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ABSTRACT

While large language models (LLMs) have demonstrated strong performance on
factoid question answering, they are still prone to hallucination and untruthful
responses, particularly when tasks demand information outside their paramet-
ric knowledge. Indeed, truthfulness requires more than accuracy—models must
also recognize uncertainty and abstain when unsure to avoid hallucinations. This
presents a fundamental challenge for existing methods: approaches that optimize
for accuracy often amplify hallucinations, while those that encourage abstention
can become overly conservative, sacrificing correct answers. Both extremes ul-
timately compromise truthfulness. In this work, we present TruthRL, a general
reinforcement learning (RL) framework that directly optimizes the truthfulness of
LLMs. Specifically, we implement TruthRL using GRPO with a simple yet effec-
tive ternary reward that distinguishes correct answers, hallucinations, and absten-
tions. It incentivizes models to reduce hallucinations not only by providing cor-
rect responses, but also by enabling abstention when uncertain, thereby improving
truthfulness. Extensive experiments across four knowledge-intensive benchmarks
show that TruthRL significantly reduces hallucinations (e.g., 43.5% → 19.4%)
and improves truthfulness (e.g., 5.3% → 37.2%), with consistent gains across var-
ious backbone models (e.g., Qwen, Llama). In-depth ablation study demonstrates
that vanilla accuracy-driven methods such as supervised fine-tuning or RL with a
binary reward struggle to balance factual correctness and uncertainty, whereas the
truthfulness-driven TruthRL achieves strong performance in both accuracy and
truthfulness, underscoring the importance of learning objective design for devel-
oping truthful LLMs. Moreover, we find the improvement of TruthRL arises from
enhancing the capability of LLMs to recognize their knowledge boundary, hence
avoiding being overly conservative as the baselines are. Further analysis validates
our method across multiple evaluation judges, and confirms that TruthRL is robust
to hallucination-baiting questions.

1 INTRODUCTION

While large language models (LLMs) have demonstrated remarkable abilities in generating factual
responses (Brown et al., 2020; Touvron et al., 2023; Team et al., 2023), they tend to produce plausible
but factually incorrect statements rather than acknowledge uncertainty when encountering questions
beyond their knowledge (Xu et al., 2024b; Zhang et al., 2023). This hallucination behavior is espe-
cially concerning in high-stakes domains (e.g., law, medicine) where inaccurate outputs can cause
severe consequences (Singhal et al., 2023; Xiao et al., 2021; Xiong et al., 2024)—In such scenarios,
the model’s capability to admit “I don’t know” can be just as critical as providing correct informa-
tion, and a truthful LLM should avoid hallucinations as much as possible. From this perspective, a
model that answers fewer questions correctly while reliably abstaining when uncertain is far more
trustworthy than a higher-accuracy model that frequently fabricates plausible but incorrect answers.
In high-stakes domains, such misleading answers risk doing far more harm than abstention. This
underscores that factual accuracy alone does not necessarily guarantee truthfulness.

There has been a line of research aiming to teach LLMs to admit uncertainty (Cheng et al., 2024;
Yang et al., 2024b; Huang et al., 2025). Recent works such as R-Tuning (Zhang et al., 2024) train the
model on unanswerable questions with “I don’t know” as the ground-truth label (Song et al., 2025).
However, such methods require non-trivial annotation on model-specific datasets, leading to limited
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Response 1 (Confident Hallucination):
… The ESTA Visa Waiver Program only allows you to attend as an audience member, 
not to actively present research, which always requires a B-1 visa. Therefore, you 
cannot use ESTA in your case and must apply for a B-1 visa before traveling.

TruthRL: encourages correct answer and favors abstention over hallucination 

Answer Distribution

Vanilla 
SFT/RL

TruthRL
(Ours)

Hallucination

Correct
Uncertain

I'm a researcher from South Korea presenting my paper at a conference in the US. 
Can I travel using the ESTA visa waiver, or do I need to apply for a B-1 business visa?

before 
training

Vanilla SFT/RL: always promotes answering, even if inaccurate or just guessing

Response 2 (Honest Abstention):
… you may be able to use ESTA since presenting at conferences is a permitted 
“business visitor” activity. However, it also depends on the details of your trip (e.g, 
must be 90 days or less, whether you are receiving payment, etc …). Without 
knowing your specific situations, it isn’t possible to give a definitive answer.

Figure 1: Comparison between vanilla supervised fine-tuning (SFT), reinforcement learning (RL),
and TruthRL. In vanilla SFT/RL, the model is optimized solely for accuracy, implicitly rewarding
hallucinations over abstentions and thus always attempting to answer or guess, which ultimately
compromises truthfulness. In contrast, TruthRL not only rewards correct answers, but explicitly
penalizes hallucinations, and treats abstentions neutrally, thereby leading to greater truthfulness.

generalization or overly conservative behavior (e.g., abstaining even when the model has sufficient
knowledge). On the other hand, lots of research efforts have sought to mitigate hallucinations by
expanding the model’s knowledge scope, either by updating its parametric knowledge through fine-
tuning or by incorporating external information via retrieval-augmented generation (RAG) (Kasai
et al., 2024; Yang et al., 2024a). However, the retrieved documents in RAG can be noisy or even
contain factually incorrect content, potentially misleading the model and posing additional chal-
lenges (Wei et al., 2025). Meanwhile, fine-tuning methods typically improve accuracy but can also
reinforce hallucinations, particularly when the model is uncertain (Kang et al., 2025). In fact, such
accuracy-driven methods inherently motivate LLMs to guess rather than abstain from answering
when unsure, since the expected incentive for guessing an answer is always higher than that from
abstention by design (Kalai et al., 2025). As a result, existing approaches remain deficient in training
truthful LLMs that can both provide accurate answers and acknowledge uncertainty.

In light of this, we argue that a more aligned learning objective is needed for developing truthful
LLMs—one that explicitly incentivizes models not only to maximize correct responses, but also to
appropriately abstain from answering when being uncertain. In this work, we introduce TruthRL,
a general reinforcement learning (RL) framework designed to directly optimize truthfulness rather
than accuracy alone. As illustrated in Figure 1, unlike accuracy-driven methods such as vanilla SFT
or RL, which implicitly favor hallucinations over abstentions by encouraging the model to always
provide an answer to maximize accuracy, our method introduces a truthfulness-driven ternary re-
ward design that explicitly rewards correct answers, penalizes hallucinations, and treats abstentions
as neutral. This design encourages the model to generate correct responses when possible, but more
importantly, to properly abstain rather than wildly guessing. Specifically, we implement TruthRL
with GRPO (Shao et al., 2024), and our findings show that this simple yet principled reward formula-
tion yields substantial gains in truthfulness. Experiments demonstrate that our method improves the
truthfulness of LLMs not only by converting hallucinations into abstentions, but also by promoting
more accurate responses, particularly in retrieval-augmented settings where the model has access to
additional information. Notably, the increase in abstentions arises not from over-conservatism but
from a genuine recognition of the knowledge boundary: TruthRL abstains most often, whereas the
baseline tends to hallucinate when knowledge is insufficient. In summary, our findings advocate a
shift from accuracy-driven to truthfulness-driven methods for developing LLMs.

The main contributions of this work are as follows: (1) We propose TruthRL, a general RL frame-
work that directly optimizes truthfulness through a simple yet principled reward design. (2) We
demonstrate that TruthRL consistently reduces hallucination and improves truthfulness across mul-
tiple knowledge-intensive benchmarks in both retrieval and non-retrieval settings, significantly re-
ducing hallucinations (e.g., 43.5% → 19.4%) and improving truthfulness (e.g., 5.3% → 37.2%).
(3) Extensive ablation studies and analyses confirm that LLMs trained with TruthRL are effective
at recognizing their knowledge boundaries, robust to hallucination-inducing questions, and more
confident in providing correct answers, while maintaining a significantly lower hallucination rate.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

21 22 23 24 25 26

k (number of responses)

0

20

40

60

M
a

jo
ri

ty
@
k

Accuracy Uncertain Hallucination

(a) Prompting

21 22 23 24 25 26

k (number of responses)

0

20

40

60

M
a

jo
ri

ty
@
k

Accuracy Uncertain Hallucination

(b) Vanilla SFT

21 22 23 24 25 26

k (number of responses)

0

20

40

60

M
a

jo
ri

ty
@
k

Accuracy Uncertain Hallucination

(c) Vanilla RL

Figure 2: Scaling curve of prompting and vanilla SFT/RL methods on the CRAG benchmark, using
Llama3.1-8B-Instruct as the backbone. Before training, the model shows strong potential in major-
ity@k scaling, with reduced hallucination and improved accuracy and abstentions as the number of
responses increases. However, despite their slightly improved accuracy, vanilla SFT and RL dimin-
ish this potential and lead to much higher hallucinations, underscoring their limitations and the need
for a more truthful training paradigm.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

In contrast to the traditional method that optimizes for accuracy only (Kalai et al., 2025), we choose
to optimize for truthfulness and designed a multi-dimensional objective. Let D = {(xi, yi)}Ni=1
denote the problem set. For a model fθ, we evaluate its predictions ŷi = fθ(xi) and compute
(i) accuracy (Acc), the fraction of questions answered correctly; (ii) uncertainty rate (Unc), the
fraction of questions where the model abstains (e.g., answers “I don’t know”); and (iii) hallucination
rate (Hall), the fraction of responses that are factually incorrect. Following standard practices (Yang
et al., 2024a; Kachuee et al., 2025; Huang et al., 2025), we define the truthfulness score as a weighted
combination: Truthfulness = w1 · Acc + w2 · Unc − w3 · Hall, where w1, w2, w3 ≥ 0 control the
desired behavior among the three dimensions.1 Our objective is to design training methods that max-
imize the expected truthfulness score, i.e., maxθ ED[Truthfulness(fθ)]. This formulation captures
the core idea of truthfulness: unlike an accuracy-focused setup that only cares about correctness,
our problem formulation favors models that maximize correct answers, appropriately abstain when
uncertain, and minimize hallucinations.

2.2 VANILLA FINE-TUNING METHODS

Supervised Fine-Tuning (SFT). We train the LLM using the standard SFT objective, which aims
to maximize the likelihood of producing the ground-truth response given an input: LSFT(θ) =
−E(x,y)∼D

∑
log p(y|x; θ), where (x, y) is the input-output pair and θ denotes the parameters.

While typically effective for improving accuracy, SFT tends to memorize the training data and has
limited generalizability (Chu et al., 2025). Moreover, the model is trained to always provide an
answer, even when unsure, which inevitably encourages hallucinations (Kalai et al., 2025).

Reinforcement Learning (RL). Traditional RL methods optimize the LLM using accuracy-based
reward signals, provided by a verifier to determine whether a prediction is correct (Guo et al., 2025).
Although RL typically achieves better generalization than SFT by eliminating direct supervision
with ground-truth answers, vanilla RL is not explicitly designed to recognize uncertainty or abstain
when appropriate. As a result, it may substantially increase correctness but still fails to prevent
hallucinations (Kang et al., 2025), as also observed in our preliminary findings.

2.3 PRELIMINARY FINDINGS

As shown in Figure 2, we report the majority@k results on the CRAG benchmark for prompting,
vanilla SFT and RL methods, using Llama3.1-8B-Instruct as the backbone model. The prompting
baseline demonstrates that increasing the number of sampled responses consistently reduces halluci-
nation with improved accuracy and the abstention rate. This suggests that even without fine-tuning,
the base model already has strong potential in achieving higher truthfulness.

1Following standard practice, we set w1 = 1, w2 = 0, w3 = 1.
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In contrast, despite their improvements in accuracy, vanilla SFT and RL methods almost completely
suppress abstention behavior (i.e., maintaining a near-zero uncertainty rate) and provide only a lim-
ited reduction in hallucinations—or even an increased hallucination rate compared to the baseline
when k is large. These results reveal the limitations of vanilla fine-tuning methods that focus solely
on accuracy: they not only fail to address the truthfulness problem but also diminish the model’s
inherent capacity to express uncertainty, underscoring the need for truthful training approaches.

3 METHODOLOGY

To address the problem, we first establish strong fine-tuning baselines that can express uncertainty
while maintaining accuracy using a knowledge boundary probing mechanism, and then elaborate on
the design of our proposed solution TruthRL.

3.1 KNOWLEDGE BOUNDARY PROBING

To enable the model to express uncertainty, we first construct appropriate training data for baselines
by probing an LLM’s knowledge boundaries on the training set to identify out-of-knowledge (OOK)
questions. For each training question, we sample 256 responses, and the question is marked as
OOK if none of the responses is correct. These questions are then relabeled with “I don’t know”
as the ground-truth answer and used to train the model with the standard SFT objective. Similar
approaches have been explored in prior works (Zhang et al., 2024; Yang et al., 2024b; Song et al.,
2025), where samples with uncertain ground-truths are incorporated into SFT training using various
data construction strategies. We refer to this baseline as R-Tuning (Zhang et al., 2024).

Further, we extend the idea of rejection sampling fine-tuning (RFT) (Yuan et al., 2023) with un-
certain responses. Rather than directly learning the ground-truth answers, RFT trains the model on
reasoning traces generated by the model itself. In this baseline, we prompt the model to generate
multiple reasoning traces for each question and select the trace that concludes with “I don’t know”
as the target response for OOK questions, whereas for non-OOK questions, we select the trace that
leads to the correct answer.

3.2 TRUTHRL: INCENTIVIZING TRUTHFULNESS VIA RL

We implement TruthRL using GRPO (Shao et al., 2024), an online RL method that optimizes the
following objective:

LGRPO(θ) = −Ex∼D,{yi}G
i=1∼πθold (·|x) 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ)Âi, clip(wi,t(θ), 1− ϵ, 1 + ϵ)Âi

)
− βDKL (πθ||πref)

 ,

where ϵ and β are hyper-parameters, G is the group size (i.e., the number of sampled responses
from the old policy πθold for each question x), πref denotes the reference policy, wi,t(θ) denotes the
importance ratio, Âi is the estimated advantage for response yi, computed using a group of rewards
{r1, r2, . . . , rG} corresponding to the outputs within each group:

Âi =
r(x, yi)− mean

(
{r(x, yj)}Gj=1

)
std

(
{r(x, yj)}Gj=1

) .

Reward Design. We consider two main types of reward designs: (1) Binary reward assigns +1
for correct and −1 for incorrect responses, recovering the standard vanilla RL setup. (2) Ternary
reward assigns +1 for correct answers, 0 for uncertain, and −1 for incorrect ones.

We further consider two enhancements on top of these rewards. First, a knowledge-enhanced variant
treats abstention as positive when the model genuinely lacks knowledge. It assigns +1 for uncertain
responses for out-of-knowledge (OOK) questions and −1 otherwise; for non-OOK questions, it
assigns +1 for correct answers, −1 for incorrect answers, and 0 for abstentions if applied with the
ternary reward. Second, a reasoning-enhanced variant builds on the above outcome-based reward by
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Table 1: Comparison between TruthRL and baselines across four knowledge-intensive benchmarks
under with and without retrieval settings. We report the truthfulness score (T), hallucination rate
(H), and accuracy (A) as evaluation metrics. The best scores are highlighted in bold.

CRAG NQ HotpotQA MuSiQue Average
Method T (↑) H (↓) A (↑) T (↑) H (↓) A (↑) T (↑) H (↓) A (↑) T (↑) H (↓) A (↑) T (↑) H (↓) A (↑)

Without Retrieval
Qwen2.5-7B-Inst

Prompting -17.4 48.1 30.6 -32.4 60.1 27.7 -36.0 60.7 24.6 -68.8 76.7 7.9 -38.7 61.4 22.7
SFT -51.5 75.7 24.3 -49.4 74.7 25.3 -46.7 73.4 26.6 -81.8 90.9 9.1 -57.4 78.7 21.3
RFT -16.8 46.7 29.9 -20.8 49.6 28.9 -19.1 46.5 27.4 -41.8 50.7 8.9 -24.6 48.4 23.8
R-Tuning -7.5 21.9 14.5 -0.9 12.6 11.7 3.3 8.4 11.7 -0.7 2.1 1.4 -1.5 11.3 9.8
TruthRLBinary -29.2 64.5 35.3 -35.9 67.8 31.9 -31.2 65.3 34.1 -71.7 84.8 13.2 -42.0 70.6 28.6
TruthRL 16.2 8.7 24.9 -1.6 25.0 23.5 9.8 12.7 22.5 -1.7 5.3 3.6 5.7 12.9 18.6

Llama3.1-8B-Inst
Prompting -4.4 44.5 40.1 -5.2 49.2 43.9 -19.9 53.9 34.0 -54.2 64.7 10.5 -20.9 53.1 32.1
SFT -42.1 71.1 28.9 -38.4 69.2 30.8 -38.9 69.5 30.5 -81.9 90.9 9.1 -50.3 75.2 24.8
RFT -7.6 48.1 40.4 -11.4 51.8 40.4 -23.2 57.9 34.7 -58.0 69.2 11.2 -25.1 56.8 31.7
R-Tuning -13.7 39.5 25.8 -16.6 42.5 25.9 -3.5 26.7 23.2 -20.7 25.2 4.5 -13.6 33.5 19.9
TruthRLBinary -14.5 57.2 42.8 -5.3 52.6 47.4 -19.6 59.8 40.2 -67.2 83.6 16.4 -26.7 63.3 36.7
TruthRL 22.4 16.3 38.7 12.9 30.9 43.8 14.3 18.9 33.2 -7.7 16.0 8.2 10.5 20.5 31.0

With Retrieval
Qwen2.5-7B-Inst

Prompting 10.6 38.4 49.0 9.0 41.1 50.1 0.2 43.6 43.8 -51.3 62.8 11.5 -7.9 46.5 38.6
SFT -2.3 51.2 48.8 0.3 49.9 50.1 -2.4 51.2 48.8 -68.2 84.1 15.9 -18.2 59.1 40.9
RFT 22.6 31.4 54.0 18.4 32.1 50.5 23.4 23.3 46.6 -20.6 33.8 13.2 11.0 30.2 41.1
R-Tuning 13.4 35.0 48.4 4.3 44.5 48.8 13.8 30.3 44.1 -23.0 32.5 9.4 2.1 35.6 37.7
TruthRLBinary 8.4 45.3 53.7 11.8 43.9 55.7 20.1 39.1 59.2 -49.4 72.2 22.8 -2.3 50.1 47.9
TruthRL 33.1 17.3 50.4 26.4 21.2 47.6 33.3 10.7 43.9 -0.6 9.0 8.4 23.1 14.6 37.6

Llama3.1-8B-Inst
Prompting 5.3 43.5 48.8 -5.8 50.7 44.9 -4.4 49.0 44.6 -60.5 73.0 12.5 -16.4 54.1 37.7
SFT 1.4 49.3 50.7 1.6 49.2 50.8 -4.3 52.1 47.9 -69.8 84.9 15.1 -17.8 58.9 41.1
RFT -3.7 48.8 45.1 -4.7 50.4 45.7 1.1 45.8 46.9 -55.7 68.8 13.1 -15.8 53.5 37.7
R-Tuning 15.2 33.1 48.4 2.1 47.5 49.6 1.7 46.2 47.9 -53.9 68.3 14.4 -8.7 48.8 40.1
TruthRLBinary 20.8 39.5 60.3 19.0 40.5 59.5 25.9 37.0 62.9 -47.6 73.7 26.1 4.5 47.7 52.2
TruthRL 37.2 19.4 56.6 28.8 24.9 53.7 37.4 14.9 52.3 -0.9 15.9 15.0 25.6 18.8 44.4

incorporating additional reward signals that evaluate the quality of the model’s reasoning process.
Different reward designs induce distinct model behaviors, and a detailed analysis is provided in
Sections 4.4 and 4.6.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets and Evaluation Metrics. We conduct experiments on four knowledge-intensive bench-
marks, under with and without retrieval setups: CRAG (Yang et al., 2024a), NaturalQuestions
(NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), and MuSiQue (Trivedi et al., 2022).
Models are trained on CRAG and evaluated across all four datasets. The primary evaluation metrics
are truthfulness score and hallucination rate, with accuracy reported as an auxiliary metric. The cor-
rectness of predicted answers are judged by Llama3.3-70B-Instruct against the reference answers.

Models and Baselines. We compare our method with a prompting baseline, vanilla SFT, and two
knowledge-enhanced SFT baselines, RFT and R-Tuning, as introduced in Section 3. By default,
TruthRL is implemented with the ternary reward, and when implemented with the binary reward, it
recovers the vanilla RL. We instantiate the above methods using Llama3.1-8B-Instruct (Dubey et al.,
2024) and Qwen2.5-7B-Instruct (Qwen et al., 2025) as backbone models.

More implementation details, including retrieval setup, training and inference hyper-parameters, and
prompt design are provided in Appendix C and Appendix E.

4.2 MAIN RESULT

Table 1 shows the overall experimental results, providing a comprehensive comparison between
TruthRL and baseline methods in both retrieval and non-retrieval settings.
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Figure 3: Performance decomposed to accuracy (blue), hallucination (red), and uncertainty (gray).
Compared to baselines, TruthRL achieves the highest overall accuracy and the lowest hallucination.
On difficult questions where almost no method can provide correct answers, TruthRL produces min-
imal hallucinations while other methods hallucinate heavily, demonstrating its improved capability
in recognizing knowledge boundaries.

Vanilla SFT increases both accuracy and hallucination, while knowledge-enhanced SFTs ef-
fectively reduce hallucination with little loss or even a meaningful gain in accuracy. Com-
pared to the prompting baseline, vanilla SFT substantially increases hallucination rates, showing
that simply optimizing for accuracy can inadvertently encourage incorrect answers. This effect is
particularly pronounced in the no-retrieval setting: while retrieval provides access to external infor-
mation and can improve accuracy, in the absence of retrieval, the model may even lose accuracy.
This is likely because using SFT for ground-truth answers that the model does not know encourages
the model to generate content beyond its knowledge, thereby promoting hallucinations. In con-
trast, knowledge-enhanced SFT methods (i.e., RFT, R-Tuning) achieve much lower hallucination
with little to no compromise in accuracy, and can even improve accuracy when sufficient informa-
tion is provided through retrieval, demonstrating the benefit of explicitly modeling uncertainty in
knowledge-intensive tasks.

TruthRL consistently outperforms baselines in terms of truthfulness, with significantly re-
duced hallucination and increased accuracy, particularly in the retrieval setup. Our TruthRL
achieves the lowest hallucination rates and highest truthfulness scores across different setups and
backbone models. Access to external information consistently improves performance for all meth-
ods, highlighting the importance of retrieval in mitigating hallucinations. On CRAG, TruthRL
reduces hallucination for Llama3.1-8B-Instruct by 24.1% and achieves an absolute improvement
of 31.9% in truthfulness compared to the prompting baseline under the retrieval setup. While
knowledge-enhanced SFT methods such as R-Tuning substantially improve truthfulness over vanilla
SFT and prompting baselines, they still struggle to balance between hallucination reduction and
maintaining accuracy. TruthRLBinary is a variant of our method that uses a binary reward, achiev-
ing the highest accuracy but also exhibiting a high hallucination rate and losing the ability to abstain
from answering, similar to vanilla SFT, which ultimately limits its truthfulness. In contrast, TruthRL
not only reduces hallucinations but also encourages more accurate responses and appropriate absten-
tions, yielding the highest overall truthfulness.

4.3 TRUTHRL IMPROVES LLMS IN RECOGNIZING THEIR KNOWLEDGE BOUNDARIES

TruthRL enables LLMs to abstain from answering only when they genuinely lack knowledge.
To better understand the behaviors of LLMs trained with different methods, Figure 3 breaks down
performance on the CRAG benchmark under the retrieval setup, evaluating both the full test set
and a challenging subset, using Llama3.1-8B-Instruct as the backbone model. On the full set (Fig-
ure 3a), compared to the prompting method, fine-tuning baselines either achieve improved accuracy
with almost zero uncertainty rate (e.g., SFT, TruthRLBinary) or sacrifice accuracy to allow abstention
(e.g., RFT, R-Tuning). In contrast, TruthRL achieves the lowest hallucination rate while maintaining
competitive accuracy and the highest uncertainty rate among all baselines, confirming its effective-
ness. When evaluating on the difficult questions (Figure 3b), where almost no method provides
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Table 3: Ablation study on reward design of TruthRL.
CRAG NQ HotpotQA MuSiQue Average

TruthRL T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓)
with binary reward 20.8 39.5 19.0 40.5 25.9 37.0 -47.6 73.7 4.5 47.7

+ knowledge-enhanced 27.4 30.6 19.2 38.2 28.9 32.0 -28.9 52.3 11.7 38.3
with ternary reward 37.2 19.4 28.8 24.9 37.4 14.9 -0.9 15.9 25.6 18.8

+ knowledge-enhanced 32.7 21.9 27.2 25.3 35.1 13.4 -2.3 15.0 23.2 18.9
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Figure 4: Learning dynamic of TruthRL under different reward designs.
correct answers, all baselines hallucinate heavily—models that achieve high overall accuracy can
even hallucinate nearly 100% on these challenging questions (e.g., SFT, TruthRLBinary). In contrast,
TruthRL produces minimal hallucinations (15.5%) while generating uncertain responses for most
cases (84.5%), demonstrating an improved ability to recognize its knowledge boundaries.

Table 2: Comparison of different methods on
hallucination-baiting questions.

Method T (↑) H (↓) U (−)

Prompting 9.7 39.8 10.7
SFT 3 48.5 0
RFT 12.7 38.8 9.7
R-Tuning 6.8 43.7 5.8

TruthRL 52.4 16.5 14.6

TruthRL is robust to halluciantion-baiting
questions. We evaluate all methods on the
comparison-type questions from CRAG, where
candidate answers are explicitly provided in the
input (e.g., “Which is larger, A or B?”). Such
multichoice–like questions are known to be
prone to inducing hallucinations (Kang et al.,
2025), and as shown in Table 2, all base-
line methods exhibit high hallucination rates
and limited truthfulness scores. Notably, the
knowledge-enhanced baselines (RFT, R-Tuning) demonstrate promising overall performance in Ta-
ble 1, but still suffer substantial hallucinations on these hallucination-baiting questions, highlighting
their vulnerability to such cases. In contrast, our method achieves the highest truthfulness while
maintaining lowest hallucination, further confirming the effectiveness of TruthRL.

4.4 ABLATION STUDY

Binary reward design excels in accuracy but is limited in truthfulness, while ternary reward
achieves the best truthfulness score with competitive accuracy. As shown in Table 3, we next
ablate the reward design. A binary reward, which only distinguishes correct vs. incorrect answers,
strongly increases accuracy but drives the model towards the elimination of abstentions. Augmenting
binary reward with knowledge-enhanced signals partially alleviates this issue, improving abstention
rates while at the cost of compromised accuracy. However, the best performance comes from our
ternary reward, which explicitly recognizes three outcomes: correct, hallucinated, and abstained.
This formulation rewards correctness while tolerating abstention, thereby striking a balance between
informativeness and reliability. Empirically, the ternary reward achieves the lowest hallucination and
highest truthfulness, validating that nuanced feedback is critical for uncertainty-aware optimization.

Online RL outperforms offline and semi-online counterparts. Table 4 compares different rein-
forcement learning paradigms using the same backbone model. We observe that purely offline RL
via DPO leads to limited gains: although slightly better than promoting baseline, the truthfulness
score remains low, as the fixed dataset constrains the model’s ability to adaptively refine its behavior.
Semi-online training through iterative DPO provides some remedy by refreshing preference data af-
ter each iteration, but the performance is inconsistent: early iterations bring steady improvements,
yet excessive iterations (e.g., Iter 4) show regressions, suggesting that repeated offline fine-tuning
cannot effectively balance exploration and exploitation. In contrast, our TruthRL with online GRPO
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Table 4: Comparison between Offline RL (DPO), Semi-Online RL (Iterative DPO), and Online RL
(TruthRL) across four knowledge-intensive benchmarks.

CRAG NQ HotpotQA MuSiQue Average
Method T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓)
DPO 6.8 43.7 -2.8 49.8 6.3 43.8 -50.5 67.0 -10.1 51.1
Iterative DPO

Iter 1 12.9 40.9 6.7 45.5 12.7 41.0 -49.7 67.4 -4.4 48.7
Iter 2 16.3 39.8 9.3 43.4 18.5 37.5 -44.4 61.9 -0.1 45.7
Iter 3 28.0 29.5 15.0 37.1 26.5 26.5 -19.0 33.7 12.6 31.7
Iter 4 19.0 33.9 4.3 44.5 8.1 40.1 -39.5 52.7 -2.0 42.8

TruthRL 37.2 19.4 28.8 24.9 37.4 14.9 -0.9 15.9 25.6 18.8

Table 5: Evaluation on CRAG under different judges.
Llama3.3-70B-Inst Qwen2.5-72B-Inst Gemma3-27B-Inst Average

Method T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓)
Prompting 5.3 43.5 1.9 45.3 6.5 42.9 4.6 43.9
SFT 1.4 49.3 1.7 49.1 6.7 46.7 3.3 48.4
RFT -3.7 48.8 -5.0 49.5 -3.1 48.5 -3.9 48.9
R-Tuning 15.2 33.1 14.9 33.3 18.0 31.7 16.0 32.7
TruthRL 37.2 19.4 35.6 20.2 39.7 18.2 37.5 19.3

achieves the best results across all benchmarks, consistently lowering hallucination while improv-
ing truthfulness. This highlights the advantage of learning from online interactions, which enables
continuous updates and policy refinement without drifting toward overfitting or degeneration. More
implementation details on DPO are provided in Appendix C

4.5 ANALYSIS
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Figure 5: Study of model behaviors under differ-
ent output confidence on CRAG.

Due to space limit, we present additional anal-
yses in Appendix A.

TruthRL is more confident in giving correct
answers and abstaining, while the hallucina-
tion rate is significantly lower. As shown in
Figure 5, we group the model outputs based on
their confidence intervals. Even before fine-
tuning, Llama3.1-8B-Instruct already exhibits
high confidence in its predictions. However, a
large portion of outputs in each confidence in-
terval are hallucinations. Moreover, the uncer-
tainty rate decreases as confidence increases,
indicating that the model tends to provide an answer rather than abstain when its confidence is
high. In contrast, TruthRL further increases the confidence of model outputs, it not only improves
accuracy but also significantly reduces overconfident hallucinations. This indicates that our method
produces responses that are not only more accurate but also better aligned with their confidence,
leading to more trustworthy uncertainty estimates.

TruthRL is robust across different LLM judges. Since our training pipeline relies on external
judges to provide feedback, it is important to ensure that performance is not overly sensitive to the
choice of judge. Table 5 reports results on CRAG under three distinct high-capacity evaluators:
Llama3.3-70B-Instruct, Qwen2.5-72B-Instruct, and Gemma3-27B-Instruct. While absolute scores
vary slightly across judges, the relative improvements of TruthRL are consistent: it achieves the
lowest hallucination and the highest truthfulness under all evaluators. This robustness suggests that
TruthRL learns generalizable behaviors rather than overfitting to the idiosyncrasies of a single judge.
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4.6 BEYOND OUTCOME REWARD

We conduct a reasoning-quality analysis on CRAG using the prompting method with Llama3.1-8B-
Instruct, evaluating model responses for both outcome and reasoning quality, resulting in an overall
truthfulness score of 5.3% and a reasoning score of 50.2%. Specifically, results show that accu-
rate responses are typically associated with a high reasoning quality score of 92% and uncertain
responses exhibit a reasoning score of 0%, while hallucinated responses have a reasoning sore of
12.1%. The findings suggest a strong correlation between response accuracy and reasoning qual-
ity. The high reasoning score of accurate responses indicates that the model excels in generating
accurate outcomes with promising reasoning. However, the low reasoning scores for uncertain and
hallucinated responses highlight the need for quality reasoning. Introducing reasoning rewards could
potentially help mitigate these issues, enabling more accurate outcomes with better reasoning.

Table 6: Effect of incorporating reasoning reward
into TruthRL on CRAG.

Outcome Reasoning

Method T (↑) H (↓) Score (↑)

Prompting 5.3 43.5 50.2
TruthRL (routcome only) 37.2 19.4 56.6

+ multiplicative rreason 37.0 19.4 54.7
+ additive rreason 36.1 19.1 59.1
+ conditional rreason 35.6 19.3 55.1

We explore three heuristic strategies for incor-
porating the reasoning reward rreason on top of
the outcome reward routcome: (1) A multiplica-
tive strategy scales the outcome reward by rea-
soning quality, i.e., rfinal = routcome ·(1+rreason),
which particularly encourages better reasoning
when the outcome is correct. (2) An addi-
tive strategy treats reasoning as a complemen-
tary signal with scaling factor λ, giving rfinal =
routcome + λ · rreason, so that good reasoning can
get rewarded even when the outcome reward
is moderate. (3) A conditional strategy applies reasoning rewards only if the outcome is correct:
rfinal = routcome · rreason when routcome = 1, and rfinal = routcome otherwise, enforcing stricter align-
ment where reasoning quality matters primarily in successful completions. The results in Table 6
indicate that outcome-only rewards implicitly improve reasoning ability, while explicitly optimizing
reasoning quality requires non-trivial design to balance multiple objectives. For instance, heuristic
designs like additive reasoning rewards can boost reasoning scores but may compromise the out-
come, underscoring the need for thoughtful design. We leave this exploration for future work.

5 RELATED WORK

LLMs often generate factually incorrect statements, or hallucinations (Zhang et al., 2023; Xu et al.,
2024b), arising from limited grounding (Shuster et al., 2021) and over-reliance on parametric mem-
ory (Petroni et al., 2019). Mitigation strategies include retrieval-augmented generation (Lewis et al.,
2020; Borgeaud et al., 2022), decoding-based self-correction (Wang et al., 2023; Kadavath et al.,
2022), and fine-tuning methods such as SFT (Zhou et al., 2023) and RLHF (Ouyang et al., 2022),
though these approaches often fail out-of-distribution (Kirk et al., 2024) and rarely model abstention.
Reinforcement learning (Zhu et al., 2025; Shao et al., 2025) elicits reasoning for improved accuracy
with binary correctness rewards but penalizes abstention (Song et al., 2025). Extensions such as
uncertainty-aware RL (Xu et al., 2024a) and multi-objective optimization (Wang et al., 2024a) stress
the importance of reward design. R-Tuning (Zhang et al., 2024) reduces hallucinations but sacrifices
coverage, highlighting the need for reward formulations that balance factual accuracy with calibrated
abstention. Due to space limit, we provide an extended discussion in Appendix B.

6 CONCLUSION

In this work, we presented TruthRL, a general reinforcement learning framework that directly opti-
mizes the truthfulness of large language models. By leveraging a simple yet effective ternary reward
design, TruthRL incentivizes models to provide accurate responses, abstain when uncertain, and
avoid hallucinations. Experiments on four knowledge-intensive benchmarks demonstrate TruthRL
consistently improves truthfulness and reduces hallucinations, achieving significant gains across var-
ious backbone models under both with and without retrieval setups. Compared to baseline methods,
TruthRL achieves an average reduction of up to 40.1% in hallucinations and an average improve-
ment of up to 43.4% in truthfulness, demonstrating its effectiveness in enhancing the reliability and
trustworthiness of large language models.
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REPRODUCIBILITY STATEMENT

To ensure the highest level of reproducibility for our reported results, we have provided:

• Comprehensive implementation details in Appendix C;

• All prompt templates used in our experiments in Appendix E.
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A ADDITIONAL ANALYSIS

Table 7: Training with rule-based verifier
vs. training with model-based verifier.

TruthRL T (↑) H (↓)

with rule-based verifier -3.6 3.6
with model-based verifier 37.2 19.4

LLM-based verifier provides more reliable train-
ing signals than rule-based verifier. When replac-
ing the LLM-based verifier with a simple rule-based
verifier (Table 7), the model collapses into overly con-
servative behavior, abstaining on the vast majority of
queries. Although this results in an extremely low hal-
lucination rate, the truthfulness score becomes nega-
tive, reflecting the lack of meaningful answers. By contrast, the LLM-based verifier provides fine-
grained, context-sensitive signals that better capture partial correctness and nuanced errors, which
stabilizes RL training and leads to higher overall performance. This demonstrates that high-quality
verifier are as important as the reward design itself in reinforcement learning for truthfulness.

TruthRL consistently improves across model scales. We further examine the scalability of our
method across a spectrum of model sizes, ranging from compact backbones (e.g., Llama3.2-3B,
Qwen2.5-3B) to mid/large-scale models (e.g., Qwen2.5-7B, Llama3.1-8B, Qwen2.5-32B). As sum-
marized in Table 8, TruthRL consistently reduces hallucination and boosts truthfulness regardless of
the base model size. Interestingly, the relative gain is more pronounced for smaller models, which
suffer from higher hallucination rates under prompting. This suggests that our approach not only
strengthens already strong models but also helps weaker models develop more reliable uncertainty-
awareness. At the large-model end, the improvements on 32B backbones highlight that even highly
capable LLMs benefit from reinforcement learning with uncertainty-aware rewards, underscoring
the scalability of our method to state-of-the-art systems.

Table 8: The performance of TruthRL with different backbones on the CRAG benchmark.

Llama3.2-3B-Inst Qwen2.5-3B-Inst Qwen2.5-7B-Inst Llama3.1-8B-Inst Qwen2.5-32B-Inst

Method T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓) T (↑) H (↓)

Prompting 1.9 45.1 -0.3 45.4 10.6 38.4 5.3 43.5 29.1 27.1
TruthRL 27.4 21.5 21.9 16.2 33.1 17.3 37.2 19.4 40.0 18.2

B EXTENDED RELATED WORK

LLM Hallucination and Mitigation A recurring challenge in LLMs is their tendency to gener-
ate fluent but factually incorrect statements, commonly termed hallucinations (Ji et al., 2023; Zhang
et al., 2023; Xu et al., 2024b). Hallucinations arise from several factors, including limited grounding
in external knowledge sources (Shuster et al., 2021) and over-reliance on parametric recall (Petroni
et al., 2019). This gap between surface-level accuracy and deeper factual correctness becomes es-
pecially problematic in high-stakes domains such as law (Xiao et al., 2021) and medicine (Singhal
et al., 2023; Xiong et al., 2024), where confidently wrong outputs can mislead users. Several lines
of mitigation strategies have been explored. Retrieval-augmented methods ground LLMs in exter-
nal knowledge bases or search engines to reduce reliance on memory alone (Lewis et al., 2020;
Borgeaud et al., 2022; Izacard et al., 2023). Decoding strategies encourage self-correction and
uncertainty expression, including self-consistency sampling (Wang et al., 2023), calibrated decod-
ing (Kadavath et al., 2022), and contrastive decoding (Chuang et al., 2024). Fine-tuning approaches
seek to instill more truthful behavior directly into the model’s parameters. Common methods in-
clude SFT (Zhou et al., 2023) and reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022) on curated datasets of high-quality, factual question-answer pairs. While these meth-
ods can enhance accuracy on in-distribution topics, their generalization might degrade significantly
on out-of-distribution questions (Kirk et al., 2024). Our work addresses a key limitation of many
existing approaches: they do not explicitly train models to recognize when to abstain. Among prior
efforts, the most closely related is R-Tuning (Zhang et al., 2024), which likewise aims to reduce
hallucinations. However, as we show in Section 4, its reduction of hallucination comes at the cost
of substantially reduced coverage. This trade-off underscores the need for training frameworks that
directly optimize for truthfulness—striking a balance between factual accuracy and calibrated ab-
stention, thereby minimizing the risk of misleading outputs.
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Reinforcement Learning for LLMs Reinforcement learning (RL) has become a central
paradigm for post-training LLMs, enabling alignment beyond supervised fine-tuning. The most
prominent example, RLHF (Ouyang et al., 2022; Christiano et al., 2017; Rafailov et al., 2023), en-
codes user preferences into reward models and has produced systems that are generally more help-
ful, safe, and aligned. More recently, Reinforcement learning from verifiable rewards (RLVR) (Shao
et al., 2024; Zhu et al., 2025; Shao et al., 2025; Lambert et al., 2024; Guo et al., 2025) has shown
that binary reward signals (correct vs. incorrect) can elicit sophisticated chain-of-thought reasoning.
However, this formulation conflates abstention with error, thereby discouraging models from pro-
ducing calibrated “I don’t know” responses (Song et al., 2025). To alleviate such limitations, several
extensions introduce richer reward structures, including uncertainty-aware RL (Xu et al., 2024a;
Xue et al., 2024; Lin et al., 2024; Wang et al., 2024c; Li et al., 2025) and multi-objective optimiza-
tion for factual faithfulness (Wang et al., 2024a). Despite these advances, designing scalable reward
signals that reliably capture truthfulness while balancing accuracy and uncertainty remains an open
challenge. In this work, we demonstrate that reward structure—binary vs. ternary, whether and how
uncertainty is incorporated—can fundamentally influence whether models learn to balance factual
accuracy with abstention.

C IMPLEMENTATION DETAILS

Retrieval Setup We follow the retrieval setup from CRAG (Yang et al., 2024a), using up to 50
web pages as retrieval documents per question. For each question, the question text is used as the
search query, and up to 50 HTML pages are stored from the search API. For NaturalQuestions
(NQ), HotpotQA, and MuSiQue, we use the 2018 Wikipedia dump (Karpukhin et al., 2020) as the
knowledge source and employ the E5 retriever (Wang et al., 2024b), as in line with the Search-R1
setup (Jin et al., 2025).

DPO DPO (Rafailov et al., 2023) is an offline RL method that trains the model to prefer certain
responses over others. Preference pairs are constructed differently for OOK and non-OOK ques-
tions. For OOK questions, the preferred response is “I don’t know,” and the dispreferred response
is a randomly chosen incorrect answer. For non-OOK questions, correct and incorrect responses
are paired. DPO expresses the probability of preference data with the policy model rather than the
reward model, yielding the following objective:

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
,

where (x, yw, yl) are preference pairs consisting of the prompt, the winning response, and the losing
response from the preference dataset D.

Iterative DPO This variant builds on a DPO-trained checkpoint and iteratively constructs prefer-
ence pairs in the same way over the training set.

Training details. Our models are trained on 8 NVIDIA H100 GPUs with 80GB memory using
full-parameter fine-tuning. By default, we use the Open-R1 library (Hugging Face, 2025) as the
training framework. To optimize GPU utilization, we adopt DeepSpeed (Rajbhandari et al., 2020)
with ZeRO-3 offload, along with gradient checkpointing, FlashAttention-2 (Dao, 2024), and bf16
mixed-precision training enabled. To optimize model performance, we conduct an extensive hyper-
parameter search with batch sizes in [16, 32, 64], learning rates in [5e-7, 1e-6, 2e-6, 3e-6, 5e-6,
1e-5], and training epochs in [1, 2, 3].

For SFT, RFT, and R-Tuning, we use a learning rate of 5e-6 and a batch size of 16, with a cosine
learning rate scheduler and 3% warmup steps, trained for 1 epoch. For DPO and iterative DPO, we
use a learning rate of 3e-6 and a batch size of 32, trained for 1 epoch.

For RL training, we use the VeRL framework (Sheng et al., 2024) with a constant learning rate of
1e-6, and a batch size of 64. The KL divergence regularization coefficient β and clip ratio ϵ are set
to 0.001 and 0.2, respectively. The maximum context length and number of generated tokens are set
to 16,384 and 2,048. For efficient LLM rollouts, we use vLLM (Kwon et al., 2023) with a tensor
parallel size of 2 and a GPU memory utilization ratio of 0.8. Rollout sampling is performed with
temperature = 1.0 and top-p = 1.0. The maximum token length for all models is fixed at 16k. We set
λ = 0.5 in Section 4.6.
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Inference details. We use vLLM for efficient inference and adopt greedy decoding (i.e., temp = 0)
for evaluation to ensure reproducible results. For data construction in RFT, we sample 64 responses
with a temperature of 0.6 and top-p of 0.9. The maximum token length at inference is set to 32k.

D LARGE LANGUAGE MODEL USAGE

During the preparation of this paper, we used LLMs solely to refine grammar and wording. Their
role was strictly limited to language polishing.

E PROMPT TEMPLATE

Inference prompts. Below we present the inference prompts for both without and with retrieval
setups in Table 9 and Table 10, respectively.

Table 9: Inference prompt under without retrieval setup.

Inference Prompt (Without Retrieval)

Input: You are given a Question and the time when it was asked in the Pacific Time Zone (PT), referred to
as “Query Time”. The query time is formatted as “mm/dd/yyyy, hh:mm:ss PT”. Your task is to answer the
question based on factual information in your own knowledge.

Please adhere to the following guidelines when formulating the answer:
1. If the question contains a false premise or assumption, answer “invalid question”.
2. If you are uncertain or don’t know the answer, answer “I don’t know”.

Please reason step by step and then provide the final answer. The reasoning process must be enclosed
within <think> </think> tags. The final answer MUST be put in \boxed{}. For example, \boxed{I don’t
know}, \boxed{invalid question}, \boxed{3 times}, \boxed{New York}, etc.

### Question: {question}
### Query Time: {query time}

Output: {answer}

Table 10: Inference prompt under with retrieval setup.

Inference Prompt (With Retrieval)

Input: You are given a Question, References and the time when it was asked in the Pacific Time Zone (PT),
referred to as “Query Time”. The query time is formatted as “mm/dd/yyyy, hh:mm:ss PT”. The references
may or may not help answer the question. Your task is to answer the question based on factual information
in the references or your own knowledge.

Please adhere to the following guidelines when formulating the answer:
1. If the question contains a false premise or assumption, answer “invalid question”.
2. If you are uncertain or don’t know the answer, answer “I don’t know”.

Please reason step by step and then provide the final answer. The reasoning process must be enclosed
within <think> </think> tags. The final answer MUST be put in \boxed{}. For example, \boxed{I don’t
know}, \boxed{invalid question}, \boxed{3 times}, \boxed{New York}, etc.

### Question: {question}
### Query Time: {query time}
### References: {documents}

Output: {answer}
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LLM-as-a-judge prompts. Below we present the judge prompts for outcome and reasoning quality
in Table 11 and Table 12, respectively.

Table 11: LLM-as-a-judge prompt for evaluating outcome.

LLM-as-a-judge Prompt (Outcome)

Input: Assume you are a human expert in grading predictions given by a model. You are given a question
and a model prediction. Judge if the prediction matches the ground truth answer by following these steps:
1: Take it as granted that the Ground Truth is always correct.
2: If the Prediction exactly matches the Ground Truth, “score” is 1.
3: If the Prediction does not exactly match the Ground Truth, go through the following steps and likely give
a score as 0.
4: If the Ground Truth is a number, “score” is 1 if and only if the Prediction gives a number that almost
exactly matches the ground truth.
5: If the Prediction is self-contradictory, “score” must be 0.
6: If the prediction is not answering the question, “score” must be 0.
7: If the prediction is a concise and correct summary of the ground truth, “score” is 1.
8: If ground truth contains a set of items, prediction must contain exactly same items for the score to be 1.
9: Otherwise, “score” is 0.

Output a JSON blob with an “explanation” field explaining your answer as short as possible and an “score”
field with value 1 or 0.

You should make the judgment based on provided examples.

### Examples: {examples}
### Question: {question}
### Ground Truth: {ground truth}
### Prediction: {predicted answer}

Output: {judgment}

Table 12: LLM-as-a-judge prompt for evaluating reasoning quality.

LLM-as-a-judge Prompt (Reasoning Quality)

Input: Assume you are a human expert in evaluating the usefulness of model-generated reasoning. You are
given a question and a model-generated reasoning. Judge if the reasoning provides precise information to
correctly answer the question by following these steps:
1: Evaluate if the reasoning directly addresses the question.
2: Check if the key points in the reasoning are relevant to the query.
3: If the reasoning provides precise and relevant information, “score” is 1.
4: If the reasoning is vague, unrelated, or does not address the question, “score” is 0.

Output a JSON blob with an “explanation” field explaining your answer as short as possible and an “score”
field with value 1 or 0.

You should make the judgment based on provided examples.

### Examples: {examples}
### Question: {question}
### Ground Truth: {ground truth}
### Reasoning: {predicted reasoning}

Output: {judgment}
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