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ABSTRACT

Molecular representation learning is widely considered as a crucial task in
computer-aided molecular applications and design. Recently, many studies have
explored pretraining models on unlabeled data to learn molecular structures and
enhance the performance of downstream tasks. However, existing methods mainly
focus on graph domains, with limited attention to other modals, such as the im-
ages. In addition, most existing methods focus on the atomic or molecular level,
which leads to the neglect of high-order connection information or local struc-
ture information. In this work, we propose a motif-based multi-granularity graph-
image pretraining framework, MotifGrIm, for molecular representation learning.
In this framework, we incorporate motifs into the image domain for the first time,
by generating distinct background features for different motifs in molecular im-
ages, offering a novel approach to enhancing molecular representation. Through
contrastive learning within and across modules, we effectively tackle two key chal-
lenges in molecular motif pretraining with graph neural networks: (1) the over-
smoothing problem, which restricts GNNs to shallow layers and hinders global
molecular information capture, and (2) the aggregation of motif nodes, which
leads to the loss of connectivity information between motifs. Additionally, to
more effectively capture information across different molecular granularities, we
propose a multi-granularity prediction pretraining strategy to optimize the model.
For downstream tasks, we use only the graph encoders for prediction, reducing
both time and memory consumption. We evaluate MotifGrIm on molecular prop-
erty prediction and long-range benchmarks. Across eight commonly used molec-
ular property prediction datasets, MotifGrIm outperforms state-of-the-art models
with an average ROC-AUC improvement of 1.16% and achieves the best results
on five of them. On long-range datasets, MotifGrIm improves the performance by
at least 14.8%.

1 INTRODUCTION

Molecular representation learning is crucial in many fields, such as cheminformatics Aldeghi & Co-
ley (2022); Nguyen-Vo et al. (2024), drug design Fang et al. (2022); Xue et al. (2020), and materials
science Damewood et al. (2023); Fuhr & Sumpter (2022). By converting molecular structures and
properties into embeddings suitable for machine learning, it enables many important tasks, such as
molecular property prediction Sultan et al. (2024); Zhang et al. (2024), molecular activity evalua-
tion Hadiby & Ben Ali (2024); Li & Fourches (2020), and molecular generation Bagal et al. (2021);
Hua et al. (2024). Traditional methods often rely on manually designed molecular fingerprints (e.g.,
ECFP Rogers & Hahn (2010) and MACCS Durant et al. (2002)) , requiring chemists to define spe-
cific professional rules. It is time-consuming and exhibits limitations in capturing the latent complex
patterns in molecules.

Driven by the success of the pretraining-finetuning paradigm, unsupervised pretrained molecular
graph neural networks have achieved remarkable results in downstream tasks and are becoming
increasingly popular. The key to pretraining lies in designing an effective proxy task (i.e., training
objective) to leverage large-scale unlabeled datasets for optimization. Current optimization methods
fall into three categories, namely, predictive methods, generative methods and contrastive learning
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methods. Predictive methodsHu et al. (2019); Rong et al. (2020) use large-scale unlabeled datasets
to generate chemical and topological labels for training. Despite their simplicity, these methods
are susceptible to negative transfer. Generative methodsHu et al. (2020b); Zhang et al. (2021) aim
to learn the distribution of molecular graphs, while contrastive learning methodsWang et al. (2022);
Stärk et al. (2022); Xiang et al. (2023); Luong & Singh (2024) focus on learning a robust embedding
space by aligning different molecular views.

Recently, many studies have employed multi-modal contrastive learning to align semantic infor-
mation, transferring chemical knowledge from other domains, such as molecular SMILES, 3D
molecular structures, and molecular images to 2D molecular graphs, thereby enhancing molecu-
lar representation. GraphMVPLiu et al. (2021a) performs self-supervised learning by leveraging
the correspondence and consistency between 2D topological structures and 3D geometric views, al-
lowing the pretrained graph encoder to implicitly encode such information. MoleculeSTMLiu et al.
(2023) works by learning molecular chemical structures alongside their textual descriptions, while
CGIPXiang et al. (2023) works by learning explicit information from graphs and implicit infor-
mation from images in large-scale unlabeled molecular datasets. Furthermore, SGGRLWang et al.
(2024) integrates the sequential, graphical, and geometric features of molecules to provide a more
comprehensive representation of the molecular structures.

Existing multi-modal contrastive learning methods primarily focus on molecular-level comparisons,
often overlooking finer details. However, the motif information, such as functional groups and ring
structures, is critical for molecular analysis. Recent studiesZhang et al. (2020; 2021); Luong & Singh
(2024) have introduced motif-based pretraining methods to capture local substructural information
within graphs, demonstrating the effectiveness of motif information. However, these approaches
remain graph-based and have not been extended to incorporate information from other domains.

In this work, we propose a motif-based multi-granularity graph-image pretraining method
(MotifGrIm) for molecular representation learning, augmenting motif data by incorporating the
image modality in addition to graphs. For each molecule, we obtain four representations, namely,
molecular graph, motif graph, molecular image, and motif image. Notably, this is the first applica-
tion of motifs in the image domain. By coloring all atoms and bonds belonging to the same motif
and adding a background feature to each motif, the model can recognize it as a substructure when
processing the image. This approach enhances the capture of molecular substructure information.
These inputs are then processed by two graph encoders and one image encoder, capturing molecule-
level information related to global structures and motif-level information concerning substructures
and higher-order connectivity from both graphical and image data.

By integrating the image module with a convolutional neural network (CNN) , we effectively address
challenges at both the molecular and motif levels: (1) At the molecular level, shallow GNNs struggle
to capture overall molecular structure. For instance, a two-layer GNN may fail to recognize ring
structures, while deeper GNNs are often prone to oversmoothing. In contrast, the image module
leverages CNNs to easily capture global structures in images. (2) At the motif level, motif graphs are
constructed by aggregating nodes, which often results in the loss of internal connectivity information
within the molecule. However, motif images not only preserve the specific internal structures of the
entire motif but also reveal how motifs are connected through specific atoms.

Additionally, to better capture information across multiple granularities, we propose three predic-
tive pretraining tasks. (1) Given a molecular graph embedding, predict the motifs present in the
molecule; (2) Given the node embeddings of a motif graph, predict the structures it contains(e.g.,
atoms, heteroatoms, ions) . (3) Given a motif image, predict the shape of its corresponding motif
structure graph. These tasks assist the model in achieving a deeper structural understanding and can
be performed alongside other pretraining tasks.

Our contribution can be summarised as follows:

• We propose a motif-based multi-modal self-supervised learning framework for molecular represen-
tation. To the best of our knowledge, this is the first approach to extend motif knowledge from the
graph domain to the multi-modal domain.

• We propose MotifGrIm, a motif-based multi-granularity graph-image pretraining method that lever-
ages contrastive learning at both the molecular and motif levels to integrate information from graph
and image data, enabling a comprehensive capture of molecular structural features. Additionally, we
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introduce three predictive learning tasks at different granularities to enhance the model’s structural
understanding.

• Through extensive experiments on molecular property prediction and long-range benchmarks, we
demonstrate the superiority and generalizability of our method. Across eight molecular property
prediction datasets, our approach achieves an average AUC-ROC improvement of 1.16%, with five
datasets attaining the best performance. On the long-range datasets, performance improves by at
least 14.8%.

2 METHODOLOGY

Figure 1: The overall framework of MotifGrIm. Figure (a) illustrates the Motif-based Multi-modal
Contrastive Learning. The left part shows four views of the molecule generated by smiles according
to Section 2.1. The (1) , (2) , and (3) respectively show the graph contrastive learning , the image
contrastive learning , and the hybrid graph-image contrastive learning. Figure (b) illustrates the
multi-granularity prediction learning, where the molecular graph is used for motif existence predic-
tion, the motif graph is used for atom existence prediction, and the motif image is used for molecular
tree structure prediction.

In this section, we present the motif-based multi-granularity graph-image learning framework to
learn molecular representations without supervision. We first introduce how to obtain data of dif-
ferent levels from molecular SMILES. Then, we present the pretraining strategies of the model,
including motif-based multi-modal contrastive learning and multi-granularity prediction learning.
The overview of the proposed MotifGrIm is shown in Figure1.

2.1 DATA PREPARATION

Typically, the initial data for molecules are in the form of SMILES and we first convert the molecular
SMILES notation XS = {S1,S2, · · · ,Sn} into two different modes: molecular images XM =
{M1,M2, · · · ,Mn} ∈ R224×224×3 and molecular graphs XG = {G1,G2, · · · ,Gn}, where n is
the total number of molecules. The molecular graphs G can be represented as G = (V, E), where
vertices V and edges E represent the sets of atoms and bounds, respectively.

2.1.1 MOTIF SEGMENTATION METHODS

Inspired by chemistry, existing methods such as BRICSDegen et al. (2008) and RECAPLewell et al.
(1998) rely on rule-based program variants. However, the extracted vocabulary is often quite large
and contains many specific or low-frequency fragments which pose significant challenges for motif
recognition. To overcome these shortcomings, previous work has proposed further decomposing
fragmentsZhang et al. (2021), even down to the level of rings and bondsJin et al. (2018), but the
reduction in fragment size is detrimental to the ability to capture the higher-order representations of
molecules. To alleviate the above issues, we draw on the Principal Subgraph Mining algorithm from
Kong et al. (2022) in this work.
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2.1.2 SUBGRAPH MINING ALGORITHM

For a graph G = {V, E}, we define a subgraph of G as S = (Ṽ, Ẽ), where Ṽ ⊆ V and Ẽ ⊆ V . We
call a subgraph S a principal subgraph if, for any other subgraph S ′ that spatially intersects with S
in a molecule, it holds that either S ′ ⊆ S or c(S ′) ≤ c(S), where c(S) is the frequency of subgraph
S among molecules. Intuitively, principal subgraphs are fragments that are both larger in size and
occur more frequently. The algorithm heuristically builds a vocabulary of these principal subgraphs
through the following steps:
Initialization. Initialize the vocabulary V with all unique atoms.
Merge. For each molecular graph, for all pairs of overlapping fragments, merge the fragments in
the pair and update the occurrence counts of the newly formed combined fragment.
Update. We count the frequency of each merged subgraph appears in the last stage. We select the
most frequent one as a new fragment in the vocabulary V. Then, we go back to the merge stage until
the vocabulary size reaches the set number N .

For more details about the algorithm, please refer to Kong et al. (2022).

2.1.3 MOTIF DATASET CONSTRUCTION

After performing Subgraph Mining Algorithm on the molecules, we use the extracted principal
vocabulary V to construct the motif dataset.

Motif Graph. For a molecular graph G = (V, E), let F = {S(0), S(1), · · · , S(m)} be its corre-
sponding motif, where S(i) = (Ṽ(i), Ẽ(i)) ∈ V is a subgraph, Ṽ(i) ∩ Ṽ(j) = ∅ and ∪m

i=1Ṽ(i) = V .
We denote the motif graph of G as G̃ = (Ṽ, Ẽ), where |Ṽ| = |F | and each node v(i)F ∈ Ṽ corresponds
to a motif S(i). If there is at least one edge between the atoms of two motifs, then there is an edge
between the nodes of these two motifs, defined as Ẽ = {(i, j)|∃u, v, u ∈ Ṽ(i), v ∈ Ṽ(j), (u, v) ∈ E}.
For simplicity, we retained the edge features within each motif, and the node features of the motifs
are derived from embeddings in an optimizable lookup table.As a result, we obtained the motif graph
dataset X̃G = {G̃1, G̃2, · · · , G̃n}.

Motif Image. To enable the image encoder model to better recognize the motif structures of
molecules, we innovatively propose constructing motif images for training. Specifically, we first
initialize a color matrix C ∈ RK×3, where the differences between each color are maximized to
ensure the greatest possible contrast and K is the number of color. For motif S(i) ∈ V, we as-
sign corresponding color is C[r(S(i))%K], where r(S(i)) represents the result of sorting motif S(i)

first by size and then by frequency. Then, we determine which motif each atom and bond in the
molecule belongs to. Finally, we apply corresponding background colors to the atoms and bonds
of the molecule, resulting in the motif image dataset X̃M = {M̃1,M̃2, · · · ,M̃n} ∈ R224×224×3.
In summary, in each molecular image, we add a background with different colors for the nodes and
edges corresponding to the different motif structures of the molecule. This provides each motif with
a new image feature, allowing the image encoder to better capture higher-order structural patterns.

2.2 MOTIF-BASED MULTI-MODAL CONTRASTIVE LEARNING

In this section, we perform motif-based multi-modal contrastive learning using graph and image
encoders based on the data obtained in Section 2.1. The contrastive framework is illustrated in
Figure 1(a) .

2.2.1 GRAPH CONTRASTIVE LEARNING

For graph data, we define two graph encoders, GM and GF , to encoder the molecular graphs and
motif graphs, respectively. Given a molecular graph Gi = (Vi, Ei) and the corresponding motif
graph G̃i = (Ṽi, Ẽi), we can obtain their final node embeddings H(i) and H̃(i) as follows:

H
(i)
N = GM (Vi, Ei), H̃(i)

F = GF (Ṽi, Ẽi) (1)

Considering that motif-level data are beneficial for a deeper understanding of molecular properties,
we incorporate motif-level representations in our graph contrastive learning. Since each row of H̃(i)

represents the embedding of a motif, we need to apply pooling to the data in H(i) before performing
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contrastive learning while each row of H(i) represents the embedding of an atom. We first define a
function MOTIFPOOL which performs an average pooling operation on the atom embeddings that
belong to the same motif:

H
(i)
F = MOTIFPOOL(H

(i)
N , MAP(Vi, Ṽi)) (2)

where MAP(·) is mapping function used to establish the relationship between motifs and atoms.
Then we minimize the graph contrastive learning objective based on the InfoNCE loss:

LG = − log
exp

(〈
H

(i)
F,r, H̃

(i)
F,r

〉)
∑n

j=1

∑|Ṽj |
k=1 exp

(〈
H

(i)
F,r, H̃

(j)
F,k

〉) (3)

where H
(i)
F,r and H̃

(i)
F,r are the r-th row of H(i)

F and H̃
(i)
F , respectively. |Ṽj | is the number of motifs

in the j-th molecule.

2.2.2 IMAGE CONTRASTIVE LEARNING

Unlike previous methods that applied different data augmentations to molecular images for con-
trastive learning, we innovatively incorporate motif-level data in molecular images. By marking
motifs with different colors, we set to generate motif-based molecular images and use contrastive
learning to optimize the model.

We first use an image encoder fC to process both molecular images and motif images. For a molec-
ular image Mi and its corresponding motif image M̃i, their final embeddings h

(i)
m and h̃

(i)
m are

produced respectively:
H(i)

m = fC(Mi), H̃
(i)
m = fC(M̃i) (4)

Similarly, we optimize the image contrastive learning process using the InfoNCE loss function:

LM = − log
exp

(〈
H

(i)
m , H̃

(i)
m

〉)
∑n

j=1 exp
(〈

H
(i)
m , H̃

(j)
m

〉) (5)

By bringing two image views of the same molecule as close as possible in the feature space while
pushing apart images of different molecules, an effective molecular image representation can be
learned.

2.2.3 HYBRID GRAPH-IMAGE CONTRASTIVE LEARNING

To achieve compatibility and consistency between different modalities and facilitating information
exchange between them, we set contrastive learning between the graph and image modalities. Unlike
previous multi-modal contrastive learning methods in the molecular field, which only performed
contrastive learning at the molecular level, we propose a hybrid graph-image contrastive learning
method.
We first obtain the final embeddings H(i)

g and H̃
(i)
g for the molecular graph and motif graph through

node aggregation:
H(i)

g = POOL(H
(i)
F ), H̃(i)

g = POOL(H̃
(i)
F ) (6)

where POOL(·) is average pooling function.
This method utilizes both molecular-level and motif-level data, with its corresponding InfoNCE loss
function as:

LGM = − log
exp

(〈
S
(i)
g , S

(i)
m

〉)
∑n

j=1 exp
(〈

S
(i)
g , S

(j)
m

〉) (7)

S(i)
g = βH(i)

g + (1− β)H̃(i)
g , S(i)

m = βH(i)
m + (1− β)H̃(i)

m (8)
where β is the weight hyperparameter.

2.3 MULTI-GRANULARITY PREDICTION LEARNING

To enable the model to capture information at multiple granularities, we propose three predictive
learning tasks to optimize the three encoders. The prediction framework is shown in Figure1(b) .
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2.3.1 ATOM EXISTENCE PREDICTION

In the motif graphs, we design an atom existence prediction method to enhance the representation
of atomic information by the motif graph encoder GF . We perform multi-label prediction for each
motif to indicate which atoms are included in that motif. Notably, to better represent atomic infor-
mation, we collected some frequently occurring heteroatoms and ions for prediction, such as [SH] ,
[NH] , N+, etc. Assuming the set of atoms is |A|, and the atomic label of motif i is y(i)a ∈ {0, 1}|A|,
the loss for atom existence prediction is:

LA =
1

|A|

|A|∑
j=1

∣∣∣[y(i)a ]j − [fa(H̃
(i)
F,r)]j

∣∣∣ (9)

where fa is an MLP used for atom existence prediction and [·]j is the j-th element of the vector.

2.3.2 MOTIF EXISTENCE PREDICTION

To enable the molecular graph encoder GM to better represent the structure of motifs, we designed
a motif existence prediction method to identify the types of motifs contained within each molecule.
Assuming the motif label of the molecule i is y(i)m ∈ {0, 1}|V|, where |V| is the number of motifs,
the loss for motif existence prediction is:

LF =
1

|V|

|V|∑
j=1

∣∣∣[y(i)m ]j − [ff (H
(i)
g )]j

∣∣∣ (10)

where ff is an MLP used for motif existence prediction.

2.3.3 MOLECULAR TREE STRUCTURE PREDICTION

In the motif images, we use different colors to label the motifs to help the image encoder recognize
the motifs of the molecules. Furthermore, to enable the image encoder fC to effectively identify
the connecting structures between motifs, we propose a molecular structure prediction method to
identify the structural backbone of the motif images which are represented in a tree structure formed
by motifs. If two molecules share the same structural backbone, they will yield the same prediction
result. For instance, if a molecule consists of four motifs arranged in a straight line, its corresponding
tree structure will have a width of 1 and a depth of 4. Thanks to the sufficiently large motifs generated
by the subgraph mining algorithm and the relatively small number of motifs in the molecule, we can
enumerate all possible tree structures. Assuming the structural tree set is T and the structural label
of the molecule i is y(i)t ∈ R|T|, the molecular structure prediction loss function is:

LT = −y
(i)
t log(ft(H̃

(i)
m )) (11)

where ft is an MLP used for molecular tree structure prediction.

Finally, we combine the contrastive loss LC from Section 2.2 and the prediction loss LP from
Section 2.3, with 0 < α < 1 as the weight hyperparameter, to form the overall loss function L of
the model as follows:

L = αLC + (1− α)LP (12)
LC = LG + LM + LGM (13)
LP = LT + LF + LA (14)

After pretraining, three models are produced. Since generating image data is information-intensive
and resource-consuming, to save training time and resources while allowing the model to generalize
to more domains, we propose using only the embeddings generated by the two graph encoders GM

and GF , concatenating the embeddings for downstream tasks.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets. During pretraining, we utilized 456K unique unlabeled molecular SMILES strings from
the ChEMBL database. We selected a motif vocabulary with a size of 800. In the fine-tuning
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stage, we conducted experiments on 10 downstream benchmarks, including 8 molecular property
prediction datasets (BBBP, Tox21, ToxCast, SIDER, ClinTox, BACE, HIV, and MUV) and molecu-
lar prediction tasks on two large peptide datasets from the Long-range Graph Benchmark, namely,
Peptide-Func (graph classification) and Peptide-Struct(graph regression) Dwivedi et al. (2022). We
used the RdkitLandrum et al. (2013) library to generate molecular images based on SMILES strings,
and utilized the OGBHu et al. (2020a) library to abstract the SMILES strings into graphs, initializing
the node and edge features within the graphs.

Implementation details. According to the setting of the previous method, we model our molecular
graph encoders GM with 5-layer GIN and motif graph encoder GF with 2-layer GIN in molecular
classification benchmarks. For the long-range benchmarks, both GM and GF utilize a 5-layer GIN
architecture, with the molecular graph featurization derived from the Open Graph Benchmark. For
the image encoder, we selected the Swin-BLiu et al. (2021b) pretrained on ImageNet-1K to extract
features from molecular images. We fixed the shallower layers parameters while fine-tuning the the
deeper one during pretraining. In the pretraining stage, the graph encoders and the image encoder
receive graphs and images, respectively, and embed the multi-modal data into a shared feature space
of 300 dimensions. We use the Adam optimizer to train ours framework by setting the initial learning
rate to 0.001, the number of epoches to 100, and the batch size to 256. We reduce the learning rate by
a factor of 0.1 every 5 epochs without an improvement. In the fine-tuning stage, we concatenate the
embeddings generated by the graph encoders and add a MLP to make predictions for the downstream
tasks. More implementation details are show in Appendix C.

Baselines. As shown in Table 1, we compare our model with several notable pretrained baselines in
the molecular property prediction task, including predictive methods (AttrMask & ContextPredHu
et al. (2019), G-Motif & G-Contextual Rong et al. (2020)), generative method (GPTGNNHu et al.
(2020b)), graph contrastive methods (GraphLoG Xu et al. (2021), GraphCL You et al. (2020), JOAO,
JOAOv2You et al. (2021)), motif-based method(MGSSLZhang et al. (2021), GraphFPLuong &
Singh (2024), DGPMYan et al. (2024)) and multi-modal contrastive methods(GraphMVPLiu et al.
(2021a), CGIPXiang et al. (2023), MoleculeSTMLiu et al. (2023)). For long-range prediction, we
compare our method with popular GNN architectures: GCN Kipf & Welling (2016), GCNII Chen
et al. (2020), GINXu et al. (2018), and GatedGCN Bresson & Laurent (2017) with and without
Random Walk Spatial Encoding Dwivedi et al. (2021).

3.2 RESULT ON MOLECULAR PROPERTY PREDICTION BENCHMARK

Table 1 report the result on 8 molecular property prediction benchmark. Except for CGIPXiang
et al. (2023), the results of other baselines are collected from the literatureXu et al. (2021); You et al.
(2021; 2020); Luong & Singh (2024); Yan et al. (2024); Liu et al. (2023). To ensure a comprehen-
sive evaluation, we conducted experiments on several variants of motifGrIM, including (1) without
the image, multi-granularity prediction learning and hybrid graph-image contrastive learning mod-
ule(w.o. IPH) , (2) without the image and hybrid graph-image contrastive learning module(w.o. IH)
, (3) without the motif-based contrastive learning and hybrid graph-image contrastive learning mod-
ule(w.o. CH) , (4) without the multi-granularity prediction learning module(w.o. P) , and (5) without
the hybrid graph-image contrastive learning(w.o. H) . For the variants that include contrastive learn-
ing and prediction learning module, we select α = 0.9. As for variants equipped with an image
module, we opt for β = 0.7. The experimental results are shown in Table 1, where we summarize
all methods into six different categories.

From the results, we can see that compared with previous studies, our approach has shown significant
improvement. Among the 8 datasets, we achieved the best performance on 5 of them. Furthermore,
our proposed method outperforms others in both average ranking and average AUC. The average
AUC of ours MotifGrIm method has improved by 1.15% compared to the current best-performing
model, MoleculeSTM. Furthermore, by comparing MotifGrIM with its five variants, it is clear that
as more modules are added, the model’s performance gradually improves, with MotifGrIM outper-
forming its five variants. This demonstrates the importance of each module to the MotifGrIM. The
variant without the multi-granularity prediction learning module performs worse than the one with-
out the hybrid contrastive learning module, indicating that the prediction learning module is more
crucial. And variants without the image module show a significant drop in performance, highlight-
ing the necessity and effectiveness of adding the image module for model pretraining. Finally, by
summarizing the methods into 6 different categories, we observe that MotifGrIM and its variants
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Table 1: Test ROC-AUC on eight molecular property prediction datasets. The mean and standard
deviation are reported for five random seeds. We summarize the methods into 6 categories: (1)
No-pretrain; (2) prediction and generation methodsHu et al. (2019); Rong et al. (2020); Hu et al.
(2020b); (3) graph contrastive methodsXu et al. (2021); You et al. (2020; 2021); (4) motif-based
methodsZhang et al. (2021); Yan et al. (2024); Luong & Singh (2024); (5) multi-modal contrastive
methodsLiu et al. (2021a); Xiang et al. (2023); Liu et al. (2023); (6) MotifGrIm and its five variants.
Bold indicates the best performance and underline indicates the second best one.

Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

No-pretrain 65.6±1.4 71.5±1.0 61.5±0.8 59.4±1.2 66.5±5.2 74.5±0.5 64.4±1.9 72.6±1.9 19.50 67.00
AttrMaskingHu et al. (2019) 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 10.50 71.15
ContextPredHu et al. (2019) 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 9.63 70.89
G-MotifRong et al. (2020) 66.9±3.1 73.6±0.7 62.3±0.6 61.0±1.5 77.7±2.7 73.0±1.8 73.8±1.2 73.0±3.3 17.38 70.16
G-ContextualRong et al. (2020) 69.9±2.1 75.0±0.6 62.8±0.7 58.7±1.0 60.6±5.2 72.1±0.7 76.3±1.5 79.3±1.1 14.63 69.34
GPT-GNNHu et al. (2020b) 64.5±1.4 74.9±0.3 62.5±0.4 58.1±0.3 58.3±5.2 75.9±2.3 65.2±2.1 77.9±3.2 16.00 67.16
GraphLoGXu et al. (2021) 67.8±1.9 75.1±1.0 62.4±0.2 59.5±1.5 65.3±3.2 73.6±1.2 73.7±0.9 80.2±3.5 15.25 69.70
GraphCLYou et al. (2020) 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.7 69.8±2.7 78.5±1.2 75.4±1.4 14.88 70.78
JOAOYou et al. (2021) 70.2±1.0 75.0±0.3 62.9±0.5 60.0±0.8 81.3±2.5 71.7±1.4 76.7±1.2 77.3±0.5 12.50 71.89
JOAOv2You et al. (2021) 71.4±0.9 74.3±0.6 63.2±0.5 60.5±0.7 81.0±1.6 73.7±1.0 77.5±1.2 75.5±1.3 11.75 72.14
MGSSLZhang et al. (2021) 68.9±2.5 74.9±0.6 63.3±0.5 57.7±0.7 67.5±5.5 73.2±1.9 75.7±1.3 82.1±2.7 14.00 70.41
GraphFPLuong & Singh (2024) 72.0±1.7 74.0±0.7 63.9±0.9 63.6±1.2 84.7±5.8 75.4±1.9 78.0±1.5 80.5±1.8 7.25 74.01
DGPMYan et al. (2024) 71.2±0.5 75.3±0.4 64.0±0.7 60.3±0.8 80.9±1.3 75.3±1.6 77.3±0.6 81.1±0.7 7.38 73.17
GraphMVPLiu et al. (2021a) 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 13.38 71.70
CGIPXiang et al. (2023) 66.9±1.0 71.5±0.5 63.5±0.2 58.4±0.6 88.0±1.6 75.3±1.2 78.2±0.6 76.4±0.7 12.13 72.64
MoleculeSTMLiu et al. (2023) 70.1±0.5 76.9±0.5 65.1±0.4 61.0±1.1 92.5±1.1 73.4±2.0 76.9±1.8 80.8±1.3 7.00 74.57
MotifGrIm(w.o. ICH) 67.5±2.3 73.2±0.8 62.8±0.6 64.1±1.4 73.6±2.4 74.3±1.1 73.2±3.2 76.4±1.7 15.25 70.64
MotifGrIm(w.o. IPH) 70.1±1.8 74.3±0.3 63.9±0.8 63.6±1.0 87.7±5.8 74.5±1.8 76.1±2.0 77.1±2.1 10.75 73.73
MotifGrIm(w.o. IH) 69.7±2.3 74.8±0.6 64.8±0.4 65.2±1.5 88.8±1.9 74.6±1.4 77.2±1.1 77.3±1.6 8.25 74.05
MotifGrIm(w.o. P) 70.5±0.8 74.8±0.5 64.3±0.2 63.8± 1.2 89.6±1.6 76.2±0.9 76.6±1.4 83.4±1.7 5.88 74.90
MotifGrIm(w.o. H) 72.6±1.2 75.8±0.4 65.0±0.6 63.6±1.0 90.5±2.1 75.5±1.2 77.3±1.5 82.4±0.8 3.63 75.34
MotifGrIm 70.7±1.4 75.4±0.8 65.4±0.7 64.2±0.8 91.2±1.6 78.4±1.1 77.8±1.0 82.7±1.6 2.75 75.73

Table 2: The impact of pretraining with different image encoders on downstream performance.
Image Encoder BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

ResNet18 70.9 74.9 65.1 63.9 89.6 77.2 78.4 81.6 3.25 75.20
ResNet50 71.7 74.4 64.3 64.4 91.4 76.8 78.1 82.2 2.75 75.41
Swin-T 70.5 74.8 65.0 64.4 90.1 76.4 78.1 82.1 3.63 75.18
Swin-S 71.2 75.5 64.8 64.5 90.8 76.5 78.2 81.9 2.63 75.43
Swin-B 70.7 75.4 65.4 64.2 91.2 78.4 77.8 82.7 2.50 75.73

have the best average ROC-AUC, while no-pretrain is the worst. Among the remaining pretrain-
ing methods, the prediction and generation methods perform the worst, followed by the contrastive
learning methods, while multi-modal contrastive method and the motif-based method show simi-
lar and optimal performance. It can see that the motif-based method and multi-modal contrastive
learning method are the most effective existing methods for improving model performance. And
our proposed MotifGrIm innovatively extends motifs from the graph domain to the image domain,
combining both methods for the first time, thus achieving the best performance.

The experimental results on long-range benchmark is provided in Appendix D.

3.3 PRETRAINING WITH VARIOUS IMAGE ENCODERS

To examine the impacts of different image encoders on the model performance, we select five im-
age encoders—ResNet18, ResNet50, Swin-T, Swin-S, and Swin-B—for model pretraining. All
encoders were pretrained on ImageNet-1K. As shown in Table 2, we report the model performance
on eight molecular property prediction datasets after pretraining with different image encoders. The
experimental results indicate that Swin-B achieves the best performance. Interestingly, ResNet50
underperforms compared to ResNet18, suggesting that excessively deep image encoders may not be
optimal for capturing molecular features.

3.4 PARAMETER ANALYSIS

In order to study the impacts of different parameter selections on the final performance of the model,
we set up two experiments to study the impact of weighting hyperparameter α and color matrix
size K on the model performance. For each parameter, we conducted experiments on 8 molecular
property prediction datasets using 5 specified random seeds, reporting the average ROC-AUC. More
parameter analysis are provided in the Appendix E.
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Table 3: The impact of the weighting hyperparameter α used to joint the two modules.
Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

MotifGrIm(α=0.5, β=0.7) 69.5 74.8 65.1 64.4 87.6 75.5 76.6 82.3 4.50 74.45
MotifGrIm(α=0.6, β=0.7) 69.5 74.9 64.2 63.8 88.2 78.3 77.6 82.7 3.63 74.9
MotifGrIm(α=0.7, β=0.7) 69.9 75.2 63.9 64.1 90.0 78.1 77.1 83.1 3.38 75.18
MotifGrIm(α=0.8, β=0.7) 69.4 75.7 64.2 64.5 88.7 77.5 77.2 82.6 3.38 74.98
MotifGrIm(α=0.9, β=0.7) 70.7 75.4 65.4 64.2 91.2 78.4 77.8 82.7 1.63 75.73
MotifGrIm(α=1.0, β=0.7) 70.5 74.8 64.3 63.6 88.6 76.2 76.6 83.4 3.88 74.75

Table 4: The impact of varying color matrix sizes K.
Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

MotifGrIm(K=40) 69.3 75.8 65.2 62.8 90.2 75.0 76.2 81.4 2.63 74.49
MotifGrIm(K=80) 70.7 75.4 65.4 64.2 91.2 78.4 77.8 82.7 1.25 75.73
MotifGrIm(K=160) 69.4 74.6 65.2 63.7 87.1 73.6 76.7 82.3 2.75 74.08
MotifGrIm(K=320) 69.2 75.0 65.1 64.3 86.3 73.5 77.0 80.2 3.25 73.83

Effect of weighting parameter α. In Equation equation 12, we integrate motif-based multi-modal
contrastive learning and multi-granularity prediction learning by optimizing the joint objective func-
tion. To assess the impact of different α values, we conducted parameter analysis. We select α from
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0} while keeping β fixed at 0.7. Table 3 shows that the model performs
the best when α = 0.9 , significantly outperforming the case of α = 1.0 , where multi-granularity
prediction learning is not adopted. This result indicates that prediction learning contributes to an
improvement in the model performance. Additionally, as α decreases, the model performance gen-
erally declines, highlighting the importance of information interaction in contrastive learning.

Effect of color matrix size K. The size K of the color matrix used to generate motifs may affect
the model’s performance. As shown in the Table 4, the best performance is achieved when K = 80.
Too few colors lead to many classes with the same color in the motif, while too many color matrices
result in low distinguishability between different colors. Both cases make it more challenging for
the model to differentiate between motifs.

3.5 VISUALIZING THE LEARNED EMBEDDINGS

Figure 2: t-SNE plot of embeddings for dif-
ferent Motifs. Each color corresponds to a
Motif class.

As shown in Figure 2, we visualize the learned em-
beddings via t-SNE. We use GM after pretraining to
generate embeddings for the motifs. Each point rep-
resents a motif, and the color of the point represents
the motif category to which the point belongs. For
clarity, we select the 20 frequent motif categories for
data visualization. The figure shows that the model
can effectively distinguish between different motif
categories, indicating that the GM is capable of cap-
turing the structural information of various motifs
well.

4 CONCLUSION AND FUTURE WORK

In this paper, we propose Motif-GrIm, a motif-based multi-granularity graph-image pretraining
method that introduces the concept of motifs into the multi-modal domain for the first time. Using
an optimized motif vocabulary, we generate data from four different perspectives and use them for
pretraining with contrastive and predictive learning. Our method outperforms existing approaches,
leading to superior performance in molecular property prediction and the long-range peptide dataset.
While current research on molecular motifs has mainly focused on the graph domain, we extend this
concept to the image domain with notable success. Moving forward, we aim to enhance molecular
motif segmentation through more effective data generation methods and expand the application of
motifs to other areas, such as molecular SMILES and 3D molecular structures. Additionally, we
strive to develop improved molecular pretraining methods to address the challenge of limited labeled
molecular data.
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A APPENDIX

B RELATED WORK

B.1 MOLECULAR REPRESENTATION LEARNING.

Traditional methods Carhart et al. (1985); Rogers & Hahn (2010) represent molecular structures
using fingerprints. Some earlier studies Svetnik et al. (2004); Wu et al. (2018); Meyer et al. (2019)
have employed tree-based machine learning models, such as Random Forest Breiman (2001) and
XGBoost Chen & Guestrin (2016), to model these fingerprints for predicting molecular properties.
With the advancement of neural networks, deep learning-based molecular representation learning
has gradually become mainstream. String-based molecular representationsShen & Nicolaou (2019);
Yüksel et al. (2023) primarily use molecular SMILES and InChI as inputs, leveraging the powerful
language processing capabilities of language models to extract molecular features. 2D graph-based
molecular representationsGilmer et al. (2017); Zhang et al. (2021); Chen et al. (2024) treat atoms
as nodes and the bonds between atoms as edges, using graph neural networks(GNNs) to capture the
internal structural information of molecules. 3D graph-based molecular representations Liu et al.
(2021a); Zhou et al. further consider the 3D coordinates of atoms, which are crucial for determining
certain chemical and physical properties. Molecular images provide an intuitive representation of
molecular information, and recent studiesZhong et al. (2021); Zeng et al. (2022) have explored the
use of molecular images to enhance the performance of molecular representation learning.
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B.2 MOLECULAR PRETRAINING.

Due to the sparsity of labeled molecular data and the poor generalization ability, recent studies have
attempted to leverage large-scale unlabeled molecules to train models and transfer knowledge to
downstream datasets with limited labels through fine-tuning. In early works, molecular pretraining
primarily utilized a single modality. SMILES-BERTWang et al. (2019) employs attention-based
transformer layers and is pretrained on 35 million compounds from ZINC using a masked SMILES
recovery task. GROVER Rong et al. (2020) and MPG Li et al. (2021) employ a graph-based frame-
work along with effective node and graph-level pretraining strategies to learn molecular representa-
tions. Recently, motif-based pretraining methodsZhang et al. (2020; 2021); Luong & Singh (2024)
have been proposed to better extract molecular features using motifs or fragments of molecules.
However, these approaches still rely on a single modality for molecular representation.

B.3 MULTI-MODAL MOLECULAR CONTRASTIVE LEARNING.

Recently, many studies have utilized contrastive learning on different modalities to facilitate infor-
mation interaction between multiple perspectives, thereby achieving better molecular representation.
MomuSu et al. (2022) pre-trains molecular representations through contrastive learning by utilizing
molecular graphs and semantically related textual data, which are extracted from published scien-
tific citation index papers. MoleculeSTMLiu et al. (2023) employs a contrastive learning strategy
to jointly learn both the chemical structures of molecules and their textual descriptions. Recently,
CGIPXiang et al. (2023) proposed a model that combines graph and image data using data augmen-
tation techniques to transfer chemical knowledge from graphs to images. Git-MolLiu et al. (2024)
further integrated a multimodal large language model combining graph, image, and text informa-
tion to capture the rich details of molecular structures and images. However, these methods focus
solely on learning molecular representations at the molecular level, overlooking the impact of motif
information on molecular properties.

C EXPERIMENTAL DETAILS

C.1 DATASETS

In the fine-tuning stage, we set 10 downstream tasks, including 8 molecular property prediction
datasets (BBBP, Tox21, ToxCast, SIDER, ClinTox, BACE, HIV, and MUV) and molecular pre-
diction tasks on two large peptide datasets from the Long-range Graph Benchmark: Peptide-Func
(graph classification) and Peptide-Struct(graph regression) . To better understand the dataset, Table
5 and Table 6 lists the statistics of 10 benchmark datasets. Table 5 provides the number of learn-
ing instances and binary tasks for each chemical dataset. Table 6 presents long-range datasets and
predictive tasks for peptides. While the peptide datasets have similar numbers of learning instances,
they differ in the predictive tasks.

Table 5: The Overview of Molecular Property Prediction Datasets.
Dataset Graphs Avg. Nodes Avg. Edges Tasks
BBBP 2, 039 24.1 26.0 1
Tox21 7, 831 18.6 19.3 12
Toxcast 8, 576 18.8 19.3 617
SIDER 1, 427 33.6 35.4 27
Clintox 1, 478 26.2 27.9 2
MUV 93, 087 26.4 28.3 17
HIV 41, 1127 25.5 27.5 1
BACE 1, 513 34.1 36.9 1

C.2 MODEL AND TRAINING CONFIGURATIONS

In order to help better understand our proposed model and reproduce the work, we provide the
parameter selection of the experiment. Table 7 provides the configurations of GM , GF and fC .
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Table 6: The Overview of Long-Range Graph Datasets.
Dataset Peptides-func Peptides-struct
Graphs 15, 535 15, 535
Avg.Nodes 150.9 150.9
Avg.Edges 307.3 307.3
Tasks 1 5
Classes 10 N/A
Task types Multi-label classification Multi-label regression

Table 7: Model Configuration
Models Hyperparameters Values

9*GM Convolution type GIN
Number of atom features 2
Number of atom features for long-range 9
Number of edge features 2
Number of edge features for long-range 3
Dimension of hidden embeddings 300
Aggregation SUM
Number of layers 5
Readout MEAN

7*GF Convolution type GIN
Number of fragment features 1
Dimension of hidden embeddings 300
Aggregation SUM
Number of layers 2
Number of layers for long-range 5
Readout MEAN

5*fC Convolution type Swin-B
Input patches of size 4×4
Local attention windows of size 7×7
Input images of size 224×224
Pretrained dataset ImageNet-1K

Table 8 provides the parameters of the pretraining phase. Table 9 provides the parameters of the
finetuning phase. In general, our parameter selection refers to previous works Zhang et al. (2021);
Luong & Singh (2024).

D RESULTS ON LONG-RANGE GRAPH BENCHMARK

In Table 10, we compare the MotifGrIm with GNN baselines on two long-range benchmarks,
namely, PEPTIDE-FUNC (which includes 10 peptide function classification tasks) and PEPTIDE-
STRUCT (which includes 5 3D structure regression tasks) Dwivedi et al. (2022). Given the substan-
tial size of peptide fragment graphs, which hinders the efficient extraction of structural backbones,
predictive learning module has been omitted from this experimental setup, i.e., α = 1.0. The ex-
perimental results demonstrate that our proposed method significantly outperforms the other GNN
baselines. Specifically, compared to the current best performing method, MotifGrIm improves by
4.1% on PEPTIDE-FUNC and 11.3% on PEPTIDE-STRUCT, whereas the performance is improved
by 14.8% and 17.6%, respectively, compared to vanilla GIN. Since these tasks require recognizing
long-range structural information, these improvements highlight the effectiveness of our model in
capturing the global arrangement of molecules.
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Table 8: Pretraining Configuration
Benchmark Hyperparameters Values

Epochs 100
Batch size 256
Weight decay 1e-2

Molecular Learning rate 1e-3
Property Learning rate decay Reduce on plateau
Prediction Learning rate decay factor 1e-1

Learning rate decay patience 5epochs
weighting parameter α 0.9
hybrid parameter β 0.7
Epochs 100
Batch size 256
Weight decay 1e-2
Learning rate 1e-3

Long- Learning rate decay Reduce on plateau
range Learning rate decay factor 1e-1

Learning rate decay patience 5epochs
weighting parameter α 1.0
hybrid parameter β 0.7

Table 9: Finetuning Configuration
Dataset Epoch Batch size Dropout Weight decay Learning rate Learning rate decay Decay steps Decay rate

BBBP 100 64 0.0 0.0 1e-4 Step decay 30 0.3
Tox21 100 64 0.0 0.0 1e-3 Step decay 30 0.3
Toxcast 100 64 0.5 0.0 1e-3 Step decay 30 0.3
SIDER 100 64 0.5 0.0 1e-3 Step decay 30 0.3
Clintox 100 64 0.0 0.0 1e-3 Step decay 30 0.3
MUV 100 64 0.0 0.0 1e-4 Step decay 30 0.3
HIV 100 64 0.0 0.0 1e-3 Step decay 30 0.3
BACE 100 64 0.0 0.0 1e-4 Step decay 30 0.3
Peptides-func 100 128 0.0 0.0 1e-3 Step decay 30 0.5
Peptides-struct 100 128 0.0 0.0 1e-3 Step decay 30 0.5

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Test AP(Average Precision Score) on graph classification dataset PEPTIDE-FUNC and
test MAE(Mean Absolute Error) on graph regression dataset PEPTIDE-STRUCT. These tasks in-
volve modeling long-range interactions in large peptide molecules.

2*Methods Peptide-Func Peptide-Struct
Test AP Test MAE

GCN 0.5930±0.0023 0.3496±0.0013
GCNII 0.5543±0.0078 0.3471±0.0010
GIN 0.5498±0.0079 0.3547±0.0045
GatedGCN 0.5864±0.0077 0.3420±0.0013
GatedGCN+RWSE 0.6069±0.0035 0.3357±0.0006
MotifGrIm 0.6314±0.0049 0.3016±0.0008

Table 11: The impact of the weighting hyperparameter β used to hybrid graph-image contrastive
learning.

Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

MotifGrIm(α=0.9, β=0.5) 71.2 75.3 64.5 64.3 88.8 76.8 75.8 82.1 4.50 74.85
MotifGrIm(α=0.9, β=0.6) 71.6 75.6 65.3 63.8 89.5 78.2 76.9 83.2 2.88 75.51
MotifGrIm(α=0.9, β=0.7) 70.7 75.4 65.4 64.2 91.2 78.4 77.8 82.7 2.38 75.73
MotifGrIm(α=0.9, β=0.8) 71.1 75.2 65.3 64.1 89.7 77.6 76.9 83.7 3.38 75.45
MotifGrIm(α=0.9, β=0.9) 70.8 75.3 65.1 63.7 89.8 76.5 77.3 83.1 4.00 75.20
MotifGrIm(α=0.9, β=1.0) 72.6 75.8 65.2 63.6 90.5 75.5 77.3 82.4 3.38 75.36

E MORE PARAMETER ANALYSIS

In Section 3.4, we provided a parameter analysis of α and K. To further understand how param-
eter affects model performance, we conduct experiments here with different values of weighting
hyperparameter β used to hybrid graph-image contrastive learning and motif vocabulary sizes N .

E.1 EFFECT OF HYBRID PARAMETER β .

In Section 2.2.3, we propose a hybrid graph-image contrastive learning method. Unlike previous
multi-modal methods that only perform contrastive learning from the molecular perspective, we si-
multaneously leverage data from both the motif and molecular perspectives for contrastive learning
between graphs and images. As shown in Equation 8, we use β to adjust the embedding weights for
the two perspectives. To analyze the effect of different weights for motif embeddings and molecular
embeddings on model performance, we designed experiments to perform a parameter analysis on
β. Specifically, we select β from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and fixed α at 0.9. From the exper-
imental results show in Table 11, we can see that the performance is best when β = 0.7, clearly
outperforming the case without using hybrid contrastive learning, demonstrating the effectiveness
of this method. When β = 0.9, the model performance decreased compared to the case without this
method. This is likely because the weight of the motif embedding was set too small, which not only
failed to fully utilize the motif data but also introduced noise interference during the optimization
of the molecular embedding. When β = 0.5 , the model performs the worst. This may be because
the motif and molecular data are treated equally, preventing the model from effectively capturing
information at different levels during the optimization process.

E.2 EFFECT OF MOTIF VOCABULARY SIZE N .

The size of the motif vocabulary may impact the classification performance of the model. To ex-
plore this effect, we experimented with vocabulary sizes of {200, 400, 800, 1600, 3200}. The
results, summarized in Table 12, show that the best performance is achieved with a vocabulary size
of 800. We hypothesize the following: when the vocabulary is too small, the method fails to capture
sufficiently large motifs, leading to an overly fragmented representation of molecules and an inabil-
ity to effectively extract high-level information. Conversely, a larger vocabulary leads to an increase
of the number of parameters, making it more challenging to optimize the model.
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Table 12: The impact of varying motif vocabulary sizes N .
Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.Rank Avg.AUC

MotifGrIm(size=200) 69.4 75.5 64.5 64.2 85.4 74.7 75.9 81.7 3.75 73.91
MotifGrIm(size=400) 71.2 75.6 65.4 63.4 91.8 76.4 77.3 82.2 2.50 75.41
MotifGrIm(size=800) 70.7 75.4 65.4 64.2 91.2 78.4 77.8 82.7 1.88 75.73
MotifGrIm(size=1600) 70.6 75.4 64.8 63.4 84.5 77.4 78.2 82.9 3.13 74.61
MotifGrIm(size=3200) 70.1 75.2 64.2 63.9 83.1 77.6 77.5 83.2 3.38 74.35
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