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Abstract
Backward-compatible representation learning en-
ables updated models to integrate seamlessly with
existing ones, avoiding to reprocess stored data.
Despite recent advances, existing compatibility
approaches in Euclidean space neglect the uncer-
tainty in the old embedding model and force the
new model to reconstruct outdated representations
regardless of their quality, thereby hindering the
learning process of the new model. In this paper,
we propose to switch perspectives to hyperbolic
geometry, where we treat time as a natural axis
for capturing a model’s confidence and evolution.
By lifting embeddings into hyperbolic space and
constraining updated embeddings to lie within
the entailment cone of the old ones, we maintain
generational consistency across models while ac-
counting for uncertainties in the representations.
To further enhance compatibility, we introduce
a robust contrastive alignment loss that dynami-
cally adjusts alignment weights based on the un-
certainty of the old embeddings. Experiments
validate the superiority of the proposed method in
achieving compatibility, paving the way for more
resilient and adaptable machine learning systems.

1. Introduction
Representation learning has become an integral part of
modern machine learning, offering a way to transform raw
data—be it text, images, or other modalities—into compact
representations or “embeddings” that encode their essen-
tial structure (Chen et al., 2022; Bengio et al., 2013; Guo
et al., 2019). A high-quality embedding model can unlock
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Figure 1. a) A typical setting of the backward-compatible training
problem. A large gallery set is embedded and indexed into a vector
database using the old model. Updating to the model may require
re-indexing the entire vector database (backfilling). Backward-
compatible training allows the new model to query and retrieve
from the vector database of old embeddings directly. b) Simulating
the model evolution in hyperbolic space with the entailment cone.

numerous applications: from semantic search (Zhu et al.,
2023; Chandrasekaran & Mago, 2021) and recommenda-
tion systems (Liu et al., 2024; Ko et al., 2022) to retrieval-
augmented generation in large language models (LLMs),
where a vector database is used to find and integrate rele-
vant information at inference time (Gao et al., 2023). The
ubiquity of pretrained models such as BERT (Devlin, 2018),
CLIP (Radford et al., 2021), or GPT-style architectures (Rad-
ford et al., 2018) makes these off-the-shelf embeddings read-
ily available. Enterprises and researchers alike increasingly
rely on these pretrained representations, adapting them to
in-house data or tasks for streamlined development and fast
deployment (Bommasani et al., 2021).

Yet, embedding models do not remain static. Model updates
are often necessary to leverage more advanced architectures,
integrate new domain knowledge, or address performance
limitations (Wang et al., 2024). However, updating these
models typically introduces significant challenges. In large-
scale retrieval pipelines or scenarios where legacy embed-
dings have been indexed, these upgrades can be disruptive
if older embeddings become incompatible with the new
model’s representations. Meanwhile, re-embedding all data
not only incurs high computational and operational costs
but also raises privacy concerns (Price & Cohen, 2019), es-
pecially in applications like face recognition (Chen et al.,
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2019) and person re-identification (Cui et al., 2024). These
issues highlight the need for backward-compatible represen-
tation learning: A model update is considered backward-
compatible if embeddings from the new model can interact
and retrieve information from embeddings generated by its
predecessor (see Figure 1). This property allows old and
new embeddings to coexist seamlessly without the need to
reprocess sensitive or extensive datasets (Shen et al., 2020).

While several methods have been proposed for backward-
compatible representation learning (Shen et al., 2020; Meng
et al., 2021; Ramanujan et al., 2022; Zhou et al., 2023; Pan
et al., 2023; Biondi et al., 2024; Jang & Lim, 2024), they
concentrate on Euclidean or hyperspherical spaces powered
by the cosine distance. A common strategy involves adding
an extra loss term to align older and newer embeddings
within the same space, compelling the new model to re-
construct the old representations regardless of their quality.
Consequently, if the old embeddings are suboptimal due
to the limited capacity of the old model, the new model’s
ability to learn richer or more accurate representations is
constrained. This mismatch between strict compatibility
and model evolution becomes especially relevant as mod-
els grow larger and more specialized, creating a larger gap
between old and new representations.

We argue that hyperbolic geometry is a natural fit for describ-
ing model evolution due to its unique properties. Firstly,
its exponential growth of areas and volumes with respect to
radius makes it particularly suited for applications involving
continual model updates as new entities or classes emerge.
Secondly, recent studies (Khrulkov et al., 2020) show that
hyperbolic encoders can effectively capture representation
uncertainty, enabling ‘free’ uncertainty estimation along the
time axis. This capability has been successfully applied to
enhance performance across various tasks, including image
segmentation (Atigh et al., 2022), action recognition (Franco
et al., 2023), and video prediction (Surı́s et al., 2021). In
the backward-compatible training problem, model updates
can be seen as transformations of the embedding space over
time, enabling new representations to evolve while main-
taining consistency with their previous counterparts. This
perspective aligns with the structure of Minkowski space-
time (Stein, 1968), where hyperbolic geometry is used to
describe the space-time curvature (Einstein et al., 2013;
Barrett, 2011) and model dynamical systems where relation-
ships among particles evolve over time (Araújo & Viana,
2008).

Proposed work. In this paper, we reframe backward-
compatible representation learning through the unique
lens of hyperbolic geometry and propose a novel frame-
work, namely Hyperbolic Backward-Compatible Training
(HBCT), to align new models with legacy representations.
The core idea is to lift the embeddings into hyperbolic space

and use the time-like dimension as a natural axis to capture
model evolution and the uncertainties inherent in vector
embeddings. To capture the dynamic nature of embedding
spaces, we employ the entailment loss (Ganea et al., 2018)
to enforce a partial-order constraint between the old and new
models. This constraint requires the new embeddings to re-
main within the entailment cone of their older counterparts,
maintaining backward compatibility while embracing the
improved expressiveness brought by new data or architec-
tures. We further introduce a robust hyperbolic contrastive
loss that dynamically adjusts alignment weights based on
the uncertainty levels of old embeddings, enabling more
adaptive and reliable alignment across model generations.
To the best of our knowledge, this is the first attempt to
leverage embedding geometry for maintaining consistency
in updating models.

Through extensive experiments across diverse settings, we
demonstrate that HBCT effectively enhances backward com-
patibility without compromising the performance of new
embedding models. Specifically, HBCT improves CMC@1
compatibility of the new model by 21.4% compared to the
strongest Euclidean baseline, and yields a 44.8% increase
in mAP compatibility.

2. Preliminaries
2.1. Riemannian Manifolds and Hyperbolic Geometry

A smooth n-dimensional manifold M is a topological space
where every point x ∈ M has a neighborhood Ux ⊆ M that
is diffeomorphic (i.e., resembles) a neighborhood Vx ⊆ Rn.
Each point x has an associated tangent space TxM, which
is an n dimensional vector space serving as a first-order
local approximation of M. A Riemannian metric g on M
is a smoothly varying collection g = (gx)x∈M of posi-
tive definite bilinear forms gx( · , · ) : TxM× TxM → R.
These bilinear forms determine the curvature at x, which
measures how M deviates from the flatness at that point. A
Riemannian manifold is the pair (M, g). Euclidean space
Rn can be viewed as a Riemannian manifold with the stan-
dard Euclidean inner product and zero curvature. In contrast,
hyperbolic spaces are Riemannian manifolds with constant
negative curvature. This negative curvature leads to an ex-
ponential growth of areas and volumes with radius, different
from the polynomial growth in Euclidean space.

2.2. Lorentz Models of Hyperbolic Geometry

There are several models that can represent n-dimensional
hyperbolic spaces isometrically, such as the Poincaré ball
model (Nickel & Kiela, 2017) or the Klein model (Mao
et al., 2024). Following recent work (Desai et al., 2023;
Bdeir et al., 2023), we use the Lorentz model (Nickel &
Kiela, 2017) for its numerical stability (Mishne et al., 2023).
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In what follows, we follow the notations and terminology
from (Desai et al., 2023).

Lorentz model embeds d-dimensional hyperbolic space in
Rd+1 as a one-sheeted hyperboloid, where each point x ∈
Rd+1 can be written as [xtime,xspace, ], where xtime ∈ R
acts like a “time coordinate” and xspace ∈ Rd like “spatial
coordinates”. Let ⟨ · , · ⟩ be the usual Euclidean dot product.
The Lorentzian inner product ⟨ · , · ⟩L on Rd+1 is given by

⟨x,y⟩L = ⟨xspace,yspace⟩ − xtime ytime. (1)

An n-dimensional hyperbolic space of curvature −K, where
K > 0, in the Lorentz model is defined as

Ld =
{
x ∈ Rd+1 : ⟨x,x⟩L = − 1

K , xtime > 0
}
. (2)

All points x ∈ Ld satisfy xtime =
√

1
K + ∥xspace∥2.

A geodesic between two points is the locally smooth and
shortest path connecting two points. Geodesics in Ld are
curves traced by the intersection of Ld with hyperplanes
in Rd+1 passing through the origin. The distance function
between two points x,y ∈ Ld is

dL(x,y) =
√

1
K cosh−1

(
−K ⟨x,y⟩L

)
. (3)

The tangent space TpLd at a point p ∈ Ld consists of all
vectors in Euclidean space that are orthogonal to p:

TpLd = {z ∈ Rd+1 : ⟨p, z⟩L = 0}. (4)

To “move” between the manifold and its tangent space, we
use the exponential map expmp : TpLd → Ld, defined as

expmp(z) = cosh
(√

K∥z∥L
)
p +

sinh
(√

K∥z∥L
)

√
K∥z∥L

z.

(5)
Its inverse, the logarithmic map logp : Ld → TpLd, sends
x ∈ Ld back into the tangent space at p:

logmp(x) =
cosh−1

(
−K ⟨p,x⟩L

)√(
K ⟨p,x⟩L

)2 − 1
projp(x), (6)

where projp(x) maps a vector in ambient space Rd+1 onto
the tangent space at p

z+ projp(x) = u+K p ⟨p,u⟩L. (7)

These maps allow us to perform Euclidean operations in
the tangent space while retaining the underlying hyperbolic
structure once we map points back onto Ld. Following the
literature (Desai et al., 2023), we only use these maps at the
origin of the hyperboloid 0̄ = [

√
1/K,0]⊤.

3. Problem Statement
Following previous literature (Shen et al., 2020; Zhang et al.,
2022a), we focus on a typical retrieval setting, where we
have a large gallery G of items (e.g., images) maintained
in a vector database. Each item x ∈ G is associated with
one class or identity y ∈ Y , and is encoded into a dense
vector by an embedding model ϕ( · ). During retrieval, each
query q ∈ Q is encoded into a vector embedding, i.e., ϕ(q),
and relevant matches are retrieved by comparing with the
embeddings in the gallery ϕ(G) = {ϕ(x) | x ∈ G}1 using a
distance function d( · , · ). The embedding model is trained
on a dataset D = {x, y} with the base loss function:

ϕ⋆ = argmin
ϕ

Lbase(ϕ,D). (8)

Here, we choose the loss function Lbase to be the cross-
entropy, following (Shen et al., 2020), but it could also be
any other metric learning loss functions (Kaya & Bilge,
2019; Wang et al., 2018; Chen et al., 2020).

Let ϕo be the existing encoder trained on an old dataset Dold

and ΦG
o is the existing gallery embeddings encoded using

ϕo. We now want to train a new encoder ϕn to replace ϕo

subject to the arrival of new data Dnew ⊇ Dold, more pow-
erful architectures, or new pre-trained weights of existing
architectures. Note that new data Dnew may contain new
identities or classes different from Dold.

Our goal is to train the new model ϕn in a way that it could
be directly compatible with the old model ϕo: new queries
encoded by ϕn should yield similar or improved retrieval
performance on the existing gallery ΦG

o produced by ϕo( · ).
This property enables a backfill-free approach—allowing
the old embeddings to be gradually replaced by ϕn(x)
as needed—while immediately benefiting from the new
model’s improved capabilities.

4. Methodology
As mentioned in the introduction, directly forcing new em-
beddings to reconstruct outdated representations from the
old model can impair the learning process of the new model,
because some old embeddings may be poorly represented.
To address this, we propose to lift the embeddings to hyper-
bolic space, where we leverage the time-like dimension as a
natural axis to capture a model’s confidence and evolution.
Building on this framework, we introduce two uncertainty-
aware losses, robust hyperbolic contrastive loss and entail-
ment cone loss, designed to enforce alignment and a partial-
order relationship between the old and new models while
considering the quality of the old embeddings. The next

1For simplicity, we abuse notation by letting ϕ to take a set of
items G as the input and produce a vector database containing all
embedded items.
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Figure 2. The distribution of uncertainty measures on hyperbolic
embeddings of CIFAR100 produced by the old model ϕo. The old
model is ResNet18 trained with the first 50 classes (old identities)
and then used to embed the upcoming 50 classes (new identities)
into the vector database. The gallery is unseen samples from the
test set. The curvature parameter K is set to 1.0.

section presents our base hyperbolic encoder with an uncer-
tainty measure for its embeddings. Section 4.2 and 4.3 will
discuss the entailment and contrastive losses, respectively.

4.1. Hyperbolic Encoder and Uncertainty Estimation

We adopt a hybrid Euclidean–Hyperbolic model (Khrulkov
et al., 2020) to encode images into hyperbolic space. We
choose this hybrid model instead of a fully hyperbolic
model (Bdeir et al., 2023) because it better integrates with
any existing Euclidean encoders.

Let z be the vector embedding of the input x produced by a
given encoder (e.g., ResNet (He et al., 2016) or ViT (Doso-
vitskiy, 2020)). We apply the exponential map expm0̄ to
lift [0, z] ∈ Rd+1 from the tangent space at the hyperbolic
origin 0̄ onto the hyperboloid Ld.

ϕL(x) = expm0̄([0, z]
⊤).

Here, [0, z] ∈ Rd+1 lies in the tangent space at the origin of
the hyperboloid.

For convenience, in what follows, we denote the mappings
from the input x to the hyperbolic embedding for the old
and new models as:

ϕL
o (x) : x

ϕo−→ zo ∈ Rd expm0̄−−−−→ ho ∈ Ld

ϕL
n(x) : x

ϕn−−→ zn ∈ Rd expm0̄−−−−→ hn ∈ Ld

Training Hyperbolic Encoder. Similar to (Shen et al.,
2020), we train the hyperbolic encoder as a classification
task in hyperbolic space by using hyperbolic multinomial
logistic regression (Hyperbolic MLR) (Bdeir et al., 2023).
The probability of a class y ∈ Y given the embedding h can
be expressed as:

p(Y = y|h) ∝ exp
(
sign(⟨wy,h⟩L)∥wy∥LdL(h,Hwy )

)
,

(9)

where Hwy
= {h ∈ Ld|⟨wy,h⟩ = 0} is the decision hy-

perplane of the class y parametrized by wy ∈ T0̄Ld. The
term dL(h,Hwy ) is the minimum distance from h to the hy-
perplane, which also admits a closed form using Euclidean
reparameterization trick (Mishne et al., 2023). Since the
base training is not our focus, we refer readers to (Bdeir
et al., 2023) for full discussion. Our base objective is:

Lbase(h) = − log p(Y = y|h).

Uncertainty Estimation. Existing works (Franco et al.,
2023; Atigh et al., 2022) typically use the hyperbolic uncer-
tainty estimation in the Poincaré model, defining uncertainty
as the ℓ2-norm of hyperbolic embeddings. We adapt this
definition of uncertainty to the Lorentz model by leveraging
its isometric equivalence with the Poincaré model:

Uncertainty(h) = 1−
∥∥∥∥hspace

htime

∥∥∥∥
= 1− 1

cosh(
√
K∥z∥)

∥∥∥∥∥ sinh(
√
K∥z∥)√

K∥z∥
z

∥∥∥∥∥
= 1− 1√

K
tanh

(√
K∥z∥

)
, (10)

where z is the Euclidean embedding of h before the expo-
nential map. This choice of the uncertainty measure results
in the same formulation as the Pointcaré uncertainty mea-
sure used in Franco et al. (2023) and Atigh et al. (2022).
For K = 1, the uncertainty is bounded in the range [0, 1].

Figure 2 shows the distribution of the hyperbolic uncertainty
estimates for embeddings produced by ResNet18 trained
on the first 50 classes of CIFAR100. When this old model
is used to embed images from the new 50 classes (unseen
during its training), the resulting embeddings exhibit higher
uncertainty and lower norms ∥zo∥ compared to images from
the first 50 classes (seen during the training). This obser-
vation is consistent with (Atigh et al., 2022), showing the
close relationship between an embedding’s norm and its
associated uncertainty in hyperbolic models.

4.2. Entailment Models Evolution

When training the new model, we aim to keep it consis-
tent with the structure discovered by the old model and
then refine previously learned relationships. We model this
consistency-then-refinement dynamic via the notion of en-
tailment cone (Desai et al., 2023; Ganea et al., 2018), which
constrains the region where new embeddings can ‘descend’
from old embeddings in hyperbolic space. In other words,
the cone represents the set of permissible embedding adjust-
ments as the model evolves.

Formally, the entailment cone at ho in the hyperbolic space
is defined by a half-aperture function that diminishes with
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Figure 3. Illustration of the entailment cone. The more certain ho,
the narrower the cone defined by ho.

distance from the hyperbolic origin (Desai et al., 2023):

aper(ho) = sin−1
(

2ϵ√
K ∥ho,space∥

)
, (11)

where ϵ is a small constant (e.g. 0.1) preventing the degen-
erate behavior near the origin.

The hyperbolic entailment cone loss penalizes the cases
when hn lies outside ho’s entailment cone using the dif-
ferences between the exterior angle ext(ho,hn) = π −
∠(O,ho,hn) and the aperture (see Figure 3):

Lentail(hn;ho) = max (0, ext(ho,hn)− aper(ho)) ,

where the exterior angle is computed by

ext(ho,hn) = cos−1

 hn,time+ho,time (K ⟨ho,hn⟩L)

∥ho,space∥
√(

K ⟨ho,hn⟩L
)2

−1

 .

Here, we penalize hn for each pair (ho,hn) if it lies outside
of the entailment cone dictated by ho. We refer readers
to (Desai et al., 2023) for full derivations.

It is worth noting from Eq. (11) that the aperture at ho is
inversely proportional to its norm. Therefore, as ho becomes
more uncertain (lower norm), its cone ‘widens’, granting
greater freedom for the evolutionary expansion in the new
embedding space.

4.3. Uncertainty-aware Contrastive Alignment

Notice that the entailment cone restricts only the spatial
coordinate changes of the embedding, without preserving
pairwise distance relationships between old and new embed-
dings. Meanwhile, contrastive alignment loss (Biondi et al.,
2024; Zhang et al., 2022a) or mean distortion (Cui et al.,
2024) may hinder the learning of the new model since they
naively enforce the new model to reconstruct outdated rep-
resentations regardless of their quality. This may exacerbate

Figure 4. Comparison between InfoNCE and RINCE losses for
varying distances between old and new embedding ho and hn.
As q increases, the gradient norm decreases for noisy positive
pairs (−dL ∈ [−5,−3]) and increases for clean positive pairs
(−dL ∈ [−2,−0]). For this illustration, we choose one negative
sample with the distance dL(hn,h

′
o) = 4.0 and β = 0.01.

the inherent trade-off between maintaining compatibility
and achieving high performance in the new model.

To address this issue, we propose a variant of RINCE–robust
contrastive loss (Chuang et al., 2022)–that adaptively adjusts
the weight for positive old-new embedding pairs according
to the uncertainty of the old embeddings.

Let B be a batch of images in the training data, RINCE loss
for a pair (ho,hn) ∈ B is given by

Lcontrast(hn;β, q) = −1

q
exp(−qdL(hn,ho))

+
1

q

β
∑
h′

o∈B

exp(−dL(hn,h
′
o))

q

, (12)

where β, q ∈ (0, 1] are hyper-parameters of the RINCE loss.
As q → 0, RINCE recovers vanilla InfoNCE (Oord et al.,
2018) loss. As q → 1, RINCE reduces the weights for
noisy pairs (with large distances) and focuses more on clean
pairs (low distances)–see Figure 4 for the comparison of the
gradient norms for InfoNCE and RINCE with varying q.

The RINCE loss is particularly suitable in the context of
compatibility, where the goal is to emphasize the reconstruc-
tion of good old embeddings while downweighting bad ones.
To achieve this, we make an explicit dependence of q to ho

for each pair (hn,ho), defining q(ho) = Uncertainty(ho).
This allows the weights for positive pairs to adjust dynami-
cally based on the quality of the old embeddings.

4.4. Training Pipeline

The overall loss function to train the updated model is:

L = Lbase + λ(Lentail + Lcontrast), (13)

where λ is the weight for the alignment regularization. Here,
we make no assumption about Lbase, making it applicable
to various training scenarios, including unsupervised and
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self-supervised learning, which drive recent advancements
in foundation models. We leave further exploration of these
settings for future work.

Numerical Stability. Because the hyperbolic distance
grows quickly with respect to the norm ∥z∥, it is often nec-
essary to clip or rescale norms to maintain well-conditioned
embeddings. We follow (Bdeir et al., 2023) and (Desai et al.,
2023) to rescale the norm of z by

√
d and then clipping at ζ

to ensure stability. For the old model, we set ζo = 1.0 and
for the new model, we increase the clipping threshold by
ζn = ζo+0.2 to account for the evolution in the embedding
space of the updated model.

5. Experiments
We conduct extensive experiments and compare with ex-
isting approaches in Euclidean space to demonstrate the
effectiveness of our method. We refer to our method
as Hyperbolic Backward Compatible Training (HBCT).
The source code is available at https://github.com/
snap-research/hyperbolic_bct.

5.1. Experimental Settings

Datasets. We use CIFAR100 (Krizhevsky et al., 2009)
and Tiny-Imagenet (Le & Yang, 2015), where the test sets
serve as hold-out query and gallery sets for evaluating both
retrieval performance and compatibility.

Models. We employ two model architectures:
ResNet18 (He et al., 2016) and ViT-B-16 (Dosovit-
skiy, 2020). ResNet18 is trained from scratch, whereas
ViT-B-16 is initialized with weights pre-trained on
ImageNet21k (Ridnik et al., 2021). The goal is to replicate
the typical practice of obtaining and fine-tuning pre-trained
models, which then function as external alternatives to
replace the currently fine-tuned model.

Scenarios. We consider four settings to capture a range of
real-world use cases:

• Extended data: We randomly select 30% of the training
dataset and use it as Dold to train the old model. Dnew

will be the the full dataset. The model architecture is
ResNet18 and is kept the same for the new model.

• Extended class: We extract from the first 50% of
classes (∼50 classes for CIFAR100 and ∼100 classes
for TinyImagenet) as Dold. Meanwhile, Dnew will be
the full dataset. The model architecture is ResNet18
and is kept the same for the new model.

• New architecture: We assume that we have access to
the full training dataset, i.e., Dold = Dnew. The old
model is ResNet18, and the new model finetunes on
ViT-B-16 pretrained on Imagenet21k.

• Both: We simulate the arrival of new classes and a
new architecture. The old model is ResNet18 trained
with 50% of classes, and the new model is ViT-B-16
finetuned on the full dataset.

Baselines. We compare our method with other
regularization-based methods in Euclidean space, including
ℓ2 distance regularization, BCT (Shen et al., 2020), Hot-
Refresh2 (Zhang et al., 2022a), AdvBCT (Pan et al., 2023),
and HOC3 (Biondi et al., 2024).

Metrics. We assess retrieval performance using two metrics:
(1) Cumulative Matching Characteristics (CMC@k): This
metric measures top-k accuracy by ranking gallery represen-
tations based on their similarity to the query representation.
A query is considered correctly retrieved if a sample from
the same class appears within the top-k ranked results. We
report CMC top-1 and top-5 scores for all models; (2) Mean
Average Precision (mAP): mAP integrates precision and re-
call by computing the area under the precision-recall curve.
We use mAP@1.0, which represents the average precision
over recall values ranging from 0.0 to 1.0.

We define metrics to assess the backward-compatibility of
an alignment method following (Shen et al., 2020; Pan et al.,
2023). Let ϕ∗ be the base new model trained without any
alignment method. The compatibility metric for a new
model ϕn trained with an alignment method is computed by

Pcom =
M(ϕn(Q);ϕo(G))−M(ϕo(Q);ϕo(G))
M(ϕ∗(Q);ϕ∗(G))−M(ϕo(Q);ϕo(G))

, (14)

where M( · ; · ) is an evaluation metric for the retrieval
task, which is either CMC@k or mAP. Since backward-
compatibility may come with a trade-off in the performance
of the new model, we also compare the performance with
the base model without alignment ϕ∗

Pup =
M(ϕn(Q);ϕo(G))−M(ϕ∗(Q);ϕ∗(G))

M(ϕ∗(Q);ϕ∗(G))
. (15)

Implementation Details. For all the models, we use the
feature dimension of 128. For ResNet18 model, we use 200
epochs, learning rate 0.1 and for finetuning ViT-B-16, we
use 80 epochs with learning rate 0.005. For both models, we
use SGD (Ruder, 2016) as the optimizer with a batch size of

2Hot-Refresh and HOC are two alignment methods that lever-
age hyperspherical geometry by using a contrastive objective based
on cosine similarity. The key difference between them lies in the
selection of negative pairs.

3Note that in (Biondi et al., 2024), the authors proposed using
a fixed d-simplex classifier to improve compatibility. However,
this approach requires predefining the number of dimensions to
match the number of classes and maintaining it consistently across
model updates, which is usually not practical. Therefore, we adopt
only their high-order alignment loss (HOC) while removing the
constraint of a fixed classifier.
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Table 1. The comparisons of different backward-compatibility methods. Here, ϕR indicates that the model produces Euclidean embeddings
while ϕL produces hyperbolic embeddings. The columns self and cross refer to the original new-to-new and new-to-old retrieval
performance (CMC@1 or mAP), respectively. Gray rows are base models without compatibility, and the pink rows indicate the proposed
method. Bold indicates the best performance and underline indicates the second best method. When the ablated version of HBCT (i.e.,
without entailment loss) outperforms the best Euclidean baseline, we highlight it by a . . . . . . . .dashed. . . . . . . . . . . .underline.

Scenario Old
Model

New
Model

CIFAR100 TinyImageNet

CMC@1 mAP CMC@1 mAP

self cross Pup Pcom self cross Pup Pcom self cross Pup Pcom self cross Pup Pcom

Ext-
data

ϕR
o – 0.572 – – – 0.472 – – – 0.373 – – – 0.248 – – –

ϕR
o ϕR

∗ 0.716 0.019 0.000 -3.846 0.654 0.072 0.000 -2.195 0.540 0.005 0.000 -2.200 0.420 0.010 0.000 -1.384
ϕR
o ϕR

n-ℓ2 0.680 0.645 -0.049 0.510 0.627 0.537 -0.042 0.355 0.538 0.474 -0.004 0.603 0.421 0.311 0.002 0.362
ϕR
o ϕR

n-BCT 0.706 0.701 -0.014 0.900 0.642 0.546 -0.018 0.406 0.527 0.490 -0.024 0.702 0.407 0.309 -0.032 0.354
ϕR
o ϕR

n-Hot-Refresh 0.718 0.671 0.003 0.693 0.653 0.544 -0.003 0.396 0.545 0.475 0.009 0.610 0.425 0.312 0.011 0.369
ϕR
o ϕR

n-AdvBCT 0.698 0.681 -0.025 0.760 0.638 0.543 -0.025 0.389 0.493 0.421 -0.088 0.286 0.376 0.287 -0.105 0.227
ϕR
o ϕR

n-HOC 0.720 0.670 0.006 0.685 0.656 0.544 0.003 0.396 0.552 0.475 0.022 0.610 0.428 0.313 0.019 0.377
ϕL
o – 0.576 – – – 0.455 – – – 0.379 – – – 0.233 – – –

ϕL
o ϕL

∗ 0.722 0.011 0.000 -3.851 0.651 0.012 0.000 -2.263 0.548 0.002 0.000 -2.230 0.410 0.006 0.000 -1.282
ϕL
o ϕL

n -HBCT w/o entail 0.722 0.700 -0.001 0.847 0.653 0.564 -0.002 . . . . . . .0.547 0.542 0.542 -0.011 . . . . . . .0.966 0.409 0.329 -0.002 . . . . . . .0.539
ϕL
o ϕL

n -HBCT 0.721 0.716 -0.002 0.956 0.656 0.567 0.001 0.560 0.551 0.560 0.007 1.076 0.414 0.334 0.009 0.572

Ext-
class

ϕR
o – 0.376 – – – 0.310 – – – 0.273 – – – 0.211 – – –

ϕR
o ϕR

∗ 0.716 0.019 0.000 -1.052 0.654 0.019 0.000 -0.845 0.540 0.007 0.000 -0.991 0.420 0.008 0.000 -0.971
ϕR
o ϕR

n-ℓ2 0.712 0.478 -0.005 0.302 0.653 0.342 -0.002 0.093 0.536 0.307 -0.008 0.127 0.418 0.226 -0.005 0.071
ϕR
o ϕR

n-BCT 0.695 0.447 -0.029 0.210 0.624 0.328 -0.046 0.054 0.514 0.292 -0.049 0.073 0.401 0.217 -0.046 0.029
ϕR
o ϕR

n-Hot-Refresh 0.715 0.498 -0.001 0.360 0.649 0.348 -0.007 0.110 0.534 0.334 -0.012 0.229 0.414 0.231 -0.016 0.094
ϕR
o ϕR

n-AdvBCT 0.708 0.459 -0.011 0.244 0.642 0.337 -0.018 0.080 0.524 0.254 -0.030 -0.070 0.404 0.213 -0.039 0.007
ϕR
o ϕR

n-HOC 0.713 0.490 -0.003 0.336 0.651 0.346 -0.005 0.106 0.537 0.342 -0.005 0.258 0.416 0.233 -0.011 0.102
ϕL
o – 0.425 – – – 0.330 – – – 0.299 – – – 0.212 – – –

ϕL
o ϕL

∗ 0.722 0.002 0.000 -1.428 0.656 0.012 0.000 -0.979 0.549 0.006 0.000 -1.178 0.410 0.007 0.000 -1.038
ϕL
o ϕL

n -HBCT w/o entail 0.726 0.555 0.006 . . . . . . .0.435 0.655 0.388 -0.001 . . . . . . .0.176 0.547 0.344 -0.003 0.177 0.404 0.236 -0.014 . . . . . . .0.120
ϕL
o ϕL

n -HBCT 0.722 0.572 -0.001 0.495 0.655 0.398 -0.001 0.209 0.553 0.373 0.009 0.295 0.408 0.246 -0.005 0.169

New-
Arch

ϕR
o – 0.714 – – – 0.652 – – – 0.545 – – – 0.423 – – –

ϕR
o ϕR

∗ 0.900 0.021 0.000 -3.706 0.879 0.029 0.000 -2.744 0.812 0.002 0.000 -2.039 0.745 0.006 0.000 -1.292
ϕR
o ϕR

n-ℓ2 0.896 0.778 -0.005 0.343 0.873 0.728 -0.006 0.337 0.807 0.703 -0.006 0.593 0.732 0.534 -0.017 0.346
ϕR
o ϕR

n-BCT 0.897 0.830 -0.004 0.623 0.882 0.750 0.003 0.432 0.809 0.757 -0.003 0.794 0.738 0.546 -0.009 0.384
ϕR
o ϕR

n-Hot-Refresh 0.897 0.810 -0.003 0.517 0.876 0.743 -0.003 0.402 0.804 0.720 -0.009 0.656 0.731 0.537 -0.019 0.356
ϕR
o ϕR

n-AdvBCT 0.891 0.797 -0.011 0.449 0.868 0.737 -0.012 0.374 0.799 0.658 -0.016 0.423 0.722 0.517 -0.031 0.294
ϕR
o ϕR

n-HOC 0.895 0.813 -0.006 0.534 0.877 0.744 -0.002 0.408 0.804 0.720 -0.009 0.655 0.728 0.537 -0.023 0.354
ϕL
o – 0.723 – – – 0.657 – – – 0.546 – – – 0.413 – – –

ϕL
o ϕL

∗ 0.897 0.009 0.000 -4.085 0.882 0.011 0.000 -2.876 0.809 0.002 0.000 -2.069 0.746 0.006 0.000 -1.221
ϕL
o ϕL

n -HBCT w/o entail 0.898 0.6915 0.001 -0.178 0.882 0.680 -0.001 0.099 0.8137 0.7936 0.006 . . . . . . .0.941 0.751 0.571 0.006 . . . . . . .0.475
ϕL
o ϕL

n -HBCT 0.893 0.886 -0.004 0.937 0.879 0.782 -0.004 0.555 0.811 0.804 0.002 0.982 0.746 0.580 0.000 0.500

Both

ϕR
o – 0.386 – – – 0.315 – – – 0.281 – – – 0.222 – – –

ϕR
o ϕR

∗ 0.900 0.018 0.000 -0.716 0.879 0.028 0.000 -0.509 0.811 0.007 0.000 -0.529 0.744 0.005 0.000 -0.425
ϕR
o ϕR

n-ℓ2 0.888 0.482 -0.013 0.185 0.857 0.382 -0.025 0.119 0.794 0.451 -0.021 0.321 0.712 0.293 -0.042 0.137
ϕR
o ϕR

n-BCT 0.895 0.358 -0.006 -0.054 0.880 0.345 0.002 0.053 0.818 0.404 0.009 0.233 0.750 0.282 0.008 0.115
ϕR
o ϕR

n-Hot-Refresh 0.891 0.490 -0.010 0.202 0.867 0.384 -0.013 0.122 0.802 0.474 -0.011 0.365 0.732 0.296 -0.015 0.143
ϕR
o ϕR

n-AdvBCT 0.878 0.513 -0.025 0.245 0.842 0.377 -0.041 0.111 0.802 0.416 -0.010 0.255 0.730 0.288 -0.018 0.126
ϕR
o ϕR

n-HOC 0.896 0.446 -0.004 0.116 0.869 0.377 -0.010 0.110 0.798 0.412 -0.016 0.247 0.725 0.287 -0.025 0.126
ϕL
o – 0.420 – – – 0.332 – – – 0.296 – – – 0.213 – – –

ϕL
o ϕL

∗ 0.896 0.025 0.000 -0.831 0.881 0.013 0.000 -0.583 0.814 0.008 0.000 -0.556 0.753 0.006 0.000 -0.384
ϕL
o ϕL

n -HBCT w/o entail 0.897 0.188 0.000 -0.487 0.881 0.221 0.000 -0.204 0.817 0.192 0.003 -0.201 0.752 0.183 -0.002 -0.057
ϕL
o ϕL

n -HBCT 0.897 0.575 0.001 0.324 0.879 0.417 -0.002 0.154 0.812 0.476 -0.003 0.348 0.745 0.313 -0.011 0.184

128. We set the weight decay to 5e-4 and momentum to 0.9,
and use a cosine annealing schedule to tune the learning rate.
The old models are trained only with the base classification
loss in Eq. (8), and the new model is equipped with one
of the alignment methods. We vary the alignment weight
λ in the range [0, 1.0] and for methods involve contrastive
alignment loss, we choose the temperature τ ∈ {0.5, 1.0}.
For each baseline, we run with 10 combinations of these hy-
perparameters and choose the best run that at least does not
hurt the performance of the new model. For our method, we
fix the curvature K = 1.0 and we found that performance is
consistent across runs, so we fix λ = 0.3, τ = 0.5, β = 0.01
(similar to RINCE) for all the settings. The retrieval distance
used for Euclidean models is the cosine similarity distance
while Lorentz models is the geodesic distance as in Eq. (3).

Table 2. Ablating objectives in HBCT.
Ablation CMC@1 mAP

Pup Pcom Pup Pcom

ϕL
n -Hot-Refresh -0.001 0.36 -0.007 0.110

ϕL
n -HBCT w/ RINCE w/ entail -0.001 0.495 -0.001 0.209

ϕL
n -HBCT w/ RINCE w/o entail 0.006 0.435 -0.001 0.176

ϕL
n -HBCT w/ InfoNCE w/ entail -0.002 0.475 -0.009 0.202

ϕL
n -HBCT w/ InfoNCE w/o entail 0.001 0.431 -0.001 0.193

5.2. Empirical Results

Table 1 reports the compatibility performance of competing
methods. Notably, HBCT’s Pcom surpasses other Euclidean
baselines by a substantial margin in most settings. In partic-
ular, HBCT improves CMC@1 by 21.4% on average com-
pared to the strongest Euclidean baseline, and yields a 44.8%
increase in mAP. These compatibility gains can be achieved
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(a) BCT (b) HotRefresh (c) HOC (d) HBCT

Figure 5. The compatibility matrix of different alignment methods after five consecutive model updates. The value at column j and row i
quantifies the CMC@1 compatibility Pcom where the queries are embedded by the model ϕi and the gallery is embedded by ϕj .

with only minimal compromises to the new model’s perfor-
mance, as shown by the Pup scores. Meanwhile, among
alignment methods in Euclidean space, contrastive-based
losses (HOC and Hot-Refresh) show relatively consistent
performance. BCT achieves strong compatibility in certain
scenarios (e.g., extended data and new architectures) but
often entails a sacrifice in the new model’s performance.

Note that we do not directly compare methods based on
original retrieval metrics such as CMC@1 or mAP shown
in self (new-to-new) and cross (new-to-old) columns in Ta-
ble 1, because the ‘old model’ differs between Euclidean
and hyperbolic spaces (ϕR

o vs. ϕL
o ), leading to inherently dif-

ferent retrieval performance. For instance, in extended-class
scenarios, hyperbolic encoders often yield better old-model
performance than their Euclidean counterparts, whereas
Euclidean encoders generally excel in extended-data and
new-architecture scenarios. This behavior may stem from
hyperbolic representations’ stronger ability to handle out-
of-distribution samples (Li et al., 2024). However, this
difference is not the main focus of our paper. Instead, we
primarily rely on Pcom and Pup, which are calibrated to
account for variations in old-model performance.

5.3. Sequential Model Updates

This section investigates the compatibility of alignment
methods when applied over multiple model updates. We
used the CIFAR-100 dataset for this purpose, segmenting the
training data into five sets. Specifically, 20 new classes were
incrementally added with each update, leading to stages
with 20, 40, 60, 80, and ultimately all 100 classes. The
base model for the initial two updates (time steps 0 and 1)
is ResNet18, which is then transitioned to ResNet50 for
the remaining three updates (time steps 2, 3, and 4) to ex-
plore architectural shifts. For each method, we report the
CMC@1 compatibility matrix with Pcom for HBCT, HOC,
HotRefresh, and BCT. The results in Figure 5 show that
HBCT provides superior compatibility maintenance with
prior models across multiple updates, while the compatibil-

ity of baseline methods rapidly declines.

5.4. Ablation and Discussion

We also showed in Table 1 the performance of an ablated
version of HBCT where we remove the entailment cone
loss. We observe a significant drop in terms of backward
compatibility in scenarios where we update the architecture
to ViT-B-16. However, in some scenarios, HBCT, HBCT
without entailment cone loss, also outperforms the best
baselines in Euclidean space. We conduct an ablation study
to further probe this behavior.

In the extended-class scenario on the CIFAR100 dataset, we
replace the RINCE loss with a standard InfoNCE loss (us-
ing geodesic distance in hyperbolic space as the similarity
measure) to evaluate its impact. In Table 2, we observe that
RINCE offers a substantial improvement in CMC@1-based
compatibility, while also reducing the sacrifice in mAP’s
Pup. Interestingly, even HBCT with vanilla InfoNCE on
the hyperbolic space can outperform the best baseline in Eu-
clidean space. This aligns with our intuition that hyperbolic
geometry better captures the evolution of the embedding
space by organizing embeddings across models along the
time dimension depending on their capabilities. Figure 6 in
the appendix illustrates how the embeddings evolve from
the old model to the new one. As the model improves, the
uncertainty in the gallery embeddings decreases. Additional
ablations for hyperparameters are provided in the appendix.

6. Related Work
Compatible Representation Learning. Aligning represen-
tations across deep learning models has been widely studied
in applications like representation transfer (Li et al., 2015)
and model stitching (Bansal et al., 2021) to multi-modal
foundation models (Fei et al., 2022). In retrieval-based appli-
cations, Shen et al. (2020) is the first to introduce the concept
of backward-compatible training to avoid backfilling the in-
dexed embeddings. They enforce compatibility between

8
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Figure 6. Visualization of old and new gallery embeddings in CI-
FAR100. We compress 128-dimensional embeddings into a 2-
dimensional hyperboloid using UMAP (McInnes et al., 2018) and
visualize them in the tangent space T0̄L2. The top histogram is the
distribution of the uncertainty estimation for those embeddings.

old and new models by transferring the learned classifier
from the old model to influence the new one. While this
method facilitates compatibility, it can compromise the ex-
pressiveness of the new model. To address this, subsequent
studies have explored various techniques to improve the reg-
ularization loss, such as contrastive-based alignment(Zhang
et al., 2022a; Biondi et al., 2024), adversarial loss (Pan et al.,
2023), and the alignment of class centroids between old
and new models (Zhang et al., 2022b). However, these ap-
proaches primarily rely on Euclidean geometry, while we
shift the focus to hyperbolic geometry and leverage its natu-
ral uncertainty estimation to adaptively adjust the alignment.

On a different front, Hu et al. (2022); Wang et al. (2020) pro-
posed adding an extra projection to map the old embedding
into the new embedding space, while Zhou et al. (2023);
Ramanujan et al. (2022) introduced auxiliary dimensions
to increase the expressiveness of either the old or new em-
beddings. Building on backward-compatible models, recent
research has explored dynamic techniques to progressively
backfill the gallery in real-time (Zhang et al., 2022a; Jaeckle
et al., 2023; Yan et al., 2021). These approaches are orthog-
onal and can be integrated into our method.

Hyperbolic Representation Learning. Hyperbolic ge-
ometry is primarily known for its ability to better capture
hierarchical, tree-like structures (Yang et al., 2023; Peng
et al., 2021), which enhances performance in various tasks,
including molecular generation (Liu et al., 2019), recom-
mendation (Yang et al., 2021; Li et al., 2021), image re-

trieval (Khrulkov et al., 2020; Wei et al., 2024), and infor-
mation retrieval (Ganea et al., 2018; Dhingra et al., 2018).
Recent studies have also demonstrated the benefits of hyper-
bolic geometry for (multi-modal) foundation models (Desai
et al., 2023; Ibrahimi et al., 2024; Pal et al., 2024; Yang et al.,
2024). In contrast to these works, we are the first to investi-
gate the application of hyperbolic geometry in capturing the
evolution of models across updates.

7. Conclusion
We introduced HBCT, a framework that leverages hyper-
bolic geometry to ensure seamless model updates while
accounting for representation uncertainty. By constraining
new embeddings within the entailment cone of old ones and
introducing a dynamic hyperbolic contrastive loss, HBCT
maintains compatibility without hindering expressiveness.
Experiments show that our approach outperforms Euclidean-
based methods in achieving robust backward compatibility.
This work highlights the potential of hyperbolic geometry
for scalable model evolution.

Limitations and future work. While HBCT is adaptable
to various settings, we follow prior work by focusing on
supervised learning scenarios. Investigating its effective-
ness in self-supervised learning or multi-modal settings is
an interesting research direction. Furthermore, to account
for embedding space evolution, we gradually increase the
clipping norm threshold. This may lead to instability as
norms grow (e.g., ≥ 10.). A potential solution is to backfill
and rescale the time dimension after a set number of updates
(e.g., 50 updates), though developing a more principled ap-
proach for handling this challenge is an important direction
for future work.
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A. Additional Ablation Studies
In this section, we conduct a comprehensive ablation study of HBCT across varying hyperparameters. Unless stated
otherwise, all subsequent experiments use the extended-class settings shown in Table 1.

Curvature. In the main paper, we fix the curvature value K = 1 following existing literature (Bdeir et al., 2023). We
conducted an ablation study to examine how different curvature values affect compatibility performance. Following (Desai
et al., 2023), we also evaluate the compatibility performance when we set the curvature value as a learnable parameter, which
is adjusted during training with other parameters. The result in Table 3 shows that K ∈ [0.5, 1] yields stable outcomes in
both compatibility and the quality of the new model. With the learnable curvature, the new model showed good performance
for new-to-new retrieval. However, it negatively impacted compatibility performance, particularly in cross (new-to-old)
retrieval.

Curvature K self cross Pup Pcomp

0.1 0.581 0.366 -0.114 0.108
0.5 0.651 0.397 -0.008 0.206
0.7 0.657 0.399 0.002 0.211
1.0 0.654 0.398 -0.003 0.207
1.5 0.604 0.370 -0.079 0.123
learnable 0.660 0.371 0.006 0.124

Table 3. Ablation of curvature K on HBCT’s mAP performance.

Clipping threshold ζ. In the main paper, we set the clipping threshold to ζ0 = 1.0. For the updated model, we raise it to
ζn = ζ0 + 0.2 to accommodate the evolving embedding space and allow new embeddings greater flexibility to diverge
from the old ones. This ablation examines the impact of ζn: we hold ζ0 = 1.0 and vary ζn ∈ [1.0, 1.3]. As shown in
Table 4, keeping ζn = 1.0 preserves the new model’s self-performance but harms cross-model compatibility, whereas setting
ζn = 1.2 offers the best balance between the two metrics.

ζo ζn self cross

1.0 1.0 0.7232 0.5525
1.0 1.1 0.7153 0.5719
1.0 1.2 0.7221 0.5705
1.0 1.3 0.7154 0.5588

Table 4. Effect of the clipping threshold ζn on the CMC@1 performance of the new model.

Alignment weights. We evaluate HBCT under a range of hyperparameter settings. Figure 7 shows that setting λ = 0.3 and
τ = 0.5 achieves the best balance between the updated model’s self-performance and cross-model compatibility. To assess
the relative importance of entailment versus contrastive objectives, we introduce a new weight λentail into our loss function.
In the experiment shown in Figure 7c, we keep λ = 0.3 fixed and vary λentail.

L = Lbase + λ(Lentail + Lcontrast), (16)

Distance function. We compare HBCT under three distance functions—geodesic distance (Eq. (3)), squared Lorentz
distance (Law et al., 2019), and the Lorentz inner product (Eq. (1))—and we also replace the contrastive loss Lcontrast with
a mean-distortion loss

Lmdist = d(ho,hn),

where d( · , · ) is either the geodesic or squared Lorentz distance. As Table 5 shows, all three metrics yield similar
HBCT performance. Substituting in Lmdist neither enhances cross-model compatibility nor preserves the updated model’s
self-performance, echoing the degradation observed with the ℓ2 alignment loss in Euclidean space.

Classification performance. Throughout the paper, we mainly focus on CMC@k and mAP to focus on the retrieval
task. We report the classification accuracy of the alignment methods in comparison with the CMC@1 metric in Table 6.
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(a) Alignment weight λ (b) Contrastive temperature τ (c) Entailment weight λentail

Figure 7. Comparison of self vs. cross retrieval mAP across three hyperparameters.

Distance function self cross

RINCE - Geodesic 0.6552 0.3982
RINCE - Lorentz inner 0.6550 0.3985
RINCE - Squared Lorentz 0.6529 0.3979
Mean distortion - Geodesic 0.6487 0.3970
Mean distortion - Squared 0.6381 0.3923

Table 5. Ablation of different distance functions on self and cross mAP performance.

Specifically, we report the cross-classification metric, where the accuracy is evaluated for the old classifier head applied to
the new embedding model.

Self-CMC@1 Cross-CMC@1 Self-Acc Cross-Acc
BCT 0.695 0.447 76.47 40.66
Hot-refresh 0.715 0.498 77.65 41.20
HOC 0.713 0.490 77.67 41.36
HBCT 0.722 0.572 78.86 42.19

Table 6. Comparison of different methods on CMC@1 and accuracy metrics.
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