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ABSTRACT

Diffusion language models offer parallel token generation and inherent bidirec-
tionality, promising more efficient and powerful sequence modeling compared
to autoregressive approaches. However, state-of-the-art diffusion models (e.g.,
Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality
of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B),
their iterative denoising requires multiple full-sequence forward passes, result-
ing in high computational costs and latency, particularly for long input prompts
and long-context scenarios. Furthermore, parallel token generation introduces
token incoherence problems, and current sampling heuristics suffer from signifi-
cant quality drops with decreasing denoising steps. We address these limitations
with two training-free techniques. First, we propose FreeCache, a Key-Value
(KV) approximation caching technique that reuses stable KV projections across
denoising steps, effectively reducing the computational cost of DLM inference.
Second, we introduce Guided Diffusion, a training-free method that uses a
lightweight pretrained autoregressive model to supervise token unmasking, dra-
matically reducing the total number of denoising iterations without sacrificing
quality. We conduct extensive evaluations on open-source reasoning benchmarks,
and our combined methods deliver an average of 12.14× end-to-end speedup
across various tasks with negligible accuracy degradation. For the first time,
diffusion language models achieve a comparable and even faster latency as the
widely adopted autoregressive models. Our work successfully paved the way
for scaling up the diffusion language model to a broader scope of applications
across different domains. Our code and implementation are available at https:
//anonymous.4open.science/r/anon-flash-dlm-A42B/.

1 INTRODUCTION

Large language model (LLM) Liu et al. (2024a); Bai et al. (2023); Touvron et al. (2023) have shown
great success across multiple domains in human life with strong intelligence. In particular, most of the
current state-of-the-art (SoTA) LLM models are autoregressive (AR) models with transformer-based
architecture Vaswani et al. (2017). However, autoregressive models sequentially generate new tokens
at inference time for each decoding step, preserving the logic of semantics (e.g., logic) with the
cost of insufficient parallelism and the limitation of mono-direction generation. Diffusion Language
Models (DLMs) Ye et al. (2025); Nie et al. (2025); Arriola et al. (2025) have emerged as an appealing
alternative. By iteratively denoising a masked sequence in parallel, DLM enables parallel token
generation and bidirectional context, which allows all tokens to be generated simultaneously at each
step, while keeping the coherence between past and future tokens.

However, DLMs exhibit fundamental challenges that remain under-explored. The comparable
quality between the SoTA DLM and AR model comes with the cost of extensive computation latency
and insufficient long-context ability. These drawbacks largely limit the scalability and practicality of
diffusion models, which motivates this work to investigate the following problem:

How to effectively accelerate SoTA DLM while maintaining model performance?
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Essentially, the efficiency bottleneck of DLM is caused by the incompatibility with the caching
strategy, which has been widely used in auto regressive models (ARM). Recently proposed Block
Diffusion Arriola et al. (2025) have shown promising results on diffusion model with Key-Value
caching strategy, whereas the overhead of additional fine-tuning and training hinder the fast deploy-
ment of DLM. More importantly, the scalability of caching remains questionable against large-sized
DLMs (e.g., Dream-7B-Instruct Ye et al. (2025), LLaDA-8B-Instruct Nie et al. (2025))

To address the efficiency challenge of the SoTA DLM models, this work proposes two novel methods:
1 FreeCache, a training-free caching strategy that enables diffusion acceleration; 2 Guided
Diffusion, a training-free technique that guides token unmasking in long-context diffusion gener-
ation. Unlike the conventional compression algorithm (e.g., quantization, pruning) that requires a
dedicated calibration run, the proposed method directly accelerate the model off the shelf. Specifi-
cally, we reveal the fact that the impact of future tokens on earlier positions rapidly diminishes over
denoising steps. Therefore, direct caching of the earlier unmasked clean tokens can be considered as
a KV state approximation with the result of negligible impact on output quality.

In addition to FreeCache, we introduce guided unmasking assisted by a lightweight autoregressive
model. The proposed Guided Diffusion introduces the mechanism of “big diffusion model generation
followed by small model unmasking guidance.” Our guidance-only approach selects plausible tokens
to unmask, minimizing this overhead and preserving the full reasoning power of the DLM. By doing
so, the proposed method elegantly combines the advantages of both DLM and autoregressive models.
The diffusion process can be easily parallelized, while the autoregressive model is exempt from
repetitive and expensive speculative correction. Overall, the contributions of this work are:

• Simplicity. The proposed method achieves 12.14× and 13.29× speedup on the Dream-7B-
Instruct and LLaDA-8B-Instruct models with negligible accuracy drop, respectively. For the
first time, the DLM based architecture achieves comparable (even better) generation speed
compared to a same-sized AR-based LLM models.

• Versatility. The proposed method exhibits strong peformance across multiple knowledge
domains, including both simple and complex reasoning tasks.

• Scalability. With the proposed training-free auto-regressive guidance, our work enables the
long-context diffusion (>1024 tokens) without hurting the model performance.

Together, these techniques make it feasible to deploy DLMs in long-context and high-throughput
applications without compromising quality. Our method retains the desirable properties of parallel
generation and bidirectional conditioning of DLMs while overcoming the challenge of key ineffi-
ciencies. We demonstrate that diffusion-based language models can achieve competitive inference
performance with autoregressive LLM baselines, paving the way for their practical adoption in
real-world scenarios.

2 RELATED WORK

2.1 DIFFUSION LANGUAGE MODELS

The emergence of the diffusion language model (DLM) opens up an alternative path for language
generation. Recent works like Dream Ye et al. (2025), LLaDA Nie et al. (2025), MDLM Sahoo
et al. (2024), and BD3-LM Arriola et al. (2025) adapt diffusion processes to text generation. While
promising, these methods are computationally expensive for computation, leading to incompetent
latency compared to the conventional AR-based language model despite the high scalability. With
some preliminary trials, recent work imposes cached diffusion models Arriola et al. (2025) for
accelerated diffusion and reinforcement learning-based reasoning enhancement Zhao et al. (2025).
However, the fundamental latency issue still persists, which largely limits the practicality and
scalability of DLM. More importantly, diffusion and autoregressive-based language models are not
orthogonal. The potential compatibility between DLM and Autoregressive Model is worth further
exploration.
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2.2 KV CACHING FOR AUTOREGRESSIVE LLM

The overhead of KV Cache has been one of the most critical memory and computation overheads
throughout the long-context generation with autoregressive LLM decoding. Compressing the KV
cache has been one of the major focuses of efficient LLM research. The emergence of FlashAtten-
tion Dao et al. (2022); Dao (2023); Shah et al. (2024) and PageAttention Kwon et al. (2023) aims to
alleviate the challenge from the system perspective, leading to a promising performance with high
scalability across different LLM architectures. From the perspective of compression algorithms, KV
cache eviction Yang et al. (2024); Cai et al. (2024b), quantization Liu et al. (2024c); Hooper et al.
(2024), structured pruning Lu et al. (2024); Xu et al. (2025) are proposed to save memory traffic.
Due to the irregularity of the diffusion process, the diffusion language model (DLM) requires the
full-sized Key and Values for attention computation, where the bottleneck of memory bound largely
degrades the latency, limiting the practicality of DLM on a larger scale. A recent study on block
diffusion Arriola et al. (2025) proposes the sequential block with intra-block diffusion, whereas the
cost of training overhead and under-verified scalability makes the diffusion model questionable for
large-scale deployment.

2.3 SPECULATIVE DECODING

In addition to the conventional compression algorithms (e.g., pruning and quantization), speculative
decoding Leviathan et al. (2023) provides an alternative perspective on accelerating autoregressive
LLM decoding without hurting the performance (e.g., accuracy). The lightweight assistant model
generates a multi-token “draft”, followed by the speculation and correction of the target model.
The reliability and acceleration of the speculative decoding system is determined by the matching
ratio between the draft model output and target model speculation. In particular, the poor matching
ratio between the draft and target model leads to frequent execution of the target model, which
eventually deteriorates the system level latency. Recent studies on autoregressive models focus
on self-drafting Elhoushi et al. (2024); Liu et al. (2024b), multi-head decoding Cai et al. (2024a),
optimized token sampling Chen et al. (2024) and search strategy. Regardless the design of speculative
decoding, the speculation and correction of the target model is actively required to ensure the lossless
computation. In the meantime, the diffusion model-based big-small model collaboration is largely
under investigation. Recent work Christopher et al. (2024) explores speculative decoding with
small-scale diffusion models as the drafter, relying on a more competent AR model for output quality
and generation, whereas cross-model methods for accelerating large, pre-trained diffusion language
models remain under-explored.

3 METHODOLOGY

3.1 PRELIMINARY OF DIFFUSION LANGUAGE MODEL

Diffusion language models (DLMs) generate sequences by iteratively unmasking an initially masked
token sequence over T denoising steps. Mathematically, let xT ∈ NL be the fully masked input (all
positions set to [MASK]), where the still masked position Mt is represented as:

Mt =
{
i : xt[i] = [MASK]

}
(1)

At each iteration t = T, . . . , 1, the model fθ produces logits

zt = fθ(xt) for i ∈Mt, (2)

from which a subset Ut ⊆Mt of positions is selected (e.g. by confidence scoring) and filled via:

xt−1[i] = argmax
v∈V

[
Softmax(zt[i])

]
, i ∈ Ut, (3)

yielding the next mask set Mt−1 = Mt \ Ut. By repeating this denoising and unmasking process
until M0 = ∅, the model produces the final fully unmasked sequence x0.

3.1.1 BOTTLENECK OF DIFFUSION LANGUAGE MODEL INFERENCE

While diffusion models allow parallelized generation of tokens, this comes at the expense of extra
computation overhead per forward pass. Given the input xT with sequence length L, each forward

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Module Operation Auto-Regressive LM (decode) Diffusion LM (length L)

MHA

WQ, WK , WV projections O(d2) O(Ld2)
Query × Key (QK⊤) O(l2d/h) O(L2d/h)
Attention Score × Value O(ld/h) O(L2d/h)
Output projection (Wout) O(d2) O(Ld2)

FFN W1 projection O(dḋff) O(Lddff)
W2 projection O(ddff) O(Lddff)

Table 1: Compute complexity of Transformer modules: AR decodes a prefix of length l per token vs.
DLM processes full length L each denoising step.

pass of the diffusion model fθ requires full-sized computation (both current and past tokens) through-
out the multi-head attention (MHA) block and feed-forward network (FFN) of the transformer model.
Unlike the autoregressive model where the past tokens are cached for the new token generation,
diffusion model produces output without the consideration of causality. As shown in Table 1, DLM
models introduce an additional computational complexity of O(L) at each module of a transformer-
based model architecture. As a result, the latency overhead introduced by the DLM architecture is
massive compared to the Auto-Regressive Model, as shown in the comparison in Section 4. Based on
the theoretical analysis above, the first challenge of the diffusion model is:

Challenge 1 : How to alleviate the latency and computation overhead caused by the liability of full
sized cache computation of DLM?

3.1.2 TOKEN INCOHERENCE IN PARALLEL GENERATION

As introduced in Section 3.1, DLM irregularly unmasks output token positions throughout diffusion
process. As a result, simultaneously unmasking token positions without semantical correlation leads
to insufficient semantical consistency, which can further degrades the model performance. While
the desire of preserving the parallel diffusion persists. Figure 1a shows accuracy degradation with
decreasing denoising steps for three diffusion sampling methods: MaskGIT Chang et al. (2022),
entropy-based, and Top-K Margin Kim et al. (2025). The challenge arises as follows:

Challenge 2 How to enhance the semantic correlation of the diffusion process without introducing
additional training and fine-tuning effort?

Motivated by the aforementioned challenges, we propose a novel approach which directly accelerates
the diffusion model in a simple, effective, and systematic manner.

3.2 PROPOSED METHOD

3.2.1 FREECACHE: REDUCING WINDOW CACHING FOR DLM INFERENCE

A key insight for optimizing the generation process in Diffusion Language Models is that the Key and
Value (KV) projections for the clean portions of a sequence exhibit high temporal stability. Although
these projections are not strictly unchanging, they quickly converge and undergo only negligible
changes once a token is finalized.

Figure 2 shows a heatmap that validates the rationale behind our FreeCache method: the temporal
stability of KV projections for clean tokens. The y-axis represents the denoising step and the x-
axis represents the token position, while the color intensity shows the similarity of a token’s value
projection to its previous step. Bright yellow indicates high similarity (minimal change), while dark
blue signifies a large difference. We observed that the prompt region remains stable across denoising
steps, and the generation region illustrates how tokens transition from a low-similarity, unstable state
(dark blue) to a high-similarity, stable state (bright yellow) as they become unmasked.
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(a) Quality degradation from aggressive unmasking.
Heuristic methods suffer from significant accuracy loss
with decreasing denoising steps.

(b) Latency–accuracy tradeoff. Pareto front com-
paring the standard autoregressive baseline with our
KV-cache optimized method, highlighting substantial
latency reductions at equivalent accuracy levels.

Figure 1: (a) Quality degradation under aggressive unmasking. (b) Pareto front of accuracy vs.
latency (log-scale) for baseline and optimized cached methods.

Figure 2: Rationale behind the proposed FreeCache: The variation of K and V projections of clean
tokens is small throughout the subsequent diffusion steps.

To exploit this, we propose FreeCache, a reducing window caching strategy where the set of
actively computed tokens dynamically shrinks as blocks of the sequence are finalized. The algorithm
proceeds as follows: Initialization and Partitioning: The post-prompt generation sequence is
partitioned into fixed-size blocks (B1, ..., BN ), and an initial forward pass computes and saves the
full KV projections for the entire sequence (prompt + all blocks). Windowed Re-computation: To
generate a block Bi, the active computation window is defined as Bi and all subsequent blocks
(Bi+1, ..., BN ). KV projections are recomputed only for tokens within this window until Bi is fully
unmasked, using all prior frozen blocks and the prompt as context. Progressive Caching: Upon
completion of a block Bi, its KV projections are frozen for subsequent steps. The active window
then shrinks to exclude this block for all subsequent generation steps.

This cascaded approach means that the computational cost per step progressively decreases throughout
the inference process, as the active window shrinks with each completed block. This effectively
reduces the overall computational overhead, especially for long sequences.

We quantify the performance degradation caused by the FreeCache in Figure 1b with the 8-shot
GSM8K dataset. The reducing window caching strategy introduces up to 5× speedup compared to the
vanilla Dream-7B, while preserving the minimal accuracy drop. As shown in Table 2, the proposed
FreeCache achieves up to 4.42× speedup for Dream-7B-Instruct and 6.32× for LLaDA-8B-Instruct,
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Table 2: Latency and accuracy of the proposed FreeCache with different Diffusion Language Models.
The proposed method achieves 4.42× and 6.32× speedup on Dream-7B-Instruct and LLaDA-8B-
Instruct models.

Models Method GSM8K (8-shot) Accuracy (%) Raw Latency (s) Speedup

Dream-7B-Instruct Ye et al. (2025) Baseline 79.68 48.05 1.0 ×
FreeCache (This work) 77.40 10.87 4.42×

LLaDA-8B-Instruct Nie et al. (2025) Baseline 79.30 56.89 1.0 ×
FreeCache (This work) 77.18 9.02 6.32×

while maintaining accuracy close to the baseline. We solidify the performance of the proposed
method in Section 4 with further analysis with benchmarks across different domains.

3.2.2 GUIDING DIFFUSION WITH LIGHTWEIGHT AUTOREGRESSIVE MODEL

To address this token incoherence challenge (Challenge 2 ) from Section 3.1.2 and fully exploit the
parallelism of diffusion process, we propose Guided Diffusion.

Figure 3: AR-guided Diffusion Model. The diffusion model performs a one-step diffusion process,
followed by a one-time forward pass of the AR guider. The matched tokens are unmasked for the
next step of diffusion.

Specifically, we leverage the diffusion model as the “drafter” model by first unmasking all the tokens
with one step. The masked tokens predicted by the diffusion model are only unmasked when they
are consistent with the predictions from the autoregressive LM model, as shown in Figure 3. For the
scenario when the matching ratio between the diffusion drafter and auto-regressive model is zero, the
guided diffusion will only accept the one free tokens from the AR model output.

This cross-model agreement serves as a lightweight coherence prior, enabling the model to safely
unmask multiple tokens in parallel, without requiring any additional training or fine-tuning.

Guided diffusion performs iterative unmasking by coordinating predictions from a diffusion language
model (DLM) and a frozen autoregressive model (ARM). At each denoising step, instead of relying
on heuristic confidence thresholds, it uses agreement between the two models to decide how many
tokens to safely unmask.

Formally, let xT ∈ NL be the current sequence containing masked and unmasked tokens. The
diffusion model fθ predicts logits over vocabulary tokens at all masked positions, from which we
take the Top-1 predictions:

tDLM = argmax(Softmax(fθ(x))).

6
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These proposed tokens are fed to the ARM gϕ, which produces a second set of logits:

tARM = argmax(Softmax(gϕ(t
DLM))).

Let M = [i1, . . . , im] ⊆ {1, . . . , L} denote the current masked positions in x. We compute the
largest prefix length k such that

tDLM
ij = tARM

ij for all j ≤ k.

If k > 0, we unmask positions i1, . . . , ik using the DLM proposals. If no agreement is found, we
conservatively unmask only the first token i1. This process is repeated until all tokens are unmasked.

This decoding strategy allows the model to adaptively control the amount of parallel unmasking based
on model confidence and alignment, enabling efficient generation without compromising output
quality. We present the details of the proposed method in Algorithm 1.

We would like to highlight that the proposed Guided Diffusion properly combines the advan-
tages of both diffusion model and auto-regressive model. For each guiding step, both one-time
diffusion process from the drafter and the one-time forward pass of the auto-regressive model are fast,
while the guidance from the auto-regressive model facilitates the coherence of the diffused output
tokens with improved semantical logic.

Guided Diffusion vs. Speculative Decoding. Unlike speculative decoding, Guided Diffusion
does not require token-wise correction from the auto-regressive model. In other words, the proposed
method produces output sequence without introducing the repetitive correction process, which
guarantees the latency benefits obtained from the fast diffusion process. Speculative decoding uses a
small AR model for autoregressive drafting, followed by the big model correction. On the contrary,
the proposed guided diffusion flips the paradigm by maximizing the drafting efficiency of the big
diffusion model. To that end, the reasoning power of the diffusion model is fully preserved, while the
AR guider model simply ensures the causality of the output.

Algorithm 1 Guided Diffusion
Input: masked sequence x, DLM fθ, AR gϕ
Output: fully unmasked x
while ∃i : x[i] = mask // loop until all unmasked do

logitsDLM ← softmax(fθ(x)) // DLM predicts masked tokens
tokDLM ← argmax logitsDLM // DLM predictions
logitsAR ← softmax(gϕ(tokDLM)) // AR processes DLM output
tokAR ← argmax logitsAR // AR predictions
Let M = [i1, . . . , im] be masked indices // remaining mask positions
k ← size({tokDLM = tokAR}) // find matches

if k > 0 // models agree then
Unmask i1:ik with tokDLM[i1:ik] // accept matching run

else
Unmask i1 with tokDLM[i1] // fallback: accept first

4 EXPERIMENTS

We evaluated the proposed method against a wide range of benchmarks across different types of
tasks. Due to the limited option of DLM models with multi-billion parameters, we choose Dream-
Instruct-7B Ye et al. (2025) as the selected SoTA model to validate the proposed method. To fully
solidify the effectiveness of our work, both question-answer (QA) and reasoning tasks are solved via
multi-sentence and multi-step text-based diffusion, instead of directly outputting the final answer.
The detailed experimental setup and data pre-processing are summarized in the supplemantary.

Metrics and Baselines.The performance of the proposed method and other baselines are evaluated
based on accuracy and wall clock latency for solving each problem. We first compare the performance
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Table 3: Outstanding acceleration achieved by the proposed methods with negligible accuracy drop
on Dream-7B-Instruct Ye et al. (2025). The latency value represents the end-to-end problem solving
time per problem.

Vanilla DLM Dream-Instruct-7B with Guided Diffusion (This Work)
Baseline Dream-Instruct-7B FreeCache Only FreeCache + QWen-1.5B-Instruct FreeCache + QWen-7B-Instruct

MMLU-PRO
Acc. (%) 46.92 45.18 46.64 48.20

Latency (s) 20.73 6.68 1.66 2.77
Speedup (s) 1× 3.11× 12.48× 7.48×

GSM8K (8-shot)

Acc. (%) 79.68 77.40 80.33 81.41

Latency (s) 48.05 10.87 2.70 2.74
Speedup 1× 4.42× 17.80× 17.53×

PiQA

Acc. (%) 85.56 84.83 85.15 85.85

Latency (s) 14.62 4.21 0.43 1.05
Speedup 1× 3.47× 34.1× 13.92×

ARC-C

Acc. (%) 80.87 80.61 80.89 80.72

Latency (s) 10.64 4.25 3.12 4.58
Speedup 1× 2.50× 3.41× 2.32×

ARC-E

Acc. (%) 87.53 86.24 87.50 87.44

Latency (s) 10.59 5.54 3.25 5.03
Speedup 1× 1.91× 3.26× 2.11×

GPQA

Acc. (%) 39.29 43.30 49.55 49.33

Latency (s) 21.50 9.91 12.02 15.26
Speedup 1× 2.12× 1.78× 1.41×

of the proposed method against the vanilla Dream model Ye et al. (2025). On top of that, we evaluate
the proposed method with the comparison of the mainstream auto-regressive models.

Experimental Setup.The models are deployed on a single NVIDIA RTX 6000 Ada GPU (48GB).
The latency is measured directly via torch.cuda.Event across each benchmark dataset.

Long-context Diffusion. For all the tasks, we intentionally encourage the model to generate the
complete reasoning process, followed by the indication of the final answer. We would like to highlight
the long context response is critical for problem solving and question-answering due to the widely
adopted reasoning-based response in the SoTA LLM models. For all the selected reasoning, math
problems, and question-answering, we set the max new tokens to 1024. The final answers are
extracted after the dedicated prompt trigger.

4.1 COMPARISON WITH THE BASELINE DIFFUSION LANGUAGE MODEL

Compared to the vanilla Dream-7B-Instruct model, the proposed method achieves consistent and
outstanding speedup across all the tasks from different domains. For the complex reasoning tasks (e.g.,
MMLU-PRO, GPQA), the proposed FreeCache first induces 3.11× speedup with minimal quality
degradation. Rewarded by the guided diffusion method, the overall system can achieve an average
of 12.48× speedup with negligible accuracy degradation. For the tasks with long-context input
prompt (e.g., GSM8K with 8-shot), the proposed method accelerates the diffusion process with 34.1×
end-to-end average speedup on all the math problems, as presented in Table 3.

With guided unmasking, the diffusion model exhibits stronger reasoning power with recovered
accuracy. More importantly, the existence of the lightweight autoregressive model recovers the
accuracy degradation caused by the approximated cache, even with the long-context generation (e.g.,
1024 tokens). As introduced in Section 1, the guided diffusion process exclude the “correction” step.
As a result, increasing the size of the guider model (e.g., from 1.5B to 7B) only leads to marginal
accuracy improvements, with the cost of minimal latency overhead.

Empowered by Guided Diffusion, diffusion model is compatible with different variants of the
AR model guider in different domains of knowledge. By employing a dedicated auto-regressive
LLM for math (e.g., Qwen-2.5-Math-1.5B), the performance of the Dream-Instruct-7B model can be
further facilitated with better reasoning ability on the GSM8K dataset. In addition to the experimental
results in Table 3, we present the evaluation results with other benchmarks in the supplementary.
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4.2 COMPARISON WITH THE VANILLA AUTOREGRESSIVE LLM MODELS

The strong speedup achieved by the proposed method allows us to compare the diffusion model
against the conventional autoregressive LLM models.

Table 4 shows the comparison between Guided Diffusion and vanilla Auto-regressive on the GSM8K
dataset with the standard 8-shot chain-of-thought prompt. Crucially, the quality of generation is
governed by the DLM’s reasoning capacity. This ensures that accuracy is maintained regardless
of guider competence, with latency remaining on par with autoregressive models. Admittedly,
Dream-7B-Instruct and LLaDA-8B currently exhibit weaker reasoning ability compared to some
state-of-the-art autoregressive models of similar size (e.g., Qwen2.5-7B-Instruct). Nevertheless,
Guided Diffusion provides significant acceleration, and as future work continues to enhance the
reasoning ability of diffusion models, its benefits are expected to become even more pronounced.

Table 4: Comprehensive performance comparison on the GSM8K dataset, showing both standard
autoregressive (AR) and AR-guided results for various models.

Models / Guiders Stand-alone AR LLM Guided Diffusion (w/ Dream-7B-Instruct) Guided Diffusion (w/ LLaDA-8B-Instruct)

Accuracy (%) Latency (s) Accuracy (%) Latency (s) Accuracy (%) Latency (s)

Qwen2.5-1.5B-Instruct 68.54 2.26 80.3 2.55 79.91 4.29
Qwen2.5-Math-1.5B-Instruct 78.24 1.59 82.9 3.19 81.96 5.31

Qwen2.5-7B-Instruct 91.13 3.23 82.3 3.43 79.68 4.42

4.3 MODEL GPU MEMORY USAGE

Table 9 and Table 10 show the GPU memory usage (in Gigabytes) of the proposed method with
LLaDA-8B-Instruct and Dream-7B-Instruct as diffusion models, respectively. The GPU memory is
recorded directly via torch.cuda.max memory allocated(). As shown in the tables, the
proposed guided unmasking scheme introduces minimal memory overhead compared to the combined
memory consumption of the single auto-regressive and baseline diffusion models.

Table 5: LLaDA-8B-Instruct Guided Diffu-
sion Memory Usage (GB).

AR Guider DLM Guide Total
(GB) (GB) (GB)

Qwen2.5-1.5B-Instruct 20.7 4.1 24.8
Qwen2.5-7B-Instruct 17.3 38.0

Table 6: Dream-Instruct-7B Guided Diffusion
Memory Usage (GB).

AR Guider DLM Guide Total
(GB) (GB) (GB)

Qwen2.5-1.5B-Instruct 14.6 4.1 18.7
Qwen2.5-7B-Instruct 17.3 31.9

5 CONCLUSION AND DISCUSSION

This paper presents a novel method designed for diffusion language models. The proposed
FreeCache enables training-free caching with an off-the-shelf diffusion model. On top of that,
Guided Diffusion facilitates the quality of diffusion by guiding the direct diffusion process
with outstanding speedup. Different from prior works that relies on training or additional finetuning
effort, the proposed method enables the end-to-end speedup by using the off-the-shelf diffusion
model only. Compared to the baseline diffusion language models, the proposed method achieves an
average of 12.14× speedup across different reasoning tasks with negligible accuracy degradation.
More importantly, for the first time, our method enables diffusion model to achieve the comparable
performance compared to the autoregressive language models while maintaining the similar accuracy.
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A LLM USAGE

We used large language models, specifically ChatGPT (GPT-4, OpenAI) and Gemini (Google), in
limited ways during this work. First, we used them to improve grammar, phrasing, and clarity of
exposition, but not to generate substantive technical content. Second, we occasionally consulted them
to help identify potentially relevant related work, while ensuring that all citations were independently
checked and verified by the authors. Third, we used them at early stages as brainstorming aids to
generate alternative perspectives or potential problem framings. All research directions, methods, and
experiments were conceived, designed, and validated by the authors. All outputs from large language
models were critically evaluated before inclusion, and the intellectual contributions of the paper are
entirely the authors’ own.

B SUPPLEMENTARY MATERIAL

B.1 CODE & DATA RELEASE PLAN

The implementation of our methods are available at https://
anonymous.4open.science/r/anon-flash-dlm-A42B/.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL EXPERIMENTAL RESULTS OF LLADA-8B-INSTRUCT

Besides the comprehensive evaluation with the SoTA Dream-v0-Instruct-7B diffusion model, we
further validate the effectiveness of the proposed method with LLaDA-8B-Instruct Nie et al. (2025).
As presented in Table 7, the proposed FreeCache and guided unmasking have demonstrated the
consistent speedup on the GSM8K dataset with 8-shot chain-of-thought (CoT).

The baseline LLaDA-8B-Instruct Nie et al. (2025) can optionally support semi-autoregressive un-
masking by dividing the sequence into several blocks and unmasking them from left to right. The
user-defined hyperparameter block length defines the size of the block Nie et al. (2025). How-
ever, this does not make the generation autoregressive, and the model still processes the full sequence
length at each denoising step.

In our proposed guided diffusion method, block length is not used or needed since the diffusion
model generates all draft tokens at each step, while the AR model is used to guide the unmasking
process. In other words, the “effective block length” of the guided unmasking is the length of all the
diffused draft tokens at each step of drafting.

C.2 ADDITIONAL EXPERIMENTAL RESULTS ON DREAM-V0-INSTRUCT-7B

In addition to the benchmarks reported in Table 3, Table 8 shows HellaSwag (5-shot) results for
Dream-v0-Instruct-7B with FreeCache and guided diffusion, highlighting substantial speedup and
accuracy gains over the baseline.

Table 8: HellaSwag accuracy, latency, and speedup relative to the Dream-v0-Instruct-7B Baseline.

Model / Variant Accuracy (%) Latency (s) Speedup
Baseline 73.30 21.99 1.00×

FreeCache + Qwen2.5-1.5B-Instruct Guided (This work) 76.63 2.46 8.94×
FreeCache + Qwen2.5-7B-Instruct Guided (This work) 76.84 3.31 6.64×

C.3 MODEL GPU MEMORY USAGE

Table 9 and Table 10 show the GPU memory usage (in gigabytes) of the proposed method with
LLaDA-8B-Instruct and Dream-v0-Instruct-7B as diffusion models, respectively. The GPU memory
is recorded directly via torch.cuda.max memory allocated(). As shown in the tables, the

12

https://anonymous.4open.science/r/anon-flash-dlm-A42B/
https://anonymous.4open.science/r/anon-flash-dlm-A42B/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table 7: GSM8K (8-shot) accuracy, latency, and speedup for LLaDA-8B-Instruct with block sizes 32
and 64 and guided diffusion with Qwen2.5-Instruct models. Speedups are relative to the corresponding
LLaDA baseline latency.

Model / Setting Details Accuracy (%) Latency (s) Speedup
LLaDA Baselines

Block Length = 32
Baseline 81.52 57.02 1.00 ×
FreeCache (This work) 79.76 9.20 6.20 ×
Block Length = 64
Baseline 79.30 56.89 1.00 ×
FreeCache (This work) 77.18 9.02 6.32 ×

Guided Diffusion (Qwen2.5-Instruct) with FreeCache

Qwen2.5-1.5B-Instruct Top-1 Match 79.91 4.29 13.29 ×
Qwen2.5-3B-Instruct Top-1 Match 79.53 5.16 11.05 ×
Qwen2.5-7B-Instruct Top-1 Match 79.30 5.21 10.94 ×
Qwen2.5-1.5B-Instruct Top-2 Match 78.85 4.40 12.96 ×
Qwen2.5-3B-Instruct Top-2 Match 79.75 4.40 12.96 ×
Qwen2.5-7B-Instruct Top-2 Match 79.68 4.50 12.67 ×
Qwen2.5-1.5B-Instruct Top-5 Match 79.91 3.80 15.01 ×
Qwen2.5-3B-Instruct Top-5 Match 80.06 4.29 13.29 ×
Qwen2.5-7B-Instruct Top-5 Match 79.76 4.42 12.90 ×

proposed guided unmasking scheme introduces minimal memory overhead compared to the combined
memory consumption of the single auto-regressive and baseline diffusion models.

Table 9: LLaDA-8B-Instruct Guided Diffusion
Memory Usage (GB)

AR Guider Diff. Guide Total
(GB) (GB) (GB)

Qwen2.5-0.5B

20.7

1.9 22.6
Qwen2.5-1.5B 4.1 24.8
Qwen2.5-3B 6.7 27.4
Qwen2.5-7B 17.3 38.0

Table 10: Dream-v0-Instruct-7B Guided Diffu-
sion Memory Usage (GB)

AR Guider Diff. Guide Total
(GB) (GB) (GB)

Qwen2.5-0.5B

14.6

1.9 16.5
Qwen2.5-1.5B 4.1 18.7
Qwen2.5-3B 6.7 21.3
Qwen2.5-7B 17.3 31.9

C.4 IMPLEMENTATION DETAILS

The proposed method directly employs the off-the-shelf diffusion and auto-regressive large language
models (for guided masking) from HuggingFace. The proposed method uses the same set of
configurations for all tasks. We believe a more fine-grained hyper-parameter setting can lead to
improved performance, but we keep a single set of configurations to demonstrate the generality and
practicality. Table 11 shows the detailed experimental configuration of the proposed method with
Dream-v0-Instruct-7B Ye et al. (2025) and LLaDA-8B-Instruct Nie et al. (2025).

Stochastic Guided Unmasking. Please note that during guided unmasking, we only consider the
Top-K logits of the AR-guider model as the guidance logits loga. In addition to the deterministic
guidance strategy (Algorithm 1 and Algorithm 2), if the maximum token logit of the diffusion
output (of each token) is greater τ × max(loga), the token will be unmasked. Otherwise, it will
remain silent, where τ is the Guidance Confidence Threshold (default = 0.5).

C.5 PROMPT TEMPLATES

Prompt Configuration for Question Answering and Reasoning. We would like to highlight that
our evaluation protocol encourages the diffusion model to generate the output tokens with the sense
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Table 11: Diffusion configuration of the Dream-v0-Instruct-7B Ye et al. (2025) and LLaDA-8B-
Instruct Nie et al. (2025) employed in this work.

Setting Dream-v0-Instruct-7B Ye et al. (2025) LLaDA-8B-Instruct Nie et al. (2025)

Configuration of FreeCache (This work)

Block Cache Size 256 256

Max Output Tokens 256 256

Block Length Nie et al. (2025) - 64

Configuration of FreeCache + Guided Unmasking (This work)

Max Output Tokens 1024 1024

Speculation Block Size 32 32

Top-K Assisted Tokens Selection 2 2

Guidance Confidence Threshold τ 0.5 0.5

of reasoning for both math solving and basic common QA tasks (e.g., PiQA). As a result, the model
achieves higher accuracy compared to the reported performance in Ye et al. (2025). To solidify
the fact that we are not heavily relying on prompt engineering, we release the prompt templates as
follows:

ARC (-C/E):

You are a careful reasoning assistant. A commonsense sentence is shown with a blank and
**four** Answers that could fill the blank. Think step by step about which option makes the
sentence most sensible, then decide.

### Sentence: <sentence>

### What you should do:
1. Briefly explain your reasoning.
2. On a **new line**, write exactly: ”The final answer is [answer]” where **[answer]** is
either **Answer1**, **Answer2**, **Answer3**, or **Answer4**. Do **not** output
anything after that line.

GPQA:

You are a careful reasoning assistant. A question is shown with **four** possible answers.
Think step by step about which option is correct, then decide.

### Question: <question>

### In your response:
1. First reason and explain your reasoning briefly before providing the final answer to the
question.
2. Then at the end of your explanation, on a **new line**, write exactly: ”The final answer
is [answer]” where **[answer]** is one of **Answer1**, **Answer2**, **Answer3**, or
**Answer4**. Do **not** output anything after that line.

GSM8K:

Given the following problem, reason and give a final answer to the problem.

Problem: <problem>

Your response should end with ”The final answer is [answer]” where [answer] is just the final
number to the problem.
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HellaSwag:

You are a careful reasoning assistant. A commonsense sentence is shown with a blank and
**four** Endings that could fill the blank. Think step by step about which option makes the
sentence most sensible, then decide.

### Sentence: <sentence>

### In your response:
1. First reason and explain your reasoning briefly before answering this question.
2. Then at the end of your explanation, on a **new line**, write exactly: ”The final answer
is [answer]” where **[answer]** is either **Ending1**, **Ending2**, **Ending3**, or
**Ending4**. Do **not** output anything after that line.

PIQA:

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction: <instruction>

Your response should end with ”The final answer is [answer]” where [answer] is the response
to the problem.

MMLU-PRO:

The following are multiple choice questions (with answers) about a subject. Think step by
step and then finish your answer with ”the answer is (X)” where X is the correct letter choice.

The prompt of MMLU-PRO is adopted from the official repository of MMLU-PRO benchmark.
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