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ABSTRACT

We prove the stability and global convergence of a coupled actor-critic gradi-
ent flow for infinite-horizon and entropy-regularised Markov decision processes
(MDPs) in continuous state and action space with linear function approximation
under Q-function realisability. We consider a version of the actor critic gradient
flow where the critic is updated using temporal difference (TD) learning while the
policy is updated using a policy mirror descent method on a separate timescale.
For general action spaces, the relative entropy regularizer is unbounded and thus it
is not clear a priori that the actor-critc flow does not suffer from finite-time blow-
up. Therefore we first demonstrate stability which in turn enables us obtain a
convergence rate of the actor critic flow to the optimal regularised value function.
The arguments presented show that timescale separation is crucial for stability and
convergence in this setting.

1 INTRODUCTION

In reinforcement learning (RL) an agent aims to learn an optimal policy that maximizes the expected
cumulative reward through repeated interactions with its environment. Such methods typically in-
volve two key components: policy evaluation and policy improvement. During policy evaluation,
the advantage function corresponding to a policy, or its function approximation, is updated using
state, action and reward data generated under this policy. Policy improvement then uses this ap-
proximate advantage function to update the policy, most commonly through some policy gradient
method. Algorithms that explicitly combine these two components are known as actor-critic (AC)
methods Konda & Tsitsiklis (1999), where the actor corresponds to policy improvement and the
critic to policy evaluation.

There are many policy gradient methods to choose from. In the last decade trust region policy opti-
mization (TRPO) methods Schulman et al. (2015) and methods inspired by these like PPO Schulman
et al. (2017) have become increasingly well-established due to their impressive empirical perfor-
mance. Largely, this is because they alleviate the difficulty in choosing appropriate step sizes for the
policy gradient updates: for vanilla policy gradient even a small change in the parameter may result
in large change in the policy, leading to instability, but TRPO prevents this by explicitly ensuring the
KL divergence between successive updates is smaller than some tolerance. Mirror descent replaces
the TRPO’s hard constraint with a penalty leading to a first order method which is also ameanable to
analysis. Indeed, at least for direct parametrization, it is known to converge with sub-linear and even
linear rate for entropy regularised problems (depending on exact assumptions) Ju & Lan (2024); Lan
(2023); Kerimkulov et al. (2025).

Due to the favourable analytical properties of mirror descent, in this paper we consider a version of
the actor critic gradient flow where the policy is updated using a policy mirror descent method while
the critic is updated using temporal difference (TD) on a separate timescale.

Entropy-regularised MDPs are widely used in practice since the entropic regularizer leads to a num-
ber of desirable properties: it has a natural interpretation as something that drives exploration, it
ensures that there is a unique optimal policy and it can accelerate convergence of mirror descent Ker-
imkulov et al. (2025), as well as classical policy gradient Mei et al. (2020). However, analysing the
stability and convergence of actor-critic methods in this entropy-regularised setting with general

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

state and action spaces remains highly non-trivial due to lack of a priori bounds on the value func-
tions.

To address the actor critic methods for entropy regularised MDPs in general action spaces, a careful
treatment of tools from two timescale analysis, convex analysis over both Euclidean spaces and
measure spaces must be deployed.

In this paper, we address precisely this challenge. We study the stability and convergence of a
widely used actor-critic algorithm in which the critic is updated using Temporal Difference (TD)
learning Sutton (1988), and the policy is updated through Policy Mirror Descent Ju & Lan (2024).
Our analysis employs a two-timescale update scheme Borkar & Konda (1997), where both the actor
and critic are updated at each iteration with the critic updated on a faster timescale.

1.1 RELATED WORKS

We focus on the subset of RL literature that address the convergence of coupled actor-critic al-
gorithms. In the unregularised setting, actor-critic methods have been studied extensively. The
first convergence results in the two-timescale regime established asymptotic convergence in the
continuous-time limit of coupled updates (Borkar & Konda (1997); Konda & Tsitsiklis (1999)).
Most modern research employs linear function approximation for the critic, where linear conver-
gence rates have been obtained under various assumptions on the step-sizes of the actor and critic
(Barakat et al. (2022); Zhang et al. (2020); Hong et al. (2023)).

Closely related to our work is Zhang et al. (2021), which considers the same two-timescale actor-
critic scheme in the continuous-time limit for unregularised MDPs, with an overparameterized neu-
ral network used for the critic. However, convergence to the optimal policy was not established, and
a restarting mechanism was required to ensure the stability of the dynamics.

In the entropy-regularised setting, Cayci et al. (2024a;b) address the convergence of a natural actor
critic algorithm. However, the convergence and stability of these results rely on the finite cardinality
of the action space in presence of entropy regularisation.

1.2 OUR CONTRIBUTION

Under linear Qπ
τ -realisability assumption, we address the following question:

“Is the actor-critic gradient flow for entropy-regularised MDPs in general action spaces stable and
convergent, and if so, at what rate?”

There are two main technical challenges one has to overcome when working with entropy-
regularised MDPs in general action spaces.

• Even in mirror descent with exact advantage, the rate of convergence depends on a constant
term

󰁕
S
KL(π∗(·|s)|π0(·|s)dπ

∗

ρ (ds). See Lan (2023); Kerimkulov et al. (2025). In general
action spaces, without entropy regularisation it is almost impossible to choose π0 which
would make this term finite, see Remark 2.1. Thus we need to include the regularisation in
the analysis.

• Moreover, ensuring that the relative entropy does not blow up is difficult in general action
spaces. In the finite action space setting, for any measure µ ∈ P(A) such that µ(ai) > 0
and for all s ∈ S it holds that KL(π(·|s)|µ) ≤ log |A|. In general action spaces the KL
divergence has no upper bound (can be +∞) even if µ has full support. Under mild assump-
tions we show that the KL divergence does not blow up in finite time, see Corollary 5.1.

Our main contributions are as follows:

• We study a common variant of actor-critic where the critic is updated using temporal dif-
ference (TD) learning and the policy is updated using mirror descent. Similarly to Konda
& Tsitsiklis (1999); Zhang et al. (2021), we analyse the coupled updates in the continuous-
time limit, resulting in a dynamical system where the critic flow is captured by a semi-
gradient flow and the actor flow corresponds to an approximate Fisher–Rao gradient flow
over the space of probability kernels.
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• By combining convex analysis over the space of probability measures with classical Eu-
clidean convex analysis, we develop a Lyapunov-based stability framework that captures
the interplay between entropy regularisation and timescale separation, and establish stabil-
ity of the resulting dynamics.

• We prove convergence of the actor-critic dynamics for entropy-regularised MDPs with in-
finite action spaces.

1.3 NOTATION

Let (E, d) denote a Polish space (i.e., a complete separable metric space). We always equip a
Polish space with its Borel sigma-field B(E). Denote by Bb(E) the space of bounded measurable
functions f : E → R endowed with the supremum norm |f |Bb(E) = supx∈E |f(x)|. Denote
by M(E) the Banach space of finite signed measures µ on E endowed with the total variation
norm |µ|M(E) = |µ|(E), where |µ| is the total variation measure. Recall that if µ = f dρ, where
ρ ∈ M+(E) is a nonnegative measure and f ∈ L1(E, ρ), then |µ|M(E) = |f |L1(E,ρ). Denote by
P(E) ⊂ M(E) the set of probability measures on E. Moreover, we denote the Euclidean norm on
RN by |·| with inner product 〈·, ·〉. Given some A,B ∈ RN×N , we denote by λmin(A) the minimum
eigenvalue of A and denote A ≽ B if and only if A − B is positive semidefinite. Moreover, we
denote by |A|op the operator norm of A induced by the Euclidean norm, |A|op := sup|x| ∕=0

|Ax|
|x| .

1.4 ENTROPY REGULARISED MARKOV DECISION PROCESSES

Consider an infinite horizon Markov Decision Process (S,A, P, c, γ), where the state space S and
action space A are Polish, P ∈ P(S|S ×A) is the state transition probability kernel, c is a bounded
cost function and γ ∈ (0, 1) is a discount factor. Let µ ∈ P(A) denote a reference probability mea-
sure and τ > 0 denote a regularisation parameter. To ease notation, for each π ∈ P(A|S) we define
the kernels Pπ(ds

′|s) :=
󰁕
A
P (ds′|s, a)π(da|s) and Pπ(ds′, da′|s, a) := P (ds′|s, a)π(da′|s′). De-

noting Eπ
s = Eπ

δs
where δs ∈ P(S) denotes the Dirac measure at s ∈ S, for each stochastic policy

π ∈ P(A|S) and s ∈ S, define the regularised value function by

V π
τ (s) = Eπ

s

󰀥 ∞󰁛

n=0

γn
󰀓
c(sn, an) + τ KL(π(·|sn)|µ)

󰀔󰀦
∈ R ∪ {∞} ,

where KL(π(·|s)|µ) is the Kullback-Leibler (KL) divergence of π(·|s) with respect to µ, define as
KL(π(·|s)|µ) :=

󰁕
A
ln dπ

dµ (a|s)π(da|s) if π(·|s) is absolutely continuous with respect to µ, and
infinity otherwise.

For a given initial distribution ρ ∈ P(S), the optimal value function is defined as

V ∗
τ (ρ) = min

π∈P(A|S)
V π
τ (ρ), with V π

τ (ρ) :=

󰁝

S

V π
τ (s)ρ(ds)

and we refer to π∗ ∈ P(A|S) as the optimal policy if V ∗
τ (ρ) = V π∗

τ (ρ). The Bellman Principle for
entropy regularised MDPs, see Theorem A.1, tells us two important things: first, the optimal value
function V ∗

τ ∈ Bb(S) is the unique bounded solution of the following Bellman equation:

V ∗
τ (s) = −τ ln

󰁝

A

exp

󰀕
−1

τ
Q∗

τ (s, a)

󰀖
µ(da),

where for all s ∈ S and a ∈ A, Q∗
τ ∈ Bb(S ×A) is defined by

Q∗
τ (s, a) = c(s, a) + γ

󰁝

S

V ∗
τ (s

′)P (ds′|s, a) .

Second, for all s ∈ S there is a unique optimal policy π∗ ∈ P(A|S) given by

π∗(da|s) = exp
󰀓
− 1

τ
(Q∗

τ (s, a)− V ∗
τ (s))

󰀔
µ(da) .

Hence, without loss of generality, it is sufficient to consider policies from the class given by Defini-
tion 1.1 below.
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Definition 1.1 (Admissible Policies). Let Πµ denote the class of policies for which there exists
f ∈ Bb(S ×A) with

π(da|s) = exp(f(s, a))󰁕
A
exp(f(s, a))µ(da)

µ(da).

For each π ∈ Πµ the value function V π
τ is the unique bounded solution of the on-policy Bellman

equation

V π
τ (s) =

󰁝

A

󰀕
Qπ

τ (s, a) + τ ln
dπ

dµ
(a, s)

󰀖
π(da|s) ,

see e.g. (Kerimkulov et al., 2025, Lemma B.2).

For each π ∈ Πµ, we define the state-action value function Qπ
τ ∈ Bb(S ×A) by

Qπ
τ (s, a) = c(s, a) + γ

󰁝

S

V π
τ (s′)P (ds′|s, a) . (1)

We see that Qπ
τ : S×A → R is the unique fixed point of the operator Tπ : Bb(S×A) → Bb(S×A),

defined as

Tπf(s, a) = c(s, a) + γ

󰁝

S×A

f(s′, a′)Pπ(ds′, da′|s, a) + τγ

󰁝

S

KL(π(·|s′)|µ)P (ds′|s, a). (2)

2 MIRROR-DESCENT AND THE FISHER–RAO GRADIENT FLOW

Defining the soft advantage function as

Aπ
τ (s, a) := Qπ

τ (s, a) + τ ln
dπ

dµ
(s, a)− V π

τ (s),

then for some λ > 0 and π0 ∈ Πµ, the Policy Mirror Descent update rule reads as

πn+1(·|s) = argmin
m∈P(A)

󰀗󰁝

A

Aπn

τ (s, a)(m(da)− πn(da|s)) + 1

λ
KL(m|πn(·|s)).

󰀘

Dupuis & Ellis (1997) shows that the pointwise optimisation is achieved by

dπn+1

dπn
(a, s) =

exp
󰀃
−λAπn

τ (s, a)
󰀄

󰁕
A
exp (−λAπn

τ (s, a))πn(da|s)
. (3)

Observe that for any π ∈ P(A|S), it holds that
󰁕
A
Aπ

τ (s, a)π(da|s) = 0. Hence taking the logarithm
of (3) we have

ln
dπn+1

dµ
(s, a)− ln

dπn

dµ
(s, a) = −λAπn

τ (s, a)− ln

󰁝

A

e−λAπn

τ (s,a)πn(da|s).

Interpolating in the time variable and letting λ → 0 we retrieve the Fisher–Rao gradient flow for the
policies

∂t ln
dπt

dµ
(s, a) = −

󰀕
Aπt

τ (s, a)−
󰁝

A

Aπt
τ (s, a)πt(da|s)

󰀖
= −Aπt

τ (s, a). (4)

Note that the soft advantage formally corresponds to the functional derivative of the value function
with respect to the policy πn and thus (4) can be seen as a gradient flow of the value function over the
space of kernels P(A|S) (see Kerimkulov et al. (2025) for a detailed description of the functional
derivative).
Remark 2.1. In the case where the advantage function is fully accessible for all t ≥ 0, Kerimkulov
et al. (2025)[Theorem 2.8] shows that the entropy regularisation in the value function induces an
exponential convergence to the optimal policy. More specifically, their result shows that for all t ≥ 0
we have

0 ≤ V πt
τ (ρ)− V π∗

τ (ρ) ≤ τ

(1− γ)(eτt − 1)

󰀕󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

󰀖
.
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If the action space has finite cardinality and π0 is chosen to be uniform we see that
KL(π∗(·|s)|π0(·|s)) ≤ log |A| for all s ∈ S, where |A| represents the cardinality of the action
space. One can then let τ → 0 in the above estimate to formally obtain convergence rate of order
1/t for the unregularised problem.

In the setting of general action spaces KL(π∗(·|s)|π0(·|s)) is finite only if the density dπ∗

dπ0
exists.

However, by the dynamic programming principle for the unregularised problem (Hernández-Lerma
& Lasserre, 1996, Theorem 4.2.3) shows that the optimal policies will have support on a mixture of
Dirac distributions. Therefore, KL(π∗(·|s)|π0(·|s)) will be finite only if π0 is also a mixture of Dirac
distributions with support which contains the support of π∗(·|s) for all s ∈ S. It is not realistic to
assume that one can guess the initial policy π0 which will have the above property. However, in the
entropy regularised case, Theorem A.1 tells us π∗(·|s) has full support on A and so one simply has
to choose π0(·|s) to have full support on the action space A for all s ∈ S.

3 ACTOR CRITIC METHODS

Given some feature mapping φ : S × A → RN , we parametrise the state-action value function as
Q(s, a; θ) := 〈θ,φ(s, a)〉. Moreover, we denote the approximate soft advantage function as

A(s, a; θ) = Q(s, a; θ) + τ ln
dπ

dµ
(s, a)−

󰁝

A

󰀕
Q(s, a; θ) + τ ln

dπ

dµ
(s, a)

󰀖
π(da|s).

The Mean Squared Bellman Error (MSBE) is defined as

MSBE(θ,π) =
1

2

󰁝

S×A

(Q(s, a; θ)− TπQ(s, a; θ))2dπβ(da, ds)

where for some fixed β ∈ P(S×A), dπβ ∈ P(S×A) is the state-action occupancy measure defined
in (9). Given that β ∈ P(S × A) has full support, by (2) it holds that MSBE(θ,π) = 0 if and
only if Q(s, a; θ) = Qπ

τ (s, a) for all s ∈ S and a ∈ A. Hence one approach to implementing the
policy mirror descent updates is to calculate the optimal parameters for Q(s, a; θ) by minimising
the MSBE at each policy mirror descent iteration and then update the policy using variable steps
{λn}n≥0. This reads as

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

θn+1 = argmin
θ∈RN

MSBE(θ,πn) ,

dπn+1

dπn
(a, s) =

exp
󰀃
−λnA(s, a; θn+1)

󰀄
󰁕
A
exp (−λnA(s, a; θn+1))πn(da|s)

.
(5)

To avoid fully solving the argmin in (5) for each policy update, one can update the critic using a
semi-gradient descent on a different timescale to the policy update. Let {hn}n≥0 be the step-sizes
of the critic at iteration n ≥ 0. Let the semi-gradient g : RN × P(A|S) → RN of the MSBE with
respect to θ be

g(θ,π) :=

󰁝

S×A

(Q(s, a; θ)− TπQ(s, a; θ))φ(s, a)dπβ(da, ds). (6)

The full argmin update in (5) is then replaced by

θn+1 = θn − hng(θ
n,πn),

where timescale separation ηn := hn

λn
> 1 ensures that the critic is updated on a much faster

timescale than the policy to improve the local estimation of the policy updates. With general action
spaces, which allow the KL term may be unbounded, one may need to go even further and choose
a scheme which does several (and possibly increasing) number of updates of the critic before doing
an actor update.

In this paper we focus on a continuous-time idealisation of the above which is presented in the next
section.
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4 DYNAMICS

In this paper, we study the stability and convergence of the two-timescale actor-critic Mirror Descent
scheme in the continuous-time limit. Let Qt(s, a) := Q(s, a; θt) and At(s, a) := A(s, a; θt). Let
η : [0,∞) → [1,∞) be a non-decreasing function representing the timescale separation, then for
some θ0 ∈ RN , π0 ∈ Πµ and β ∈ P(S ×A), we have the following coupled dynamics

dθt
dt

= −ηtg(θt,πt) , θ0 = θ0 ∈ RN , (7)

∂tπt(da|s) = −At(s, a)πt(da|s) , t ≥ 0 , π0 = π0 ∈ Πµ, (8)

where g : RN × P(A|S) is the semi-gradient of the MSBE defined in (6). We refer to (8) as the
approximate Fisher–Rao Gradient flow.

We perform our analysis under the following assumptions.
Assumption 4.1 (Qπ

τ -realisability). For all π ∈ Πµ there exists θπ ∈ RN such that Qπ(s, a) =
〈θπ,φ(s, a)〉 for all (s, a) ∈ S ×A.

A simple example of when this holds is in the tabular case, where one can choose φ to be a one-hot
encoding of the state-action space. Moreover, all linear MDPs are Qπ-realisable. In a linear MDP
there exists exists φ : S × A → RN , w ∈ RN and a sequence {ψi}Ni=1 with ψi ∈ M(S) such that
for all (s, a) ∈ S ×A,

c(s, a) = 〈w,φ(s, a)〉, P (ds′ | s, a) =
N󰁛

i=1

φi(s, a)ψi(ds
′).

In this case it holds that (θπ)i = wi +
󰁕
S
V π(s′)ψi(ds

′). Assumption 4.1 can be seen as a con-
vention to omit function approximation errors in the final convergence results. This assumption, or
the presence of approximation errors in convergence results, are widely present in the actor-critic
literature (Cayci et al. (2024a), Zhang et al. (2020), Zanette et al. (2021), Hong et al. (2023),Qiu
et al. (2021)).

More recently, Lin et al. (2025) derives some weaker ordering conditions in the bandit case (empty
state space) which guarantee the convergence of soft-max policy gradient in the tabular setting be-
yond realisability. However as of now it is unclear how this applies to MDPs and also fundamentally
depends on the finite cardinality of the action space.

Since for all π ∈ Πµ we know that Qπ
τ ∈ Bb(S × A) we also have Qπ

τ ∈ L2(S × A;β), which
is a Hilbert space. By (Brezis, 2011, Theorem 5.11), Assumption 4.1 holds in the limit N → ∞
when φi are the basis functions of L2(S×A;β). However, analysis in such a Hilbert space becomes
more involved and intricate and is the result of ongoing work. Combining this approach with careful
truncation of the basis functions has demonstrated empirical success in Ma et al. (2024); Ren et al.
(2023).
Assumption 4.2. For all (s, a) ∈ S ×A it holds that |φ(s, a)| ≤ 1.

Assumption 4.2 is purely for convention and is without loss of generality in the finite-dimensional
case.
Assumption 4.3. Let β ∈ P(S ×A) be fixed. Then

λβ := λmin

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤ β(ds da)

󰀖
> 0.

Note that unlike the analogous assumptions imposed in Hong et al. (2023), Assumption 4.3 is in-
dependent of the policy. This property allows us to remove any dependence on the continuity of
eigenvalues.
Definition 4.1. For all π ∈ Πµ and ζ ∈ P(S ×A), the squared loss with respect to ζ is defined as

L(θ,π; ζ) =
1

2

󰁝

S×A

(〈θ,φ(s, a)〉 −Qπ
τ (s, a))

2ζ(da, ds)

where Qπ
τ is defined in (1).

6
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A straightforward calculation given in Lemma B.3 shows that due to Lemma A.1 and Assumption
4.3, for any π ∈ Πµ it holds that L(·,π; dπβ) is (1− γ)λβ-strongly convex.

The following result then connects the geometry of the semi-gradient of the MSBE and the gradient
of L(·,π;β), which can be seen as an extension of Lemma 3 of Bhandari et al. (2021) to the current
entropy regularised setting and where the measure of integration in the MSBE is not necessarily
stationary.
Lemma 4.1. Let Assumption 4.1 hold. Then for all θ ∈ RN and π ∈ Πµ it holds that

−〈g(θ,π), θ − θπ〉 ≤ −(1−√
γ)(1− γ) 〈∇θL(θ,π;β), θ − θπ〉

with
∇θL(θ,π;β) =

󰁝

S×A

(〈θ,φ(s, a)〉 −Qπ
τ (s, a))φ(s, a)β(da, ds).

See Appendix B.1 for a proof.

5 STABILITY

In this section we analyse the stability of the coupled actor-critic flow. Under mild assumptions, see
Corollary 5.1 shows that for all s ∈ S, KL(π(·|s)|µ) does not blow up in finite time in the sense that
there in no T > 0 and no s ∈ S such that limt↗T KL(πt(·|s)|µ) = +∞. Existence of such a time
T > 0 would result in a singularity in the actor-critic dynamics.

Throughout this section, to ease notation we let

Γ := λβ(1− γ)(1−√
γ),

Kt := sup
s∈S

KL(πt(·|s)|µ),

with λβ > 0 the constant from Assumption 4.3.

Using Lemma A.1, Lemma 5.1 then establishes the effect of the coupling and timescale separation
in the actor-critic flow and its effect on the stability of the critic parameters.
Lemma 5.1. Let Assumptions 4.2 and 4.3 hold. Then for all t ≥ 0 it holds that

1

2ηt

d

dt
|θt|2 ≤ −Γ

2
|θt|2 +

τ2γ2K2
t

Γ
+

|c|2Bb(S×A)

Γ

See Appendix C.1 for a proof. By connecting the result from Lemma 5.1 with the approximate
Fisher–Rao gradient flow, we are able to establish a Grönwall-type inequality for the KL divergence
of the policies with respect to the reference measure. Lemma 5.1 also illustrates that the coupled
actor-critic flow is a forcing-damping system, where the damping comes from the strong convexity
of the loss θ 󰀁→ L(θ,πt; d

πt

β ) and the forcing coming from the policy updates manifesting as the Kt

term on the right-hand-side of the estimate. Here we can see that in the finite action space setting,
the forcing Kt term is upper bounded by a constant and thus we can arrive at stability straight
away. In the current setting this is not possible and we must perform analysis over P(A|S) on the
approximate Fisher–Rao gradient flow to arrive at stability.
Theorem 5.1. Let Assumptions 4.2 and 4.3 hold. Let η0 > τ

Γ . Then there exists constants

a1 = a1

󰀣
τ, η0, γ,λβ , |c|Bb(S×A),

󰀏󰀏󰀏󰀏
dπ0

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

󰀤
> 0

and a2 = a2(τ, η0, γ,λβ) > 0 such that for all γ ∈ (0, 1) and t ≥ 0 it holds that

K2
t ≤ a1 + a2

󰁝 t

0

e−τ(t−r)K2
r dr.

See Appendix C.2 for a proof. Through applications of Grönwall’s Lemma (Lemma A.3), two direct
corollaries of Theorem 5.1 show that the KL divergence of the policies with respect to the reference
measure and the critic parameters do not blow up in finite time.
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Corollary 5.1 (Stability of πt). Under the same assumptions as Theorem 5.1, for all γ ∈ (0, 1),
s ∈ S and t ≥ 0 it holds that

KL(πt(·|s)|µ)2 ≤ a1e
a2t.

Corollary 5.2 (Stability of θt). Under the same assumptions as Theorem 5.1, suppose that there
exists α > 0 such that d

dtηt ≤ αηt. Then for all γ ∈ (0, 1) there exists r1, r2 > 0 such that for all
t ≥ 0 it holds that

|θt| ≤ r1e
r2t.

See Appendix C.3 and C.4 for the proofs. Corollaries E.1 and E.2 in the appendix show that if the
MDP is sufficiently regularised through a sufficiently small discounting factor, the KL divergence
of the policies with respect to the reference measure remains uniformly bounded along the flow.

6 CONVERGENCE

In this section we will present three convergence results of the coupled actor-critic flow. Firstly,
we characterise the time derivative of the state-action value function along the approximate gradient
flow for the policies.
Lemma 6.1. For all t ≥ 0 and (s, a) ∈ S ×A, it holds that

d

dt
Qπt

τ (s, a) =
γ

1− γ

󰁝

S

󰀕󰁝

S×A

Aπt
τ (s′′, a′′)∂tπt(da

′′|s′′)dπt(ds′′|s′)
󰀖
P (ds′|s, a)

See Appendix D.1 for a proof. Observe that in the exact setting, (4), we obtain the dissipative
property of {Qπt

τ }t≥0 along the flow

d

dt
Qπt

τ (s, a) =
−γ

1− γ

󰁝

S

󰀕󰁝

S×A

Aπt
τ (s′′, a′′)2dπt(ds′′|s′)

󰀖
P (ds′|s, a) ≤ 0.

Furthermore, Theorem 6.1 shows that the actor-critic flow maintains the exponential convergence to
the optimal policy induced by the τ -regularisation up to a error term arising from not solving the
critic to full accuracy.
Theorem 6.1. Let {πt, θt}t≥0 be the trajectories of the actor critic flow. Let Assumptions 4.1 and
4.2 hold. Then for all t > 0 it holds that

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ≤ τ

2(1− γ)(1− e−
τ
2 t)

󰀣
e−

τ
2 t

󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

+
1

2τ

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr

|2dr
󰀤

See Appendix D.2 for a proof. Theorem 6.1 shows that the exponentially weighted error term
determines the rate of convergence of the actor-critic dynamics. On this note, Theorem 6.2 shows
that this error term decays exponentially up to an integral which now depends on the rate of change
of the true state-action value function and the timescale separation.
Theorem 6.2. Let Assumptions 4.1, 4.2 and 4.3 hold. Let η0 > 1

Γ and 0 < τ < 1. Then for all
t ≥ 0 there exists constants b1, b2 > 0 such that

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ b1e

− τ
2 t + b2

󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dt

󰀏󰀏󰀏󰀏
2

dr.

See Appendix D.3 for a proof. By using Corollary 5.1 and by choosing ηt such that the critic
flows runs much faster than the actor, Theorem 6.3 demonstrates an exponential convergence to the
optimal policy for all γ ∈ (0, 1).
Theorem 6.3. Under the same assumptions as Theorem 6.2, there exists k1 > 0 with ηt = η0e

k1t

and k2 > 0 such that for all γ ∈ (0, 1) and t > 0 it holds that

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ≤ τe−
τ
2 t

2(1− γ)(1− e−
τ
2 t)

󰀣󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds) +
k2
2τ

󰀤
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See Appendix D.4 for a proof.

Corollary E.3 then shows that if the MDP is sufficiently regularised through a small discounting
factor, one can arrive at convergence for a much more general class of functions ηt.

7 LIMITATIONS

In this work, we only study the continuous-time dynamics of the actor-critic algorithm. Although
this formulation gives insights into the discrete counterpart, a rigorous treatment of the discrete-time
setting is more realistic for practical purposes and is left for future research.

Moreover, for the purposes of analysis our critic approximation is linear while in practice non-linear
neural networks are used to approximate the critic.

Finally, our work assumes all integrals are evaluated exactly, in particular the semi-gradient (6). In
practice these would need to be estimated from samples leading to additional Monte-Carlo errors.
To fully analyse this is left for future work.
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A KNOWN PROPERTIES MDPS AND OTHER USEFUL RESULTS

The state-occupancy kernel dπ ∈ P(S|S) is defined by

dπ(ds′|s) = (1− γ)

∞󰁛

n=0

γnPn
π (ds

′|s) ,

where Pn
π is the n-times product of the kernel Pπ with P 0

π (ds
′|s) := δs(ds

′). Moreover, for each
π ∈ P(A|S) and (s, a) ∈ S ×A, we define the state-action occupancy kernel as

dπ(ds, da|s, a) = (1− γ)

∞󰁛

n=0

γn(Pπ)n(ds, da|s, a)

where (Pπ)n is the n-times product of the kernel Pπ with (Pπ)0(ds′, da′|s, a) := δ(s,a)(ds
′, da′).

Given some initial state-action distribution β ∈ P(S × A) with initial state distribution given by
ρ(ds) =

󰁕
A
β(da, ds), we define the state-occupancy and state-action occupancy measures as

dπρ (ds) =

󰁝

S

dπ(ds|s′)ρ(ds′), dπβ(ds, da) =

󰁝

S×A

dπ(ds, da|s′, a′)β(da′, ds′). (9)

Note that for all E ∈ B(S ×A), by defining the linear operator Jπ : P(S ×A) → P(S ×A) as

Jπβ(E) =

󰁝

S×A

Pπ(E|s′, a′)β(ds′, da′), (10)

it directly holds that

dπβ(da, ds) = (1− γ)

∞󰁛

n=0

γnJn
π β(da, ds),

with Jn
π the n-fold product of the operator Jπ with J0

π = I , the identity operator on P(S ×A). The
following lemma establishes properties of the state-action occupancy measure defined in (9) and
which are useful in the proofs.
Lemma A.1. For all π ∈ P(A|S), β ∈ P(S ×A) and E ∈ B(S ×A) it holds that

dπJπβ(E) = Jπdπβ(E).

Moreover, for all γ ∈ (0, 1) we have

dπβ(E)− γdπJπβ(E) = (1− γ)β(E). (11)

Proof. For any β ∈ P(S ×A), π ∈ P(A|S) and E ∈ B(S ×A), it holds that

dπJπβ(E) = (1− γ)

∞󰁛

n=0

γn(Jn
π Jπβ)(E)

= Jπd
π
β(E)

where we just used the associativity of the operator Jπ . Furthermore by letting m = n+ 1 it holds
that

dπJπβ(E) = (1− γ)

∞󰁛

n=0

γnJn+1
π β(E)

= (1− γ)

∞󰁛

m=1

γm−1Jm
π β(E)

=
1− γ

γ

∞󰁛

m=1

γmJm
π β(E)

=
1

γ
(dπβ(E)− (1− γ)β(E)).

Rearranging concludes the proof.
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Theorem A.1 (Dynamic Programming Principle). Let τ > 0. The optimal value function V ∗
τ is the

unique bounded solution of the following Bellman equation:

V ∗
τ (s) = −τ ln

󰁝

A

exp

󰀕
−1

τ
Q∗

τ (s, a)

󰀖
µ(da),

where Q∗
τ ∈ Bb(S ×A) is defined by

Q∗
τ (s, a) = c(s, a) + γ

󰁝

S

V ∗
τ (s

′)P (ds′|s, a) , ∀(s, a) ∈ S ×A .

Moreover, there is an optimal policy π∗ ∈ P(A|S) given by

π∗(da|s) = exp

󰀕
−1

τ
(Q∗

τ (s, a)− V ∗
τ (s))

󰀖
µ(da) , ∀s ∈ S.

Finally, the value function V π
τ is the unique bounded solution of the following Bellman equation for

all s ∈ S

V π
τ (s) =

󰁝

A

󰀕
Qπ

τ (s, a) + τ ln
dπ

dµ
(a, s)

󰀖
π(da|s) .

The performance difference lemma, first introduced for tabular unregularised MDPs, has become
fundamental in the analysis of MDPs as it acts a substitute for the strong convexity of the π 󰀁→ V π

τ if
the state-occupancy measure dπρ is ignored (e.g Kakade & Langford (2002), Zhang et al. (2021), Ju
& Lan (2024)). By virtue of Kerimkulov et al. (2025), we have the following performance difference
for entropy regularised MDPs in Polish state and action spaces.
Lemma A.2 (Performance difference). For all ρ ∈ P(S) and π,π′ ∈ Πµ,

V π
τ (ρ)− V π′

τ (ρ)

=
1

1− γ

󰁝

S

󰀗 󰁝

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a, s)

󰀖
(π − π′)(da|s) + τ KL(π(·|s)|π′(·|s))

󰀘
dπρ (ds) .

Lemma A.3 (Grönwall). Let λ(s) ≥ 0, a = a(s), b = b(s) and y = y(s) be locally integrable, real-
valued functions defined on [0, T ] such that y is also locally integrable and for almost all s ∈ [0, T ],

y(s) + a(s) ≤ b(s) +

󰁝 s

0

λ(t)y(t)dt.

Then

y(s) + a(s) ≤ b(s) +

󰁝 s

0

λ(t)

󰀗󰁝 t

0

λ(r)(b(r)− a(r))dr

󰀘
dt, ∀s ∈ [0, T ].

Furthermore, if b is monotone increasing and a is non-negative, then

y(s) + a(s) ≤ b(s)e
󰁕 s
0
λ(r)dr, ∀s ∈ [0, T ].

B AUXILIARY RESULTS

Lemma B.1. For some β ∈ P(S ×A), let dπβ ∈ P(S ×A) be the state-action occupancy measure.
Moreover let κ(ds, da, ds′, da′) := Pπ(ds′, da′|s, a)dπβ(ds, da). Then for any π ∈ Πµ and any
integrable f : S ×A → R, it holds that

󰁝

S×A×S×A

f(s, a)f(s′, a′)κ(ds, da, ds′, da′) ≤ 1
√
γ

󰁝

S×A

f(s, a)2dπβ(ds, da)

Proof. By Hlder’s inequality, it holds that
󰁝

S×A×S×A

f(s, a)f(s′, a′)κ(ds, da, ds′, da′) (12)

≤
󰀕󰁝

S×A×S×A

f(s, a)2κ(ds, da, ds′, da′)

󰀖 1
2
󰀕󰁝

S×A×S×A

f(s′, a′)2κ(ds, da, ds′, da′)

󰀖 1
2

.
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Moreover, observe that
󰁝

S×A×S×A

f(s, a)2κ(ds, da, ds′, da′) =

󰁝

S×A

󰀕󰁝

S×A

Pπ(ds′, da′|s, a)
󰀖
f(s, a)2dπβ(ds, da)

=

󰁝

S×A

f(s, a)2dπβ(ds, da),

hence (12) becomes
󰀕󰁝

S×A×S×A

f(s, a)2κ(ds, da, ds′, da′)

󰀖 1
2
󰀕󰁝

S×A×S×A

f(s′, a′)2κ(ds, da, ds′, da′)

󰀖 1
2

≤
󰀕󰁝

S×A

f(s, a)2dπβ(ds, da)

󰀖 1
2
󰀕󰁝

S×A×S×A

f(s′, a′)2κ(ds, da, ds′, da′)

󰀖 1
2

.

Now by the first part of Lemma A.1, it holds that
󰁝

S×A×S×A

f(s′, a′)2κ(ds, da, ds′, da′) =

󰁝

S×A×S×A

f(s′, a′)2Pπ(ds′, da′|s, a)dπβ(ds, da)

=

󰁝

S×A

f(s, a)2dπJπβ(ds, da),

where Jπ : P(S × A) → P(S × A) is defined in (10). Then by the second part of Lemma A.1 we
have

󰀕󰁝

S×A

f(s, a)2dπβ(ds, da)

󰀖 1
2
󰀕󰁝

S×A×S×A

f(s′, a′)2κ(ds, da, ds′, da′)

󰀖 1
2

≤
󰀕󰁝

S×A

f(s, a)2dπβ(ds, da)

󰀖 1
2
󰀕󰁝

S×A

f(s, a)2dπJπβ(ds, da)

󰀖 1
2

≤ 1
√
γ

󰁝

S×A

f(s, a)2dπβ(ds, da),

which concludes the proof.

Lemma B.2. For some θ0 ∈ RN and π0 ∈ Πµ, let {πt, θt}t≥0 be the trajectory of coupled actor-
critic flow. Moreover let Kt = sups∈S KL(πt(·|s)|µ). There exists C1 > 0 such that for all t ≥ 0 it
holds that

sup
s∈S

|∂tπt(·|s)|M(A) ≤ |At|Bb(S×A) ,

|At|Bb(S×A) ≤ 2 |Qt|Bb(S×A) + 2τ

󰀏󰀏󰀏󰀏ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

,

|Qπt
τ |Bb(S×A) ≤

1

1− γ

󰀓
|c|Bb(S×A) + τγKt

󰀔
,

󰀏󰀏󰀏󰀏ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

≤ C1 +
2

τ
sup

r∈[0,t]

|θr|+ sup
r∈[0,t]

Kr.

Proof. The first claim sups∈S |∂tπt(·|s)|M(A) ≤ |Aπt
τ |Bb(S×A) follows trivially from the definition

of the approximate Fisher–Rao gradient flow defined in (8). Moreover, it holds that

|At|Bb(S×A) =

󰀏󰀏󰀏󰀏Qt + τ ln
dπt

dµ
−
󰁝

A

󰀕
Qt(·, a) + τ ln

dπt

dµ
(·, a)

󰀖
πt(da|·)

󰀏󰀏󰀏󰀏
Bb(S×A)

≤ 2

󰀏󰀏󰀏󰀏Qt + τ ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

≤ 2 |Qt|Bb(S×A) + 2τ

󰀏󰀏󰀏󰀏ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)
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where we used the triangle inequality in the final inequality. Moreover, the state-action value func-
tion Qπt

τ is a fixed point of the Bellman operator defined in (2). Hence, for all (s, a) ∈ S × A, we
have

Qπt
τ (s, a) = c(s, a) + γ

󰁝

S×A

Qπt
τ (s′, a′)Pπt(ds′, da′|s, a) + τγ

󰁝

S

KL(πt(·|s′)󰀂µ)P (ds′|s, a).

Taking absolute values and using the triangle inequality we have

|Qπt
τ (s, a)| ≤ |c|Bb(S×A) + γ |Qπt

τ |Bb(S×A) + τγ sup
s′∈S

KL(πt(·|s′)󰀂µ)

= |c|Bb(S×A) + γ |Qπt
τ |Bb(S×A) + τγKt.

Taking the supremum over (s, a) ∈ S ×A on the left-hand side yields

|Qπt
τ |Bb(S×A) ≤ |c|Bb(S×A) + γ |Qπt

τ |Bb(S×A) + τγKt.

Rearranging gives
(1− γ) |Qπt

τ |Bb(S×A) ≤ |c|Bb(S×A) + τγKt,

which is the desired bound. Recall the approximate Fisher–Rao gradient flow for the policies
{πt}t≥0, which for all t ≥ 0 and for all (s, a) ∈ S ×A is given by

∂t ln
dπt

dµ
(s, a) = −

󰀕
Qt(s, a) + τ ln

dπt

dµ
(a, s)−

󰁝

A

󰀕
Qt(s, a

′) + τ ln
dπt

dµ
(a′, s)

󰀖
πt(da

′|s)
󰀖
.

Duhamel’s principle yields for all t ≥ 0 that

ln
dπt

dµ
(s, a) = e−τt ln

dπ0

dµ
(a, s) +

󰁝 t

0

e−τ(t−r)

󰀕󰁝

A

Qr(s, a
′)πr(da

′|s)−Qr(s, a)

󰀖
dr (13)

+ τ

󰁝 t

0

e−τ(t−r) KL(πr(·|s)|µ)dr.

Since π0 ∈ Πµ, there exists C1 ≥ 1 such that
󰀏󰀏󰀏ln dπ0

dµ

󰀏󰀏󰀏
Bb(S×A)

≤ C1. Then by Assumption 4.2 we

have that for all t ≥ 0,
󰀏󰀏󰀏󰀏ln

dπt

dµ
(s, a)

󰀏󰀏󰀏󰀏 ≤ C1 +

󰁝 t

0

e−τ(t−r)

󰀏󰀏󰀏󰀏
󰁝

A

Qr(s, a
′)πr(da

′|s)−Qr(s, a)

󰀏󰀏󰀏󰀏 dr

+ τ

󰁝 t

0

e−τ(t−r) KL(πr(·|s)󰀂µ) dr

≤ C1 + 2

󰁝 t

0

e−τ(t−r) |θr| dr + τ

󰁝 t

0

e−τ(t−r)Kr dr

≤ C1 +
2

τ
sup

r∈[0,t]

|θr|+ sup
r∈[0,t]

Kr,

where in the last inequality we used
󰁕 t

0
e−τ(t−r)dr ≤ 1

τ . Taking the supremum over (s, a) ∈ S ×A
yields 󰀏󰀏󰀏󰀏ln

dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

≤ C1 +
2

τ
sup

r∈[0,t]

|θr|+ sup
r∈[0,t]

Kr,

which is the desired bound.

Lemma B.3. Let Assumption 4.3 hold. Then for all π ∈ Πµ, it holds that L(·,π; dπβ) is λβ(1− γ)-
strongly convex.

Proof. For any ξ ∈ P(S × A), let Σξ :=
󰁕
S×A

φ(s, a)φ(s, a)⊤ξ(ds, da) ∈ RN×N . Then by
Lemma A.1 and Assumption 4.3 it holds that Σdπ

β
≽ (1− γ)Σβ ≽ (1− γ)λβI and thus L(·,π; dπβ)

is λβ(1− γ)-strongly convex.
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B.1 PROOF OF LEMMA 4.1

Proof. Recall that Q(s, a) = 〈θ,φ(s, a)〉 for some θ ∈ RN and that for all π ∈ Πµ, there exists
θπ ∈ RN such that Qπ(s, a) = 〈θπ,φ(s, a)〉 by Assumption 4.1. Then by definition of the semi-
gradient of the MSBE g : RN × P(A|S) → RN in (6), it holds that

〈g(θ,π), θ − θπ〉 =
󰀟󰁝

S×A

(Q(s, a)− TπQ(s, a))φ(s, a)dπβ(da, ds), θ − θπ

󰀠

=

󰀟󰁝

S×A

(Q(s, a)−Qπ
τ (s, a))φ(s, a)d

π
β(da, ds), θ − θπ

󰀠

+

󰀟󰁝

S×A

(Qπ
τ (s, a)− TπQ(s, a)φ(s, a)dπβ(da, ds), θ − θπ

󰀠

=

󰀟󰁝

S×A

(Q(s, a)−Qπ
τ (s, a))φ(s, a)d

π
β(da, ds), θ − θπ

󰀠

− γ

󰀟󰁝

S×A×S×A

(Q(s′, a′)−Qπ
τ (s

′, a′))φ(s, a)Pπ(ds′, da′|s, a)dπβ(ds, da), θ − θπ

󰀠
,

where we added and subtracted the true state-action value function Qπ
τ ∈ Bb(S × A) in the second

equality and used the fact that it is a fixed point of the Bellman operator defined in (2). To ease
notation, let ε(s, a) := Q(s, a)−Qπ

τ (s, a). Multiplying both sides by −1 and using the associativity
of the inner product, we have

− 〈g(θ,π), θ − θπ〉

= −
󰀟󰁝

S×A

ε(s, a)φ(s, a)dπβ(da, ds), θ − θπ

󰀠

+ γ

󰀟󰁝

S×A

ε(s′, a′)φ(s, a)Pπ(ds′, da′|s, a)dπβ(ds, da), θ − θπ

󰀠

= −
󰁝

S×A

ε(s, a) 〈φ(s, a), θ − θπ〉 dπβ(da, ds)

+ γ

󰁝

S×A

ε(s′, a′) 〈φ(s, a), θ − θπ〉Pπ(ds′, da′|s, a)dπβ(ds, da)

= −
󰁝

S×A

ε(s, a)2dπβ(da, ds)

+ γ

󰁝

S×A×S×A

ε(s, a)ε(s′, a′)Pπ(ds′, da′|s, a)dπβ(ds, da)

= I(1) + γI(2).

Now applying Lemma B.1 to I(2) we have

I(2) :=

󰁝

S×A×S×A

ε(s, a)ε(s′, a′)Pπ(ds′, da′|s, a)dπβ(ds, da)

≤ 1
√
γ

󰁝

S×A

ε(s, a)2dπβ(ds, da).

Thus it holds that
−〈g(θ,π), θ − θπ〉 ≤ I(1) + γI(2)

≤ −(1−√
γ)

󰁝

S×A

󰂃(s, a)2dπβ(da, ds)

= −(1−√
γ)

󰁝

S×A

(Q(s, a)−Qπ
τ (s, a))

2dπβ(da, ds)

= −(1−√
γ)

󰀍
∇θL(θ,π; d

π
β), θ − θπ

󰀎
,

where the last inequality follows from the Assumption 4.1 and the definition of Q(s, a) =
〈θ,φ(s, a)〉.
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C PROOF OF STABILITY RESULTS

C.1 PROOF OF LEMMA 5.1

Proof. Consider the following equation

1

2ηt

d

dt
|θt|2 =

1

ηt

󰀟
d

dt
θt, θt

󰀠
(14)

= −〈g(θt,πt), θt〉

= −
󰀟󰁝

S×A

(Qt(s, a)− TπtQt(s, a))φ(s, a) d
πt

β (da, ds), θt

󰀠

= −
󰀟󰁝

S×A

Qt(s, a)φ(s, a) d
πt

β (da, ds), θt

󰀠

+

󰀟󰁝

S×A

TπtQt(s, a)φ(s, a) d
πt

β (da, ds), θt

󰀠

:= −J
(1)
t + J

(2)
t

where we used the θt dynamics from (7) in the second equality and the definition of the semi-gradient
in the third equality. For any π ∈ Πµ, let Σπ ∈ RN×N be

Σπ =

󰁝

S×A

φ(s, a)φ(s, a)⊤dπβ(da, ds).

Then by definition we have that Qt(s, a) = 〈θt,φ(s, a)〉, hence for J (1)
t we have

J
(1)
t =

󰀟󰁝

S×A

Qt(s, a)φ(s, a) d
πt

β (da, ds), θt

󰀠

=

󰀟󰁝

S×A

〈θt,φ(s, a)〉φ(s, a)dπt

β (da, ds), θt

󰀠

=

󰀟
θt,

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤dπt

β (da, ds)

󰀖
θt

󰀠

= 〈θt,Σπtθt〉 (15)

Now dealing with J
(1)
t , expanding the Bellman operator defined in (2) we have

J
(2)
t =

󰀟󰁝

S×A

TπtQt(s, a)φ(s, a) d
πt

β (da, ds), θt

󰀠

=

󰀟󰁝

S×A

c(s, a)φ(s, a)dπt

β (da, ds), θt

󰀠

+ γ

󰀟󰁝

S×A

〈θt,φ(s′, a′)〉φ(s, a)Pπt(ds′, da′|s, a)dπt

β (da, ds), θt

󰀠

+ τγ

󰀟󰁝

S×A

󰀕󰁝

S

KL(πt(·|s′), µ)P (ds′|s, a)φ(s, a)dπt

β (da, ds)

󰀖
, θt

󰀠

≤ |c|Bb(S×A)|θt|+ γI
(1)
t + τγI

(2)
t

where we defined

I
(1)
t =

󰀟󰁝

S×A

〈θt,φ(s′, a′)〉φ(s, a)Pπt(ds′, da′|s, a)dπt

β (da, ds), θt

󰀠
,

I
(2)
t =

󰀟󰁝

S×A

󰀕󰁝

S

KL(πt(·|s′), µ)P (ds′|s, a)φ(s, a)dπβ(da, ds)
󰀖
, θt

󰀠
.

Moreover, to ease notation let
Kt := sup

s∈S
KL(πt(·|s)|µ)
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and temporarily let κt(ds, da, ds
′, da′) := Pπt(ds′, da′|s, a)dπt

β (da, ds). Now focusing on I
(1)
t , it

holds that

I
(1)
t =

󰀟󰁝

S×A×S×A

〈θt,φ(s′, a′)〉φ(s, a)κt(da
′, ds′, da, ds), θt

󰀠

=

󰁝

S×A×S×A

〈θt,φ(s, a)〉 〈θt,φ(s′, a′)〉κt(ds
′, da′, ds, da).

Now using Lemma B.1 with f = 〈θ,φ(·, ·)〉 we have

I
(1)
t ≤ 1

√
γ

󰀕󰁝

S×A

〈θt,φ(s, a)〉2 dπt

β (ds, da)

󰀖 1
2
󰀕󰁝

S×A

〈θt,φ(s, a)〉2 dπt

β (ds, da)

󰀖 1
2

=
1
√
γ

󰁝

S×A

〈θt,φ(s, a)〉2 dπt

β (ds, da)

=
1
√
γ
〈θt,Σπtθt〉 .

Thus all together it holds that
γI

(1)
t ≤ √

γ 〈θt,Σπtθt〉 .

Now focusing on I
(2)
t , we have

I
(2)
t =

󰀟󰁝

S×A

󰀕󰁝

S

KL(πt(·|s′), µ)P (ds′|s, a)
󰀖
φ(s, a)dπt

β (da, ds), θt

󰀠

≤ Kt

󰀏󰀏󰀏󰀏
󰁝

S×A

φ(s, a)dπt

β (ds, da)

󰀏󰀏󰀏󰀏 |θt|

≤ Kt|θt|

where we used Assumption 4.2 in the final inequality. Hence along with (15), (14) becomes

1

2ηt

d

dt
|θt|2 ≤ −J

(1)
t + J

(2)
t (16)

≤ −〈θt,Σπtθt〉+ |c|Bb(S×A)|θt|+ γI
(1)
t + τγI

(2)
t

≤ −〈θt,Σπtθt〉+
√
γ 〈θt,Σπtθt〉+ |c|Bb(S×A)|θt|+ τγKt|θt|

= −(1−√
γ) 〈θt,Σπtθt〉+

󰀃
|c|Bb(S×A) + τγKt

󰀄
|θt|.

Observe that by (11) and Assumption 4.2, Σπ ∈ RN×N is positive definite for all π ∈ P(A|S),
hence it holds that

〈θt,Σπtθt〉 ≥ (1− γ)λβ |θt|2 .
Therefore (16) becomes

1

2ηt

d

dt
|θt|2 ≤ −(1−√

γ)(1− γ)λβ |θt|2 + (|c|Bb(S×A) + τγKt)|θt|

Let Γ := λβ(1− γ)(1−√
γ). By Young’s inequality, there exists 󰂃 > 0 such that

1

2ηt

d

dt
|θt|2 ≤ −Γ|θt|2 +

󰂃

2
|θt|2 +

(|c|Bb(S×A) + τγKt)
2

2󰂃

≤ −Γ|θt|2 +
󰂃

2
|θt|2 +

|c|2Bb(S×A) + τ2γ2K2
t

󰂃
,

where we used the identity (a+ b)2 ≤ 2a2 + 2b2. Choosing 󰂃 = Γ we arrive at

1

2ηt

d

dt
|θt|2 ≤ −Γ

2
|θt|2 +

τ2γ2K2
t

Γ
+

|c|2Bb(S×A)

Γ

which concludes the proof.
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C.2 PROOF OF THEOREM 5.1

Proof. By Lemma 5.1, we have that for all r ≥ 0

1

2ηr

d

dr
|θr|2 ≤ −Γ

2
|θr|2 +

τ2γ2K2
r

Γ
+

|c|2Bb(S×A)

Γ
.

Rearranging, it holds that for all t ≥ 0

|θr|2 ≤ − 1

Γηr

d

dr
|θr|2 +

2|c|2Bb(S×A) + 2τ2γ2K2
r

Γ2
.

Multiplying both sides by e−τ(t−r) and integrating over r from 0 to t we have that for all t ≥ 0
󰁝 t

0

e−τ(t−r)|θr|2dr ≤ − 1

Γ

󰁝 t

0

e−τ(t−r) 1

ηr

d

dr
|θr|2dr +

2|c|2Bb(S×A)

Γ2

󰁝 t

0

e−τ(t−r)dr (17)

+
2τ2γ2

Γ2

󰁝 t

0

e−τ(t−r)K2
rdr

≤ − 1

Γ

󰁝 t

0

e−τ(t−r) 1

ηr

d

dr
|θr|2dr +

2|c|2Bb(S×A)

Γ2τ
+

2τ2γ2

Γ2

󰁝 t

0

e−τ(t−r)K2
rdr,

where we used that
󰁕 t

0
e−τ(t−r)dr ≤ 1

τ . Integrating the first term by parts, we have

−
󰁝 t

0

e−τ(t−r) 1

ηr

d

dr
|θr|2dr = − |θt|2

ηt
+ e−τt |θ0|2

η0
+ τ

󰁝 t

0

|θr|2
e−τ(t−r)

ηr
dr (18)

−
󰁝 t

0

|θr|2
e−τ(t−r) d

drηr

η2r
dr.

Since by definition we have that for all t ≥ 0, ηt ≥ 1 and d
dtηt ≥ 0 it holds that

󰁝 t

0

|θr|2
e−τ(t−r) d

drηr

η2r
dr ≥ 0.

Hence dropping the negative terms on the right hand side of (18) and using that ηt ≥ η0 for all
t ≥ 0, we have

− 1

Γ

󰁝 t

0

e−τ(t−r) 1

ηr

d

dr
|θr|2dr ≤ e−τt |θ0|2

Γη0
+

τ

Γη0

󰁝 t

0

e−τ(t−r)|θr|2dr.

Substituting this back into (17), for all t ≥ 0 we have that
󰁝 t

0

e−τ(t−r)|θr|2dr ≤ e−τt |θ0|2
Γη0

+
τ

Γη0

󰁝 t

0

e−τ(t−r)|θr|2dr

+
2|c|2Bb(S×A)

Γ2τ
+

2τ2γ2

Γ2

󰁝 t

0

e−τ(t−r)K2
rdr.

Grouping like terms we have
󰀕
1− τ

Γη0

󰀖󰁝 t

0

e−τ(t−r)|θr|2dr ≤ e−τt |θ0|2
Γη0

+
2|c|2Bb(S×A)

Γ2τ
+

2τ2γ2

Γ2

󰁝 t

0

e−τ(t−r)K2
rdr.

Recall that we have η0 > τ
Γ to ensure that 1 − τ

Γη0
> 0. Dividing through by 1 − τ

Γη0
gives for all

t ≥ 0 that
󰁝 t

0

e−τ(t−r)|θr|2dr ≤ σ1 + σ2

󰁝 t

0

e−τ(t−r)K2
rdr (19)

where we’ve set

σ1 :=
|θ0|2

Γη0

󰀓
1− τ

Γη0

󰀔 +
2|c|2Bb(S×A)

Γ2τ
󰀓
1− τ

Γη0

󰀔 ,
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σ2 :=
2τ2γ2

Γ2
󰀓
1− τ

Γη0

󰀔 .

Recall the approximate Fisher–Rao gradient flow for the policies {πt}t≥0, which for all t ≥ 0 and
for all s ∈ S, a ∈ A is

∂t ln
dπt

dµ
(s, a) = −

󰀕
Qt(s, a) + τ ln

dπt

dµ
(a, s)−

󰁝

A

󰀕
Qt(s, a) + τ ln

dπt

dµ
(a, s)

󰀖
πt(da|s)

󰀖

Duhamel’s principle yields for all t ≥ 0 that

ln
dπt

dµ
(s, a) = e−τt ln

dπ0

dµ
(a, s) +

󰁝 t

0

e−τ(t−r)

󰀕󰁝

A

Qr(s, a)πr(da|s)−Qr(s, a)

󰀖
dr (20)

+ τ

󰁝 t

0

e−τ(t−r) KL(πr(·|s)|µ)dr

Observe that since π0 ∈ Πµ, there exists C1 ≥ 1 such that ln
󰀏󰀏󰀏dπt

dµ

󰀏󰀏󰀏
Bb(S×A)

≤ C1. Using that

e−τt ≤ 1 and assumption 4.2 gives that for all t ≥ 0

ln
dπt

dµ
(s, a) ≤ C1 + 2

󰁝 t

0

e−τ(t−r)|θr|dr + τ

󰁝 t

0

e−τ(t−r) KL(πr(·|s)|µ)dr

≤ C1 + 2

󰁝 t

0

e−τ(t−r)|θr|dr + τ

󰁝 t

0

e−τ(t−r)Krdr

Integrating over the actions with respect to πt(·|s) ∈ P(A) gives for all t ≥ 0 that

KL(πt(·|s)|µ) ≤ C1 + 2

󰁝 t

0

e−τ(t−r)|θr|dr + τ

󰁝 t

0

e−τ(t−r)Krdr

where we again use that Kr = sups∈S KL(πr(·|s)|µ). Following from the techniques in Liu et al.
(2023), observe that from (20) and Assumption 4.2 we similarly get for all t ≥ 0 that

ln
dµ

dπt
(a, s) = − ln

dπt

dµ
(s, a) ≤ C1 + 2

󰁝 t

0

e−τ(t−r)|θr|dr − τ

󰁝 t

0

e−τ(t−r)Krdr.

Now integrating over the actions with respect to the reference measure µ ∈ P(A) we have

KL(µ|πt(·|s)) ≤ C1 + 2

󰁝 t

0

e−τ(t−r)|θr|dr − τ

󰁝 t

0

e−τ(t−r)Krdr

Moreover, using the non-negativity of the KL divergence, it holds for all t ≥ 0 that

KL(πt(·|s)|µ) ≤ KL(πt(·|s)|µ) + KL(µ|πt(·|s)) ≤ 2C1 + 4

󰁝 t

0

e−τ(t−r)|θr|dr

Since this holds for any s ∈ S, it holds for all t ≥ 0 that

Kt ≤ 2C1 + 4

󰁝 t

0

e−τ(t−r)|θr|dr

Now squaring both sides and using the Hölder’s inequality, we have

K2
t ≤

󰀕
2C1 + 4

󰁝 t

0

e−τ(t−r)|θr|dr
󰀖2

≤ 8(C1)
2 + 32

󰀕󰁝 t

0

e−τ(t−r)|θr|dr
󰀖2

= 8(C1)
2 + 32

󰀕󰁝 t

0

e−
τ
2 (t−r)e−

τ
2 (t−r)|θr|dr

󰀖2

≤ 8(C1)
2 + 32

󰀕󰁝 t

0

e−τ(t−r)dr

󰀖󰀕󰁝 t

0

e−τ(t−r)|θr|2dr
󰀖

≤ 8(C1)
2 +

32

τ

󰁝 t

0

e−τ(t−r)|θr|2dr, (21)
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where we again used
󰁕 t

0
e−τ(t−r)dr ≤ 1

τ . We can now substitute (19) into (21) to arrive at

K2
t ≤ 8(C1)

2 +
32

τ
σ1 +

32

τ
σ2

󰁝 t

0

e−τ(t−r)K2
rdr

:= a1 + a2

󰁝 t

0

e−τ(t−r)K2
rdr

with a1 = 8(C1)
2 + 32

τ σ1 and a2 = 32σ2

τ .

C.3 PROOF OF COROLLARY 5.1

Proof. By Theorem 5.1 it holds that

K2
t ≤ a1 + a2

󰁝 t

0

e−τ(t−r)K2
rdr.

Observe that by multiplying through by eτt, we can rewrite this as

eτtK2
t ≤ eτta1 + a2

󰁝 t

0

eτrK2
rdr.

Hence after defining g(t) = eτtK2
t and applying Grönwall’s inequality (Lemma A.3), for all γ ∈

(0, 1) it holds for all t ≥ 0 that
K2

t ≤ a1e
a2t.

C.4 PROOF OF COROLLARY 5.2

Proof. By Corollary 5.1 and Lemma 5.1, for all γ ∈ (0, 1) it holds that

1

2

d

dt
|θt|2 ≤ −Γ

2
ηt|θt|2 + btηt

such that

bt =

󰀣
2|c|2Bb(S×A) + 2τ2γ2a1e

a2t

Γ2

󰀤
.

Recall that there exists α > 0 such that d
dtηt ≤ αηt, then another application of Grönwall’s Lemma

then concludes the proof.

D PROOF OF CONVERGENCE RESULTS

D.1 PROOF OF LEMMA 6.1

Proof. By the definition of the state-action value function (1) it holds that

d

dt
Qπt

τ (s, a) = lim
h→0

Q
πt+h
τ (s, a)−Qπt

τ (s, a)

h

= γ

󰁝

S

d

dt
V πt
τ (s′)P (ds′|s, a).

Now observe that by Kerimkulov et al. (2025)[Proof of Proposition 2.6], we have

d

dt
V πt
τ (s) =

1

1− γ

󰁝

S×A

Aπt
τ (s, a)∂tπt(da|s′)dπt(ds′|s).

Thus we have
d

dt
Qπt

τ (s, a) =
γ

1− γ

󰁝

S

󰀕󰁝

S×A

Aπt
τ (s′′, a′′)∂tπt(da

′′|s′′)dπt(ds′′|s′)
󰀖
P (ds′|s, a).
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D.2 PROOF OF THEOREM 6.1

Proof. Recall the performance difference Lemma (Lemma A.2): for all ρ ∈ P(S) and π,π′ ∈ Πµ,

V π
τ (ρ)− V π′

τ (ρ)

=
1

1− γ

󰁝

S

󰀗 󰁝

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a, s)

󰀖
(π − π′)(da|s) + τ KL(π(·|s)|π′(·|s))

󰀘
dπρ (ds) .

Now let π = π∗ and π′ = πt and multiply both sides by −1 we have

V πt
τ (ρ)− V π∗

τ (ρ) =
−1

1− γ

󰁝

S

󰀣󰁝

A

󰀕
Qπt(s, a) + τ ln

dπt

dµ
(a, s)

󰀖
(π∗ − πt)(da|s) (22)

+ τ KL(π∗(·|s)|πt(·|s))
󰀤
dπ

∗

ρ (ds).

Recall the approximate Fisher–Rao dynamics, which we write as

∂t ln
dπt

dµ
(s, a) +

󰀕
Qt(s, a) + τ ln

dπt

dµ
(a, s)−

󰁝

A

󰀕
Qt(s, a

′) + τ ln
dπt

dµ
(a′, s)

󰀖
πt(da

′|s)
󰀖

= 0.

(23)
Observe that since the normalisation constant (enforcing the conservation of mass along the flow)󰁕
A

󰀓
Qt(s, a) + τ ln dπt

dµ (a, s)
󰀔
πt(da|s) is independent of a ∈ A, it holds that

󰁝

A

󰀕󰁝

A

󰀕
Qt(s, a

′) + τ ln
dπt

dµ
(a′, s)

󰀖
πt(da

′|s)
󰀖
(π∗ − πt)(da|s) = 0.

Hence adding 0 in the form of (23) into (22) it holds that for all t ≥ 0

V πt
τ (ρ)− V π∗

τ (ρ) =
1

1− γ

󰀣󰁝

S×A

∂t ln
dπt

dµ
(a, s)(π∗ − πt)(da|s)dπ

∗

ρ (ds) (24)

+

󰁝

S×A

(Qt(s, a)−Qπt(s, a))(π∗ − πt)(da|s)dπ
∗

ρ (ds)− τ

󰁝

S

KL(π∗(·|s)|πt(·|s)dπ
∗

ρ (ds)

󰀤
.

By (Kerimkulov et al., 2024, Lemma 3.8) and Corollary 5.1, for any fixed ν ∈ Πµ, the map t →
KL(ν|πt) is differentiable. Hence we have
󰁝

A

∂t ln
dπt

dµ
(s, a)(π∗ − πt)(da|s) =

󰁝

A

∂t ln
dπt

dµ
(s, a)π∗(da|s)−

󰁝

A

∂t ln
dπt

dµ
(s, a)πt(da|s)

=

󰁝

A

∂t ln
dπt

dµ
(s, a)π∗(da|s)

= − d

dt
KL(π∗(·|s)|πt(·|s)),

where we used the conservation of mass of the policy dynamics in the second equality. Substituting
this into (24) we have

V πt
τ (ρ)− V π∗

τ (ρ) =
1

1− γ

󰀣
− d

dt

󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds) (25)

+

󰁝

S×A

(Qt(s, a)−Qπt(s, a))(π∗ − πt)(da|s)dπ
∗

ρ (ds)− τ

󰁝

S

KL(π∗(·|s)|πt(·|s)dπ
∗

ρ (ds)

󰀤
.
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Focusing on the second term, we have
󰁝

S×A

(Qt(s, a)−Qπt(s, a))(π∗ − πt)(da|s)dπ
∗

ρ (ds)

≤ |Qt(s, a)−Qπt(s, a)|Bb(S×A)

󰁝

S

TV(π∗(·|s),πt(·|s))dπ
∗

ρ (ds)

≤ 1√
2
|θt − θπt |

󰁝

S

KL(π∗(·|s)|πt(·|s))
1
2 dπ

∗

ρ (ds)

≤ 1√
2
|θt − θπt |

󰀕󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds)

󰀖 1
2

,

where we used Pinsker’s Inequality in the second inequality and Hlder’s inequality in the final in-
equality. Now applying Young’s inequality, there exists 󰂃 > 0 such that

|θt−θπt |
󰀕󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds)

󰀖 1
2

≤ 1

2󰂃
|θt−θπt |2+

󰂃

2

󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds).

Substituting this back into (25) and choosing 󰂃 =
√
2τ we have

V πt
τ (ρ)− V π∗

τ (ρ) =
1

1− γ

󰀣
− d

dt

󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds)

− τ

2

󰁝

S

KL(π∗(·|s)|πt(·|s)dπ
∗

ρ (ds) +
1

4τ
|θt − θπt

|2
󰀤
.

Rearranging, we arrive at

d

dt

󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds) ≤ −τ

2

󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds)

− (1− γ)
󰀓
V πt
τ (ρ)− V π∗

τ (ρ)
󰀔
+

1

4τ
|θt − θπt |2.

Applying Duhamel’s principle yields
󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds) ≤ e−
τ
2 t

󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

− (1− γ)

󰁝 t

0

e−
τ
2 (t−r)(V πr

τ (ρ)− V π∗

τ (ρ))dr +
1

2τ

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr.

Now using that
󰁕 t

0
e−

τ
2 (t−r)dr = 2(1−e−

τ
2 )

τ , we have
󰁝

S

KL(π∗(·|s)|πt(·|s))dπ
∗

ρ (ds) ≤ e−
τ
2 t

󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

− 2(1− γ)(1− e−
τ
2 )

τ
min
r∈[0,t]

󰀓
V πr
τ (ρ)− V π∗

τ (ρ)
󰀔
+

1

2τ

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr.

Rearranging, we have

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ≤ τ

2(1− γ)(1− e−
τ
2 )

󰀣
e−

τ
2 t

󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

+
1

2τ

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr

󰀤
.

which concludes the proof.
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D.3 PROOF OF THEOREM 6.2

Proof. Using the chain rule and the critic dynamics in (7), we have that for all r ≥ 0

1

2ηr

d

dr
|θr − θπr |2 =

1

ηr

󰀕󰀟
dθr
dr

, θr − θπr

󰀠
−
󰀟
dθπr

dr
, θr − θπr

󰀠󰀖

= −〈g(θr,πr), θr − θπr 〉 −
1

ηr

󰀟
dθπr

dr
, θr − θπr

󰀠

Let Γ = λβ(1 − γ)(1 − √
γ). Using Lemma 4.1 and the λβ-strong convexity of L(·,π;β) and

recalling that L(θπr ,πr) = 0 for all r ≥ 0, it holds for all r ≥ 0 that

1

2ηt

d

dt
|θt − θπt

|2 = −〈g(θt,πt), θt − θπt
〉 − 1

ηt

󰀟
dθπt

dt
, θt − θπt

󰀠

≤ −(1− γ)(1−√
γ) 〈∇θL(θt,πt;β), θt − θπt〉 −

1

ηt

󰀟
dθπt

dt
, θt − θπt

󰀠

≤ −(1− γ)(1−√
γ)L(θt,πt;β)−

Γ

2
|θt − θπt |2 −

1

ηt

󰀟
dθπt

dt
, θt − θπt

󰀠

≤ −(1− γ)(1−√
γ)L(θt,πt;β)−

Γ

2
|θt − θπt

|2 + 1

2ηt

󰀣󰀏󰀏󰀏󰀏
dθπt

dt

󰀏󰀏󰀏󰀏
2

+ |θt − θπt
|2
󰀤

(26)

= −(1− γ)(1−√
γ)L(θt,πt;β)−

󰀕
Γ

2
− 1

2ηt

󰀖
|θt − θπt

|2 + 1

2ηt

󰀏󰀏󰀏󰀏
dθπt

dt

󰀏󰀏󰀏󰀏
2

,

where we used Hlder’s and Young’s inequalities in (26). Since η0 > 1
Γ and ηt is a non-decreasing

function, it holds that ηt > 1
Γ for all t ≥ 0. Hence Γ

2−
1

2ηt
> 0 and thus we can drop the second term.

Moreover the λβ-strong convexity of L(·,π;β) along with L(θπ,π;β) = 0 and ∇θL(θπ,π) = 0
for all π ∈ Πµ gives that

|θt − θπt |2 ≤ 2

λβ
L(θt,πt;β).

Hence for all r ≥ 0 we arrive at

1

2ηr

d

dr
|θr − θπr

|2 ≤ −Γ

2
|θr − θπr

|2 + 1

2ηr

󰀏󰀏󰀏󰀏
dθπr

dr

󰀏󰀏󰀏󰀏
2

.

Rearranging, multiplying by e−τ(t−r) and integrating over r from 0 to t, it holds for all t ≥ 0 that
󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ − 1

Γ

󰁝 t

0

e−
τ
2 (t−r) 1

ηr

d

dr
|θr − θπr |2dr +

1

Γ

󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dt

󰀏󰀏󰀏󰀏
2

dr.

Integrating the first term by parts (identically to (18) from the proof of Theorem 5.1), we have
󰁝 t

0

e−
τ
2 (t−r)|θr − θπr

|2dr ≤ 1

Γ

󰀣
− |θt − θπt |2

ηt
+ e−

τ
2 t
|θ0 − θπ0 |2

η0

+
τ

2

󰁝 t

0

e−
τ
2 (t−r) 1

ηr
|θr − θπr |2dr −

󰁝 t

0

|θr − θπr |2
e−

τ
2 (t−r) d

drηr

η2r
dr

+

󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dr

󰀏󰀏󰀏󰀏
2

dr

󰀤
.

Since for all t ≥ 0 it holds that ηt ≥ 1 and d
dtηt ≥ 0, we have that

󰁝 t

0

|θr − θπr |2
e−

τ
2 (t−r) d

drηr

η2r
dr ≥ 0.
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Thus after dropping all negative terms and using that ηt ≥ η0 for all t ≥ 0, we have
󰀕
1− τ

2Γη0

󰀖󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ e−

τ
2
|θ0 − θπ0 |2

Γη0
+

󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dr

󰀏󰀏󰀏󰀏
2

dr.

Since η0 > 1
2Γ and τ < 1, it holds that 1− τ

2Γη0
> 0 and hence it holds that

󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ e−

τ
2

|θ0 − θπ0 |2

Γη0

󰀓
1− τ

2Γη0

󰀔 +
1󰀓

1− τ
2Γη0

󰀔
󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dr

󰀏󰀏󰀏󰀏
2

dr,

which concludes the proof.

D.4 PROOF OF THEOREM 6.3

Proof. By Theorem 6.2, we have
󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ e−

τ
2

|θ0 − θπ0 |2

Γη0

󰀓
1− τ

2Γη0

󰀔 +
1󰀓

1− τ
2Γη0

󰀔
󰁝 t

0

e−
τ
2 (t−r) 1

ηr

󰀏󰀏󰀏󰀏
dθπr

dr

󰀏󰀏󰀏󰀏
2

dr.

Hence it remains to characterise the growth of the final integral. Observe that for all π ∈ P(A|S),
θπ ∈ RN satisfies the least-squares optimality condition given by

θπ = argmin
θ

L(θ,π;β) =

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤β(da, ds)

󰀖−1 󰀕󰁝

S×A

φ(s, a)Qπ
τ (s, a)β(ds, da)

󰀖
.

Setting π = πt and differentiating time we arrive at

dθπt

dt
=

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤β(da, ds)

󰀖−1 󰀕󰁝

S×A

φ(s, a)
d

dt
Qπt(s, a)β(ds, da)

󰀖
.

Hence by Lemma 6.1, Assumption 4.2 and Assumption 4.3, for all t ≥ 0 it holds that
󰀏󰀏󰀏󰀏
dθπt

dt

󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤β(da, ds)

󰀖−1 󰀕󰁝

S×A

φ(s, a)
d

dt
Qπt

τ (s, a)β(ds, da)

󰀖󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏

󰀕󰁝

S×A

φ(s, a)φ(s, a)⊤β(da, ds)

󰀖−1
󰀏󰀏󰀏󰀏󰀏
op

󰀏󰀏󰀏󰀏
d

dt
Qπt

τ

󰀏󰀏󰀏󰀏
Bb(S×A)

=
1

λβ

󰀏󰀏󰀏󰀏
d

dt
Qπt

󰀏󰀏󰀏󰀏
Bb(S×A)

=
γ

λβ(1− γ)

󰀏󰀏󰀏󰀏
󰁝

S

󰀕󰁝

S×A

Aπt
τ (s′′, a′′)∂tπt(da

′′|s′′) dπt(ds′′|s′)
󰀖
P (ds′|·, ·)

󰀏󰀏󰀏󰀏
Bb(S×A)

≤ γ

λβ(1− γ)
|Aπt

τ |Bb(S×A) sup
s∈S

|∂tπt(·|s)|M(A) .

Now using Lemma B.2, it holds that

|Aπt
τ |Bb(S×A) sup

s∈S
|∂tπt(·|s)|M(A) ≤ |Aπt

τ |Bb(S×A) |At|Bb(S×A)

≤
󰀣
2 |Qπt

τ |Bb(S×A) + 2τ

󰀏󰀏󰀏󰀏ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

󰀤󰀣
2 |Qt|Bb(S×A) + 2τ

󰀏󰀏󰀏󰀏ln
dπt

dµ

󰀏󰀏󰀏󰀏
Bb(S×A)

󰀤
.

Hence by Corollaries 5.1 and 5.2 and Lemma B.2, there exists α1,α2 > 0 such that
󰀏󰀏󰀏󰀏
dθπt

dt

󰀏󰀏󰀏󰀏
2

≤ α1e
α2t.

Thus Theorem 6.2 becomes
󰁝 t

0

e−
τ
2 (t−r)|θr − θπr |2dr ≤ e−

τ
2

|θ0 − θπ0 |2

Γη0

󰀓
1− τ

2Γη0

󰀔 +
α1󰀓

1− τ
2Γη0

󰀔
󰁝 t

0

e−
τ
2 (t−r) e

α2r

ηr
dr.
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Let ηt = η0e
k1t for any k1 > τ

2 + α2. Then observe that
󰁝 t

0

e−
τ
2 (t−r) e

α2r

ηr
dr =

1

η0
e−

τ
2 t

󰁝 t

0

e(
τ
2+α2−k1)rdr

≤ 1

η0
e−

τ
2 t

󰀣
e(

τ
2+α2−k1)t − 1
τ
2 + α2 − k1

󰀤

≤ e−
τ
2 t

η0
󰀃
τ
2 + α2 − k1

󰀄 ,

hence all together it holds that
󰁝 t

0

e−
τ
2 (t−r)|θr − θπr

|2dr ≤ e−
τ
2

|θ0 − θπ0
|2

Γη0

󰀓
1− τ

2Γη0

󰀔 + e−
τ
2 t

α1󰀃
η0 − τ

2Γ

󰀄 󰀃
τ
2 + α2 − k1

󰀄 .

Substituting this into the result from Theorem 6.2 concludes the proof.

E ADDITIONAL RESULTS

Corollary E.1 (Uniform boundedness). Under the same assumptions as Theorem 5.1, for γ ∈ (0, 1)

such that 64γ2

Γ2−Γτ
η0

< 1 it holds that a2 < τ and for all t ≥ 0 it holds that

KL(πt(·|s)|µ)2 ≤ a1τ

τ − a2

E.1 PROOF OF COROLLARY E.1

Proof. By Theorem 5.1 we have that

K2
t ≤ a1 + a2

󰁝 t

0

e−τ(t−r)K2
rdr.

Taking the supremum over [0, t] on the right hand side, we have

K2
t ≤ a1 +

a2
τ

sup
r∈[0,t]

K2
r.

Since this holds for all t ≥ 0, we have

sup
r∈[0,t]

K2
r ≤ a1 +

a2
τ

sup
r∈[0,t]

K2
r.

Now forcing 1− a2

τ > 0, which is equivalent to the condition

64γ2

Γ2 − Γτ
η0

< 1.

Hence after rearranging we have

K2
t ≤ sup

r∈[0,t]

K2
r ≤ a1τ

τ − a2

Remark E.1. Observe that if one does not apply the loose upper bound e−τt ≤ 1 in (20) from the
proof of Theorem 5.1, it holds that

a1 = a1(t) = 8e−2τt(C1)
2 +

32

τ
σ1

with σ1 := |θ0|2

Γη0

󰀓
1− τ

Γη0

󰀔 +
2|c|2Bb(S×A)

Γ2τ
󰀓
1− τ

Γη0

󰀔 . Then choosing η0 = τ + 󰂃 for any 󰂃 > 0 so that the

conditions of Theorem 5.1 holds, formally sending τ → ∞ we obtain KL(πt(·|s)|µ) → 0 for all
s ∈ S.
Corollary E.2. Under the conditions of Corollary E.1, there exists R > 0 such that for all t ≥ 0 it
holds that

|θt| ≤ R
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E.2 PROOF OF COROLLARY E.2

Proof. By Corollary E.1, for sufficiently small γ > 0 it holds that for all t ≥ 0,

K2
t ≤ a1τ

τ − a2
.

Hence by Lemma 5.1 we have

1

2

d

dt
|θt|2 ≤ −ηt

Γ

2
|θt|2 + ηt

󰀳

󰁃
2|c|2Bb(S×A) + 2τ2γ2

󰀓
a1τ
τ−a2

󰀔

Γ2

󰀴

󰁄 .

The uniform boundedness in time of |θt| then follows by Grönwall’s Lemma (Lemma A.3).

Corollary E.3. Under the same assumptions as Theorem 6.2, for γ ∈ (0, 1) such that 2
√
2γ󰁴

Γ2−Γτ
η0

< 1

there exists d1 > 0 such that for all t ≥ 0,

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ≤ τ

2(1− γ)(1− e−
τ
2 t)

󰀣
e−

τ
2 t

󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

+ d1

󰁝 t

0

e−
τ
2 (t−r) 1

ηr
dr

󰀤
.

E.3 PROOF OF THEOREM 6.3

Proof. Following completely identically to the proof of Theorem 6.3, we have
󰀏󰀏󰀏󰀏
dθπt

dt

󰀏󰀏󰀏󰀏 ≤
γ

λβ(1− γ)
|Aπt

τ |Bb(S×A) sup
s∈S

|∂tπt(·|s)|M(A)

≤ 4

(1− γ)2

󰀓
|c|Bb(S×A) +Kt

󰀔2

+ 4τ

󰀣
C1 +

2

τ
sup

r∈[0,t]

|θr|+ sup
r∈[0,t]

Kr

󰀤2

.

Then by Corollaries E.1 and E.2, there exists b2 > 0 such that
󰀏󰀏󰀏dθπt

dt

󰀏󰀏󰀏
2

≤ d1. Hence by Theorem 6.2
we have

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ≤ τ

2(1− γ)(1− e−
τ
2 )

󰀣
e−

τ
2 t

󰀣󰁝

S

KL(π∗(·|s)|π0(·|s))dπ
∗

ρ (ds)

+ d1

󰁝 t

0

e−
τ
2 (t−r) 1

ηr
dr

󰀤
.

For example, suppose the small discounting factor condition is satisfied, choosing ηt = t
1
2 +η0 with

η0 > 1
Γ and τ = 0.5, it can be shown that asymptotically

min
r∈[0,t]

V πr
τ (ρ)− V π∗

τ (ρ) ∼ 1√
t
.
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