two images.

(a) Original Visual 
Feature

(b) Visual Prompt 
(Task 1)

(d) Original Image(c) Visual Prompt 
(Task 2)

(e) Original Visual 
Feature Pairs

(f) Visual Prompt 
Pairs (Task 1)

(h) Original Image Pairs(g) Visual Prompt 
Pairs (Task 2)

The First
Image

The Second
Image

Figure 5: The visualizations of the original visual feature and instruction-adaptive visual prompt.
(a)-(d) illustrate results from Q-bench, while (e)-(h) show results from Q-bench2. And “Task1" refers
to the attribute-wise perception answering task, “Task2" denotes the overall quality explanation task.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

Training Datasets We conduct the perceptual-oriented visual instruction tuning on two datasets:
Q-Instruct (Wu et al., 2023b) and Co-Instruct (Wu et al., 2024a). Q-Instruct has a total of 200k
instruction-response pairs. Besides, Co-Instruct extends Q-Instruct from single image to multiple
images, which includes a rich set of 580k instruction-response pairs. The model trained on Q-Instruct
and Co-Instruct is named Q-AdaptQ, Q-AdaptCo, respectively.
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Evaluation Benchmarks We evaluate our proposed Q-Adapt on the challenging perceptual-related
benchmark Q-bench-A1 (Wu et al., 2023a) and Q-bench2-A1 (Zhang et al., 2024) for the attribute-
wise perception answering task, and Q-bench2-A2 (Zhang et al., 2024) for the overall quality
explanation task. We also tested the performance of our Q-Adapt on several commonly-used IQA
datasets for image quality assessment (Hosu et al., 2020; Fang et al., 2020; Ying et al., 2020;
Ghadiyaram & Bovik, 2015; Li et al., 2023a; Zhang et al., 2023d; Lin et al., 2019).

Implementation Details To construct the V-T Generator module, the Q-Former module in Instruct-
BLIP (Dai et al., 2024) is applied as our V-T Generator. The number of queries in V-T Generator is
32, which follows previous work. And the cross-attention in T-V Prompter only has a single head.

Given that LMM is often constrained by their substantial computational costs and model parameters,
we have adopted Bunny-3B (He et al., 2024), one of the lightweight multimodal model families for
instruction tuning. The training of Q-Adapt requires two 32G V100 GPUs for training, and one 32G
V100 GPU for testing. More details can be found in the Appendix A.

Table 1: Comparison of Different Methods for attribute-wise perception answering task.

Method Q-bench-A1 (%) Q-bench2-A1 (%)
dev test Average dev test Average

Bunny-3B (He et al., 2024)(Baseline) 65.08 64.68 64.88 48.20 50.85 49.53
LLaVA-v1.5-13B (Liu et al., 2023) 62.14 61.40 61.77 49.85 52.05 50.95
mPLUG-Owl2 (Ye et al., 2023) 61.61 62.68 62.15 49.85 48.94 49.40
Emu2-Chat (Sun et al., 2023) 65.28 64.32 64.80 50.05 47.08 48.57

Qwen-VL-Max (Bai et al., 2023) 73.63 73.90 73.77 67.27 66.99 67.13
Gemini-Pro (Google, 2023) 68.16 69.46 68.81 57.64 60.46 59.02
GPT-4V (OpenAI, 2023) 74.51 74.10 74.31 76.52 78.07 77.30

Co-Instruct-8B (Wu et al., 2024a) 76.99 77.12 77.05 78.40 80.18 79.29
Q-Adapt-3BCo 76.05 76.12 76.08 77.20 78.38 77.79

Q-Instruct-8B (Wu et al., 2023b) 70.23 73.38 71.81 50.54 53.15 51.85
Q-Adapt-3BQ 77.19 77.06 77.12 55.40 55.96 55.68

4.2 COMPARISON RESULTS

To verify the effectiveness of our proposed method, we evaluate our proposed Q-Adapt against
two types of Large Multi-modal Foundation Models (LMMs): a frozen-based LMM and an
instruction-tuning-based LMM. Some of frozen-based models (e.g., GPT-4V (OpenAI, 2023), Gemini-
pro (Google, 2023) and Qwen-max (Google, 2023)) are proprietary and closed-source. The perfor-
mance of most of these frozen-based LMMs is generally inferior as they have not been exposed
to image-quality-related textual data during previous training. Notably, within these comparative
methods, our Q-Adapt employs a parameter-efficient tuning strategy, and the total parameter
size is only 3B.

Attribute-wise Perception Answering Task. The results of performance comparison on the per-
ception answering task are shown in Table 1. For Q-bench-A1, Q-AdaptQ surpasses the second-best
method, Q-Instruct-8B, by a margin of 5.31% on average accuracy. And our Q-AdaptCo, with a
parameter size of 3B and LoRA training, achieves performance close to Co-instruct-8B on Q-bench2-
A1.

Overall Quality Explanation Task. For Q-bench2-A2, the comparison results are represented in
Table 2. Our Q-AdaptCo achieves a performance gain of 0.09 over the second-best method GPT-4V
on the GPT score. It is attributed to our ability to achieve synergy between the two EIQA tasks,
thereby improving perception precision. More examples can be found in Appendix A.3.
Image Quality Assessment. We also evaluate the performance of Q-AdaptQ on multiple IQA
databases and compare it with existing LMMs and IQA models. For IQA models, LIQE (Zhang
et al., 2023c) and LoDa (Xu et al., 2024) utilize networks to regress predicted scores against quality
annotations. We transform the Q-Instruct dataset from image-text pairs to image-score pairs to
facilitate regression for both LoDa and LIQE. From Table 3, Q-AdaptQ can achieve the best perfor-
mance compared to other methods on the average performance of SROCC/PLCC. It is noteworthy
that our Q-Adapt significantly outperforms existing LMMs and quality assessment models on the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison on overall quality explanation task. We employ the 5-round GPT
score as defined in (Zhang et al., 2024) for our evaluation metric. Here, Pi denotes the frequency of a
rating in the set of 0, 1 and 2. A higher GPT score indicates better performance.

Dimensions Completeness Precision Relevance SumModel P0 P1 P2 score P0 P1 P2 score P0 P1 P2 score
Bunny-3B (He et al., 2024) 24.40% 71.64% 3.95% 0.79 9.86% 50.53% 39.60% 1.29 0.97% 21.73% 77.28% 1.76 3.85
LLaVA-v1.5-13B (Liu et al., 2023) 18.77% 73.44% 7.79% 0.89 34.66% 38.72% 26.62% 0.92 1.02% 34.59% 64.39% 1.63 3.44
mPLUG-Owl2 (Ye et al., 2023) 19.43% 65.54% 14.45% 1.18 30.94% 43.71% 24.63% 1.02 3.79% 26.94% 68.28% 1.79 3.99
Emu2-Chat (Sun et al., 2023) 41.25% 54.33% 4.42% 0.63 38.11% 36.41% 25.48% 0.87 4.12% 38.61% 57.27% 1.53 3.03
Qwen-VL-Max (Bai et al., 2023) 11.64% 54.08% 34.08% 1.22 24.26% 39.14% 36.22% 1.11 2.53% 10.97% 85.64% 1.82 4.15
Gemini-Pro (Google, 2023) 18.22% 44.48% 36.84% 1.18 34.13% 37.95% 27.02% 1.18 0.67% 5.91% 92.22% 2.16 4.52
GPT-4V (OpenAI, 2023) 4.09% 31.82% 64.09% 1.60 10.40% 45.12% 44.44% 1.34 0.18% 1.69% 96.35% 1.94 4.89
Co-Instruct (Wu et al., 2024a) 4.04% 31.55% 63.55% 1.58 13.68% 43.68% 41.37% 1.26 0.0% 0.44% 98.22% 1.96 4.82
Q-Adaptco 8.97% 44.22% 46.79% 1.38 3.82% 27.15% 69.02% 1.65 0.0% 4.17% 95.8% 1.96 4.98

AGIQA-3k (Li et al., 2023a), CGIQA-6k (Zhang et al., 2023d), and KADID-10k (Lin et al., 2019)
datasets, which are barely existed in the training process. It underscores the strong generalization
ability of Q-Adapt, which can be attributed to the parameter-efficient training approach.

Table 3: The comparison results of quality assessment (SROCC/PLCC).

Model KonIQ-10k SPAQ LIVE-FB LIVE-itw AGIQA-3k CGIQA-6k KADID-10k Average
LIQE (Zhang et al., 2023c) 0.897/0.914 0.925/0.922 0.469/0.541 0.868/0.884 0.744/0.807 0.161/0.197 0.675/0.663 0.677/0.704
LoDa (Xu et al., 2024) 0.804/0.844 0.892/0.899 0.460/0.524 0.784/0.820 0.687/0.744 0.303/0.322 0.636/0.649 0.653/0.686
LLaVA-v1.5 (Liu et al., 2023) 0.448/0.460 0.563/0.584 0.310/0.339 0.445/0.481 0.285/0.297 0.664/0.754 0.390/0.400 0.444/0.474
mPLUG-Owl2 (Ye et al., 2023) 0.196/0.252 0.589/0.614 0.217/0.286 0.293/0.342 0.473/0.492 -0.024/-0.032 0.541/0.546 0.326/0.357
Emu2-Chat (Sun et al., 2023) 0.664/0.714 0.712/0.698 0.355/0.341 0.597/0.611 0.759/0.751 0.224/0.269 0.841/0.790 0.593/0.596
InternLM-XComposer-VL (Zhang et al., 2023a) 0.564/0.615 0.730/0.750 0.360/0.416 0.612/0.676 0.732/0.775 0.243/0.265 0.546/0.572 0.541/0.581

Co-Instruct (Wu et al., 2024a) 0.839/0.898 0.869/0.900 0.467/0.584 0.839/0.851 0.680/0.708 0.421/0.438 0.762/0.756 0.696/0.733
Q-AdaptCo 0.869/0.898 0.916/0.915 0.460/0.539 0.869/0.897 0.739/0.783 0.429/0.435 0.720/0.711 0.714/0.739
Q-Instruct (Wu et al., 2023b) 0.911/0.921 0.901/0.898 0.442/0.535 0.842/0.840 0.700/0.763 0.572/0.578 0.682/0.683 0.721/0.745
Q-AdaptQ 0.878/0.907 0.913/0.916 0.440/0.517 0.837/0.845 0.757/0.789 0.593/0.595 0.769/0.754 0.741/0.760

Table 4: Parameters and FLOPs comparisons for
different models, with performance metrics com-
puted on the Q-bench-A1-dev.

Q-Instruct-8B Bunny-3B (LoRA) Q-Adapt-3B

Flops 1700G 656.18 G 695.32 G
Param 8.2B 2.78B 2.98B

Performance 70.23 69.57 77.19

Parameters and Flops. Q-Adapt presents
an effective tuning strategy that utilizes min-
imal parameter increases to achieve substan-
tial performance improvements over the base-
line model, Bunny-3B, as well as the more
parameter-intensive Q-Instruct-8B, thereby of-
fering a more efficient solution for EIQA task
adaptation from the well-built LMM.

Table 5: Ablation study for instruction-guided visual prompt.

Q-bench-A1 (dev) Q-bench-A1 (test) Average Q-bench2-A1 (dev) Q-bench-A2 (test) Average

w.o. promptQ 74.45 75.25 74.85 52.50 51.85 52.17
Q-AdaptQ 77.19 77.06 77.12 55.40 55.96 55.68

w.o. promptCo 75.93 75.71 75.82 76.80 76.77 76.78
Q-AdaptCo 76.05 76.12 76.08 77.20 78.38 77.79

4.3 ABLATION STUDY

There are three directions to explore the variants of instruction-adaptive visual prompts:
(I) The Existence of Instruction-guided Visual Prompt. The effectiveness of instruction-guided
visual prompt for Q-Adapt in the Stage 2 training phase is explored in Table 5. In the Table, "w.o.
prompt" indicates that only the multimodal connector is trainable. From the results, it is evident that
with the assistance of the instruction-guided visual prompt, Q-Adapt achieves a performance gain
over training only the connector. It highlights the effect of the instruction-guided visual prompt in
adaptively excavating perceptual knowledge required by task instructions.

As shown in Fig. 5, we demonstrate the effectiveness of our proposed instruction-adaptive visual
prompting. The visualization results indicate that, for the question answering task, the instruction-
adaptive features concentrate on areas specified by the instruction or corresponding to potential
answers. In contrast, the visual prompt for the overall quality explanation task typically highlights
a broader range of visual details. This demonstrates a dynamic modulation for two EIQA tasks.
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Table 6: Comparison with different text encoders for generating instruction-guided visual prompt.

Q-bench-A1 (dev) Q-bench-A1 (test) Average Q-bench2-A1 (dev) Q-bench2-A1 (test) Average

BERTQ 75.72 75.65 75.69 55.10 53.15 54.12
Q-FormerQ 77.19 77.06 77.12 55.80 55.45 55.63

BERTCo 76.02 76.05 76.12 76.08 76.57 76.83
Q-FormerCo 76.05 76.12 76.08 77.20 78.38 77.79

Figure 6: The effect of vari-
ants for multimodal interac-
tion.

(II) The Encoder Structure for V-T Generator. The analysis for the
encoder strure of V-T Generator is shown in Table 6. Utilizing the Q-
Former (Dai et al., 2024) can achieve an average accuracy increase of
1.43% on Q-bench-A1 for instruction tuning on Q-Instruct, compared
to the BERT (Devlin et al., 2018) structure. It demonstrates that the
Q-Former, by introducing learnable queries, can capture high-level
semantic information from the instructions, facilitating the extraction
of crucial task information.

(III) Multimodal Interaction. The multimodal interaction for
constructing instruction-adaptive visual prompts is detailed in
Fig. 6. It can be observed that the bi-directional interaction be-
tween text and visual modalities achieves the highest performance.
Additionally, the performance gain from vision-text interaction
(i.e., V-T Generator) is lower than that from text-vision interac-
tion (i.e., T-V Prompter), which indicates the importance of map-

ping textual features into the visual feature space for modulating the original visual features.

Table 7: Comparison of Q-
bench1-dev performance be-
tween our method and VTC.

Prompting Q-bench1-dev

Ours 77.19
VTC 76.99

(IV)The Difference with VTC. VTC Wang et al. (2025) concate-
nates the additional visual tokens to complete the original visual
tokens. We conduct this insert manner like VTC to compare with our
spatial-wise modulation in Table 7. The results indicate that concate-
nating complementary visual tokens is unnecessary when using the
uncompressed original visual tokens of Bunny, as the original tokens
already provide sufficient information for effective processing.

More ablation study for instruction-adaptive visual prompting can
be found in Appendix A.1

Table 8: Ablation study on progressive instruction tuning on Q-Instruct dataset.

Training Stages Tasks Module Q-bench
Quality Perception Vision LoRA LLM LoRA Connector Prompt Module dev test Average

Stage 1

✓ ✗ ✓ ✓ ✓ ✗ 73.51 73.31 73.41
✗ ✓ ✓ ✓ ✓ ✗ 67.96 69.83 68.89
✓ ✓ ✓ ✓ ✓ ✗ 69.57 69.89 69.73
✓ ✓ ✓ ✓ ✓ ✓ 71.30 74.38 72.84

Stage 2

✓ ✓ ✗ ✗ ✓ ✓ 77.19 77.06 77.12
✓ ✗ ✗ ✗ ✓ ✓ 70.10 69.40 69.75
✗ ✓ ✗ ✗ ✓ ✓ 75.59 75.45 75.52
✓ ✓ ✗ ✗ ✗ ✓ 74.85 74.11 74.48
✓ ✓ ✗ ✓ ✓ ✓ 74.45 75.98 75.21

(V)The Effectiveness of Progressive Instruction Tuning. We analyze the effect of progressive
instruction tuning for training on Q-Instruct in Table 8. Additionally, we examine the impact
of task selection for overall quality explanation tasks, as shown in Fig. 7. And we also conduct a
comprehensive comparison across different models in Table 9 for joint tuning on two EIQA tasks, two-
stage tuning, and our proposed progressive-instruction tuning. More ablation study for progressive
instruction tuning can be found in Appendix A.2.

The Task for Instruction Tuning. For the first stage of instruction tuning (i.e., universal percep-
tion knowledge learning stage), the results (the 1st, 2nd, and 3rd rows of Table 8) show that the
performance of joint tuning on both tasks and only tuning on the perception answering task are
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lower than tuning on the overall quality explanation task. Also, from Fig. 7, we can see that the
performance can be boosted when training on the Quality subset (i.e., overall quality explanation).
It reflects the inherent conflicts between the two tasks. For the second stage of instruction tuning
(i.e., the instruction-adaptive visual prompting stage), the results (5th and 6th rows of Table 8)
demonstrate that joint tuning for both tasks yields an average accuracy gain of 1.6% compared
to tuning exclusively on the perception answering task. The similar phenomenon is observed in
the quality explanation task in Fig. 7, removing the explanation subset results in a performance
decline (from 4.98 to 4.95). Additionally, training solely on the quality explanation task in Stage
2 leads to a significant performance decline. This is due to the excessive focus on universal global
reasoning, which compromises the model’s ability to effectively address question answering tasks. It
underscores the significance of achieving synergy between the two EIQA tasks in the second stage.

Figure 7: The effect of task selec-
tion in progressive instruction tun-
ing for explanation task.

The Trainable Modules. For the first stage tuning (i.e., the
universal perception knowledge learning stage), the results
for trainable modules are shown in the 3rd and 4th rows of
Table 8. The findings reveal that joint tuning on the prompt
module results in an average accuracy improvement of 3.11%,
demonstrating the effectiveness of instruction-adaptive visual
prompts for adapting to different instructions. However, it is
still lower than only training on quality explanation tasks, due
to the importance of required universal perception knowledge.
The results in the second stage (i.e., the instruction-adaptive
visual prompting stage) is examined in the 5th, 7th, and 8th

rows of Table 8. We draw two conclusions from the results:
Firstly, a trainable multimodal connector is essential for the
second stage of instruction tuning, since it plays a critical role

in modality alignment. Secondly, a trainable LoRA for the language decoder is unnecessary in
the second stage, as the language decoder should remain fixed to preserve the universal perceptual
knowledge acquired in the first stage.

Table 9: The comparisons between different models and tuning strategies on Q-bench-A1 (dev),
where all methods utilize LoRA for efficient training.

Joint Tuning Two-Stage Tuning Progressive Instruction Tuning
LLama-VID-8B (Li et al., 2023b) 65.55 63.81 67.49
mPLUG-Owl2-8B (Ye et al., 2023) 66.69 67.76 69.03

Bunny-3B (He et al., 2024) 69.57 68.28 77.19

(III) Progressive Instruction Tuning across different backbones.

We present a comprehensive comparison of LLama-VID (Li et al., 2023b), mPLUG-Owl2 (Ye et al.,
2023), and Bunny (He et al., 2024) across joint tuning, two-stage tuning, and our proposed progressive
instruction tuning on Q-Instruct dataset, as detailed in Table 9. All training strategies utilize LoRA
for efficient training. The two-stage tuning approach consists of two phases: initially training on
the overall quality explanation task with a trainable multimodal connector for alignment, followed
by training on the two EIQA tasks using both the connector and the LLM. Experimental results in
the table indicate that progressive instruction tuning yields the best performance, as it effectively
mitigates task conflict. In contrast, the two-stage tuning process, which resembles the training strategy
of existing LMMs, is inadequate for adapting LMMs to downstream tasks, such as EIQA.

5 CONCLUSION
In summary, to alleviate the inherent conflicts in two EIQA tasks (i.e., overall quality explanation,
and attribute-wise perception answering), we propose Q-Adapt to adapt LMM as a visual quality
perceiver, which is conducted through a perception-oriented instruction tuning strategy, namely,
progressive instruction tuning. The progressive instruction tuning consists of the universal perception
learning stage for building a powerful base for two tasks, and the instruction-adaptive prompting
stage for dynamically adapting visual features for different instructions. By doing this, our Q-Adapt
can achieve the synergy between these two EIQA tasks when adapting LMM. Extension experiments
on two related benchmarks can illustrate the effectiveness of our Q-Adapt on both overall quality
explanation task and attribute-wise perception answering task.
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A APPENDIX

Training Details. The detailed of hyperparameters and modules are listed below: Visual Encoder:
siglip-so400m-patch14-384, LLM: phi-2, image resolution: 384, batchsize: 64, learning rate: 2e-5,
learning rate schedule: cosine decay, weight decay: 0, warmup ratio: 0.03, gradient accumulation
steps: 4, numerical precision: float16, epochs for stage 1: 1, epochs for stage 2: 1, optimizer: AdamW,
deepspeed stage: 2.

Following the pioneering works of LMM paradigm (Wu et al., 2023b) of finetuning strategy and
model architecture, we inherit weights from the Bunny-3B of instruction version to apply continual
instruction tuning to downstream EIQA tasks.

In the progressive instruction tuning approach applied to the Q-Instruct dataset, the first stage solely
focuses on the overall quality explanation task to acquire universal knowledge. The second stage
involves joint tuning across the full Q-Instruct dataset. For the Co-Instruct dataset, given that the
baseline model, Bunny-3B, has not been exposed to multiple images for vision question answering,
we transform the attribute-wise perception answering task data into chain-of-thought quality data
(i.e., multi-turn conversations). This data is then combined with the overall quality explanation task
data to fulfill the requirements for universal knowledge acquisition. In the second stage, we train
our Q-Adapt model on the entire Co-Instruct dataset. In all stages, the first stage focuses solely on
training the LoRA of the visual encoder, the language decoder, and all multimodal connector. The
second stage is dedicated exclusively to training the prompt module and the multimodal connector.

Evaluation Metric. For the attribute-wise perception answering task, we apply accuracy as the
metric to measure the performance. For overall quality explanation task, we adopt 5-round GPT
evaluation score for comparison between our generated explanation and ground-truth explanation
on completeness, precision, and relevance. For quality assessment task, We adopt two widely used
criteria for performance evaluation: Pearson linear correlation coefficient (PLCC) and Spearman
rank order correlation coefficient (SROCC). A higher value for these coefficients indicates a stronger
correlation with quality annotations.
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A.1 MORE ABLATION STUDY FOR INSTRUCTION-ADAPTIVE VISUAL PROMPTING

There are three directions to explore the variants of instruction-adaptive visual prompt for the overall
quality explanation task.

The Existence of Instruction-adaptive Visual Prompt. As demonstrated in Fig. 8, our instruction-
adaptive visual prompt (i.e., the 3rd bar) enables the Q-Adapt to outperform the baseline without
visual prompt (i.e., the 1st bar) on Q-bench2-A2, achieving a gain of 0.23 on GPT Score. With the
same results in Table 5 for attribute-wise perception answering task, it underscores the effectiveness of
instruction-adaptive visual prompts in alleviating conflicts in Explainable Image Quality Assessment
(EIQA) tasks and in promoting the synergy between the two tasks.

The Encoder Structure for V-T Generator. As depicted in Fig. 8, the Q-former (i.e., the 3rd bar)
for building V-T Generator in instruction-adaptive visual prompt can surpass the Bert structure (i.e.,
the 2nd bar). With the same results in Table 6 for the attribute-wise perception answering task, it is
evident that the Q-former structure is more suitable for instruction understanding in the EIQA tasks.

Multimodal Interaction. The results are represented in Fig. 9. For the overall quality explana-
tion task, it is observed that both bi-directional interaction and text-vision interaction outperform
vision-text interaction with the same GPT score evaluation. As presented in Fig. 6, the bi-directional
interaction achieves higher accuracy compared to both text-vision and vision-text interactions on
attribute-wise perception answering task. This underscores the universality of bi-directional interac-
tion in facilitating both types of EIQA tasks.

Figure 8: The effect of instruction-adaptive vi-
sual prompt with different structure for train-
ing on Co-Instruct.

Figure 9: The effect of the manner for
mutlimodal interaction for training on Co-
Instruct.

Table 10: Ablation study on progressive instruction tuning on Co-Instruct dataset.

Training Stages Tasks Module Q-bench2
Quality Perception Vision LoRA LLM LoRA Connector Prompt Module A1 dev A1 test A2

Stage 1

✓ ✗ ✓ ✓ ✓ ✗ 75.90 75.58 4.94
✗ ✓ ✓ ✓ ✓ ✗ 70.60 73.77 3.18
✓ ✓ ✓ ✓ ✓ ✗ 73.50 73.27 4.91
✓ ✓ ✓ ✓ ✓ ✓ 71.60 72.17 4.99

Stage 2

✓ ✓ ✗ ✗ ✓ ✓ 77.20 78.38 4.98
✗ ✓ ✗ ✗ ✓ ✓ 75.79 75.45 4.95
✓ ✓ ✗ ✗ ✗ ✓ 77.30 77.47 4.83
✓ ✓ ✗ ✓ ✓ ✓ 76.10 76.37 4.92

A.2 MORE ABLATION STUDY FOR PROGRESSIVE INSTRUCTION TUNING FOR TRAINING ON
CO-INSTRUCT.

We also analyze the effect of progressive instruction tuning in Table 10 for Q-Adapt training on
Co-Instruct.

Task Selection for Progressive Instruction Tuning. For the first stage of instruction tuning (i.e.,
universal perception knowledge requiring stage), it is observed that training on the full Co-Instruct
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dataset results in the lower performance (i.e., 4.91 on the 3rd row) than training on the quality subset
(i.e., 4.94 on the 1st row) for the overall quality explanation task. It suggests that task conflicts
lead to a bias towards attribute-wise specific knowledge at the expense of comprehensive reasoning
capabilities. The loss of this comprehensive reasoning ability also contributes to reduced performance
from 75.90 (i.e., the 1st row) to 73.50 (i.e., the 3rd row) on attribute-wise perception answering task,
through the comparison between training on quality data and training on full Co–Instruct. For the
second stage (i.e., instruction-adaptive visual prompting stage), we can see that removing the quality
data (i.e., the overall quality explanation task) will result in a performance decline from 4.98 (i.e., the
5th row) to 4.95 (i.e., the 6th row) on the overall quality explanation task. It reveals the importance
of synergy between two EIQA tasks.

Trainable Modules Selection for Progressive Instruction Tuning. For the first stage of instruc-
tion tuning, we can see that combination with the prompt module obtains the highest performance
(i.e., 4.99, the 4th row), which is attributed to the enhanced task adaptation ability by instruction-
adaptive visual prompting. However, the performance of the combination with the prompt module
in the first stage is a little low on perception answering task (i.e., 71.6, the 4th row). Therefore, it
reveals that the combination with the prompt module in the first stage is not optimal for universal
knowledge acquisition. In the second stage of instruction tuning, our observations indicate that both
incorporating LoRA and removing the multimodal connector result in a performance decline (i.e.,
from 77.20/78.38/4.98 to 77.30/77.47/4.83, and from 77.20/78.38/4.98 to 76.10/76.37/4.92 ) on both
overall quality explanation task and attribute-wise perception answering task.

A.3 SAMPLES FOR TWO EIQA TASKS.

The comprison between existed LMMs and our proposed Q-Adapt on two EIQA tasks (i.e., the
overall quality explanation task, and the attribute-wise perception answering task). Our proposed
Q-Adapt can generate more accurate response, benefiting from the reduction of task conflicts and the
enhanced synergy between the two tasks, achieved through progressive instruction tuning. Due to the
task conflict alleviation by our proposed progressive instruction tuning and instruction-aware visual
prompt tuning, our Q-Adapt can ensure the accuracy of fine-grained low-level perception.
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Describe and compare the 
quality among the two images.

User

The second image has better quality. Although the 
first image has acceptable clarity and rich texture 
details, its weak lighting and poor composition 
negatively affect its overall quality. On the other hand, 
the second image has good clarity, rich texture 
details, and vibrant colors. Although its composition 
is slightly tilted and the background is slightly 
blurry, these issues are less significant compared to 
the problems in the first image √

Q-Adapt

When comparing the quality of the two images, the first image 
has better quality than the second image. The first image has 
acceptable clarity with no focusing issues, while the second 
image has low clarity and focusing problems. The first image 
also has sufficient lighting and balanced composition, while the 
second image has monotonous colors and a blurry main subject. 
Overall, the first image has more desirable qualities and fewer 
issues compared to the second image. x

Co-Instruct

• Clarity and Detail: The right image has superior clarity and 
detail, particularly in the texture of the paving stones. The left 
image is slightly less sharp, particularly in the background, 
due to the overcast lighting conditions.

• Lighting and Contrast: Both images suffer from flat lighting 
due to the overcast sky, resulting in muted colors and low 
contrast. However, the right image benefits from its simpler 
composition, making the flat lighting less of a detriment. 

• Overall, the right image stands out for its clarity, sharpness, 
and effective use of perspective, making it slightly higher in 
quality compared to the left image. The left image, while less 
sharp, offers a more complex and diverse scene, which can be 
visually interesting despite the softer focus. x

GPT-4v GPT-4v

Which part below is more severely 
affected by overexposure?
A. the exterior of the first image
B. the sky of the second image
C. The right part on the second 

image 

User

Q-Adapt

A

Co-Instruct

B

C

Is the first image sharper than the 
second image?

User
GPT-4v

Q-Adapt

The first image

Co-Instruct

The second image

The first image

Describe and compare the quality 
among the two images.

User

When comparing the quality of the two images, the first image 
has a higher quality due to its high clarity, rich colors, and well-
preserved texture details. The second image has good quality, 
but it is slightly lower than the first image because of the 
overexposure in the top right corner, which affects the overall 
brightness and contrast of the image.

Co-instruct

x

The second image has better quality. The description 
indicates that the image has high clarity, good lighting, 
and clear details of the subject and background. The 
colors are also rich, which adds to the overall quality 
of the image. In comparison, while the first image has 
good clarity and rich texture details, it has some 
issues with composition and is slightly tilted, which 
can detract from the overall quality of the image.

Q-Adapt

√

Overall, the quality of the retail store image is higher in terms 
of lighting and clarity, making it more effective for its purpose 
of displaying products. The garden image, while also of good 
quality, has natural limitations due to its outdoor setting and 
natural light, which affect visibility but add to its aesthetic 
appeal. Each image is effective in its context, but the store 
image displays superior technical quality due to controlled 
lighting and indoor conditions.

GPT-4v

x

GPT-4v

Q-Adapt

Yes

Co-Instruct

No

Yes
Compared to the first image, is the 
distortion of the lines more severe 
in the second image?

User

Describe and compare the quality 
among the two images.

User

The second image has better quality. The description 
indicates that the image has accurate exposure, 
precise focus, clear details, rich colors, and sufficient 
lighting. The main subject is clearly defined, and there 
are no visible noise artifacts. In comparison, the first 
image has some noise and less vibrant colors, and the 
main subject is not as clearly defined as the second 
image. Therefore, the second image is of higher 
quality.

Q-Adapt

√

The two images differ significantly in quality and style. The left 
image has a casual, candid feel with softer focus and some 
motion blur, indicative of a natural, unplanned shot. In contrast, 
the right image is sharp, vibrant, and professionally lit, 
showcasing a polished studio-quality photograph. The left 
image's gritty texture contrasts with the right image's smooth 
and precise details, highlighting the distinct approaches and 
settings in which they were captured. Therefore, the right 
image is technically better due to its sharpness, clarity, and 
professional lighting, making it superior for purposes where 
high image quality and detail are paramount. However, the left 
image has its own merits in capturing a more genuine and 
unposed moment.

GPT-4v

When comparing the quality of the two images, the first image 
has a higher quality than the second image. The first image 
has a high level of clarity, with clear details of the characters' 
actions and well-presented texture of their clothing. The 
composition is also good, which adds to the overall high-quality 
image. On the other hand, the second image has only moderate 
clarity, with less detailed texture of the main subject and a 
blurry background. The lighting is sufficient, but the overall 
quality is not as good as the first image.

Co-instruct

x

√

Q-Adapt

A

Co-Instruct

C

A

Which of the following distortions 
does not appear in the two images? 
A. Motion blur
B. Underexposure 
C. Overexposure 
D. Weak light

User

GPT-4v

A

Compared to the second image, how is 
the noise situation in the first image? 
A. Much more severe
B. Slightly more
C. About the same

Q-Adapt

A

Co-Instruct

B

GPT-4v

User

Figure 10: The comparison of existing LMM and our Q-Adapt on two EIQA tasks (i.e., the overall
quality explanation task and the attribute-wise perception answering task).
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