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Abstract

Advancements in language modelling over
the last decade have significantly improved
downstream tasks such as automated text
classification. However, deploying such sys-
tems requires high computational resources
and extensive training data. Human adults
can effortlessly perform such tasks with min-
imal computational overhead and training
data which prompts research into leverag-
ing neurocognitive signals such as Electroen-
cephalography (EEG). We compare Large
Language Models (LLMs) and EEG fea-
tures captured during natural reading for
text classification. Additionally, we intro-
duce GeNeRTe, a novel state-of-the-art syn-
thetic EEG generative model. Using only a
limited amount of data, GeNeRTe learns to
produce synthetic EEG features for a sen-
tence through a neural regressor that re-
solves the relationship between embeddings
for a sentence and its natural EEG. From
our experiments, we show that GeNeRTe can
effectively synthesize EEG features for un-
seen test sentences with just 236 sentence-
EEG training pairs. Furthermore, using syn-
thetic EEG features significantly improves
text classification performance and reduces
computation time. Our results emphasize
the potential of synthetic EEG features, pro-
viding a viable path to create a new type of
physiological embedding with lower comput-
ing requirements and improved model per-
formance in practical applications.

1 Introduction

Text classification serves as the foundation for many
automated systems that are used every day such
as categorizing medical documents, filtering harm-
ful content, generating personalized reports, and
more. Large improvements in the accuracy of auto-
mated text classification systems have become possi-

ble recently due to developments in natural language
model architectures including transformers (Vaswani
et al., 2017), which have led to large language mod-
els (LLMs) that are better at capturing semantic
patterns in text. One caveat, however, is that pre-
training LLMs requires vast amounts of training
text. Even after pre-training, fine-tuning and de-
ploying these models in production is very compute
intensive and requires resources including GPUs and
a high amount of RAM which are not widely avail-
able.

However, in this current era of deep learning
and LLMs, it is worth remembering that an aver-
age healthy human adult can easily perform lan-
guage tasks using minimal computational resources
and without needing to train on vast amounts of
data. Recent advancements in electroencephalogra-
phy (EEG) and eye-tracking systems have enabled
researchers to record brain data while performing
reading tasks, which offers a wealth of informa-
tion about internal representations of words and lin-
guistic structures. For example, Ling et al. (2019)
demonstrated how EEG pattern analyses can serve
to decode the internal representation of visually pre-
sented words in healthy adults with word classifica-
tion and image reconstruction from the EEG signal
well above chance.

However, whilst research in this area has shown
the power of EEG and other cognitive features, their
practical application within NLP tasks has been less
studied. The requirement to have humans read the
text in order to generate cognitive features for clas-
sification, seems to negate the utility in most auto-
mated text-processing applications. There has been
work (Hollenstein et al., 2019) combining word-level
EEG features with static word embeddings. How-
ever, such word-based models are no longer com-
petitive with LLMs which employ contextualised
word embeddings. Thus, the challenge becomes how
to effectively generate context-sensitive EEG fea-
tures without requiring the collection of human brain
data at test-time. Here, we compare EEG features
recorded during natural reading with LLM embed-



dings in a text classification setting and explore the
extent to which information contained within EEG
features can be synthetically generated and then
used in text classification tasks.

Our contributions are fourfold. First, we investi-
gate and compare a Large Language Model (BERT)
against EEG features collected from subjects during
natural reading for the task of text classification.
Second, we propose a novel state-of-the-art syn-
thetic EEG generative model, GeNeRTe, that learns
to output EEG features for a sentence by regress-
ing between its sentence embeddings and its natural
EEG. Our results show that GeNeRTe can produce
good quality synthetic EEG from just 236 training
sentence-EEG pairs. Third, we generate synthetic
EEG for an unseen test set and compare its perfor-
mance with baseline BERT, achieving significantly
higher scores on the classification task. Fourth, we
test our generative model on a separate benchmark
dataset and demonstrate its superior performance to
baseline BERT.

2 Background and Related Work

In this section, we first discuss text classification
using word embedding methods (Section 2.1). We
then explore what EEG features mean for language
comprehension (Section 2.2). Finally, we discuss
the studies that have incorporated cognitive features
with NLP models and studies that have proposed
models to generate synthetic cognitive features in
Sections 2.3 and 2.4.

2.1 Word Embeddings for Text
Classification

The foundation of modern LLMs are word embed-
dings. Word embeddings are n-dimensional vector
representations of words which form a vector (or se-
mantic) space with the property that words which
are close together are typically similar in meaning.
Static (or non-contextual) word embeddings were
first popularised by Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014). Whilst the op-
erational mechanisms are different, the underlying
principle in both is one of distributional similarity:
words are considered similar if they have similar co-
occurrences. Word embeddings are trained on very
large text corpora to learn meaning from context but
they are non-contextual in the sense that each word
in the vocabulary has a single static embedding inde-
pendent of its use in a particular sentence or context.
Static word embeddings have been much employed
in text classification systems e.g., Wang et al. (2020).

Devlin et al. (2019) introduced Bidirectional En-
coder Representation from Transformers (BERT)

which is a Transformer-based encoder. BERT uses
stacked encoders and a self-attention mechanism to
learn contextualised embeddings, where each usage
of a word has a different embedding dependent on
the context. Omne of the reasons for the success
of BERT, and subsequent LLMs, is the successful
application of transfer learning. These models are
pre-trained to carry out general language modelling
tasks (e.g., Masked Language Modelling and Next
Sentence Prediction) on vast amounts of unanno-
tated language data. The representations learnt dur-
ing pre-training are then utilised in the subsequent
task-specific fine-tuning. BERT-based approaches
have been hugely popular and successful in text clas-
sification, and still provide one of the best baseline
models, achieving a very high accuracy (Gonzilez-
Carvajal and Garrido-Merchan, 2021).

2.2 Analyzing language comprehension
through EEG.

Physiological processes recorded from the brain are
studied using specific frequency bands or brain os-
cillations/waves named using the Greek alphabet:
delta, theta, alpha, beta, and gamma. It is well-
known that these oscillations vary depending on the
tasks performed. For language, the brain requires at-
tention, memory, and comprehension (syntactic and
semantic). Williams et al. (2019) suggest that theta
activity increases when focusing attention on a cur-
rent task involving short-term memory and Basti-
aansen et al. (2002) suggested an increase in theta
activity during real-time language comprehension.
Klimesch (2012) reports the involvement of alpha-
band activity during temporal attention which is an
important aspect of language comprehension. Beta-
band has been associated with more complex linguis-
tic functions such as semantic retrieval of lexicons,
parsing sequences, and generating correct sentences
Weiss and Mueller (2012). Lastly, Prystauka and
Lewis (2019) also suggests that gamma-band activ-
ity is sensitive to semantic manipulations and factual
inconsistencies.

The N400 response in the brain was discovered
in the 1980s as an indicator of reading comprehen-
sion and linguistic manipulations (Holcomb, 1993).
N400 is a late event-related potential that manifests
around 400ms after the event as a negative peak.
Grabner et al. (2007) report theta-band response
around 200-600ms after a linguistic stimulus such as
word presentation, including alpha, and beta-band
inhibition 200-400ms after the stimulus. The in-
crease in the gamma-band activity due to factually
incorrect stimulus was also around 400-600ms after
the stimulus (Prystauka and Lewis, 2019).



2.3 Augmenting NLP models with
cognitive features

The Zurich cognitive corpus (ZuCo) (Hollenstein
et al., 2018) dataset contains EEG and eye-tracking
recordings from 12 subjects performing natural read-
ing tasks. Hollenstein et al. (2019) proposed inte-
grating the cognitive features from ZuCO with the
neural-network based relation classification system
of Rotsztejn et al. (2018). Specifically, they find
that combining word-level EEG features from ZuCo
dataset with word embeddings from GloVe (Pen-
nington et al., 2014) as input to the relation clas-
sification model increases performance. They also
proposed a method to generate a dictionary of word-
level EEG features that can be used with datasets
that do not provide any cognitive features to address
the problem of not having EEG at test time.

In later work, Hollenstein et al. (2021) showed the
advantage of using EEG features with contextual
BERT embeddings. They first use BERT embed-
dings as input to a bi-LSTM model while keeping the
BERT parameters trainable as the baseline. Second,
they experiment with two approaches to decode the
EEG features by using bi-LSTM and an inception
Convolution Neural Network that uses multiple fil-
ters of different lengths to extract features from the
EEG data (Szegedy et al., 2015). They then concate-
nate the output of the EEG decoder to the output
of the BERT bi-LSTM to be passed to the classifier.
This setup relies on the classifier being able to effec-
tively learn the decoded EEG and the text represen-
tations. The complexity of this setup may increase
training time and add additional parameters on top
of the large language model. Moreover, their setup
requires cognitive features at test time which is not
suitable for other datasets and real-world use.

Ren and Xiong (2023) proposed CogAlign. They
first train two individual Bi-LSTM encoders to learn
task specific modalities using ZuCo cognitive fea-
tures and word-level textual features from GloVe
Pennington et al. (2014). Then they use a shared en-
coder with a modality discriminator to jointly learn
cognitive and textual inputs in combination with
the separate encoders. This shared encoder aligns
both the representations by minimizing on the ad-
versarial loss between them. Hence, at inference,
they have the option only to use the textual input
with transfer learning and obtain a joint textual-
cognitive representation from the shared encoder for
datasets having no cognitive features for the same
task. While they show performance increases over
previous methods, the use of non-contextual embed-
dings with the EEG features could be hampering
the joint representations obtained from the shared

encoder.

2.4 Generating synthetic cognitive features

Bolliger et al. (2023) proposed ScanDL, a model
for generating synthetic eye-tracking data for texts.
They train a diffusion model to predict gaze data
on text. They convert word indices and their
natural fixation sequence to embeddings and the
model learns to reconstruct the natural fixation se-
quence using a diffusion process that introduces
noise in the word index embeddings and then re-
solves that noise to get the original index embedding.
They show improvement over previous state-of-the-
art synthetic eye-tracking data generation Eyetten-
tion (Deng et al., 2023a). Deng et al. (2023b) use
Eyettention to enhance BERT, rearranging the input
token embeddings according to the predicted gaze
fixations for a sentiment classification task.

We are not aware of any prior work generat-
ing synthetic EEG features and examining whether
EEG alone is useful for downstream NLP tasks.
This setup can potentially provide cognitive features
closer to ground truth rather than a soft represen-
tation of those features. This would mean that
LLMs won’t be required during training time for
downstream tasks, and we can potentially shift away
from requiring huge amounts of computational re-
sources for fine-tuning and deploying LLMs by cre-
ating EEG or physiological embeddings for various
tasks. Hence, we not only address the potential is-
sues from related work through our proposed gen-
erative model, but we also provide a novel solution
to further bridge the gap between cognitive sciences
and NLP. Moreover, it opens new opportunities to
develop human cognition-inspired models that can
co-relate better with human comprehension of lan-
guage thereby creating language models that gener-
alize like humans from a moderate amount of data.

3 Dataset and Feature Modelling

As discussed in Section 2.3, the Zurich cognitive cor-
pus (ZuCo) (Hollenstein et al., 2018) dataset con-
tains EEG and eye-tracking recordings from 12 sub-
jects performing natural reading tasks. Here, we
focus on the relation classification task. The sen-
tences for the relation classification task were cho-
sen from the Wikipedia relation extraction dataset
which has 1110 paragraphs mentioning 4681 rela-
tions in 53 relation types. The authors of ZuCo
selected approximately 40 sentences for each of 8 re-
lation types (award, education, job title, political af-
filiation, wife, visited, nationality, and founder) and
presented these to the subjects.



Subjects had to report whether a relation type was
present for each sentence and there were 72 control
sentences in the mix that did not have any relation
type to check if there is actual comprehension of the
sentences. Before starting the experiment, they had
a practice round to familiarize themselves with the
control and the stimuli. The instructions were pre-
sented as follows (Hollenstein et al., 2018):

AWARD; while reading the following sentences
please watch out for the relation between a person
or their work and the award they/it received or were
nominated for.

Task instruction “Please read the following sen-
tences. After you read each sentence, answer the
question below. Press 6 when you are ready.”

Example sentence: “She won a Nobel Prize in
19117
“Does this sentence contain the award relation?

[1] = Yes, [2] = No”

3.1 Electroencephalography (EEG)

The EEG data was recorded with a 128-channel non-
invasive electrode system from Electrical Geodesics.
The data was recorded with a sampling rate of 500Hz
and filtered to retain wave frequency between 0.1 —
100Hz using the band pass filtering method. Out
of the 128 channels, 105 were used for recording
the scalp, 9 were used as electrooculography (EOG)
channels for artifact removal (e.g., eye-blinks) and
the rest of the channels that were placed on the
neck and the face were discarded as they did not
provide any essential data for processing. The ar-
tifacts were identified using MARA (Multiple Arti-
fact Rejection Algorithm) which is an open-source
plug-in for an effective supervised machine learning
algorithm that analyses the EEG data so that the
artifacts can be automatically rejected. Figure 3 in
Appendix A shows the example of the raw EEG data
and the pre-processed EEG data for a sentence.

To extract word-level EEG features, the EEG
and eye-tracking data were synchronized by identi-
fying shared events using the “EYE EEG extension”
(Winkler et al., 2014) that can time lock the EEG
data to the onset of eye fixations. The EEG features
are spread across multiple frequency bands with each
band serving its own cognitive function as discussed
earlier. A total of 8 bands were identified and the
data was band-pass filtered to get thetal (t1: 4-6Hz),
theta2 (t2: 6.5-8Hz), alphal (al: 8.5-10Hz), alpha2
(a2: 10.5-13Hz), betal (bl: 13.5-18Hz), beta2 (b2:
18.5-30Hz), gammal (gl: 30.5-40Hz), and gamma2
(g2: 40-49.5Hz) frequencies. The final EEG features
are power measures for each of these frequency bands

in 105 channels that are the electrodes placed on the
scalp. The power measurement of the EEG signals
indicates the total activity in each frequency band
per channel (Xiao et al., 2018). The authors used
Hilbert transformation to estimate the amplitude
and phase for each frequency band which was cru-
cial for identifying fixation segments in eye-tracking
data. For the sentence-level EEG features, they cal-
culated the power of each frequency band over the
full spectrum in 105 channels. This results in word-
level EEG features: 8 x 5x 105-dimensional vectors'
for each fixated word; and sentence-level EEG fea-
tures: 8 x 105-dimensional vectors for each full sen-
tence.

The EEG features for some sentences are not avail-
able for multiple subjects. Hence, for our model,
we chose one of the highest scoring subjects with
the most complete data following Hollenstein et al.
(2019) who suggested that single-subject models per-
formed slightly better than taking average across
subjects. We first take the mean of 8 x 105 dimen-
sional sentence EEG features. Each frequency band
reflects a comprehension state of language as dis-
cussed in Section 2.2. Hence, this mean provides
the full comprehension data from all the frequency
bands allowing us to compile a final 105-dimensional
sentence EEG. We then pre-process the sentences
by lowercasing and removing punctuations and nor-
malize the final sentence EEG features between 0-1
scaled by 1000x. The final dataset consists of nor-
malized sentences, mean of the sentence EEG fea-
tures in 8 frequency bands, and one of the 8 rela-
tion types of each sentence. Finally, we divide the
dataset into training and testing set with 80-20 split
and make sure that the test data does not contain
any repetition of training data.

3.2 EEG Features Across Subjects and
Relation Types:

The task specific reading experiment setup in ZuCo
is particularly interesting as the authors instruct
the subjects to look for a specific relation type in
a sentence while recording EEG data. Wehbe et al.
(2014a) recorded fMRI data from subjects while they
read stories. They showed how neural representa-
tions can have distinct signatures for different stories
that can be classified with high accuracy. Following
this, we speculate that since the subjects were shown
the relation type to look for before the sentence was
presented, the EEG features recorded when reading
that sentence amplified the signature for its relation
type which might lead to distinct patterns of EEG
features.

L4 frequency bands = 8, #gaze features = 5



To test the above hypothesis, we create a func-
tion that groups the final sentence EEGs into their
respective relation types resulting in 8 groups of sen-
tence EEGs. We then take the mean of the sentence
EEGs within each group to get the average sentence
EEG features per relation type. Now, we can com-
pare if the mean EEG features for each relation type
show a unique pattern. We perform an Analysis of
Variance (ANOVA) test to check if the mean EEG
features across the different relation types are signif-
icantly different. Figure 1 shows the average EEG
features per relation type for the best subject with
the most complete data.

We can observe from Figure 1 that the EEG fea-
tures for different relation types are clearly unique.
This is further corroborated through the ANOVA
test with the p-values well below 0.05 affirming that
EEG patterns vary significantly across different re-
lation types. This behavior is replicated for other
subjects (See Figure 4 in Appendix B). Wehbe et al.
(2014b) showed how word embeddings produced by
recurrent neural networks can be aligned with word
level brain activity recorded via Magnetoencephalog-
raphy (MEG) while subjects read stories. Hence, in
theory, these well separated sentence EEG features
should lay a strong foundation for classification and
regression modelling. The models should be able to
efficiently learn the relationships between the sen-
tence EEG features, sentence embeddings, and their
relation types by aligning their unique patterns.

4 Synthetic EEG features

We propose GeNeRTe, an Encoder-Regressive Gen-
erator model that can produce synthetic EEG fea-
tures for any sentence. We employ this model along
with a random forest classifier for text classification.
Figure 2 shows the model architecture.
Encoder-Regressive Generator: The core of
our model is a deep neural regressor. The regres-
sor outputs a 105-dimensional vector in line with
the natural EEG features provided in ZuCo. The
training process consists of two parts. First, we use
a language model (BERT-base? in this case) as the
encoder to extract word embeddings for the ZuCo
sentences and create a lookup table where we store
these embeddings as static objects to be used later
for training the model. The sentence embedding is
the mean of the last hidden state of BERT for all
tokens. Then, the model trains to resolve the rela-
tionship between the sentence and its natural EEG
by taking as input the static sentence embeddings

20ther ‘larger’ flavours of BERT can potentially fur-
ther increase the performance.

and generating the EEG features. During training,
the regressor backpropagates over the neural net-
work and adjusts its parameters to essentially dis-
cern patterns of similarity between the sentence and
its natural EEG. Our model consists of three hidden
layers containing dropouts to randomly set a fraction
of hidden layer nodes to 0 and batch-normalization
to prevent overfitting. The forward pass uses ReLU
activation. Given an input sentence embedding vec-
tor X € R! where I is the dimension of the em-
bedding, the synthetic EEG can be generated using
F(X):

F(X)=LsoDs0d0BN3oLsgoDyodoBNyo
L20D105OBN10L1(X)

where o denotes composition of functions,
L;,D;, BN, for i = 1,2,3,4 denote fully connected
layers, dropout, and batch normalization respec-
tively and & denotes the ReLLU activation.

Our model can generate synthetic EEG features
for any given sentence thereby eliminating the need
for natural EEG during test time and real-world use,
which is a major bottleneck for building cognitively
inspired NLP models.

Classifier: We use a Random Forest classifier
along with the synthetic EEG generator to imple-
ment the relation classification task. We first setup
a parameter distribution dictionary that covers var-
ious permutations of hyperparameters, then we use
RandomSearchCV with 10-fold cross validation to
find the best performing parameters. The classifier
takes EEG features as input and classifies it to a re-
lation class. Hence, this setup uses only EEG data
for text classification thereby eliminating the need
for fine-tuning LLMs and word embeddings.

5 Experiments

There are a total of 236 training samples and 60
test samples in the ZuCo dataset that we use in this
research. Each sentence is assigned one of the 8 re-
lation classes.

Relation classification baseline: We fine tune
pre-trained BERT-base on the ZuCo dataset as the
baseline. We initialize a Trainer class from the trans-
formers library® with the Adam optimizer and use
Cross-Entropy Loss to train the model for 15 epochs.
We keep BERT parameters trainable so that the
model can learn to predict the relation class given
the sentence and update itself.

Relation classification GeNeRTe-Classifier:
For our proposed model, we setup the experiments in
two phases. First, we train our Encoder-Regressive

3https://huggingface.co/docs/transformers



Average EEG patterns by class label for subject ZJM

— award

—— education
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— jobtitle

—— nationality

— politicalaffiliation
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— wife

EEG vector range

ANOVA Test Result: 1.3810966369117404e-112

Figure 1: Average EEG features per relation type: The graphs illustrate group mean EEG features
across eight relation types. The Y-axis denotes the EEG values. X-axis denotes the vector range (105-
dimensions). ANOVA test results show p-values for the subject below the X-axis. The P-value for the
subject is below 0.05 indicating statistical significance.
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Figure 2: GeNeRTe and Classifier Architecture: GeNeRTe is shown within the blue box consisting of
the Encoder-Regressive Generator. Encoder outputs are stored in the embedding lookup table and queried
during regressor training and generation. Input EEG features for the random classifier training can be
natural EEG or synthetic EEG depending on the experiment setup.

Generator model on the ZuCo training set. We use features at test time. Hence, we can train and
Mean Squared Error Loss and a custom loss function test the random forest classifier with natural
combining Cosine Loss and MSE along with Adam EEG features to evaluate the performance stan-
optimizer and train the model for 300 epochs. We dard.
then generate synthetic EEG features for the unseen
ZuCo test set. In the second phase, we use the ran- 2. Training with natural EEG and testing
dom forest classifier with the best hyperparameters with synthetic EEG: This test informs us
given by the RandomSearchCV process for the rela- about the generalization capabilities of the gen-
tion classification task. The classifier takes in EEG erative model and the nature of the synthetic
features as input and classifies those features into a data. The synthetic EEG features for the test
relation class. We run the following experiments: sentences should maintain the general direction
and magnitude of its relation type learned from
1. Training and testing with natural EEG: the training set.

As the ZuCo dataset contains natural EEG for
the sentences, we have the availability of EEG 3. Training and testing with synthetic EEG:



This test is crucial to eliminate the requirement
of natural EEG completely. This test also in-
forms us about the compatibility of synthetic
EEG features with itself when used for both
training and testing.

Wikipedia Benchmark: The final test is to
check if the generative model can perform well on
a completely new dataset. We compile a benchmark
dataset with sentences and their relation classes from
Culotta et al. (2006). We use the same relations
classes as the ZuCo dataset. There are a total of 900
training samples in the benchmark training and 225
testing samples in the benchmark testing dataset.
Both the training and testing samples do not have
any EEG data associated with it hence, we use our
generative model to generate synthetic EEG features
for both sets. First, we fine-tune BERT-base on the
benchmark training set. The input to the BERT
model is the sentence and the model classifies the
sentences into their relation classes and updates its
parameters based on the prediction error. Then we
use the fine-tuned BERT model to predict the un-
seen test set and report the performance metrics and
computation costs. We compare this to our gener-
ative model by training our random forest classifier
with the synthetic EEG on the training set and mak-
ing predictions on the unseen synthetic EEG features
on the test set and report the same performance met-
rics and computation costs.

6 Results

Computation Costs: One of the prime foci of this
research is to reduce the computation cost of training
and setting up inference on LLMs. Fast and efficient
training of LLMs requires GPUs that might not be
accessible to everyone. Even with GPUs, the com-
putation time is not modest. Our proposed model
avoids the computation costs of BERT. Even com-
bining the training and generation time of the syn-
thetic EEG model (which needs to be trained only
once) and the train and test random forest classi-
fier is significantly faster than fine-tuning BERT on
the same GPU. Table 1 shows the computation times
for the experiments. It can be observed from Table 1
that the complete process of training the generator,
generating the synthetic EEG, and training-testing
(10-fold) on the random forest classifier is 56.57 sec-
onds whereas fine-tuning and testing using BERT
(5-fold) is 23.2 minutes.

In addition to the significantly lower computa-
tional costs, our proposed model achieves remarkable
performance increase over baseline BERT. Table 2
shows the performance for the experiments. Train-

ing and testing on natural EEG features provided in
ZuCo gives an F1-Score of 92.53%. This shows the
raw capability of the sentence EEG features. Our
proposed model is able to maintain the general char-
acteristics of the sentence EEG data very well which
is evident from the second experiment i.e. train-
ing on natural EEG and testing on synthetic EEG.
This informs the generalization capability of our re-
gressive model that can correlate well between word
embeddings and natural EEG. It even outperforms
training and testing on natural EEG which might
be due to the variation noise separating the unique
patterns even more. Results for the third experiment
shows that the synthetic EEG features are compat-
ible with itself when used in both training and test-
ing sets. The score even modestly increases over the
performance of the first experiment i.e. training and
testing with natural EEG which again shows that
the regressive generator does a great job of main-
taining the patterns of the EEG data. We also note
that our model performs just 2% shy of the human
subject.

It is evident from the above experiments that
using only EEG for text classification outperforms
LLMs like BERT and the benchmarking experiment
further corroborates those findings. The benchmark
dataset is a separate and new dataset with no EEG
features associated with it. We generated synthetic
EEG features for both training and testing sets and
the classifier replicates the success of our third ZuCo
based experiment which is training and testing with
synthetic EEG data. Table 3 shows the results of
the benchmark dataset. We ran the benchmark ex-
periment for 5-folds for BERT and 10-folds for the
Random Forest Classifier. Our model shows a no-
table increase in performance by 3% over baseline
BERT.

7 Discussions and Conclusions

With this paper, we address our research goals to de-
velop models that may generalize like humans with
low data and computational resources using cogni-
tive features. We investigated whether EEG only
could perform better than LLMs for downstream
NLP tasks. For this, we proposed a novel Encoder-
Regressive generator model GeNeRTe which pro-
duces synthetic EEG data for a given sentence and
we compare it with BERT in a text classification
task. We trained GeNeRTe on the task specific read-
ing dataset from ZuCo and performed three experi-
ments to determine performance standard, general-
ization capability, and self-compatibility of the syn-
thetic EEG features produced by the model. Our
model performance significantly exceeded the previ-



Task Duration (seconds)
Generator-Classifier
- Generator Training 55
- Generate synthetic EEG for the ZuCo dataset 0.5
- Generate synthetic EEG for the Benchmark dataset 1.07
Random Forest Classifier (RF)
- Train-Test (ZuCo, 10-fold) 1.6
- Train-Test (Benchmark, 10-fold) 4.08
BERT
- Train/Test (ZuCo, 5-fold) 1392
- Train/Test (Benchmark, 5-fold) 6540

Table 1: Computation time for GeNeRTe-Random Forest Classifier vs Fine-tuning BERT on a Tesla T4

GPU.
Model Accuracy Precision Recall F1
Human Subject (ZJM) 0.9656 - - -
Baseline BERT (5-fold) 0.7266 0.7435 0.7266  0.7181
Hollenstein et al. (2019) - 0.683 0.648 0.651
Ren & Xiong (2023) - 77.94 82.60 78.66
Random Forest (10-fold: Train/Test on Natural EEG) 0.9256 0.9281 0.9266  0.9253
Random Forest (10-fold: Train on Natural/Test on Synthetic EEG) 0.9455 0.9492 0.9455 0.9454
Random Forest (10-fold: Train/Test on Synthetic EEG) 0.9273 0.9313 0.9273  0.9284

Table 2: Experiment results for task-specific relation classification. Input to the random forest classifier are
Natural EEG features and synthetic EEG features generated by the Encoder-Regressive model. We report
Accuracy, Precision, Recall, and F1. Best results are highlighted in bold.

Model Accuracy Precision Recall F1
Baseline BERT (5-fold) 0.7306 0.7133 0.7306  0.7188
Random Forest (10-fold: Train/Test on Synthetic EEG) 0.7511 0.7457  0.7511 0.7430

Table 3: Benchmark result comparison BERT vs GeNeRTe-RFClassifier. Input to the random forest classifier
are synthetic features generated by the Encoder-Regressive model. Best results are highlighted in bold.

ous methods and the baseline by up to 30% on the
unseen ZuCo test set. Furthermore, our model sur-
passed the baseline by 3% on the benchmark dataset
(without any cognitive features) achieving overall
state-of-the-art performance.

All our findings support the hypothesis that EEG
features alone is beneficial for downstream NLP
tasks. Specifically, the experiment setup of task spe-
cific reading in ZuCo produces EEG features that
generalizes across participants in terms of emergent
comprehension patterns for relation classes. It is im-
portant to note that LLMs like BERT encode the
semantic and syntactic patterns of language quite
well which is why our Regressive generator was able
to learn the relationship between the word embed-
dings and its natural EEG. Most importantly, the
synthetic features produced by our generative model
naturally exhibit the same comprehension patterns
for relation classes as its human subject which is
very interesting. While there is no requirement for

word embeddings during classification, they are im-
portant to train GeNeRTe. Due to this setup, there
is a potential for creating a new type of physiologi-
cal embeddings that can work with very low compu-
tational resources and perform close to the human
subject. Furthermore, our research addresses the
major drawback of requiring EEG features at test
time and in real-world use as it is not possible to
conduct EEG data collection experiments at scale.
With just a few samples, our model generates good
quality synthetic features which can generalize over
similar datasets as evident from our benchmark re-
sults. Our research opens new possibilities to model
patterns of brain activity and its applications in NLP
and there are many new directions in which this re-
search can continue. It is our hope that in-depth
study of physiological embeddings will allow them to
replace word embeddings completely in many tasks
including syntactic and semantic analysis, sentence
similarity, paraphrasing, and summarization.



8 Limitations

While our research shows promising results for the
application of synthetic EEG in NLP, there are cer-
tain limitations. First, without any changes, our
method for text classification might not be entirely
applicable to other NLP problems. Second, be-
cause our model depends on task-specific datasets
like ZuCo, the experimentation strategies described
in ZuCo must be used to obtain comparable find-
ings for other downstream tasks. Third, even though
our model only needs a small amount of training
data, scalability is uncertain because not everyone
has access to EEG recording technology. Ultimately,
additional validation and analysis of artificial EEG
features is required for NLP through various down-
stream tasks. We hope to address some of these
limitations in our future work, as they are critical to
improving the practical usability of EEG-based NLP
models.
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Figure 3: Raw and Pre-processed EEG data for an example sentence (Hollenstein et al., 2018):
(A) shows the raw EEG data, (B) shows the pre-processed EEG data. The y-axis shows the brain regions
where electrodes were placed. F=frontal, FP=pre-frontal, C=central, T=temporal, P=parietal, O=occipital.
The x-axis shows the time.
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Average EEG patterns by class label for subject ZDM
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Figure 4: Average EEG features per relation type: The graphs illustrate group mean EEG features
across eight relation types. Y-axis denotes the EEG values. X-axis denotes the vector range (105-dimensions).
ANOVA test results show p-values for each subject below the X-axis. P-value for each subject is below 0.05
indicating statistical significance.
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