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Abstract

We prove an exponential separation for the sample/query complexity between the
standard PAC-learning model and a version of the Equivalence-Query-learning
model. In the PAC model all samples are provided at the beginning of the learning
process. In the Equivalence-Query model the samples are acquired through an inter-
action between a teacher and a learner, where the teacher provides counterexamples
to hypotheses given by the learner. It is intuitive that in an interactive setting fewer
samples are needed. We make this formal and prove that in order to achieve an
error ✏ exponentially (in ✏) fewer samples suffice than what the PAC bound requires.
It was shown experimentally by Stutz, Hein, and Schiele that adversarial training
with on-manifold adversarial examples aids generalization (compared to standard
training). If we think of the adversarial examples as counterexamples to the current
hypothesis then our result can be thought of as a theoretical confirmation of those
findings. We also discuss how our result relates to adversarial robustness. In the
standard adversarial model one restricts the adversary by introducing a norm con-
straint. An alternative was pioneered by Goldwasser et. al. Rather than restricting
the adversary the learner is enhanced. We pursue a third path. We require the
adversary to return samples according to the Equivalance-Query model and show
that this leads to robustness. Even though our model has its limitations it provides
a fresh point of view on adversarial robustness.

1 Introduction

We analyze the connections between adversarial training, generalization and robustness. Our key
technical contribution is a novel result in the field of learning theory, showing an exponential
separation for the sample/query complexity of two learning models. This result provides a theoretical
confirmation for the experimental observations in Stutz et al. [2019] and points to a fresh research
direction in the field of adversarial robustness.

Let us start with a discussion of our main technical contribution. The first model we consider is the
PAC-learning introduced in Valiant [1984]. In this model the learner is given i.i.d. samples from an
unknown distribution and is tasked with finding a hypothesis with low generalization error. The second
model is a version of Equivalence-Query-learning (EQ-learning) introduced in [Angluin, 1988]. In
this setting samples are acquired through an interaction between a teacher and a learner. In each
round of interaction the learner presents a hypothesis and the teacher replies with a counterexample
for this hypothesis. Very close models to the model we study were considered previously in Angluin
and Dohrn [2017] and Bshouty and Gavinsky [2002]. In this setting the counterexamples produced
by the teacher come from the data distribution constrained to being in the error set of the presented
hypothesis. We use ideas similar to those used in boosting techniques [Schapire, 1990] to prove
that in the EQ-learning model O(d · polylog(1/✏)) queries suffices to achieve a standard error of
✏, where d is the VC-dimension of the hypothesis class. This improves on the previously known
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bounds of O(d/✏). We refer the reader to Section 3 for an in depth review of previous literature on
the subject. Standard results for the sample complexity in the PAC model yields an upper bound of
O(d/✏). Comparing the two results we see the advertised, exponential (in ✏), separation.

Let us discuss an “application” of our theorem to the relationship between adversarial robustness
and generalization. In [Tsipras et al., 2019, Su et al., 2018] it is argued that there is an inherent
trade-off between robustness and accuracy whereas in Gilmer et al. [2018], Rozsa et al. [2016] the
authors make the case that robustness improves with accuracy. This seeming contradiction is partially
resolved in Stutz et al. [2019] where it is pointed out that it crucially depends on whether adversarial
examples are on or off the data manifold. It is worth mentioning that at the beginning of the field
of adversarial robustness it was argued that the reason for the existence of adversarial examples is
exactly that they are off-manifold [Tanay and Griffin, 2016]. However later on it was demonstrated
that adversarial examples do also exist on-manifold [Zhao et al., 2018, Song et al., 2018]. The
authors of Stutz et al. [2019] argue that it is important to understand this distinction. They introduce
a version of adversarial training [Goodfellow et al., 2014, Madry et al., 2018, Tramèr et al., 2018,
Xiao et al., 2019], which they call on-manifold adversarial training, where the adversarial examples
are constrained to lie on the data manifold. They then show empirically that using on-manifold
adversarial training one achieves better generalization in comparison to standard training (with the
same number of samples). Our theorem can be seen as providing a theoretical support for this claim.

We also explore connections of our results to adversarial robustness. Before we describe these
connections in detail, let us position this work in a broader context. Most of the literature on
adversarial robustness considers adversaries whose perturbations are in some way restricted. A very
common form of restriction is to bound the perturbation in the `0, `2, or `1 norm [Raghunathan et al.,
2018, Wong and Kolter, 2018], but other perturbations (rotations, shifts, etc.) were also considered
[Engstrom et al., 2019]. A recent paper [Goldwasser et al., 2020] argues that in order to obtain
security for real-world systems we need to consider models beyond these "restricted perturbations."
Unfortunately this change comes at a price: e.g., the results in Goldwasser et al. [2020] are based on
the assumption that the learner can decide not to give an answer for some inputs (selective learning
[Chu, 1965]) and that they see the test set upfront (transductive learning), thus the capabilities of
the learner are enhanced. We follow a third path. Instead of restricting the type of perturbations
that can be applied by the adversary or enhancing the learner we require the adversary to return
counterexamples according to the EQ-model. We then show that the exponential separation theorem
leads to robustness in our model in the following way: Th main idea of cryptography is to base
security on computational hardness of specific problems. We follows this idea and base the security of
our scheme on the hardness of learning. More specifically, our adversarial learning scheme computes
a classifier that is robust assuming that the underlying learning task is hard in the low error regime.

2 Models of learning and attack

We start by defining the models of learning considered in this paper.

Notation. For i 2 N we define [i] := [1, 2, . . . , i]. We use log to denote the log to the base 2. For a
function f �! {�1,+1} and A ✓ X we define f �A as a function that is equal to f at X \A and
flips the prediction for points in A. For a distribution D on X and A ✓ X we denote by D|A the
conditional distribution that is equal (up to scaling) to D on A and 0 on the complement.

Throughout the paper we consider only the realizable version of learning. That is, we assume that
there is a feature space X , a distribution D on X , a hypothesis class H and a function h 2 H, h :
X �! {�1,+1}, that defines the ground truth on D. The learner knows X and H but neither knows
h nor D. The goal of the learner is to find an f : X �! {�1,+1} that has small risk. The risk is
defined as

RD,h(f) := Px⇠D[f(x) 6= h(x)].
We will consider algorithms that have access to one of the following two oracles:

Example Query Oracle according to D (EXD). When queried, EXD returns (x, h(x)), where
x ⇠ D.

Equivalence Query Oracle according to D (EQD) [Angluin, 1988]. For every f : X �!

{�1,+1} (not necessarily from H) the result of querying EQD(f) is a counterexample to f dis-
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tributed according to D. More formally it is x ⇠ D|f 6=h. If RD,h(f) = 0 then EQD(f) returns
"YES" indicating that f is equivalent to h. For every k 2 N we write EQD(f, k) to denote an oracle
that returns k i.i.d. samples, each generated by EQD(f).

Next we define the two learning models for which we later show the advertised exponential separation.
All our results are based on them.

PAC-learning. We say that a learning algorithm L PAC-learns H if for every ✏, � 2 (0, 1) there
exists m(✏, �) 2 N such that for every h 2 H and distribution D algorithm L(✏, �) asks m(✏, �)
queries to the Example Query Oracle EXD and with probability 1� � returns a function f 2 H such
that RD,h(f)  ✏.

EQ-learning We say that a learning algorithm L EQ-learns H if for every ✏, � 2 (0, 1) there exists
m(✏, �) 2 N such that for every h 2 H and distribution D algorithm L(✏, �) asks m(✏, �) queries to
the Equivalence Query Oracle EQD and with probability 1� � returns a function f : X �! {�1,+1}
such that RD,h(f)  ✏.

3 Exponential Separation

We start this section with a short literature review.

It is worth mentioning that there is a slight difference between EQ-learning model and the model
from Angluin and Dohrn [2017]. In Angluin and Dohrn [2017] X and H are finite, the learner has to
return the exact hypothesis h that was chosen by the teacher, and the distribution on counterexamples
is known, For us, on the other hand, X and H may be infinite, our goal is to return a function of small
risk, and the distribution on counterexamples is not known.

The model from Bshouty and Gavinsky [2002], which is called Probably Almost Exact (PAE) is
almost equal to the EQ-learning we consider. The difference is that in the PAE the goal of the learner
is to return a hypothesis with negligible error (1/!(poly(n)), where n measures measures the “size”
of the input. In the EQ-learning on the other hand we want to explore the dependence on ✏ in detail.

In Angluin and Dohrn [2017] it is shown that for a concept class |H| = n it is enough to ask
log(n) queries. As we mentioned the setting is different and it’s not clear how to adapt this result to
the EQ-learning, where we don’t need to find the hypothesis exactly (apart from other differences
mentioned above). In Bshouty and Gavinsky [2002], where the model considered is closer to ours, it
is shown that PAC-learnability =) PAE-learnability. A direct application of their technique in our
setting yields an upper bound on the query complexity, which is no better than O(d/✏). No simple
modification of this technique would yield the desired O(d · polylog(1/✏)) query complexity. We
significantly extend the ideas from Bshouty and Gavinsky [2002] to obtain our result.

3.1 Main result

We are now ready to state the main result of the paper, which is an exponential separation for the
sample complexity between PAC-learning and EQ-learning.
Theorem 1. There exists a learning algorithm (Algorithm 1) such that for every ✏ 2

�
0, 1

32

�
, � 2

(0, 1), every hypothesis class H of VC-dimension d, for every distribution D the algorithm invoked

with parameters ✏, �,H EQ-learns H asking

O((d+ log(1/�)) log9(1/✏)) queries.

To compare this result to the PAC model we recall that a slightly improved version of the PAC bound
in the realizable case [Hanneke, 2016] states that for a hypothesis class H of VC-dimension d in order
to learn (with constant probability) a classifier of risk ✏ it suffices to use O

�
d

✏

�
samples. This result is

tight in a sense that there exist hypothesis classes and distributions for which that many samples are
necessary. Theorem 1 guarantees that in the EQ-learning model O(d · polylog(1/✏)) many queries
suffice. This is an exponential improvement. Why is this possible?

Imagine that there is a ground truth g 2 H that you try to learn and that you already found h 2 H

such that RD,g(h)  ⌘. Then the counterexample oracle EQD(h, ·) provides you with samples from
a distribution D|h 6=g. Querying the oracle O(d) times you get a sample S  � EQD(h,O(d)). You
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can now use the PAC bound: if you find an h
0
2 H that is consistent with S then you know that it has

an error of at most 1/2 on D|h 6=g . It is then natural to define

Combine(h, h0)(x) =

⇢
h(x), if x 2 h = g

h
0(x), if x 2 h 6= g

.

Note that Combine(h, h0) has an error of at most ⌘/2. If we repeated this procedure log(1/✏) times,
thus asking O(d log(1/✏)) queries, you would find a classifier with error ✏.

Unfortunately it is not possible to compute Combine(h, h0). Afterall, if you knew the region of the
input space where h 6= g then you could just flip the prediction of h in that region and the resulting
classifier would have zero error. But it turns out that the general intuition of decreasing the error by a
multiplicative factor after every O(d) queries can indeed be achieved. The key to this result is to find
a computable version of Combine(h, h0

, ...) that guarantees an exponentially fast decay of the error.

Our algorithm is mainly inspired by boosting techniques, most notably by an approach from Bshouty
and Gavinsky [2002]. In this work the authors consider capabilities of polynomially bounded learners.
If we assume that the "complexity" of the hypothesis class H is measured by its VC-dimension then
the relevant result from Bshouty and Gavinsky [2002] can be summarized as follows. If we have an
algorithm L

PAC that learns H to a constant error in time (the authors focus on time but the time is of
course an upper-bound for the sample complexity) time(d) then this algorithm can be boosted to an
algorithm L

EQ that learns H in the EQ-model to an error 1
!(poly(d)) in time poly(time(d)).

Let us apply this boosting technique to our setting. Assume that L
PAC runs in time O(d) (as this is

the number of samples that are required by the standard PAC bound to learn to constant error). Then
the boosting algorithm can be used to produce L

EQ that learns H to error ✏. What bound on the run
time of L

EQ do we get? Unfortunately this bound is no better than O
�
d

✏

�
. This is exactly what the

standard PAC bound provides in the first place. Thus, disappointingly, a direct application of these
ideas do not yield a benefit in using the EQ-model versus using the PAC-model.

To get the claimed exponential separation between the two models we develop a boosting-like
algorithm that differs significantly in several important aspects and hence also requires a different
proof technique. The main idea is to compute h1, . . . , hO(polylog(1/✏)) 2 H in a sequential manner
and then to define the final hypothesis as a version of a majority vote of these functions.

The simplified, high level, structure of the algorithm is as follows. Repeat the following for t =
O(polylog(1/✏)) steps: at step i ask the oracle for Si  � EQD("Majority"(h1, . . . , hi�1), O(d)) and
then define hi := FindConsistent(Si,H) (FindConsistent returns a function from H that agrees with
all samples from Si). At the end return "Majority"(h1, . . . , ht). To make this approach work we need
to ensure that the error sets of h1, . . . , ht are sufficiently independent.

The following points need particular attention. First, note that the EQD provides the algorithm with
samples from the error set only. Thus, correctly classified points at one stage will not automatically
remain correctly classified at later stages. To make sure this happens, at every step i we include in the
training set Si samples from carefully chosen regions of the feature space that are already classified
correctly (this is done in the inner "for" loop of the algorithm). Second, a simple majority vote of
the previously constructed classifiers is not sufficient to get the desired result. This is true since a
non-negligible region of the feature space might become incorrectly classified with higher and higher
confidence by such a majority vote. This is the reason we clip the values of votes to a fixed interval
(for details see Definition 1).

We start now with the formal definition of the algorithm.

3.2 The Algorithm

In this section we give formal definitions of the concepts used in the algorithm. The proof of
correctness of the algorithm is deferred to the appendix. As discussed above we cannot define the
final prediction as a simple majority vote. That is why we need to “clip” the votes in a particular way
and use a non-standard majority vote-like procedure. Now we define these notions formally.
Definition 1 (Vote and Majority). For ✏ 2 (0, 1) we define B✏ := 2dlog(1/✏)e+1 and clip

✏
: Z �! Z

as:

clip
✏
(x) := min(max(�B✏, x), B✏).
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Algorithm 1 EQlearner
Input: hypothesis class H of VC-dimension d, target error ✏, target confidence �, Equivalence
query oracle EQD.

✏
0 := ✏

105 log4(1/✏)

B✏0 := 2dlog(1/✏0)e+ 1
m := O

�
(d+ log(B4

✏0) + log(1/�)) ·B4
✏0

�

t := O
�
B

3
✏0

�

h1 2 H

for i = 2 to t do

Si := EQD(Maj(h1, . . . , hi�1),m)
for v 2 [B✏0 ] \ 2Z+ 1 do

h
0 := Maj(h1, . . . , hi�1)� [Vote(h1, . . . , hi�1) 2 {v,�v}]

S
v

i
:= EQD(h

0
,m)

end for

hi := FindConsistent
⇣
Si [

S
v2[B✏0 ]

S
v

i
,H

⌘

end for

Return Maj(h1, h2, . . . , ht)

For a sequence of functions h1, . . . , hi : X �! {�1,+1}, ✏ 2 (0, 1) and x 2 X , we define

Vote(h1, . . . , hi)(x) recursively as:

Vote(h1, . . . , hi)(x) :=

clip
✏
(Vote(h1, . . . , hi�1)(x) + 2hi(x)) ,

Vote(h1)(x) := h1(x).

Similarly, for a sequence of functions h1, . . . , hi : X �! {�1,+1}, ✏ 2 (0, 1) and a ground truth

function g we define Voteg(h1, . . . , hi)(x) recursively as:

Voteg(h1, . . . , hi)(x) :=

clip
✏

⇣
Vote(h1, . . . , hi�1)(x) + 2 · (�1)hi(x)=g(x)

⌘
,

Voteg(h1)(x) := (�1)h1(x)=g(x)
.

Note. Vote(h1, . . . , hi)(x) expresses our current estimate for a particular input (together with a

level of confidence), whereas Voteg(h1, . . . , hi)(x) denotes the error of this current estimate with

respect to the ground truth.

Finally, we define:

Maj(h1, . . . , hi)(x) :=

⇢
+1, if Vote(h1, . . . , hi)(x) � 0,
�1, otherwise.

Observation 1. Observe that for all i 2 N, h1, . . . , hi, g : X �! {�1,+1} and x 2 X we have:

Vote(h1, . . . , hi)(x) 2 2Z+ 1 \ [�B✏, B✏] and

Vote(h1, . . . , hi)(x) = ±Voteg(h1, . . . , hi)(x).

3.3 EQ-learner as a Booster

Guarantees based on the VC-dimension are often not tight and as our result is phrased in these terms
one might wonder how much it depends on this specific measure. As mentioned, our algorithm can
be understood as a boosting technique and hence the result applies more generally. Next, we explain
what we mean by that.

Let H be a hypothesis class and D be a distribution. Imagine that we have an algorithm A that for
some distributions learns H. What we mean is that A is a "PAC-learner" for H but only for a class of
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distributions D. Then imagine that we use A as a subroutine in the EQ-learning algorithm. I.e., instead
of following the template of S := EQD(f,m), h := FindConsistent(S,H) (as in Algorithm 1) we
use A to get an h that has a small error on distribution EQD(f). Now assume that all distributions
EQD(f) for which A is run belong to D.

In this case a slight extension of Theorem 1 shows that we can boost A in the following sense.
Assume that for every ✏, � 2 (0, 1), every D

0
2 D A learns H on D

0 in QA(H, ✏, �) number of
samples. Then there exists an EQ-learner (this is Algorithm 1, which uses A as a subroutine) that
learns H up to error ✏ in number of queries upper-bounded by QA

⇣
H,

1
16 ,

�

polylog(1/✏)

⌘
·polylog(1/✏).

Now observe that if
QA (H, ✏, �)

QA

⇣
H,

1
16 ,

�

polylog(1/✏)

⌘ � polylog(1/✏), (1)

then the constructed EQ-learner learns H to error ✏ with fewer queries than A does in the PAC-
model. This is a different type of separation result. In words it says that in some cases you can
boost an algorithm from the PAC-model to the EQ-model such that fewer queries are required. The
condition from (1) in words means that the dependence of the runtime of A on ✏ grows faster than
polylog(1/✏). This is a reasonable assumption as in the PAC-learning model for every hypothesis one
needs ⌦(1/✏) samples just to see a single point from the error set of this hypothesis. This suggests
that the dependence of QA (H, ✏, �) on ✏ might grow like ⌦(1/✏) (which is exactly what happens in
the standard PAC-bound). To summarize, even in the cases when the VC-theory is far from reality
one can still hope to get interesting results using our technique.

4 On-manifold adversarial training aids generalization

As we mentioned in the introduction, the relationship between adversarial robustness and generaliza-
tion has been the subject of a robust scientific discussion, no pun intended. We focus here on Stutz
et al. [2019] and argue that our result can be interpreted as providing a theoretical confirmation of the
important empiricial findings in this paper. As we will see, the setting of Stutz et al. [2019] is close
but not identical to ours. But the parallels are strong.

In Stutz et al. [2019] a version of adversarial training called on-manifold adversarial training is
proposed. In this scheme at every step one takes a point x sampled from the data distribution D

and generates an adversarial example x
0, which lies on the data manifold (x0

2 supp(D)) and on
which the current hypothesis f makes an error. Thus we can associate with this procedure an induced
distribution D

0 on the error set of f , which is a result of the following process: x ⇠ D, generate
adversarial example x

0.

One of the methods to perform on-manifold adversarial training (as done in Stutz et al. [2019]) is
to, first, learn class specific VAE-GANs and then when looking for adversarial examples, search for
them in the latent space of the autoencoders.

Note that by construction (if the attacks are successful) supp(D0) ✓ supp(Df 6=h), as adversarial
examples are crucially constrained to being on the data manifold and they are points on which f

makes errors. But there is also one important distinction. The distributions D0 and Df 6=h may be
different. It is reasonable to assume that they are not too different in many applications and we will
proceed under this assumption. With this caveat, the attacker in the on-manifold training procedure
can be thought of as being the teacher in our EQ model. Under this assumption, Theorem 1 guarantees
that there exists an algorithm that learns faster than in the PAC model.

This is exactly what was experimentally found in Stutz et al. [2019]. When on-manifold adversarial
training was used the resulting classifier had lower standard error (generalized better) compared to
the standard learning procedure.

Note. We can look at the results from Stutz et al. [2019] from a different perspective. They are an
experimental confirmation that Theorem 1 holds, as discussed in Section 3.3, also in situations where
VC-theory doesn’t describe learnability well. Indeed, for neural networks VC-dimension doesn’t
determine their learnability as in modern settings the number of parameters in networks is much
bigger than the number of samples.
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(a) Standard risk (b) On-manifold attack success rate

Figure 1: Comparison of standard training, adversarial training and
on-manifold adversarial training for F-MNIST dataset.

Note that Algorithm 1 is
likely not the same as the
algorithms that are used
for training neural networks.
One of the bigger differ-
ences is that Algorithm 1
uses a majority vote-like
classifier. But in a sim-
ilar fashion we can think
of these experimental re-
sults as arguments that
Theorem 1 holds for a
broader class of learning al-
gorithms.

4.1 Experiments

For the convenience of the reader we replicate experiments from Stutz et al. [2019], adapting the
representation to our needs. Using the code provided by the authors, we reproduced some of their
findings on F-MNIST dataset [Xiao et al., 2017]. Results are presented in Figure 1, which reproduces
some entries from Figure 5 in Stutz et al. [2019]. In Figure 1 (a) we see that standard risk for
on-manifold adversarial training is lower for most settings of the number of samples than for normal
training and standard adversarial training. This is consistent with Theorem 1, which states than in a
similar model there is an improvement over the PAC-model, which corresponds here to the normal
training. We will go back to Figure 1 (b) in Section 5. More details about the experiments is deferred
to the appendix.

5 Adversarial robustness

Let us now discuss how our results can be seen through the lens of adversarial robustness. We start
with a brief review of previous approaches and the lessons we can draw from those.

The standard adversarial learning setup considered in the literature is as follows. There is a classifier
f that an adversary A wants to attack. Having some type of access to f , A generates adversarial
examples to f . To do so, first a sample x is generated according to x ⇠ D. Then A tries to find
x
0 such that x and x

0 are semantically indistinguishable and f misclassifies x0. A formal definition
of what "semantically indistinguishable" means is difficult to furnish and it is thus the subject of
considerably discussion. The reason for this difficulty is that we expect the machine learning model
to learn what "semantically indistinguishable" means from the data and not to decide it by ourselves
up front. Many proxies for "semantically indistinguishable" were used in the literature. Usually
they come in the form of a restriction on the set of allowed perturbations. As we mentioned in
the introduction, some of the most popular restrictions include bounds on the `0, `2, `1 norm or
restrictions to rotations, shifts and many others.

As argued in Tramer and Boneh [2019] defenses often overfit to a particular set of allowed pertur-
bations and the resulting classifiers remain basically undefended against other attacks. This result
sparked interest in defenses that make models robust against a wide variety of perturbations, even
against unforeseen ones. A recent theoretical result [Goldwasser et al., 2020] proposed a defense
that make models robust against all possible perturbations. Unfortunately to achieve this the authors
need to allow the learner not to give answers for some inputs and the learner sees the test set before
computing the classifier.

As shown in Bubeck et al. [2019] and Tsipras et al. [2019] finding defenses might not be possible even
in a simple case of `2-bounded perturbations, when the adversary is computationally all powerful.
This means that limiting the capabilities of the attacker is very likely to be necessary. Different
limitations on the model of attack and the power of the adversary were considered. Early papers
limited the type of access that A has to f : instead of full knowledge of f (known as white-box model,
see Biggio et al. [2013], Zheng et al. [2019]), a black-box model [Bhambri et al., 2019], partial
white-box, where the adversary sees the logits of the output probabilities but doesn’t see the internal
nodes of a network, oracle access to a gradient of f and others were considered. Unfortunately, even
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in the most restrictive model, namely the black-box model, efficient attacks have been shown to exist
[Papernot et al., 2017, Chen et al., 2017, Liu et al., 2016, Xiao et al., 2018, Hayes and Danezis, 2017].
This lead the researches to explore models that limit the power of the adversary even further. In Gluch
and Urbanke [2020] the authors consider a version of the black-box, where the attacker is limited
by the number of evaluations of f it can perform. It is shown that classifiers with high entropy of
decision boundaries are hard to attack. In Garg et al. [2020] the authors consider an adversary that is
limited computationally. They show that there exist learning problems that can be attacked by an
all powerful adversary but are secure against polynomially bounded attackers. These approaches
however show security only for some synthetic distributions.

Summarizing this discussion we can formulate two conclusions

1. Introducing new attack models might be necessary for realizing adversarial robustness in
the real world.

2. Limiting the power of the adversary is likely inevitable.

5.1 Model of attack

As argued in point 1 new attack models might be necessary. We introduce a definition of the adversary
as an algorithm that has access to the function it wants to attack and also to the Example Query
Oracle for distribution D and returns points from X . More formally:
Definition 2 (Adversary). For a feature space X we define an adversary A as an algorithm

1

(potentially randomized) that for every function f : X �! {�1,+1} and x 2 X returns A(f, x) 2 X .

Moreover, for a distribution D, we denote by A(f,EXD) a distribution on X that is generated

according to a process: sample x � EXD, return A(f, x). For every f we say that A is a restricted
adversary for f if:

A(f,EXD) = EQD.

Note. We define the adversary as having access to the Example Query Oracle (EXD). This setting
mimics the situation from Section 4 where the adversary was constructing adversarial examples based
on samples from the data distribution. Access to EXD can be seen as a resource for the adversary
that he can but doesn’t have to use. Indeed, a priori there is no restriction on the relationship between
samples from EXD and A(f,EXD). Thus we could also assume that A doesn’t have access to EXD
but posses some approximate knowledge of D that allows him to satisfy A(f,EXD) = EQD.

Finally, let us define the model of attack. It is an adversarial-learning-like scheme where the learning
algorithm uses the adversary to learn a more robust model.
Definition 3 (Adversarial learning game). For a distribution D on X , a learner L, and an adversary

A we define an adversarial learning game as follows. Learner L interacts with A in rounds. In each

round t learner L sends a function ft to A and then A sends a point xt 2 X back to L. At every

round A can query EXD once and use the result when generating xt. Decisions made by L at round

t can depend on the messages exchanged before round t. For simplicity of the statements we assume

that decisions of A don’t depend on the history. At the end of the interaction L declares a function f .

5.2 Interpretation of Theorem 1 for adversarial robustness

We now state a corollary of our main result. The proof is deferred to the appendix:
Corollary 1. For every feature space X , for every ✏ 2

�
0, 1

32

�
, for every d 2 N, for every hypothesis

class H on X of VC-dimension d there exists a learning algorithm L such that for every distribution

D, for every ground truth h 2 H, for every adversary A the following holds. When L interacts with

A as described in Definition 3 then with probability 2/3 at least one of the two properties holds:

• L, after O(d · polylog(1/✏)) rounds of interaction with A, returns a function f such that

RD,h(f)  ✏,

• there exists t 2 [O(d · polylog(1/✏))] such that at the interaction round t a function ft was

presented to A and A(ft, EXD) 6= EQD(ft).

1We use algorithm here since this seems more natural. But we do not limit the attacker computationally nor
are we concerned with questions of computability. Hence, function would be equally correct.
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Moreover, throughout the interaction only O(polylog(1/✏)) different functions are presented to A.

Next we explain how one can understand Corollary 1.

The first point of view is that Corollary 1 explores implications on the existence of restricted
adversaries. Interpreted as such, it shows that there exists an adversarial-learning-like scheme where
restricted adversaries can be used to learn a hypothesis of error ✏ exponentially faster than guaranteed
by the standard learning theory results.

The second, and arguably the more interesting point of view is the following. If we assume that the
adversary we want to defend against is unable to learn a classifier with error ✏ using O(d·polylog(1/✏))
samples from D then the adversarial-learning scheme from Corollary 1 can be understood as a defense.
It is because throughout the execution of the protocol there was a function ft that was presented to
A such that A(ft, EXD) 6= EQD(ft). Thus the protocol generates a list of O(polylog(1/✏)) many
functions such that A is not a restricted adversary for at least one of them. We believe that this
interpretation opens a door for designing defenses that are provably secure against adversaries that
are limited by what they can learn. The results of experiments from Figure 1 (b) are consistent with
our findings. The probability with which the on-manifold attacks succedes decreases faster than for
normal training and standard adversarial training.

Why it makes sense to assume the learning problem is hard? As argued in point 2 above,
limiting the power of the adversary is most likely unavoidable.

Imagine that the adversary you want to protect your model against is a very good learner. More
formally, assume that for a distribution D and a ground truth h 2 H the adversary can compute
a classifier g of very small risk RD,h(g) ⇡ 0. Then when the adversary attacks f it can compute
[f 6= g] ✓ X . Note that as the risk of g is close to 0 we know that Px⇠D[f(x) 6= g(x)] ⇡ RD,h(f),
that is the region [f 6= g] contains almost all errors of f . Even though A might not know the data
distribution D (we only assumed that A is able to find a classifier with low error, which doesn’t
necessarily imply the knowledge of the distribution) it is still able to attack f . To do that, for test
example x ⇠ D, A can find x

0
2 [f 6= g] that is semantically closest to x. Then if the error set of f is

semantically close to most of the data distribution then f is indefensible against all powerful learners.

Our result provides an exponential separation between sample/query complexities, as the standard
PAC-bound requires O

�
d

✏

�
samples. This resembles the types of separation results, which cryptogra-

phy is built on and gives hope for following this line of research to find provably secure defenses.
Unfortunately this separation doesn’t happen for all distributions as the PAC guarantee is only an
upper bound. We also know that VC-theory does not necessarily give tight bounds for distributions
encountered in practice. We note however that, as discussed in Section 3.3, our result if understood
as a boosting technique can be applied to any learning algorithm and thus the implications are not
necessarily restricted to the VC-theory.

6 Conclusions and Open Problems

We study the interplay between adversarial training, generalization and robustness.

We start by proving an exponential separation between PAC and EQ-learning models. Then we show
that our result provides a theoretical justification of previous experimental findings that on-manifold
adversarial training helps with generalization. Finally we explore the interpretation of our results for
adversarial robustness. We introduce a learning setting where one can use the power of the adversary
to evolve a learning scheme to become increasingly robust.

Our result does not yield a provable defense in real-world settings. But it provides a novel point of
view on the adversarial robustness problem that hopefully, with further study, will provide such a
defense. As discussed the models considered in Section 3 and 4 are different. It would be interesting
to prove a version of exponential separation also in the setting from Section 4.

Our result also poses some challenging technical questions. The query complexity upper-bound
in the EQ-model we were able to prove is of the form O

�
d · log9 (1/✏)

�
. This is most likely not

optimal and what we believe to be the true query complexity is O(d · log(1/✏)). Proving an upper or
a lower-bound close to this expression is an interesting theoretical challenge.
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