Learning Along the Arrow of Time: Hyperbolic Geometry for
Backward-Compatible Representation Learning
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approaches in Euclidean space neglect the uncer-
tainty in the old embedding model and force the
new model to reconstruct outdated representations
regardless of their quality, thereby hindering the
learning process of the new model. In this paper,
we propose to switch perspectives to hyperbolic
geometry, where we treat time as a natural axis
for capturing a model’s confidence and evolution.
By lifting embeddings into hyperbolic space and
constraining updated embeddings to lie within
the entailment cone of the old ones, we maintain
generational consistency across models while ac-
counting for uncertainties in the representations.
To further enhance compatibility, we introduce
a robust contrastive alignment loss that dynami-
cally adjusts alignment weights based on the un-
certainty of the old embeddings. Experiments
validate the superiority of the proposed method in
achieving compatibility, paving the way for more
resilient and adaptable machine learning systems.

1. Introduction

Representation learning has become an integral part of
modern machine learning, offering a way to transform raw
data—be it text, images, or other modalities—into compact
representations or “embeddings” that encode their essen-
tial structure (Chen et al., 2022; Bengio et al., 2013; Guo
etal., 2019). A high-quality embedding model can unlock
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Figure 1. a) A typical setting of the backward-compatible training
problem. A large gallery set is embedded and indexed into a vector
database using the old model. Updating to the model may require
re-indexing the entire vector database (backfilling). Backward-
compatible training allows the new model to query and retrieve
from the vector database of old embeddings directly. ) Simulating
the model evolution in hyperbolic space with the entailment cone.

numerous applications: from semantic search (Zhu et al.,
2023; Chandrasekaran & Mago, 2021) and recommenda-
tion systems (Liu et al., 2024; Ko et al., 2022) to retrieval-
augmented generation in large language models (LLMs),
where a vector database is used to find and integrate rele-
vant information at inference time (Gao et al., 2023). The
ubiquity of pretrained models such as BERT (Devlin, 2018),
CLIP (Radford et al., 2021), or GPT-style architectures (Rad-
ford et al., 2018) makes these off-the-shelf embeddings read-
ily available. Enterprises and researchers alike increasingly
rely on these pretrained representations, adapting them to
in-house data or tasks for streamlined development and fast
deployment (Bommasani et al., 2021).

Yet, embedding models do not remain static. Model updates
are often necessary to leverage more advanced architectures,
integrate new domain knowledge, or address performance
limitations (Wang et al., 2024). However, updating these
models typically introduces significant challenges. In large-
scale retrieval pipelines or scenarios where legacy embed-
dings have been indexed, these upgrades can be disruptive
if older embeddings become incompatible with the new
model’s representations. Meanwhile, re-embedding all data
not only incurs high computational and operational costs
but also raises privacy concerns (Price & Cohen, 2019), es-
pecially in applications like face recognition (Chen et al.,
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2019) and person re-identification (Cui et al., 2024). These
issues highlight the need for backward-compatible represen-
tation learning: A model update is considered backward-
compatible if embeddings from the new model can interact
and retrieve information from embeddings generated by its
predecessor (see Figure 1). This property allows old and
new embeddings to coexist seamlessly without the need to
reprocess sensitive or extensive datasets (Shen et al., 2020).

While several methods have been proposed for backward-
compatible representation learning (Shen et al., 2020; Meng
et al., 2021; Ramanujan et al., 2022; Zhou et al., 2023; Pan
et al., 2023; Biondi et al., 2024; Jang & Lim, 2024), they
concentrate on Euclidean or hyperspherical spaces powered
by the cosine distance. A common strategy involves adding
an extra loss term to align older and newer embeddings
within the same space, compelling the new model to re-
construct the old representations regardless of their quality.
Consequently, if the old embeddings are suboptimal due
to the limited capacity of the old model, the new model’s
ability to learn richer or more accurate representations is
constrained. This mismatch between strict compatibility
and model evolution becomes especially relevant as mod-
els grow larger and more specialized, creating a larger gap
between old and new representations.

We argue that hyperbolic geometry is a natural fit for describ-
ing model evolution due to its unique properties. Firstly,
its exponential growth of areas and volumes with respect to
radius makes it particularly suited for applications involving
continual model updates as new entities or classes emerge.
Secondly, recent studies (Khrulkov et al., 2020) show that
hyperbolic encoders can effectively capture representation
uncertainty, enabling ‘free’ uncertainty estimation along the
time axis. This capability has been successfully applied to
enhance performance across various tasks, including image
segmentation (Atigh et al., 2022), action recognition (Franco
et al., 2023), and video prediction (Suris et al., 2021). In
the backward-compatible training problem, model updates
can be seen as transformations of the embedding space over
time, enabling new representations to evolve while main-
taining consistency with their previous counterparts. This
perspective aligns with the structure of Minkowski space-
time (Stein, 1968), where hyperbolic geometry is used to
describe the space-time curvature (Einstein et al., 2013;
Barrett, 2011) and model dynamical systems where relation-
ships among particles evolve over time (Aratjo & Viana,
2008).

Proposed work. In this paper, we reframe backward-
compatible representation learning through the unique
lens of hyperbolic geometry and propose a novel frame-
work, namely Hyperbolic Backward-Compatible Training
(HBCT), to align new models with legacy representations.
The core idea is to lift the embeddings into hyperbolic space

and use the time-like dimension as a natural axis to capture
model evolution and the uncertainties inherent in vector
embeddings. To capture the dynamic nature of embedding
spaces, we employ the entailment loss (Ganea et al., 2018)
to enforce a partial-order constraint between the old and new
models. This constraint requires the new embeddings to re-
main within the entailment cone of their older counterparts,
maintaining backward compatibility while embracing the
improved expressiveness brought by new data or architec-
tures. We further introduce a robust hyperbolic contrastive
loss that dynamically adjusts alignment weights based on
the uncertainty levels of old embeddings, enabling more
adaptive and reliable alignment across model generations.
To the best of our knowledge, this is the first attempt to
leverage embedding geometry for maintaining consistency
in updating models.

Through extensive experiments across diverse settings, we
demonstrate that HBCT effectively enhances backward com-
patibility without compromising the performance of new
embedding models. Specifically, HBCT improves CMC@ 1
compatibility of the new model by 21.4% compared to the
strongest Euclidean baseline, and yields a 44.8% increase
in mAP compatibility.

2. Preliminaries
2.1. Riemannian Manifolds and Hyperbolic Geometry

A smooth n-dimensional manifold M is a topological space
where every point x € M has a neighborhood Uy C M that
is diffeomorphic (i.e., resembles) a neighborhood Vi, C R™.
Each point x has an associated tangent space Ty M, which
is an n dimensional vector space serving as a first-order
local approximation of M. A Riemannian metric g on M
is a smoothly varying collection g = (gx)xem of posi-
tive definite bilinear forms gy (-, - ) : TxM X ToxeM — R.
These bilinear forms determine the curvature at x, which
measures how M deviates from the flatness at that point. A
Riemannian manifold is the pair (M, g). Euclidean space
R™ can be viewed as a Riemannian manifold with the stan-
dard Euclidean inner product and zero curvature. In contrast,
hyperbolic spaces are Riemannian manifolds with constant
negative curvature. This negative curvature leads to an ex-
ponential growth of areas and volumes with radius, different
from the polynomial growth in Euclidean space.

2.2. Lorentz Models of Hyperbolic Geometry

There are several models that can represent n-dimensional
hyperbolic spaces isometrically, such as the Poincaré ball
model (Nickel & Kiela, 2017) or the Klein model (Mao
et al., 2024). Following recent work (Desai et al., 2023;
Bdeir et al., 2023), we use the Lorentz model (Nickel &
Kiela, 2017) for its numerical stability (Mishne et al., 2023).
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In what follows, we follow the notations and terminology
from (Desai et al., 2023).

Lorentz model embeds d-dimensional hyperbolic space in
R+ as a one-sheeted hyperboloid, where each point x €
R4+ can be written as [times Xspaces |, where Zime € R
acts like a “time coordinate” and Xspace € R? like “spatial

coordinates”. Let (-, -) be the usual Euclidean dot product.

The Lorentzian inner product { -, - )¢ on R4 is given by

<X7 Y>£ = <Xspacevyspace> — Ttime Ytime- (1)

An n-dimensional hyperbolic space of curvature — K, where
K > 0, in the Lorentz model is defined as

L4 = {xe}Rd+1 X, X)) = —%, xtime>0}. )

All points x € L% satisfy (jme = % + |Ixspacel|?-

A geodesic between two points is the locally smooth and
shortest path connecting two points. Geodesics in £? are
curves traced by the intersection of £? with hyperplanes
in R4+! passing through the origin. The distance function
between two points x,y € £ is

de(x,y) = % cosh™? (— K <X,y>£). 3)
The tangent space T, L% at a point p € L% consists of all

vectors in Euclidean space that are orthogonal to p:

ToLt = {z € R™ : (p,z), = 0}. 4)

To “move” between the manifold and its tangent space, we
use the exponential map expm,, : 7},£d — L%, defined as

sinh(\/FHzHL) .
VE|z|

Its inverse, the logarithmic map log, : L* — T, L%, sends
x € L% back into the tangent space at p:

expmp(z) = cosh(\/EHzHg)p +

cosh_l(fK <p,x>£)
\/(K (p,x>£)2 -1

where proj,(x) maps a vector in ambient space R+ onto
the tangent space at p

logm,,(x) =

proj,(x),  (6)

z + proj,(x) =u+ K p (p,u)c. (7)

These maps allow us to perform Euclidean operations in
the tangent space while retaining the underlying hyperbolic
structure once we map points back onto £¢. Following the
literature (Desai et al., 2023), we only use these maps at the
origin of the hyperboloid 0 = [/1/K,0]".

3. Problem Statement

Following previous literature (Shen et al., 2020; Zhang et al.,
2022a), we focus on a typical retrieval setting, where we
have a large gallery G of items (e.g., images) maintained
in a vector database. Each item = € G is associated with
one class or identity y € ), and is encoded into a dense
vector by an embedding model ¢( - ). During retrieval, each
query g € Q is encoded into a vector embedding, i.e., ¢(q),
and relevant matches are retrieved by comparing with the
embeddings in the gallery ¢(G) = {¢(x) | z € G} using a
distance function d( -, - ). The embedding model is trained
on a dataset D = {z, y} with the base loss function:

@* = argmin Lpase (0, D). )
¢

Here, we choose the loss function Ly,s. to be the cross-
entropy, following (Shen et al., 2020), but it could also be
any other metric learning loss functions (Kaya & Bilge,
2019; Wang et al., 2018; Chen et al., 2020).

Let ¢, be the existing encoder trained on an old dataset D,;4
and ®Y is the existing gallery embeddings encoded using
¢,. We now want to train a new encoder ¢,, to replace ¢,
subject to the arrival of new data D,,cyy 2 Dy1q, more pow-
erful architectures, or new pre-trained weights of existing
architectures. Note that new data D,,.,, may contain new
identities or classes different from D, .

Our goal is to train the new model ¢,, in a way that it could
be directly compatible with the old model ¢,: new queries
encoded by ¢,, should yield similar or improved retrieval
performance on the existing gallery ®9 produced by ¢,( - ).
This property enables a backfill-free approach—allowing
the old embeddings to be gradually replaced by ¢, (x)
as needed—while immediately benefiting from the new
model’s improved capabilities.

4. Methodology

As mentioned in the introduction, directly forcing new em-
beddings to reconstruct outdated representations from the
old model can impair the learning process of the new model,
because some old embeddings may be poorly represented.
To address this, we propose to lift the embeddings to hyper-
bolic space, where we leverage the time-like dimension as a
natural axis to capture a model’s confidence and evolution.
Building on this framework, we introduce two uncertainty-
aware losses, robust hyperbolic contrastive loss and entail-
ment cone loss, designed to enforce alignment and a partial-
order relationship between the old and new models while
considering the quality of the old embeddings. The next

"For simplicity, we abuse notation by letting ¢ to take a set of
items G as the input and produce a vector database containing all
embedded items.
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Figure 2. The distribution of uncertainty measures on hyperbolic
embeddings of CIFAR100 produced by the old model ¢,. The old
model is ResNet18 trained with the first 50 classes (old identities)
and then used to embed the upcoming 50 classes (new identities)
into the vector database. The gallery is unseen samples from the
test set. The curvature parameter K is set to 1.0.

section presents our base hyperbolic encoder with an uncer-
tainty measure for its embeddings. Section 4.2 and 4.3 will
discuss the entailment and contrastive losses, respectively.

4.1. Hyperbolic Encoder and Uncertainty Estimation

We adopt a hybrid Euclidean—Hyperbolic model (Khrulkov
et al., 2020) to encode images into hyperbolic space. We
choose this hybrid model instead of a fully hyperbolic
model (Bdeir et al., 2023) because it better integrates with
any existing Euclidean encoders.

Let z be the vector embedding of the input = produced by a
given encoder (e.g., ResNet (He et al., 2016) or ViT (Doso-
vitskiy, 2020)). We apply the exponential map expmg to
lift [0, z] € R¥*! from the tangent space at the hyperbolic
origin 0 onto the hyperboloid £.

¢ (x) = expmy([0,2] ).

Here, [0, z] € R4t lies in the tangent space at the origin of
the hyperboloid.

For convenience, in what follows, we denote the mappings
from the input z to the hyperbolic embedding for the old
and new models as:

¢§(w):w¢—°>z e R? 2220 e £

o
OE(x) w2 7, € REZPO b e gl

Training Hyperbolic Encoder. Similar to (Shen et al.,
2020), we train the hyperbolic encoder as a classification
task in hyperbolic space by using hyperbolic multinomial
logistic regression (Hyperbolic MLR) (Bdeir et al., 2023).
The probability of a class y € ) given the embedding h can
be expressed as:

p(Y = ylh) o exp (sign((wy, b)) [wy || cde (h, Hw, ) ,
€))

where Hy,, = {h € L% (w,,h) = 0} is the decision hy-
perplane of the class y parametrized by w, € ToL?. The
term d. (h, H,, ) is the minimum distance from h to the hy-
perplane, which also admits a closed form using Euclidean
reparameterization trick (Mishne et al., 2023). Since the
base training is not our focus, we refer readers to (Bdeir
et al., 2023) for full discussion. Our base objective is:

Lpase(h) = —logp(Y = y|h).

Uncertainty Estimation. Existing works (Franco et al.,
2023; Atigh et al., 2022) typically use the hyperbolic uncer-
tainty estimation in the Poincaré model, defining uncertainty
as the f5-norm of hyperbolic embeddings. We adapt this
definition of uncertainty to the Lorentz model by leveraging
its isometric equivalence with the Poincaré model:

hspacc

Uncertainty (h) =1 — ‘
htime

L 1 sinh(s/K|z|)ZH
cosh(VETl) |~ VK]
1
=1 tanh (\/KHZH) , (10)

where z is the Euclidean embedding of h before the expo-
nential map. This choice of the uncertainty measure results
in the same formulation as the Pointcaré uncertainty mea-
sure used in Franco et al. (2023) and Atigh et al. (2022).
For K = 1, the uncertainty is bounded in the range [0, 1].

Figure 2 shows the distribution of the hyperbolic uncertainty
estimates for embeddings produced by ResNet18 trained
on the first 50 classes of CIFAR100. When this old model
is used to embed images from the new 50 classes (unseen
during its training), the resulting embeddings exhibit higher
uncertainty and lower norms ||z, || compared to images from
the first 50 classes (seen during the training). This obser-
vation is consistent with (Atigh et al., 2022), showing the
close relationship between an embedding’s norm and its
associated uncertainty in hyperbolic models.

4.2. Entailment Models Evolution

When training the new model, we aim to keep it consis-
tent with the structure discovered by the old model and
then refine previously learned relationships. We model this
consistency-then-refinement dynamic via the notion of en-
tailment cone (Desai et al., 2023; Ganea et al., 2018), which
constrains the region where new embeddings can ‘descend’
from old embeddings in hyperbolic space. In other words,
the cone represents the set of permissible embedding adjust-
ments as the model evolves.

Formally, the entailment cone at h,, in the hyperbolic space
is defined by a half-aperture function that diminishes with
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Figure 3. Illustration of the entailment cone. The more certain h,,
the narrower the cone defined by h,.

distance from the hyperbolic origin (Desai et al., 2023):

aper(h,) = sin!( ). (1)
where € is a small constant (e.g. 0.1) preventing the degen-
erate behavior near the origin.

The hyperbolic entailment cone loss penalizes the cases
when h,, lies outside h,’s entailment cone using the dif-
ferences between the exterior angle ext(h,,h,) = © —
Z(0, h,, h,,) and the aperture (see Figure 3):

Ecntail(hn; ho) = max (0; eXt(hov hn) - a'per(ho)) )
where the exterior angle is computed by

R time+ho,time (K (ho,hyn) z)

ext(hy, h,) = cos™! kX
B apce \/(K<ho,hn>£) -1

Here, we penalize h,, for each pair (h,, h,,) if it lies outside
of the entailment cone dictated by h,. We refer readers
to (Desai et al., 2023) for full derivations.

It is worth noting from Eq. (11) that the aperture at h, is
inversely proportional to its norm. Therefore, as h, becomes
more uncertain (lower norm), its cone ‘widens’, granting
greater freedom for the evolutionary expansion in the new
embedding space.

4.3. Uncertainty-aware Contrastive Alignment

Notice that the entailment cone restricts only the spatial
coordinate changes of the embedding, without preserving
pairwise distance relationships between old and new embed-
dings. Meanwhile, contrastive alignment loss (Biondi et al.,
2024; Zhang et al., 2022a) or mean distortion (Cui et al.,
2024) may hinder the learning of the new model since they
naively enforce the new model to reconstruct outdated rep-
resentations regardless of their quality. This may exacerbate

Comparing InfoNCE vs. RINCE Gradients
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VL contrast(hn, ho) |
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Figure 4. Comparison between InfoNCE and RINCE losses for
varying distances between old and new embedding h, and h,,.
As g increases, the gradient norm decreases for noisy positive
pairs (—dz € [—5,—3]) and increases for clean positive pairs
(—dc € [—2,—0]). For this illustration, we choose one negative
sample with the distance dz (h,,,h}) = 4.0 and 8 = 0.01.

the inherent trade-off between maintaining compatibility
and achieving high performance in the new model.

To address this issue, we propose a variant of RINCE-robust
contrastive loss (Chuang et al., 2022)—that adaptively adjusts
the weight for positive old-new embedding pairs according
to the uncertainty of the old embeddings.

Let B be a batch of images in the training data, RINCE loss
for a pair (h,, h,,) € B is given by

1
‘Ccontrast (hna ﬂa Q) = _6 eXp(_qu (hnv ho))

q

1
s B> exp(—de(hy, b)) |, (12)

h,eB

where 3, g € (0, 1] are hyper-parameters of the RINCE loss.
As g — 0, RINCE recovers vanilla InfoNCE (Oord et al.,
2018) loss. As ¢ — 1, RINCE reduces the weights for
noisy pairs (with large distances) and focuses more on clean
pairs (low distances)—see Figure 4 for the comparison of the
gradient norms for InfoNCE and RINCE with varying g.

The RINCE loss is particularly suitable in the context of
compatibility, where the goal is to emphasize the reconstruc-
tion of good old embeddings while downweighting bad ones.
To achieve this, we make an explicit dependence of ¢ to h,,
for each pair (hy,, h,), defining ¢(h,) = Uncertainty(h,).
This allows the weights for positive pairs to adjust dynami-
cally based on the quality of the old embeddings.

4.4. Training Pipeline

The overall loss function to train the updated model is:
L= Ebase + A(ﬁentail + Econtrast), (13)

where ) is the weight for the alignment regularization. Here,
we make no assumption about Ly, making it applicable
to various training scenarios, including unsupervised and
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self-supervised learning, which drive recent advancements
in foundation models. We leave further exploration of these
settings for future work.

Numerical Stability. Because the hyperbolic distance
grows quickly with respect to the norm ||z, it is often nec-
essary to clip or rescale norms to maintain well-conditioned
embeddings. We follow (Bdeir et al., 2023) and (Desai et al.,
2023) to rescale the norm of z by v/d and then clipping at ¢
to ensure stability. For the old model, we set (, = 1.0 and
for the new model, we increase the clipping threshold by
¢n = (,+ 0.2 to account for the evolution in the embedding
space of the updated model.

5. Experiments

We conduct extensive experiments and compare with ex-
isting approaches in Euclidean space to demonstrate the
effectiveness of our method. We refer to our method
as Hyperbolic Backward Compatible Training (HBCT).
The source code is available at https://github.com/
snap-research/hyperbolic_bct.

5.1. Experimental Settings

Datasets. We use CIFAR100 (Krizhevsky et al., 2009)
and Tiny-Imagenet (Le & Yang, 2015), where the test sets
serve as hold-out query and gallery sets for evaluating both
retrieval performance and compatibility.

Models. We employ two model architectures:
ResNet18 (He et al.,, 2016) and ViT-B-16 (Dosovit-
skiy, 2020). ResNetl18 is trained from scratch, whereas
ViT-B-16 is initialized with weights pre-trained on
ImageNet21k (Ridnik et al., 2021). The goal is to replicate
the typical practice of obtaining and fine-tuning pre-trained
models, which then function as external alternatives to
replace the currently fine-tuned model.

Scenarios. We consider four settings to capture a range of
real-world use cases:

e Extended data: We randomly select 30% of the training
dataset and use it as D,;4 to train the old model. D,,.,
will be the the full dataset. The model architecture is
ResNet18 and is kept the same for the new model.

» Extended class: We extract from the first 50% of
classes (~50 classes for CIFAR100 and ~100 classes
for Tinylmagenet) as D,;4. Meanwhile, D,,¢,, will be
the full dataset. The model architecture is ResNet18
and is kept the same for the new model.

e New architecture: We assume that we have access to
the full training dataset, i.e., Dyjqg = Dpew- The old
model is ResNet18, and the new model finetunes on
ViT-B-16 pretrained on Imagenet21k.

e Both: We simulate the arrival of new classes and a
new architecture. The old model is ResNet18 trained
with 50% of classes, and the new model is ViT-B-16
finetuned on the full dataset.

Baselines. We compare our method with other
regularization-based methods in Euclidean space, including
{5 distance regularization, BCT (Shen et al., 2020), Hot-
Refresh2 (Zhang et al., 2022a), AdvBCT (Pan et al., 2023),
and HOC? (Biondi et al., 2024).

Metrics. We assess retrieval performance using two metrics:
(1) Cumulative Matching Characteristics (CMC@k): This
metric measures top-k accuracy by ranking gallery represen-
tations based on their similarity to the query representation.
A query is considered correctly retrieved if a sample from
the same class appears within the top-k ranked results. We
report CMC top-1 and top-5 scores for all models; (2) Mean
Average Precision (mAP): mAP integrates precision and re-
call by computing the area under the precision-recall curve.
We use mAP@1.0, which represents the average precision
over recall values ranging from 0.0 to 1.0.

We define metrics to assess the backward-compatibility of
an alignment method following (Shen et al., 2020; Pan et al.,
2023). Let ¢, be the base new model trained without any
alignment method. The compatibility metric for a new
model ¢,, trained with an alignment method is computed by

P _ M(¢n(g)a ¢o(g)) - M(¢0(Q)7¢o(g)>
T M(6:(Q):64(9)) — M(90(Q): ¢0(9))

where M(-; -) is an evaluation metric for the retrieval
task, which is either CMC@k or mAP. Since backward-
compatibility may come with a trade-off in the performance
of the new model, we also compare the performance with
the base model without alignment ¢,

p_ M@(Q);$(9)) — M(6.(Q): 6.(9))
v M(+(Q); +(G)) '

(14)

15)

Implementation Details. For all the models, we use the
feature dimension of 128. For ResNet18 model, we use 200
epochs, learning rate 0.1 and for finetuning ViT-B-16, we
use 80 epochs with learning rate 0.005. For both models, we
use SGD (Ruder, 2016) as the optimizer with a batch size of

*Hot-Refresh and HOC are two alignment methods that lever-
age hyperspherical geometry by using a contrastive objective based
on cosine similarity. The key difference between them lies in the
selection of negative pairs.

*Note that in (Biondi et al., 2024), the authors proposed using
a fixed d-simplex classifier to improve compatibility. However,
this approach requires predefining the number of dimensions to
match the number of classes and maintaining it consistently across
model updates, which is usually not practical. Therefore, we adopt
only their high-order alignment loss (HOC) while removing the
constraint of a fixed classifier.
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Table 1. The comparisons of different backward-compatibility methods. Here, ¢ indicates that the model produces Euclidean embeddings
while ¢~ produces hyperbolic embeddings. The columns self and cross refer to the original new-to-new and new-to-old retrieval
performance (CMC@1 or mAP), respectively. Gray rows are base models without compatibility, and the pink rows indicate the proposed
method. Bold indicates the best performance and underline indicates the second best method. When the ablated version of HBCT (i.e.,

CIFAR100 TinyImageNet
i Old New
Scenario Model Model CMC@1 mAP CMC@1 mAP
self cross Pup TPra self cross Pup TPl self cross Pup TP self cross Pup TP
® - 0572 - = - 042 - = - 0313 - = - 0248 - = =
by B 0716 0019 0000 -3.846 0.654 0072 0000 -2.195 0540 0005 0000 -2.200 0420 0010 0000 -1.384
s S WA 0680 0645 -0.049 0510 0627 0537 -0.042 0355 0538 0474 -0004 0603 0421 0311 0002 0362
¢%  ¢R-BCT 0706 0701 -0014 0900 0642 0546 -0.018 0406 0527 0490 -0.024 0702 0407 0309 -0.032 0.354
¢F  ¢F-Hot-Refresh 0718 0671 0003 0693 0653 0544 -0.003 0396 0545 0475 0009 0610 0425 0312 0011 0369
Ext- #F  ¢r-AdvBCT 0698 0681 -0.025 0760 0638 0543 -0025 0389 0493 0421 -0.088 0286 0376 0287 -0.105 0227
data ¢f  ¢R-HOC 0720 0670 0006 0.685 0656 0544 0003 0396 0552 0475 002 0610 0428 0313 0019 0377
¢k - 0576 - = - 0455 - = - 0319 - = - 0233 - = =
¢E ¢ 0722 0011 0000 -3851 0651 0012 0000 -2.263 0548 0002 0000 -2230 0410 0006 0000 -1.282
@£ GE-HBCT wioentail 0722 0700 -0.001 0847 0653 0564 -0002 0547 0542 0542 -0011 0966 0409 0329 -0.002 0.539
¢ ¢L-HBCT 0721 0716 -0.002 0956 0.656 0567 0001 0560 0551 0560 0007 1076 0414 0334 0009 0.572
4R 0376 - = - 0310 - = - 023 - = - o211 - = =
by b2 0716 0019 0000 -1052 0.654 0019 0000 -0.845 0540 0007 0000 -0.991 0420 0008 0000 -0971
s S WA 0712 0478 -0.005 0302 0.653 0342 -0.002 0093 053 0307 -0008 0.27 0418 0226 -0.005 0.071
#F  ¢R-BCT 0695 0447 0029 0210 0624 0328 -0046 0054 0514 0292 -0.049 0073 0401 0217 -0.046 0.029
¢F  ¢F-Hot-Refresh 0715 0498 -0001 0360 0649 0348 -0.007 0110 0534 0334 -0012 0229 0414 0231 -0.016 0.094
Ext- ¢%  GR-AdVBCT 0708 0459 -0.011 0244 0642 0337 -0018 0080 0524 0254 -0.030 -0070 0404 0213 -0.039 0.007
class ¢F  ¢R-HOC 0713 0490 -0003 0336 0651 0346 -0.005 0106 0537 0342 -0.005 0258 0416 0233 -0.011 0.102
¢k - 0425 - = - o030 - = - 0299 - = - o022 - = =
oL 9f 0722 0002 0000 -1428 0656 0012 0000 -0.979 0549 0006 0000 -1.178 0410 0007 0000 -1.038
¢f  GE-HBCT wioentail 0726 0555 0006 0435 0.655 0388 -0.001 0.076 0547 0344 -0003 0.077 0404 0236 -0014 0,120
¢ ¢E-HBCT 0722 0572 -0.001 0495 0655 0398 -0.00 0209 0553 0373 0009 0295 0408 0246 -0.005 0.169
R - 0.714 - - - 0652 - - - 0.545 - - - 0423 - - -
by b2 0900 0021 0000 -3706 0.879 0029 0000 -2744 0812 0002 0000 -2.039 0745 0006 0000 -1.292
ok okt 0896 0778 -0.005 0343 0873 0728 -0.006 0337 0807 0703 -0006 0593 0732 0534 -0017 0.346
#F  ¢R-BCT 0897 0830 -0.004 0623 0882 0750 0003 0432 0809 0757 -0003 079 0738 0.546 -0.009 0.384
¢F  ¢R-Hot-Refresh 0.897 0810 -0003 0517 0876 0743 -0.003 0402 0804 0720 -0.009 0656 0731 0537 -0.019 0.356
New- ¢%  $E-AdvBCT 0.891 0797 -0.011 0449 0.868 0737 -0.012 0374 0799 0658 -0.016 0423 0722 0517 -0.031 0.294
Arch of  ¢R-HOC 0.895 0813 -0006 0534 0877 0744 -0.002 0408 0804 0720 -0.009 0655 0728 0537 -0.023 0.354
£ 0723 - = - 0657 - = - 0546 - = - 0413 - = =
oL ¢t 0897 0009 0000 -4085 0882 0011 0000 -2.876 0809 0002 0000 -2069 0746 0.006 0.000 -1.221
¢£  GE-HBCT wioentail 0898 0.6915 0001 -0.178 0.882 0680 -0.001 0.099 08137 07936 0006 0941 0751 0571 0006 0475
¢ GE-HBCT 0893 0886 -0.004 0937 0879 0782 -0.004 0555 0811 0804 0002 0982 0746 0580 0000 0.500
o 0.386 - - - 0315 - - - 0.281 - - - 0222 - - -
by b2 0900 0018 0000 -0716 0.879 0028 0000 -0.509 0811 0007 0000 -0.529 0744 0005 0000 -0.425
ok okt 0888 0482 -0.013 0185 0857 0382 -0.025 0.119 079 0451 -0.021 0321 0712 0293 -0042 0.137
¢%  ¢R-BCT 0895 0358 -0.006 -0.054 0.880 0345 0002 0053 0818 0404 0009 0233 0750 0282 0008 0.115
¢F  ¢R-Hot-Refresh 0.891 0490 -0010 0202 0867 038 -0.013 0122 0802 0474 -00ll 0365 0732 0296 -0.015 0.143
Both ¢%  GR-AdvBCT 0878 0513 -0.025 0245 0842 0377 -0041 0111 0802 0416 -0.010 0255 0730 0288 -0.018 0.126
¢%  ¢E-HOC 0.896 0446 -0004 0.116 0869 0377 -0.010 0110 0798 0412 -0016 0247 0725 0287 -0.025 0.126
¢k - 0420 - = - o032 - = - 02 - = - 023 - = =
¢k ot 0896 0025 0000 -0.831 0881 0013 0000 -0.583 0814 0008 0000 -0.556 0753 0006 0000 -0.384
¢f  GL-HBCT wioentail 0897 0188 0000 -0487 0881 0221 0000 -0.204 0817 0192 0003 -0201 0752 0.183 -0.002 -0.057
@€ ¢E-HBCT 0897 0575 0001 0324 0879 0417 -0.002 0.154 0812 0476 -0.003 0348 0745 0313 -0011 0.184
128. We set the weight decay to Se-4 and momentum to 0.
. ght decay . i@ Table 2. Ablating objectives in HBCT.
and use a cosine annealing schedule to tune the learning rate.
. . . . Ablation cMce@l mAP
The old models are trained only with the base classification
loss in Eq. (8), and the new model is equipped with one Pop  Poom Pup Poom
. . . L
of the alignment methods. We vary the alignment weight ¢y -Hot-Refresh - COTRRNU- GRE U CUZR 10
. . - $£-HBCT w/ RINCE w/ entail 0.001 0495  -0.001  0.209
A in the range [0, 1.0] and for methods involve contrastive $~-HBCT w/ RINCE w/o entail 0006 0435 0001  0.176
alignment loss, we choose the temperature 7 € {0.5,1.0}. $E-HBCT w/ InfoNCE w/entail ~ -0.002 0475  -0.009  0.202
qbﬁ-HBCT w/ InfoNCE w/o entail 0.001 0.431 -0.001 0.193

For each baseline, we run with 10 combinations of these hy-
perparameters and choose the best run that at least does not
hurt the performance of the new model. For our method, we
fix the curvature K = 1.0 and we found that performance is
consistent across runs, so we fix A = 0.3,7 = 0.5, = 0.01
(similar to RINCE) for all the settings. The retrieval distance
used for Euclidean models is the cosine similarity distance
while Lorentz models is the geodesic distance as in Eq. (3).

5.2. Empirical Results

Table 1 reports the compatibility performance of competing
methods. Notably, HBCT’s P, surpasses other Euclidean
baselines by a substantial margin in most settings. In partic-
ular, HBCT improves CMC @1 by 21.4% on average com-
pared to the strongest Euclidean baseline, and yields a 44.8%
increase in mAP. These compatibility gains can be achieved
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Figure 5. The compatibility matrix of different alignment methods after five consecutive model updates. The value at column j and row ¢
quantifies the CMC@ 1 compatibility Pcom Where the queries are embedded by the model ¢; and the gallery is embedded by ¢;.

with only minimal compromises to the new model’s perfor-
mance, as shown by the P, scores. Meanwhile, among
alignment methods in Euclidean space, contrastive-based
losses (HOC and Hot-Refresh) show relatively consistent
performance. BCT achieves strong compatibility in certain
scenarios (e.g., extended data and new architectures) but
often entails a sacrifice in the new model’s performance.

Note that we do not directly compare methods based on
original retrieval metrics such as CMC@1 or mAP shown
in self (new-to-new) and cross (new-to-old) columns in Ta-
ble 1, because the ‘old model’ differs between Euclidean
and hyperbolic spaces (% vs. ¢%), leading to inherently dif-
ferent retrieval performance. For instance, in extended-class
scenarios, hyperbolic encoders often yield better old-model
performance than their Euclidean counterparts, whereas
Euclidean encoders generally excel in extended-data and
new-architecture scenarios. This behavior may stem from
hyperbolic representations’ stronger ability to handle out-
of-distribution samples (Li et al., 2024). However, this
difference is not the main focus of our paper. Instead, we
primarily rely on Pcom and Pyp,, which are calibrated to
account for variations in old-model performance.

5.3. Sequential Model Updates

This section investigates the compatibility of alignment
methods when applied over multiple model updates. We
used the CIFAR-100 dataset for this purpose, segmenting the
training data into five sets. Specifically, 20 new classes were
incrementally added with each update, leading to stages
with 20, 40, 60, 80, and ultimately all 100 classes. The
base model for the initial two updates (time steps 0 and 1)
is ResNet18, which is then transitioned to ResNet50 for
the remaining three updates (time steps 2, 3, and 4) to ex-
plore architectural shifts. For each method, we report the
CMC@1 compatibility matrix with P, for HBCT, HOC,
HotRefresh, and BCT. The results in Figure 5 show that
HBCT provides superior compatibility maintenance with
prior models across multiple updates, while the compatibil-

ity of baseline methods rapidly declines.

5.4. Ablation and Discussion

We also showed in Table 1 the performance of an ablated
version of HBCT where we remove the entailment cone
loss. We observe a significant drop in terms of backward
compatibility in scenarios where we update the architecture
to ViT-B-16. However, in some scenarios, HBCT, HBCT
without entailment cone loss, also outperforms the best
baselines in Euclidean space. We conduct an ablation study
to further probe this behavior.

In the extended-class scenario on the CIFAR100 dataset, we
replace the RINCE loss with a standard InfoNCE loss (us-
ing geodesic distance in hyperbolic space as the similarity
measure) to evaluate its impact. In Table 2, we observe that
RINCE offers a substantial improvement in CMC @ 1-based
compatibility, while also reducing the sacrifice in mAP’s
Pup- Interestingly, even HBCT with vanilla InfoNCE on
the hyperbolic space can outperform the best baseline in Eu-
clidean space. This aligns with our intuition that hyperbolic
geometry better captures the evolution of the embedding
space by organizing embeddings across models along the
time dimension depending on their capabilities. Figure 6 in
the appendix illustrates how the embeddings evolve from
the old model to the new one. As the model improves, the
uncertainty in the gallery embeddings decreases. Additional
ablations for hyperparameters are provided in the appendix.

6. Related Work

Compatible Representation Learning. Aligning represen-
tations across deep learning models has been widely studied
in applications like representation transfer (Li et al., 2015)
and model stitching (Bansal et al., 2021) to multi-modal
foundation models (Fei et al., 2022). In retrieval-based appli-
cations, Shen et al. (2020) is the first to introduce the concept
of backward-compatible training to avoid backfilling the in-
dexed embeddings. They enforce compatibility between
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Figure 6. Visualization of old and new gallery embeddings in CI-
FAR100. We compress 128-dimensional embeddings into a 2-
dimensional hyperboloid using UMAP (Mclnnes et al., 2018) and
visualize them in the tangent space 75.£2. The top histogram is the
distribution of the uncertainty estimation for those embeddings.

old and new models by transferring the learned classifier
from the old model to influence the new one. While this
method facilitates compatibility, it can compromise the ex-
pressiveness of the new model. To address this, subsequent
studies have explored various techniques to improve the reg-
ularization loss, such as contrastive-based alignment(Zhang
et al., 2022a; Biondi et al., 2024), adversarial loss (Pan et al.,
2023), and the alignment of class centroids between old
and new models (Zhang et al., 2022b). However, these ap-
proaches primarily rely on Euclidean geometry, while we
shift the focus to hyperbolic geometry and leverage its natu-
ral uncertainty estimation to adaptively adjust the alignment.

On a different front, Hu et al. (2022); Wang et al. (2020) pro-
posed adding an extra projection to map the old embedding
into the new embedding space, while Zhou et al. (2023);
Ramanujan et al. (2022) introduced auxiliary dimensions
to increase the expressiveness of either the old or new em-
beddings. Building on backward-compatible models, recent
research has explored dynamic techniques to progressively
backfill the gallery in real-time (Zhang et al., 2022a; Jaeckle
et al., 2023; Yan et al., 2021). These approaches are orthog-
onal and can be integrated into our method.

Hyperbolic Representation Learning. Hyperbolic ge-
ometry is primarily known for its ability to better capture
hierarchical, tree-like structures (Yang et al., 2023; Peng
et al., 2021), which enhances performance in various tasks,
including molecular generation (Liu et al., 2019), recom-
mendation (Yang et al., 2021; Li et al., 2021), image re-

trieval (Khrulkov et al., 2020; Wei et al., 2024), and infor-
mation retrieval (Ganea et al., 2018; Dhingra et al., 2018).
Recent studies have also demonstrated the benefits of hyper-
bolic geometry for (multi-modal) foundation models (Desai
et al., 2023; Ibrahimi et al., 2024; Pal et al., 2024; Yang et al.,
2024). In contrast to these works, we are the first to investi-
gate the application of hyperbolic geometry in capturing the
evolution of models across updates.

7. Conclusion

We introduced HBCT, a framework that leverages hyper-
bolic geometry to ensure seamless model updates while
accounting for representation uncertainty. By constraining
new embeddings within the entailment cone of old ones and
introducing a dynamic hyperbolic contrastive loss, HBCT
maintains compatibility without hindering expressiveness.
Experiments show that our approach outperforms Euclidean-
based methods in achieving robust backward compatibility.
This work highlights the potential of hyperbolic geometry
for scalable model evolution.

Limitations and future work. While HBCT is adaptable
to various settings, we follow prior work by focusing on
supervised learning scenarios. Investigating its effective-
ness in self-supervised learning or multi-modal settings is
an interesting research direction. Furthermore, to account
for embedding space evolution, we gradually increase the
clipping norm threshold. This may lead to instability as
norms grow (e.g., > 10.). A potential solution is to backfill
and rescale the time dimension after a set number of updates
(e.g., 50 updates), though developing a more principled ap-
proach for handling this challenge is an important direction
for future work.
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A. Additional Ablation Studies

In this section, we conduct a comprehensive ablation study of HBCT across varying hyperparameters. Unless stated
otherwise, all subsequent experiments use the extended-class settings shown in Table 1.

Curvature. In the main paper, we fix the curvature value K = 1 following existing literature (Bdeir et al., 2023). We
conducted an ablation study to examine how different curvature values affect compatibility performance. Following (Desai
et al., 2023), we also evaluate the compatibility performance when we set the curvature value as a learnable parameter, which
is adjusted during training with other parameters. The result in Table 3 shows that K € [0.5, 1] yields stable outcomes in
both compatibility and the quality of the new model. With the learnable curvature, the new model showed good performance
for new-to-new retrieval. However, it negatively impacted compatibility performance, particularly in cross (new-to-old)
retrieval.

Curvature K self  cross Pup Peomp

0.1 0.581 0366 -0.114 0.108
0.5 0.651 0.397 -0.008 0.206
0.7 0.657 0399 0.002 0.211
1.0 0.654 0.398 -0.003 0.207
1.5 0.604 0370 -0.079 0.123

learnable 0.660 0371 0.006 0.124

Table 3. Ablation of curvature K on HBCT’s mAP performance.

Clipping threshold (. In the main paper, we set the clipping threshold to (y = 1.0. For the updated model, we raise it to
Cn = Co + 0.2 to accommodate the evolving embedding space and allow new embeddings greater flexibility to diverge
from the old ones. This ablation examines the impact of (,: we hold ¢, = 1.0 and vary (,, € [1.0,1.3]. As shown in
Table 4, keeping (;,, = 1.0 preserves the new model’s self-performance but harms cross-model compatibility, whereas setting
(n = 1.2 offers the best balance between the two metrics.

G Cn self Cross

1.0 1.0 0.7232 0.5525
1.0 1.1 0.7153 0.5719
1.0 1.2 0.7221 0.5705
1.0 1.3 0.7154 0.5588

Table 4. Effect of the clipping threshold ¢, on the CMC@1 performance of the new model.

Alignment weights. We evaluate HBCT under a range of hyperparameter settings. Figure 7 shows that setting A = 0.3 and
7 = 0.5 achieves the best balance between the updated model’s self-performance and cross-model compatibility. To assess
the relative importance of entailment versus contrastive objectives, we introduce a new weight Agy i1 into our loss function.
In the experiment shown in Figure 7c, we keep A = 0.3 fixed and vary Acptail-

L= Ebase + A(‘Centail + Econtrast), (16)

Distance function. We compare HBCT under three distance functions—geodesic distance (Eq. (3)), squared Lorentz
distance (Law et al., 2019), and the Lorentz inner product (Eq. (1))—and we also replace the contrastive 108s Lcontrast With
a mean-distortion loss

‘Cmdist = d(hoa hn)7

where d(-, -) is either the geodesic or squared Lorentz distance. As Table 5 shows, all three metrics yield similar
HBCT performance. Substituting in L,,q;st neither enhances cross-model compatibility nor preserves the updated model’s
self-performance, echoing the degradation observed with the ¢5 alignment loss in Euclidean space.

Classification performance. Throughout the paper, we mainly focus on CMC@k and mAP to focus on the retrieval
task. We report the classification accuracy of the alignment methods in comparison with the CMC@ 1 metric in Table 6.
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Figure 7. Comparison of self vs. cross retrieval mAP across three hyperparameters.

Distance function

self Cross
RINCE - Geodesic 0.6552 0.3982
RINCE - Lorentz inner 0.6550 0.3985
RINCE - Squared Lorentz ~ 0.6529  0.3979
Mean distortion - Geodesic  0.6487  0.3970
Mean distortion - Squared ~ 0.6381  (0.3923

Table 5. Ablation of different distance functions on self and cross mAP performance.

Specifically, we report the cross-classification metric, where the accuracy is evaluated for the old classifier head applied to

the new embedding model.

Self-CMC@1 Cross-CMC@1 Self-Acc  Cross-Acc
BCT 0.695 0.447 76.47 40.66
Hot-refresh 0.715 0.498 77.65 41.20
HOC 0.713 0.490 77.67 41.36
HBCT 0.722 0.572 78.86 42.19

Table 6. Comparison of different methods on CMC@1 and accuracy metrics.
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