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ABSTRACT

The rapid advancement of Large Multi-modal Foundation Models (LMM) has
paved the way for the possible Explainable Image Quality Assessment (EIQA)
with instruction tuning from two perspectives: overall quality explanation, and
attribute-wise perception answering. However, existing works usually overlooked
the conflicts between these two types of perception explanations during joint
instruction tuning, leading to insufficient perception understanding. To mitigate
this, we propose a new paradigm for perception-oriented instruction tuning, i.e.,
Q-Adapt, which aims to eliminate the conflicts and achieve the synergy between
these two EIQA tasks when adapting LMM, resulting in enhanced multi-faceted
explanations of IQA. Particularly, we propose a progressive instruction tuning
strategy by dividing the adaption process of LMM for EIQA into two stages,
where the first stage empowers the LMM with universal perception knowledge
tailored for two tasks using an efficient transfer learning strategy, i.e., LORA,
and the second stage introduces the instruction-adaptive visual prompt tuning to
dynamically adapt visual features for the different instructions from two tasks. In
this way, our proposed Q-Adapt can achieve a lightweight visual quality perceiver,
demonstrating comparable performance and, in some instances, superior results

across perceptual-related benchmarks and commonly-used IQA databases.

1 INTRODUCTION

Image Quality Assessment (IQA) aims to evaluate whether the image
fidelity satisfies the human visual experience (Moller et al.,[2009; |Reiter
et al.,2014), which has been used to various image processing techniques
such as image compression (Yang & Mandt, [2024; [Wu et al.| [2021)),
restoration (Liang et al., 2021} Xia et al., [2023). However, despite that
most IQA metrics, e.g., DEIQT (Qin et al.| [ 2023)), LIPIPS (Zhang et al.,
2018)) can provide an accurate quality score, they cannot explain the
reasons in terms of distortions and contents behind the corresponding
score. With the advancement of Large Multi-modal Foundation Models
(LMM), Explainable Image Quality Assessment (EIQA) has become
feasible due to the multi-modal reasoning and interaction capabilities of
LMMs. A series of preliminary attempts have been made to excavate
the low-level perception capability for images using LMMs (Wu et al.|
2023a;|Zhu et al., 20245 |Wu et al.| 2023Db).

Existing works on LMM-based IQA can be roughly divided into two
types. The first type aims to adapt the pre-trained LMMs to downstream
IQA tasks by designing prompt templates, i.e., prompt engineering, while
freezing the parameters of LMMs. For instance, simply quality-aware
prompt design can enable the GPT-4V (OpenAll [2023; Wu et al., 2023a;
Zhang et al, [2024)) with great low-level visual perception capability.
Despite the efficient adaptation, the frozen parameters limit the adequate
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low-level perception knowledge excavation required by downstream IQA tasks. The second type of
works (Wu et al.,|2023b};2024a; [You et al., 2023) relies on instruction tuning, which aims to empower
the pre-trained LMMs with overall quality explanation capability (i.e., the left part of Fig.[3) and
attribute-wise perception answering (i.e., the right part of Fig.[3) capability by tuning the LMMs,
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Figure 3: The comprison between existed LMMs and our proposed Q-Adapt on two EIQA tasks (i.e.,
the overall quality explanation task, and the attribute-wise perception answering task). Our proposed
Q-Adapt can generate more accurate response, benefiting from the reduction of task conflicts and the
enhanced synergy between the two tasks, achieved through progressive instruction tuning.

preliminarily bridging the path to explainable IQA from two explanation perspectives. From Fig.[I]
and Fig. 2] we observe that focusing exclusively on the explanation task improves performance
compared to joint tuning of both tasks. Additionally, as illustrated in Fig. ] Co-Instruct and GPT-4V
exhibit instances of visual hallucinations in the question answering task. These observations highlight
two fundamental challenges in LMM-based explainable image quality assessment: (i) The conflicts
between these two EIQA tasks are overlooked during instruction tuning, caused from the bias towards
attribute-wise perception knowledge and the degradation of universal perception knowledge. (ii) The
insufficient cross-modal interaction restricts the adaptability to the synergy between these two EIQA
tasks. As Fig. [Billustrates, insufficient reasoning capability and inflexible task instruction adaptation
lead to misleading and spurious responses.

To address the above issues, we propose Q-Adapt, a new paradigm for perception-oriented instruction
tuning. Q-Adapt aims to eliminate task conflicts and achieve synergy between the two EIQA tasks,
thereby enhancing the multifaceted explanations of IQA when adapting LMM as visual quality
perceiver. Specifically, we propose a progressive instruction tuning by dividing the adaptation process
of LMM for EIQA into two stages, continously enhancing perception knowledge for both tasks. The
first stage involves the acquisition of universal perception knowledge in a parameter-efficient manner
(i.e., LORA 2021)), establishing a powerful foundation that supports the different instruction
requirements of both EIQA tasks. Building on the universal perception knowledge acquired in the
first stage, we can more easily achieve adaptability for instructions across different tasks. However,
the limited multimodal interactions (Dong et al.,[2024) within the layers of the LMM’s language
decoder are insufficient for adaptively capturing the visual knowledge specified by the instructions
across both tasks. To overcome this dilemma, we introduce instruction-adaptive visual prompt tuning,
which dynamically adapts visual features to the different instructions, thereby enhancing the synergy
between the two EIQA tasks. In particular, to develop a visual prompt with powerful instruction
adaptive capabilities, we employ bi-directional multimodal interactions to obtain an instruction-
adaptive visual prompt, which consists of a vision-text (V-T) generator to fuse perception-related
visual knowledge required by instructions into textual feature, and a text-vision (T-V) prompter
that projects the textual feature back into the visual space. The obtained instruction-adaptive visual
prompt can guide the original visual feature through gated residual addition to highlight the crucial
information specified by different instructions. Unlike uni-directional multimodal interactions (e.g.,
Q-Former [2024)), which capture condensed semantic information but
lose fine-grained visual details, our bi-directional multimodal interaction module effectively acquires
task-adaptive visual knowledge and refines the original visual feature without losing visual details. In
summary, the contributions of this paper are summarized as follows:
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* We point out that simultaneously tuning LMMs with two types of Explainable Image quality
Assessment (EIQA) tasks (i.e., overall quality explanation and attribute-wise perception answering),
can lead to potential task conflicts and insufficient perception understanding.

* To alleviate the above task conflicts, we introduce a new paradigm for perception-oriented instruc-
tion tuning, namely Q-Adapt. Q-Adapt employs a progressive instruction tuning which consists of
two stages for adaption process for LMM: the universal perception knowledge learning stage and
the instruction-adaptive visual prompting stage. This approach achieves synergy between the two
EIQA tasks and enhances the multifaceted explanations of IQA.

» Experimental results on perceptual-related benchmarks and commonly-used IQA databases demon-
strate that Q-Adapt achieves comparable and in some cases superior, performance, even when
utilizing a lightweight LMM model (i.e., Bunny-3B (He et al., 2024)).

2 RELATED WORK

Large Multimodality Foundation Model The large language models (LLM) have shown the
powerful ability to act as a universal interface for a general-purpose assistant (Zhang et al., 2023b)).
Following the step of LLM, LMMs are extended to conduct visual language tasks, which have
achieved remarkable progress in multiple visual recognition and reasoning tasks (Chen et al., 2023aj
Peng et al.|[2023] Ren et al.| 2023} Liu et al.,|2023)). The cutting-edge works (Liu et al.| [2023} [Li et al.
2022; Dai et al.,[2024) of LMM mainly bridge the visual encoder and LLM with a cross-modality
connector to achieve the multimodal understanding ability. The milestone achievement, LLava (Liu
et al.,|2023)) introduces visual instruction tuning to advance towards a general-purpose assistant. And
the following works in LMM can be divided into two categories: i) enhance visual perception, ii)
enhance the interaction between visual and text representation. For the first category, current works
primarily optimize the visual representation by scaling the visual extractor or combining multiple
visual experts. From the perspective of the parameter scale of visual encoder, InternVL (Chen et al.,
2023b)) scales up the visual encoder to match the parameter scale of LLM and proposes a progressive
alignment strategy to harmonize the multimodal representations, which achieves outstanding ability
in many vision-language tasks. Due to the limitation of CLIP visual encoder, Tong et. al (Tong et al.|
2024) interleaves the image feature from CLIP visual encoder and DINO (Caron et al., 2021} Darcet
et al.,2023) to enhance the visual grounding capabilities. Sphinx (Lin et al.l |2023)) mixes image
features from various visual encoders to achieve a versatile visual understanding ability. As for the
second category, existing methods primarily focus on aligning visual and textual features before
feeding into LLM, or conducting visual-text collaboration/interaction within the deeper layers of the
LLM. To align visual features with task-specific instructions, InstructBLIP (Dai et al.,|2024) excavates
the instruction-aware multimodal feature through Q-Former before integration into the LLM. To
implement multimodal collaboration, mPLUG-OwI2 (Ye et al., 2023) processes visual and text
features through different modules in each layer of LLM. With the same inspiration, CogVLM (Wang
et al.|[2023b) inserts the visual expert in each layer of LLM for deep alignment between two modalities.
Inspired by the above two improvements, we aim to enhance the task-instruction adaptability of
visual representation for multi-modal shallow alignment, thereby enabling the adaptive selection of
the required granularity of perceptual knowledge to facilitate the reasoning process in LLMs.

Large Multimodal Foudation Model for IQA LMM for Image Quality Assessment (IQA) can
be divided into tree main streams. The first is to apply LMM to align the quality feature into text
space. LIQE (Zhang et al.| 2023c) fine-tuned the CLIP (Radford et al., [2021)) model with fidelity
loss to perceive the semantic-level scene, low-level distortion, and quality-level score. Inspired by
prompt learning for CLIP (Zhou et al.| [2022), CLIPIQA (Wang et al., 2023a)) assesses quality scores
by constructing prompt pairs with antonyms to evaluate the model’s preference probability for score
tokens. Through text generation, Q-Align (Wu et al.l 2023c) enables LMM to evaluate quality scores
that align with human opinions. The second is using the prompt engineering technique to activate
the quality perception ability of LMM. Zhu et. al (Zhu et al.,[2024)) employ two alternative forced
choice (2AFC) prompting for multiple LMMs to explore their quality assessment ability. To study
more prompt strategy on LMM for quality assessment, Wu et. al (Wu et al., [2024b) explores the
chain-of-thought, in-context prompt to conduct the pair-wise image quality comparison. The third
is to activate the instruction-following ability of LMM for explainable image quality assessment
(EIQA). This line of research begins with the development of fine-grained low-level perceptual-related
benchmark (Huang et al.| [ 2024;|Wu et al., [2023a}; [ Zhang et al.| 2024), to evaluate the performance
of both open-source (Zhu et al., 2023} [Zhang et al., [2023a} |Ye et al., [2023}; [Liu et al., [2023)) and
proprietary large multimodal models (OpenAl 2023} |Google}, |2023)). Subsequently, it involves the
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creation of the instruction datasets (Wu et al.l |2023b; 2024a) that consists of the overall quality
explanation task and attribute-wise perception answering task. These efforts aim to enhance the
instruction-following ability of advanced multimodal large models for low-level vision. These
approaches bridge the existing gap in IQA models regarding the capability for textual reasoning
and interaction in an explainable manner. In contrast to these approaches, our method facilitates
the adaptation of LMMs to visual quality perception through efficient training. By mitigating the
conflicts between the two EIQA tasks, we aim to achieve a more comprehensive understanding of
visual quality perception.
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Figure 4: The overview for our proposed Q-Adapt, which employs progressive instruction tuning to
achieve the synergy between two EIQA tasks. Concretely, the progressive instruction tuning strategy
comprises two stages: the universal perception knowledge requiring stage (i.e., the first stage) tailored
for building a powerful base for two tasks, and the instruction-adaptive visual prompting stage for
dynamically adapting visual features for task instruction. Additionally, the second stage incorporates
the V-T Generator and T-V Prompter to achieve the bi-directional multimodal interactions.

3 METHOD

3.1 PRELIMINARIES

The primary objective of the Large Multi-modality Foundation Model (LMM) is to perceive visual
signals and engage in reasoning through interactions with textual instructions, thereby addressing a
variety of visual-language tasks. The structure of the current LMM can be primarily summarized
into three parts: the visual encoder, large language model (LLM), and multi-modal connector for
bridging the visual and textual modality. As for Explainable Image Quality Assessment (EIQA) task,
given an image v and perceptual-related instruction I, we extract the image feature F,, € R™"*%
through the visual encoder, where n is the number of visual tokens, and d,, is the channel dimension.
These features are subsequently processed through a connector f,;, which maps them into the textual
space, resulting in Fy,; € R"*%, where d; represents the channel dimension, aligning with that
of the text tokens.. The transformed features, along with the instruction embedding F € Rmxde
where m denotes the number of the text tokens, are then fed into the Large Language Model (LLM).
Optimization is performed using a language modeling loss based on next-token prediction (Liu et al.|
2023}; [Touvron et al., 2023)), which models the likelihood of the generated response conditioned on
the provided images and instructions:

L1
L(r,0,I) = =Y _log (P(ri|v, I,7<1)) )
=1

Where r; represents the generated response token, conditioned on the input image v, instruction 7,
and previously generated response tokens ;.
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3.2 TASK CONFLICTS FOR EXPLAINABLE IMAGE QUALITY ASSESSMENT

The Explainable Image Quality Assessment (EIQA) contain two tasks (Wu et al., [2023a)): overall
quality explanation (Wu et al.,|2023b; |You et al., |2023), and attribute-wise perception answering (Wu
et al., [2023Db}; 2024a). As shown in Fig. [3] The first task requires a long-text response detailing
an overall quality explanation that integrates multiple low-level attributes and concludes with a
final quality score. The second task includes three types of perceptual-related visual question
answering: multiple-choice, yes/no, and what/how questions, requiring brief answers for specific
attributes/dimensions. From Fig.[2] we observe that tuning solely on the overall quality explanation
task results in increased performance in the attribute-wise perception answering task, when compared
to joint tuning on two tasks. It indicates that (i) an inherent conflict exists between the two tasks, since
attribute-wise knowledge derived from training on the perception answering task tends to narrow
the focus of the LMM towards localized/specific dimensions, lacking universal reasoning ability;
(ii ) the universal perception knowledge acquired through training on the quality explanation task
explicitly assists in enhancing the reasoning capabilities for visual quality perception, which can
build a powerful foundation for the two tasks.

3.3 PROGRESSIVE INSTRUCTION TUNING

3.3.1 UNIVERSAL PERCEPTION KNOWLEDGE LEARNING STAGE

To address the conflicts between the two EIQA tasks, we introduce the progressive instruction tuning
strategy to enhance perception knowledge for the two EIQA tasks. It consists of two stages for
perceptual-related instruction tuning on two tasks. Based on the above observation, we are inspired
to utilize the universal perception knowledge acquired from the overall quality explanation task to
facilitate subsequent task adaption for different instructions. Therefore, the first stage involves the
instruction tuning on the quality explanation tasks for universal perception knowledge acquisition. To
effectively learn the universal perception knowledge, this stage involves fine-tuning with a multimodal
connector and utilizing the parameter-efficient LoRA (Hu et al., 2021) technique on both the LLM
and visual encoder. Specifically, the loss function of stagel can be formulated as:

L

Lstagel (aqa v, Iq) = - Z IOg (P<I>0+A<I>(9) (aq,l "Ua Iqa aq,<l)> (2)
=1

where ®( and A®P(0) are referred to the parameters of frozen LMM and learnable LoRA parameters,
respectively. And the subscript ¢ denotes the overall quality explanation task. a,; represents the [-th
token of the answer, and I, denotes the instruction of the overall quality explanation task. The a, <
represents the generated answer token.

3.3.2 INSTRUCTION-GUIDED VISUAL PROMPT TUNING STAGE

In the second stage, to effectively enhance the perceptual knowledge for two EIQA tasks, two critical
conditions must be fulfilled: (i) It is essential to adaptively select the required perception knowledge
based on task instructions, which can alleviate the conflicts between the above two tasks. (ii) It is
vital to ensure that the universal perception knowledge is not compromised by the attribute-wise
knowledge from the attribute-wise perception answering task, thus enhancing the optimization of
both tasks. Therefore, this stage requires fixing the parameters of the LLM and visual encoder, with
the connector trainable, to prevent interference from biases towards specific perceptual knowledge
for the single/localized dimension.

Also, the self-attention mechanism in the LLM decoder treats visual and textual tokens equivalently
across all layers (Dong et al.l 2024), which limits its flexibility in extracting task-specific knowledge
from visual features due to the insufficient cross-modal interactions. Therefore, we propose the
instruction-adaptive visual prompt tuning to excavate the essential knowledge required for the
instruction for specific tasks. Concretely, we utilize the bidirectional interaction between instruction
and visual features, which results in a prompt module comprising two specialized components: the V-
T Generator, designed for vision-to-text interaction, and the T-V Prompter, tailored for text-to-vision
interaction.

V-T Generator Due to the powerful vision-text interaction ability of the cross-attention-assisted
transformer (e.g., Q-Former) (Dai et al.| [2024), we leverage the Q-Former to enhance instruction
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representation with visual feature, enabling it to focus on informative visual knowledge for task
instruction. Specifically, we input both the instruction representation F; and a fixed number of
learnable queries () into the Q-Former. This process yields an instruction representation F} that is
enriched with visual features F,, effectively bridging visual and textual representations and injecting
the visual knowledge related to the instructions. The formulation of Q-Former is listed as follows:

Fo=G(Q, Fy, f(Fy)) (©)
Where, Q € R™? denotes the learnable queries, f(F},) represents the projection for visual feature
F, € R™% to match the dimension d. And the final obtained visual-guided instruction feature is
F,; € R™9. The V-T Generator, based on Q-Former, extracts instruction-adaptive visual features
and maps them into the textual space, aggregating highly compressed perceptual information (Yao
2024) via a limited number of learnable queries, which results in a loss of fine-grained visual
details. We then employ T-V Prompter to refine the original visual features, enabling the dynamic
capture of task-related perceptual knowledge.

T-V Prompter To enhance the knowledge adaptation of the original visual features, we introduce
a second stage of text-vision interaction. As depicted in Fig. this stage employs a gated fusion
process to generate an instruction-adaptive visual prompt. Specifically, we utilize cross-attention
to integrate the information from highly-condensed multimodal feature F},; into the original visual
feature F;, facilitating the dynamic modulation of the original visual feature. Subsequently, a
sigmoid-gated fusion mechanism is applied to merge the intermediate feature F},, € R™% with the
original visual feature F, € R™% .

Ftv :CA(Fvaf(th)vf(Fut)) (4)
Fro = (1= o([f(Fw), f(Fo)) Fro + o ([f (Fro), f(F)]) Fy )

Where f(-) is utilized to map the channel dimension d of F,; to d,,. CA denotes the cross attention
mechanism between F, and f(F,;). And o(-) computes the weights for gated fusion. Through the
above operations, we can modulate the original visual features through the gated residual addition,
effectively integrating the instruction-adaptive visual prompt to refine the original visual feature.
Therefore, the optimization loss for the second stage can be updated as follows:

L1 L2
leageZ(aa v, I) = - Z log (P<I>2 (aq,l v, Iq,<l7 aq,<l)) - Z log (P<I>2 (aa,l|v7 Ia,<l7 aa,<l)) (6)
=1 =1
where, ®, = ®; + O, ©,, is denoted as the parameters of our learnable prompt modules.
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Figure 5: The visualizations of the original visual feature and instruction-adaptive visual prompt.
(a)-(d) illustrate results from Q-bench, while (e)-(h) show results from Q-bench2. And “Task1" refers
to the attribute-wise perception answering task, “Task2" denotes the overall quality explanation task.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

Training Datasets We conduct the perceptual-oriented visual instruction tuning on two datasets:

Q-Instruct [2023b) and Co-Instruct [2024a)). Q-Instruct has a total of 200k

instruction-response pairs. Besides, Co-Instruct extends Q-Instruct from single image to multiple
images, which includes a rich set of 580k instruction-response pairs. The model trained on Q-Instruct
and Co-Instruct is named Q-Adapt?, Q-Adapt©®, respectively.

6
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Evaluation Benchmarks We evaluate our proposed Q-Adapt on the challenging perceptual-related
benchmark Q-bench-A1 (Wu et al.| [2023a) and Q-bench2-A1 (Zhang et al.,|2024) for the attribute-
wise perception answering task, and Q-bench2-A2 (Zhang et al.l [2024)) for the overall quality
explanation task. We also tested the performance of our Q-Adapt on several commonly-used IQA
datasets for image quality assessment (Hosu et al., |2020; [Fang et al., 2020; |Ying et al.| [2020;
Ghadiyaram & Bovik, [2015} |L1 et al., | 2023aj Zhang et al.,|2023d; Lin et al., 2019).

Implementation Details To construct the V-T Generator module, the Q-Former module in Instruct-
BLIP (Dai et al.,|[2024) is applied as our V-T Generator. The number of queries in V-T Generator is
32, which follows previous work. And the cross-attention in T-V Prompter only has a single head.

Given that LMM is often constrained by their substantial computational costs and model parameters,
we have adopted Bunny-3B (He et al.|, 2024), one of the lightweight multimodal model families for
instruction tuning. The training of Q-Adapt requires two 32G V100 GPUs for training, and one 32G
V100 GPU for testing. More details can be found in the Appendix

Table 1: Comparison of Different Methods for attribute-wise perception answering task.

Method Q-bench-A1l (%) \ Q-bench2-A1 (%)
dev test  Average | dev test  Average

Bunny-3B (He et al.|[2024)(Baseline) | 65.08 64.68 64.88 48.20 50.85 49.53
LLaVA-v1.5-13B (Liu et al.|2023) 62.14  61.40 61.77 49.85 52.05 50.95
mPLUG-OwI2 (Ye et al.[[2023) 61.61 62.68 62.15 49.85 4894 49.40
Emu2-Chat (Sun et al.[|2023) 6528 64.32 64.80 50.05 47.08 48.57
Qwen-VL-Max (Bai et al.|[2023) 73.63 73.90 73.77 67.27 66.99 67.13
Gemini-Pro (Google![2023) 68.16  69.46 68.81 57.64 60.46 59.02
GPT-4V (OpenAl{[2023) 74.51  74.10 74.31 76.52  78.07 77.30
Co-Instruct-8B (Wu et al.|[2024a) 76.99 77.12 77.05 78.40 80.18 79.29
Q-Adapt-3B°° 76.05 76.12 76.08 7720 78.38 77.79
Q-Instruct-8B (Wu et al.|[2023b) 70.23  73.38 71.81 50.54 53.15 51.85
Q-Adapt-3B© 77.19  77.06 77.12 5540 55.96 55.68

4.2 COMPARISON RESULTS

To verify the effectiveness of our proposed method, we evaluate our proposed Q-Adapt against
two types of Large Multi-modal Foundation Models (LMMs): a frozen-based LMM and an
instruction-tuning-based LMM. Some of frozen-based models (e.g., GPT-4V (OpenAl, 2023)), Gemini-
pro (Googlel 2023)) and Qwen-max (Google, |[2023))) are proprietary and closed-source. The perfor-
mance of most of these frozen-based LMMs is generally inferior as they have not been exposed
to image-quality-related textual data during previous training. Notably, within these comparative
methods, our Q-Adapt employs a parameter-efficient tuning strategy, and the total parameter
size is only 3B.

Attribute-wise Perception Answering Task. The results of performance comparison on the per-
ception answering task are shown in Table For Q-bench-A1, Q-Adapt? surpasses the second-best
method, Q-Instruct-8B, by a margin of 5.31% on average accuracy. And our Q-Adapt®®, with a
parameter size of 3B and LoRA training, achieves performance close to Co-instruct-8B on Q-bench2-
Al.

Overall Quality Explanation Task. For Q-bench2-A2, the comparison results are represented in
Table[2l Our Q-Adapt®® achieves a performance gain of 0.09 over the second-best method GPT-4V
on the GPT score. It is attributed to our ability to achieve synergy between the two EIQA tasks,
thereby improving perception precision. More examples can be found in Appendix

Image Quality Assessment. We also evaluate the performance of Q-Adapt®? on multiple IQA
databases and compare it with existing LMMs and IQA models. For IQA models, LIQE (Zhang
et al.| 2023c) and LoDa (Xu et al.,2024) utilize networks to regress predicted scores against quality
annotations. We transform the Q-Instruct dataset from image-text pairs to image-score pairs to
facilitate regression for both LoDa and LIQE. From Table |3, Q-Adapt® can achieve the best perfor-
mance compared to other methods on the average performance of SROCC/PLCC. It is noteworthy
that our Q-Adapt significantly outperforms existing LMMs and quality assessment models on the
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Table 2: Performance comparison on overall quality explanation task. We employ the 5-round GPT
score as defined in (Zhang et al.| 2024) for our evaluation metric. Here, P; denotes the frequency of a
rating in the set of 0, 1 and 2. A higher GPT score indicates better performance.

Dimensions Completeness Precision Relevance Sum
Model Py Py P score Py P, Py score Py Py Py score

Bunny-3B (He et al.{|2024) 2440% T71.64% 395% 079 | 986% 50.53% 39.60% 129 [ 097% 21.73% 7128% 1.76 | 3.85
LLaVA-v1.5-T3B (Liu et al.|[2023} | 18.77% 73.44% 1.79%  0.89 | 34.66% 38.72% 26.62% 092 | 1.02% 34.59% 64.39% 1.63 | 3.44
mPLUG-OwI2 (Ye et al.|[2023] 19.43% 65.54% 1445% 1.18 | 30.94% 43.71% 24.63% 1.02 | 3.79% 26.94% 68.28% 1.79 | 3.99
Emu2-Chat (Sun et al.[[2023) 41.25% 5433% 4.42%  0.63 | 38.11% 36.41% 2548% 087 | 4.12% 38.61% 5727% 1.53 | 3.03
Qwen-VL-Max (Bai et al.||2023) 11.64% 54.08% 34.08% 122 | 24.26% 39.14% 36.22% 1.11 | 2.53% 10.97% 85.64% 1.82 | 4.15
Gemini-Pro (Google![2023] 18.22% 44.48% 36.84% 1.18 | 34.13% 37.95% 27.02% 1.18 | 0.67% 591% 92.22% 2.16 | 4.52
GPT-4V (OpenAl]|2023) 4.09% 31.82% 64.09% 1.60 | 10.40% 45.12% 44.44% 134 | 0.18% 1.69% 96.35% 1.94 | 4.89
Co-Instruct (Wu et al.}[2024a) 4.04%  31.55% 63.55% 1.58 | 13.68% 43.68% 41.37% 126 | 0.0% 044% 98.22% 1.96 | 4.82
Q-Adapt* 8.97% 44.22% 46.79% 138 | 3.82% 27.15% 69.02% 165 | 0.0% 4.17% 95.8% 196 | 4.98

AGIQA-3k (Li et al.,[2023a)), CGIQA-6k (Zhang et al.,[2023d), and KADID-10k (Lin et al.|[2019)
datasets, which are barely existed in the training process. It underscores the strong generalization
ability of Q-Adapt, which can be attributed to the parameter-efficient training approach.

Table 3: The comparison results of quality assessment (SROCC/PLCC).

Model KonIQ-10k SPAQ LIVE-FB LIVE-itw  AGIQA-3k  CGIQA-6k  KADID-10k Average

LIQE (Zhang et al.|[2023c} 0.897/0.914  0.925/0.922  0.469/0.541  0.868/0.884 0.744/0.807  0.161/0.197  0.675/0.663  0.677/0.704
LoDa (Xu et al.|[2024) 0.804/0.844  0.892/0.899  0.460/0.524  0.784/0.820 0.687/0.744  0.303/0.322  0.636/0.649  0.653/0.686
LLaVA-vI.5(Liu et al.|[2023) 0.448/0.460  0.563/0.584  0.310/0.339  0.445/0.481 0.285/0.297  0.664/0.754  0.390/0.400  0.444/0.474
mPLUG-OwIZ (Ye et al.|[2023] 0.196/0.252  0.589/0.614  0.217/0.286  0.293/0.342  0.473/0.492 -0.024/-0.032  0.541/0.546  0.326/0.357
Emu2-Chat (Sun et al.|[2023) 0.664/0.714  0.712/0.698  0.355/0.341  0.597/0.611  0.759/0.751  0.224/0.269  0.841/0.790  0.593/0.596
InternLM-XComposer-VL (Zhang et al.|[2023a)  0.564/0.615  0.730/0.750  0.360/0.416  0.612/0.676  0.732/0.775  0.243/0.265  0.546/0.572  0.541/0.581
Co-Instruct (Wu et al.}[2024a)} 0.839/0.898  0.869/0.900  0.467/0.584  0.839/0.851 0.680/0.708  0.421/0.438  0.762/0.756  0.696/0.733
Q-Adapt©® 0.869/0.898  0.916/0.915  0.460/0.539  0.869/0.897 0.739/0.783  0.429/0.435  0.720/0.711  0.714/0.739
Q-Instruct (Wu et al.{[2023b) 0.911/0.921 0.901/0.898  0.442/0.535 0.842/0.840 0.700/0.763  0.572/0.578  0.682/0.683  0.721/0.745
Q-Adapt? 0.878/0.907  0.913/0.916  0.440/0.517 0.837/0.845 0.757/0.789  0.593/0.595  0.769/0.754  0.741/0.760

Parameters and Flops. Q-Adapt presents Table 4: Parameters and FLOPs comparisons for

an effective tuning strategy that _Utﬂiles min- djfferent models, with performance metrics com-
imal parameter increases to achieve substan- puted on the Q-bench-A1l-dev.

tial performance improvements over the base-
line model, Bunny-3B, as well as the more

Q-Instruct-8B  Bunny-3B (LoRA)  Q-Adapt-3B

A . Flops 1700G 656.18 G 695.32G
parameter-intensive Q-Instruct-8B, thereby of- Param 828 278B 2988
fering a more efficient solution for EIQA task Performance 7023 6957 77.19

adaptation from the well-built LMM.

Table 5: Ablation study for instruction-guided visual prompt.

Q-bench-Al (dev) Q-bench-Al (test) Average \ Q-bench2-A1 (dev) Q-bench-A2 (test) Average

w.0. prompt? 7445 75.25 74.85 52.50 51.85 52.17
Q-Adapt® 77.19 77.06 77.12 55.40 55.96 55.68
w.o. prompt©° 75.93 75.71 75.82 76.80 76.77 76.78
Q-Adapt©® 76.05 76.12 76.08 77.20 78.38 77.79

4.3 ABLATION STUDY

There are three directions to explore the variants of instruction-adaptive visual prompts:

(D The Existence of Instruction-guided Visual Prompt. The effectiveness of instruction-guided
visual prompt for Q-Adapt in the Stage 2 training phase is explored in Table[5] In the Table, "w.o.
prompt" indicates that only the multimodal connector is trainable. From the results, it is evident that
with the assistance of the instruction-guided visual prompt, Q-Adapt achieves a performance gain
over training only the connector. It highlights the effect of the instruction-guided visual prompt in
adaptively excavating perceptual knowledge required by task instructions.

As shown in Fig. [5] we demonstrate the effectiveness of our proposed instruction-adaptive visual
prompting. The visualization results indicate that, for the question answering task, the instruction-
adaptive features concentrate on areas specified by the instruction or corresponding to potential
answers. In contrast, the visual prompt for the overall quality explanation task typically highlights
a broader range of visual details. This demonstrates a dynamic modulation for two EIQA tasks.
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Table 6: Comparison with different text encoders for generating instruction-guided visual prompt.

Q-bench-Al (dev) Q-bench-Al (test) Average \ Q-bench2-A1l (dev) Q-bench2-Al (test) Average

BERT? 75.72 75.65 75.69 55.10 53.15 54.12
Q-Former® 77.19 77.06 77.12 55.80 55.45 55.63
BERT®* 76.02 76.05 76.12 76.08 76.57 76.83
Q-Former©® 76.05 76.12 76.08 77.20 78.38 71.79

soihe mamerefmuimocaineracion o prme™ (1) The Encoder Structure for V-T Generator. The analysis for the

= varww | encoder strure of V-T Generator is shown in Table[f] Utilizing the Q-
LE . 7 Former (Dai et al.,2024) can achieve an average accuracy increase of
7 1530 7359 = 1.43% on Q-bench-A1 for instruction tuning on Q-Instruct, compared
to the BERT (Devlin et al., 2018) structure. It demonstrates that the
Q-Former, by introducing learnable queries, can capture high-level
2 semantic information from the instructions, facilitating the extraction

of crucial task information.

Q-bench Al (dev) Q-bench2 Al (dev)
(Train on Q-Instruct) (Train on Co-Instruct)
Benchmark

(IIT) Multimodal Interaction. The multimodal interaction for
constructing instruction-adaptive visual prompts is detailed in
Fig.[6] It can be observed that the bi-directional interaction be-
tween text and visual modalities achieves the highest performance.
Additionally, the performance gain from vision-text interaction
(i.e., V-T Generator) is lower than that from text-vision interac-
tion (i.e., T-V Prompter), which indicates the importance of map-
ping textual features into the visual feature space for modulating the original visual features.

Figure 6: The effect of vari-
ants for multimodal interac-
tion.

(IV)The Difference with VTC. VTC|Wang et al.|(2025) concate- Table 7: Comparison of Q-
nates the additional visual tokens to complete the original visual penchl-dev performance be-
tokens. We conduct this insert manner like VTC to compare with our  tween our method and VTC.
spatial-wise modulation in Table[7} The results indicate that concate-
nating complementary visual tokens is unnecessary when using the ~ Prompting | Q-benchl-dev
uncompressed original visual tokens of Bunny, as the original tokens s 77.19
already provide sufficient information for effective processing. VTC 76.99

More ablation study for instruction-adaptive visual prompting can
be found in Appendix[A-T]

Table 8: Ablation study on progressive instruction tuning on Q-Instruct dataset.

Training Stages Tasks Module Q-bench
Quality  Perception | Vision LORA LLM LoRA Connector Prompt Module | dev test  Average
v X v v v X 7351 7331 73.41
Stage 1 X v v 4 v X 67.96 69.83 68.89
v v v 4 v X 69.57  69.89 69.73
v v v v v v 7130 74.38 72.84
v v X X v v 7719 7106 7712
4 X X X v v 70.10 69.40  69.75
Stage 2 X v X X v v 75.59 75.45 75.52
v v X X X v 7485 74.11 74.48
v v X v v v 7445 7598 75.21

(V)The Effectiveness of Progressive Instruction Tuning. We analyze the effect of progressive
instruction tuning for training on Q-Instruct in Table [§] Additionally, we examine the impact
of task selection for overall quality explanation tasks, as shown in Fig.[/] And we also conduct a
comprehensive comparison across different models in Table[9|for joint tuning on two EIQA tasks, two-
stage tuning, and our proposed progressive-instruction tuning. More ablation study for progressive
instruction tuning can be found in Appendix[A.2]

The Task for Instruction Tuning. For the first stage of instruction tuning (i.e., universal percep-
tion knowledge learning stage), the results (the 15t, 274 and 3"% rows of Table [8) show that the
performance of joint tuning on both tasks and only tuning on the perception answering task are
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lower than tuning on the overall quality explanation task. Also, from Fig.[7] we can see that the
performance can be boosted when training on the Quality subset (i.e., overall quality explanation).
It reflects the inherent conflicts between the two tasks. For the second stage of instruction tuning
(i.e., the instruction-adaptive visual prompting stage), the results (5" and 6" rows of Table
demonstrate that joint tuning for both tasks yields an average accuracy gain of 1.6% compared
to tuning exclusively on the perception answering task. The similar phenomenon is observed in
the quality explanation task in Fig. [7} removing the explanation subset results in a performance
decline (from 4.98 to 4.95). Additionally, training solely on the quality explanation task in Stage
2 leads to a significant performance decline. This is due to the excessive focus on universal global
reasoning, which compromises the model’s ability to effectively address question answering tasks. It
underscores the significance of achieving synergy between the two EIQA tasks in the second stage.

The Trainable Modules. For the first stage tuning (i.e., the

Task selection for two stages on Q-bench2-A2 universal perception knowledge learning stage), the results
500w qualty subset - for trainable modules are shown in the 3"¢ and 4! rows of
4.98 ull Corlnstruct . . .. .

296 o Constuet vos Table @ The findings reveal that joint tuning on the prompt

module results in an average accuracy improvement of 3.11%,

demonstrating the effectiveness of instruction-adaptive visual

prompts for adapting to different instructions. However, it is

- - still lower than only training on quality explanation tasks, due

staoe to the importance of required universal perception knowledge.

) The results in the second stage (i.e., the instruction-adaptive

Figure 7: The effect of task selec- yjsya] prompting stage) is examined in the 5", 7t", and 8t"

t10n 1In progressive IStruction n-  yoyg of Table [8l We draw two conclusions from the results:

ing for explanation task. Firstly, a trainable multimodal connector is essential for the

second stage of instruction tuning, since it plays a critical role

in modality alignment. Secondly, a trainable LoRA for the language decoder is unnecessary in

the second stage, as the language decoder should remain fixed to preserve the universal perceptual
knowledge acquired in the first stage.

GPT Scores

Table 9: The comparisons between different models and tuning strategies on Q-bench-A1 (dev),
where all methods utilize LoRA for efficient training.

Joint Tuning Two-Stage Tuning Progressive Instruction Tuning

LLama-VID-8B (Li et al.|[2023b) 65.55 63.81 67.49
mPLUG-OwI2-8B (Ye et al.|[2023) 66.69 67.76 69.03
Bunny-3B (He et al.|[2024) 69.57 68.28 77.19

(IIT) Progressive Instruction Tuning across different backbones.

We present a comprehensive comparison of LLama-VID (Li et al., [2023b), mPLUG-OwI2 (Ye et al.}
2023)), and Bunny (He et al.,|2024) across joint tuning, two-stage tuning, and our proposed progressive
instruction tuning on Q-Instruct dataset, as detailed in Table[9] All training strategies utilize LoORA
for efficient training. The two-stage tuning approach consists of two phases: initially training on
the overall quality explanation task with a trainable multimodal connector for alignment, followed
by training on the two EIQA tasks using both the connector and the LLM. Experimental results in
the table indicate that progressive instruction tuning yields the best performance, as it effectively
mitigates task conflict. In contrast, the two-stage tuning process, which resembles the training strategy
of existing LMMs, is inadequate for adapting LMMs to downstream tasks, such as EIQA.

5 CONCLUSION

In summary, to alleviate the inherent conflicts in two EIQA tasks (i.e., overall quality explanation,
and attribute-wise perception answering), we propose Q-Adapt to adapt LMM as a visual quality
perceiver, which is conducted through a perception-oriented instruction tuning strategy, namely,
progressive instruction tuning. The progressive instruction tuning consists of the universal perception
learning stage for building a powerful base for two tasks, and the instruction-adaptive prompting
stage for dynamically adapting visual features for different instructions. By doing this, our Q-Adapt
can achieve the synergy between these two EIQA tasks when adapting LMM. Extension experiments
on two related benchmarks can illustrate the effectiveness of our Q-Adapt on both overall quality
explanation task and attribute-wise perception answering task.

10
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A APPENDIX

Training Details. The detailed of hyperparameters and modules are listed below: Visual Encoder:
siglip-s0400m-patch14-384, LLM: phi-2, image resolution: 384, batchsize: 64, learning rate: 2e-5,
learning rate schedule: cosine decay, weight decay: 0, warmup ratio: 0.03, gradient accumulation
steps: 4, numerical precision: float16, epochs for stage 1: 1, epochs for stage 2: 1, optimizer: AdamW,
deepspeed stage: 2.

Following the pioneering works of LMM paradigm (Wu et al., 2023b) of finetuning strategy and
model architecture, we inherit weights from the Bunny-3B of instruction version to apply continual
instruction tuning to downstream EIQA tasks.

In the progressive instruction tuning approach applied to the Q-Instruct dataset, the first stage solely
focuses on the overall quality explanation task to acquire universal knowledge. The second stage
involves joint tuning across the full Q-Instruct dataset. For the Co-Instruct dataset, given that the
baseline model, Bunny-3B, has not been exposed to multiple images for vision question answering,
we transform the attribute-wise perception answering task data into chain-of-thought quality data
(i.e., multi-turn conversations). This data is then combined with the overall quality explanation task
data to fulfill the requirements for universal knowledge acquisition. In the second stage, we train
our Q-Adapt model on the entire Co-Instruct dataset. In all stages, the first stage focuses solely on
training the LoRA of the visual encoder, the language decoder, and all multimodal connector. The
second stage is dedicated exclusively to training the prompt module and the multimodal connector.

Evaluation Metric. For the attribute-wise perception answering task, we apply accuracy as the
metric to measure the performance. For overall quality explanation task, we adopt 5-round GPT
evaluation score for comparison between our generated explanation and ground-truth explanation
on completeness, precision, and relevance. For quality assessment task, We adopt two widely used
criteria for performance evaluation: Pearson linear correlation coefficient (PLCC) and Spearman
rank order correlation coefficient (SROCC). A higher value for these coefficients indicates a stronger
correlation with quality annotations.
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A.1 MORE ABLATION STUDY FOR INSTRUCTION-ADAPTIVE VISUAL PROMPTING

There are three directions to explore the variants of instruction-adaptive visual prompt for the overall
quality explanation task.

The Existence of Instruction-adaptive Visual Prompt.  As demonstrated in Fig.[8] our instruction-
adaptive visual prompt (i.e., the 3" bar) enables the Q-Adapt to outperform the baseline without
visual prompt (i.e., the 1°% bar) on Q-bench2-A2, achieving a gain of 0.23 on GPT Score. With the
same results in Table 3] for attribute-wise perception answering task, it underscores the effectiveness of
instruction-adaptive visual prompts in alleviating conflicts in Explainable Image Quality Assessment
(EIQA) tasks and in promoting the synergy between the two tasks.

The Encoder Structure for V-T Generator.  As depicted in Fig. 8] the Q-former (i.e., the 3" bar)
for building V-T Generator in instruction-adaptive visual prompt can surpass the Bert structure (i.e.,
the 2" bar). With the same results in Table [6|for the attribute-wise perception answering task, it is
evident that the Q-former structure is more suitable for instruction understanding in the EIQA tasks.

Multimodal Interaction.  The results are represented in Fig.[9] For the overall quality explana-
tion task, it is observed that both bi-directional interaction and text-vision interaction outperform
vision-text interaction with the same GPT score evaluation. As presented in Fig.[6} the bi-directional
interaction achieves higher accuracy compared to both text-vision and vision-text interactions on
attribute-wise perception answering task. This underscores the universality of bi-directional interac-
tion in facilitating both types of EIQA tasks.

Ablation for prompt module on Q-bench2-A2 Ablation for prompting on Q-bench2-A2

Wo prompt 4.98 vision-text 4.98 4.98
prompt (Bert) 4.95 text-vision
4.95) mmm prompt (Q-former) mmm bi-directional

> &
© ©
S G

GPT Scores
&
@
G

GPT Scores

»
©
S

4.75 4.75 4.77
Wo prompt prompt (Bert) prompt (Q-former) 475 vision-text text-vision bi-directional
Method Method
Figure 8: The effect of instruction-adaptive vi- Figure 9: The effect of the manner for
sual prompt with different structure for train- mutlimodal interaction for training on Co-
ing on Co-Instruct. Instruct.

Table 10: Ablation study on progressive instruction tuning on Co-Instruct dataset.

Training Stages Tasks Module Q-bench2
Quality Perception | Vision LORA LLM LoRA Connector Prompt Module | Aldev Altest A2

v X v v 4 X 75.90 7558  4.94
Stage 1 v v v 4 X 70.60 73.77  3.18
v v v v v X 73.50 7327 491
4 v v v v v 71.60 72.17 499
4 v X X v 4 77.20 78.38 498
Stage 2 X v X X v 4 75.79 7545 495
4 v X X X v 77.30 7747 483
v v X v v v 76.10 76.37  4.92

A.2 MORE ABLATION STUDY FOR PROGRESSIVE INSTRUCTION TUNING FOR TRAINING ON
CO-INSTRUCT.

We also analyze the effect of progressive instruction tuning in Table [I0] for Q-Adapt training on
Co-Instruct.

Task Selection for Progressive Instruction Tuning.  For the first stage of instruction tuning (i.e.,
universal perception knowledge requiring stage), it is observed that training on the full Co-Instruct

15



Under review as a conference paper at ICLR 2025

dataset results in the lower performance (i.e., 4.91 on the 3"% row) than training on the quality subset
(i.e., 4.94 on the 1! row) for the overall quality explanation task. It suggests that task conflicts
lead to a bias towards attribute-wise specific knowledge at the expense of comprehensive reasoning
capabilities. The loss of this comprehensive reasoning ability also contributes to reduced performance
from 75.90 (i.e., the 15¢ row) to 73.50 (i.e., the 3"% row) on attribute-wise perception answering task,
through the comparison between training on quality data and training on full Co-Instruct. For the
second stage (i.e., instruction-adaptive visual prompting stage), we can see that removing the quality
data (i.e., the overall quality explanation task) will result in a performance decline from 4.98 (i.e., the
5" row) to 4.95 (i.e., the 6" row) on the overall quality explanation task. It reveals the importance
of synergy between two EIQA tasks.

Trainable Modules Selection for Progressive Instruction Tuning.  For the first stage of instruc-
tion tuning, we can see that combination with the prompt module obtains the highest performance
(i.e., 4.99, the 4*" row), which is attributed to the enhanced task adaptation ability by instruction-
adaptive visual prompting. However, the performance of the combination with the prompt module
in the first stage is a little low on perception answering task (i.e., 71.6, the 4" row). Therefore, it
reveals that the combination with the prompt module in the first stage is not optimal for universal
knowledge acquisition. In the second stage of instruction tuning, our observations indicate that both
incorporating LoRA and removing the multimodal connector result in a performance decline (i.e.,
from 77.20/78.38/4.98 to 77.30/77.47/4.83, and from 77.20/78.38/4.98 to 76.10/76.37/4.92 ) on both
overall quality explanation task and attribute-wise perception answering task.

A.3 SAMPLES FOR TWO EIQA TASKS.

The comprison between existed LMMs and our proposed Q-Adapt on two EIQA tasks (i.e., the
overall quality explanation task, and the attribute-wise perception answering task). Our proposed
Q-Adapt can generate more accurate response, benefiting from the reduction of task conflicts and the
enhanced synergy between the two tasks, achieved through progressive instruction tuning. Due to the
task conflict alleviation by our proposed progressive instruction tuning and instruction-aware visual
prompt tuning, our Q-Adapt can ensure the accuracy of fine-grained low-level perception.
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Figure 10: The comparison of existing LMM and our Q-Adapt on two EIQA tasks (i.e., the overall
quality explanation task and the attribute-wise perception answering task).
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