
Under review as a conference paper at ICLR 2024

BRIDGING AUTOREGRESSIVE AND MASKED MODEL-
ING FOR ENHANCED VISUAL REPRESENTATION LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models have demonstrated superior performance in natural language
processing due to their ability to handle large-scale training and generating ability.
However, their potential in computer vision has not been fully explored due to
some key challenges they still face. Currently, masked modeling methods such as
MAE are dominant in this field. By analyzing autoregressive and masked modeling
methods in a probabilistic way, we find that they can complement each other.
Based on this, we propose a general formulation and modeling framework that
combines the benefits of both, named Generative Visual Pretraining (GVP). Our
unified probabilistic framework allows for different training strategies, including
masked modeling and autoregressive modeling, to be realized simultaneously. Our
framework can be adapted for various downstream tasks and outperform existing
methods in several benchmarks, including linear probing, fine-tuning and transfer
learning. This work provides a promising direction for future research in generative
masked visual representation learning.

1 INTRODUCTION

Autoregressive models have gained popularity in natural language processing (NLP) due to their
superior performance in large-scale training and generating abilities (Zeng et al., 2021; Brown
et al., 2020; Zhang et al., 2021). However, their potential in the computer vision (CV) field is still
largely unexplored. Although there have been attempts to treat images as sequences and utilize
autoregressive modeling (Chen et al., 2020; Chang et al., 2022; Hua et al., 2023), masked modeling
methods motivated by BERT (Devlin et al., 2018) like BEiT (Bao et al., 2022), MAE (He et al., 2022),
and SimMIM (Xie et al., 2022) currently dominate and perform better in representation learning.

One of the key challenges that autoregressive models face in computer vision is their lack of natural
order. While text has a clear and natural order, images do not, making it difficult to model them using
autoregressive methods. This is due to the fact that images are two-dimensional, and the order in
which pixels or patches are processed does not necessarily reflect the order in which information
is conveyed in the image. As a result, certain tasks can be difficult to perform using autoregressive
models, particularly those that require an understanding of the global structure of the image. In
addition to the lack of natural order, images also have a higher degree of redundancy compared to
text. This can make it easier to infer the target patch given much information (Xie et al., 2022). As
a result, there is a gap in the difficulty of prediction between different parts in the autoregressive
sequential order, which makes the learning process inefficient.

On the other hand, autoregressive models and masked modeling methods can complement each other,
each possessing unique strengths. Autoregressive models can effectively capture intricate dependency
relationships between tokens, while masked modeling methods treat predicted tokens independently
regardless of sequential order. As proved in the field of NLP, the introduction of modeling intricate
dependency by autoregressive modeling will assist masked modeling in learning more inter-sequence
information and enhance its performance in generation tasks (Dong et al., 2019). On the contrary,
masked modeling methods offer a flexible mask ratio, providing better control over task difficulty.
Therefore, autoregressive models can still be effective in computer vision when combined with other
methods to address the aforementioned issues. By combining these two methods, we can potentially
improve the performance of various tasks.

To address these issues, we propose a general formulation and modeling framework that combines
the benefits of both autoregressive and masked modeling methods. By using a unified probabilistic
framework, we can simultaneously realize different training strategies including masked modeling
and autoregressive modeling. This integration results in improved classification ability and flexible
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generation. We conducted extensive experiments to validate the effectiveness of our framework
on several benchmarks, including linear probing, fine-tuning and transfer learning. Our results
demonstrate that our framework outperforms existing methods and provides a promising direction for
future research in masked image modeling.

We summarize our contributions as follows:

• We bridge autoregressive and masked modeling methods through a probabilistic framework,
named Generative Visual Pretraining (GVP) that combines the benefits of autoregressive
and masked modeling methods.

• In GVP, we model various dependency relationship between tokens and realize different
masking strategies using a unified Transformer module, which combines the benefits of
autoregressive and masked modeling methods, leadings to improved classification ability
and flexible generation.

• Our framework outperforms existing methods in several benchmarks, including linear
probing, fine-tuning, and transfer learning.

2 RELATED WORK

2.1 MASKED MODELING

Masked Modeling is a task that learns by masking a portion of input signals and trying to predict these
masked signals using the unmasked part. In natural language processing and computer vision fields,
many approaches following this philosophy have achieved great performance. Masked language
modeling (MLM) (Devlin et al., 2018; Liu et al., 2019; Joshi et al., 2020; Lan et al., 2019) like
BERT are effective self-supervised learning approaches in the field of NLP. Given visible tokens in a
sentence or a sentence pair, these approaches learn a bidirectional contextualized encoder for natural
language understanding via denoising objectives. Masked Image Modeling (MIM) has located in
a non-mainstream position for representation learning for a long time. Recently, BEiT (Bao et al.,
2022), MAE (He et al., 2022), SimMIM (Xie et al., 2022) and MAGE (Li et al., 2022) recall this
approach on Vision Transformer (Dosovitskiy et al., 2020) with various targets and demonstrated
strong ability on representation learning. BEiT recovers discrete visual tokens from masked inputs
in the pixel form and MAGE improves it by using discrete visual tokens as the input. On the
contrary, MAE and SimMIM both recover raw pixels. Despite their embedding methods and target
formulation, they share the same modeling paradigms with BERT, which maximize the likelihood
of the predicted masked part given the unmasked part and assume each token in the masked part as
mutually independent. However, this assumption will lead to poor reconstructive results (Bao et al.,
2022; He et al., 2022).

2.2 AUTOREGRESSIVE MODELING

Autoregressive modeling is a widely used technique in NLP and CV fields, which predict the value
of each token in the sequence based on the values of the tokens that came before it. Autoregressive
modeling has been widely used in NLP to generate text, translate languages and perform sentiment
analysis. One of the most prominent autoregressive models in NLP is Transformers Vaswani et al.
(2017), which serves as the backbone of GPT series (Radford et al., 2018; 2019; Brown et al., 2020).
For Transformers, an efficient way to train autoregressive models is through causal masks. It is
used to ensure that the model generates text in a left-to-right fashion, meaning that it can only use
information from earlier parts of the text to generate later parts. XLNet (Yang et al., 2019) further
considers all possible permutations of the factorization order instead of using a fixed forward or
backward factorization, where they propose two-stream self-attention to remove the ambiguity in
target prediction. Since 2016, there have been works (Oord et al., 2016b;a) using autoregressive
modeling to unconditionally generate images. However, among the ViT-based methods, autoregressive
modeling is few used in representation learning. IGPT (Chen et al., 2020) directly use autoregressive
modeling on pixels using transformer architecture, but it still mainly focuses on image generation.
SAIM (Qi et al., 2022) and RandSAC (Hua et al., 2023) explore the autoregressive modeling in ViT
but they do not explore how the group segmentation affects the modeling. Their prediction target
and input form is also limited to raw pixel. There are still ways to explore the use of autoregressive
modeling in CV’s representation learning.
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3 TOWARDS A UNIFIED PROBABILISTIC FORMULATION

Given an image x, the embedding layer in the ViT transfers the image into a sequence of tokens
x = x1x2 . . . xT , where T is the length of the sequence. Let ZT be the set of all T ! permutations of
the index sequence [1, 2, . . . , T ] and let z denote one of the permutation. Denote zt the t-th element,
z<t the first t − 1 elements of a permutation z and z≥t the last T − t + 1 elements. Denote xy a
sub-sequence of x with the index sequence y. We will first formalize the targets of masked modeling
and autoregressive modeling in a probabilistic form and then unify them under one framework.

3.1 ANALYSIS IN THE PROBABILISTIC PERSPECTIVE

For masked modeling, we take MAE (He et al., 2022) as example. Review that MAE first masks
p · T tokens of the sequence xmasked and get the visible part xunmasked, predicting the masked part
through an encoder-decoder architecture g ◦ f using the visible part, where p is the mask ratio,
f is the encoder and g is the decoder. The loss function of one image is formulated by LMAE =
E∥g◦f(xunmasked)−xmasked∥22, where the expectation is taken over on different choices of the masked
portion and realized by randomly choosing one. From a probabilistic perspective, assume the output
probability of reconstructed patches follow a conditional Gaussian distribution

pθ(xz≥m
|xz<m

) = N (µxz<m
, I), (1)

where m is the length of the sequence xunmasked, µxz<m
= g ◦ f(xz<m

) is the mean vector and I is
the identity covariance matrix. Then, we can easily see that the MAE objective is equivalent to the
following negative log likelihood loss:

LMAE = −Ez log pθ(xz≥m
| xz<m) + C == −Ez

T∑
t=m

log pθ(xzt | xz<m) + C. (2)

The last equation is due to the fact that MAE implicitly assumes that the output patches are condition-
ally independent, i.e., pθ(xzi |xz<m

) ⊥ pθ(xzj |xz<m
),∀ i, j ≥ m. In other words, the generation

process from xz<m
to xz≥m

is fully non-autoregressive (Luong & Manning, 2015). This assumption
could be very restrictive, particularly when adopting a very large mask ratio – which helps explain
the poor image reconstruction quality shown in MAE (He et al., 2022; Dong et al., 2022).

For autoregressive modeling, we take iGPT (Chen et al., 2020) as example. IGPT considers each
image pixel as a token and fix the index sequence z = [1, 2, . . . , T ], i.e., from left to right and from
up to down. During the training stage, iGPT predicts each token using all tokens before itself in the
sequential order with a transformer network f . Since all tokens are pixels, the prediction task is a
classification task with the cross entropy loss. The loss function of one image is formulated by

LiGPT =

T∑
t=1

CE(f(xz<t), xzt)). (3)

Here, denoting the softmax output µt = f(xz<t) as the probability distribution of a categorical
distribution pθ(xt|xz<t) = Cat(µ), we can show that this objective also corresponding to the
following log likelihood with autoregressive factorization:

LiGPT = log pθ(x) =

T∑
t=1

log pθ(xzt | xz<t). (4)

Comparison. Comparing the two paradigms for MIM, we notice that each paradigm has its own
advantages and shortcomings. For masked modeling, the index sequence z is not fixed, which enables
the model to explore broader relation between tokens. On the contrary, the index sequence z for
autoregressive modeling is fixed, resulting in the lack of flexibility of the modeling of the data
distribution, which could be harmful in representation learning, where it is crucial to incorporate
context from both directions. Besides, unlike the situation in NLP fields, there is no natural sequence
order for images. Therefore, the fixed order adopted by iGPT may not be optimum. Second, the task
complexity for all predicted tokens are adjustable by altering different mask ratio, which adjust the m
in Equation (2). This allows the model to vary the task difficulty between different image samples,
which can help the model achieve better performance on many downstream tasks (Li et al., 2022;
Chang et al., 2022). However, the fix index sequence will fix the task difficulty in autoregressive
task among different image samples, which will also lead to the inflexibility of the modeling of
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data distribution. There is also a problem that the prediction tasks for the tokens in the end of the
sequence are too easy, leading to the decrease of training efficiency. Third, autoregressive modeling
build vigorous dependency between tokens, providing a natural way to use the product rule for
factorizing the joint probability of the predicted tokens, eliminating the independence assumption
made in masked modeling.

From the above observation, it can be seen that masked modeling and autoregressive modeling are
two complementary approaches for masked image modeling. In the next section, we explore a general
probabilistic formulation for a principled combination of the two generative learning paradigms.

3.2 A GENERAL FRAMEWORK FOR GENERATIVE MASKED VISUAL REPRESENTATION
LEARNING

In this section, we establish a unified probabilistic framework that unifies masked and autoregressive
modelling. It could enable a general and flexible way to learn visual representation learning in a
generative approach.

We start by a generative modeling of the joint data distribution. Review that the objective of masked
modeling is to maximize the log-likelihood of the last part of the sequence conditioned on the front
part, i.e. log pθ(xz≥m | xz<m) , while the objective of autoregressive modeling is to maximize
the log-likelihood of the data sample log pθ(x). Notice that log pθ(x) is just a specific example of
log pθ(xz≥m | xz<m) where m = 1. Additionally, there can be some extra condition information
yextra provided in the task, such as the source image in the style transforming task (Hu et al., 2022) and
the class label in the conditional generation task (Oord et al., 2016b), which can be both integrated in
the condition part of the probability function. Therefore, we select log pθ(xz≥m | xz<m,yextra) as
our basic formulation.

Further, in order to include both masked modeling and autoregressive modeling, the new framework
should satisfy the following requirements: (1) The new framework is able to model on any sequence
order. (2) The new framework is able to flexibly adjust task complexity. (3) The new framework
is able to model vigorous dependency between tokens. We will show how to build this framework
starting from the basic probabilistic goal.

First, to be flexible enough to model any sequence order, the z should not be fixed but cho-
sen randomly in a certain way. Hence, the objective becomes Ez log pθ(xz≥m | xz<m,yextra),
where z obeys a certain distribution on the permutation space ZT . To satisfy the third require-
ment, we should adopt the method of autoregressive modeling on decomposing log pθ(xz≥m |
xz<m,yextra), that is, to use the chain rule to factorize the probability. However, as men-
tioned before, simply adopting the autoregressive modeling will lead to problems on task com-
plexity. Therefore, instead of completely decomposing the joint probability into tokens, we
can extend the standard token-level chain rule to the group-level chain rule. To be specific,
we can segment the index sequence z into K + 1 consecutive groups G0, G1, G2, . . . , GK =
(z1 . . . zn0), (zn0+1 . . . zn1), (zn1+1 . . . zn2), . . . , (znK−1+1 . . . znK

), where m − 1 = n0 < n1 <
n2 < · · · < nK = T . The conditional log-likelihood of data sample can be written as

log pθ(xz≥m | xz<m,yextra) =

K∑
k=1

log pθ(xGk
| xG0

,xG1
, . . . ,xGk−1

,yextra)

=

K∑
k=1

 nk∑
t=nk−1+1

log pθ(xt | xz<nk−1
,yextra)

 .

(5)

The formulation in Equation (5) is similar to that of autoregressive modeling, but with tokens
predicted groups by groups. Consecutive elements in the same group are considered as conditionally
independent like in masked modeling. The selection of K and nk, 0 ≤ k ≤ K − 1 can be flexibly
adjusted to get different probabilistic formulation. Larger ni will lead to richer condition and
less tokens to predict, resulting in easier task. Therefore, by adjusting nk, 1 ≤ k ≤ K − 1, the
task complexity can be correspondingly adjusted, which enable the formulation satisfy the second
requirement. Specifically, setting nK−1 to a smaller number will avoid the problem appearing in
autoregressive modeling that the prediction tasks for the last few tokens in the sequence are too easy.
Here we propose three possible settings of the group segmentation:

• Fixed Length. Let ni = [(i + 1)T/(K + 1)], i = 0, 1, 2, . . . ,K, where each group has
around the same [T/(K + 1)] elements. The group segmentation is fixed and uniform in
this setting, the same as autoregressive modeling;
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Causal Masks

Figure 1: The overall pipeline of GVP: The input image and conditional information are embedded
through an embedding layer to get the initial feature in the content stream. The initial feature in the
query stream is a learnable vector. The features in the two stream are passed through two-stream
attention blocks with causal masks. The output from the last layer of the query stream is used to
match the input image. In the causal masks, blue for 0 and white for −∞. More visualizations of the
attention masks are shown in the appendix.

• Random Length. Let n0, n1, . . . , nK−1 uniformly distributed in the range [1, T − 1].
This setting adds some randomness compared to the first setting, which can explore more
dependency relationship between tokens.

• Mixed Length. Let nK−1 = p·T with p ∼ N (0.5, 0.1) and let n0, n1, . . . , nK−2 uniformly
distributed in the range [1, nK−1 − 1] (more details are in the appendix). In this way, the
tokens in the last group GK can only be depended on p·T tokens, which has a low probability
to be larger than 0.8T , avoiding the problem of too easy prediction tasks. Meanwhile, we
can build vigorous dependency between the first nK−1 tokens by choosing larger K. We set
this as the default setting during training and take K as 20.

In all, we have built a general probabilistic formulation that combines the merits of two modeling
methods, whose objective can be written as

Lgeneral = Ez,K,n1,...,nK

K∑
k=1

 nk∑
t=nk−1+1

log pθ(xt | xz<nk−1
,yextra)

 , (6)

where the expectation taken here means z,K, n1, n2, . . . , nK obey a certain distribution, that is, there
can be a selecting strategy for z,K, n1, n2, . . . , nK . We name this framework Generative Visual
Pretraining (GVP). In the next section, we will introduce the way to implement this formulation in
real training process.

4 IMPLEMENTATION VIA UNIVERSAL CAUSAL MASKS

In this section, we will discuss how to implement the general formulation in a single unified model.
We will first propose out overall design and then illustrate our key design on the universal causal
masks in detail.

4.1 OVERALL DESIGN

As shown in the overall pipeline Figure 1, the whole pipeline of our proposed GVP is composed by
the following steps.

Input Embedding. First, the image x ∈ RH×W×C is converted to an embedding sequence
along with all the extra conditional information yextra using an embedding layer, i.e. e(yextra, x) =
[y1; . . . ; yS ;x1; . . . ;xT ], where the extra conditional information is transformed into [y1; . . . ; yS ] ∈
RS×D and the image is transformed into [x1; . . . ;xT ] ∈ RT×D. For the embedding layer, most ex-
isting methods simply flatten the image into a sequence of image patches and use a linear layer to get
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the feature (Dosovitskiy et al., 2020; He et al., 2022; Xie et al., 2022; Bao et al., 2022). There are also
methods using discrete encoder like VQGAN (Esser et al., 2021) to tokenize the image (Li et al., 2022).
We will consider both in our implementation. After adding positional embedding Epos ∈ R(S+T )×D,
we get the feature before the first layer of the content stream H(0) = [y1; . . . ; yS ;x1; . . . ;xT ]+Epos.
The feature before the first layer of the query stream is initialized with a trainable vector w, i.e.
G(0) = [w;w; . . . ;w] ∈ R(S+T )×D.

Backbone Network. In our objective of Equation 6, the general formulation includes using various
index sequences z and vigorous dependency between tokens, which both describe the attending
relationship between tokens, i.e., which token can be attended to another given token. Therefore, it is
natural to model the probability pθ using a ViT architecture (Dosovitskiy et al., 2020) with causal
masks. However, we are not capable of modeling with arbitrary index sequence in an autoregressive
way if we use a single stream in ViT with causal masks. This is because of two requirements that are
contradictory in a standard ViT architecture, which have been discussed in XLNet (Yang et al., 2019):
(1) Suppose the output of the network in position zt is parameterized by gθ(xz<t, zt). In order to
predict the token xzt , the network output in the zt position in one layer gθ(xz<t, zt) should only use
the position zt and not the content xzt , (2) to predict the other tokens xzj with j > t, gθ(xz<t, zt)
should also encode the content xzt to provide full contextual information. Therefore, it is not enough
with only one stream. Since the two-stream attention proposed by XLNet facing the same problem
works well, we build upon the two-stream attention mechanism proposed by XLNet in Section 4.2
and extend it by excavating important usage of the causal masks in Section 4.3.

Loss Function. The representation GL in the query stream after the last layer is then trained to
match the target. We have two formulations on how to select the target and calculate the loss. The
first formulation is to convert the output into raw pixels using a linear layer and an MSE loss is used
to measure the reconstruction error (He et al., 2022; Xie et al., 2022). The second formulation is to
obtain a discrete class of the target by some discrete tokenizer and use a cross entropy loss between
this ground-truth one-hot token and the output of the ViT (Bao et al., 2022; Li et al., 2022), where we
will specifically use VQGAN (Esser et al., 2021) as the tokenizer in our implementation.

4.2 TWO-STREAM ATTENTION FOR GENERATIVE IMAGE MODELING

In this section, we will build upon the two-stream attention and propose our general design for
realizing the generative image modeling. In the two-stream attention Transformer, the content stream
hθ encodes the contextual information, and the query stream gθ predicts the targets with the help of
the content stream. The two stream share the same weights of the attention block but differ in the
causal mask. Intuitively, the causal masks in the two streams enable us to easily formulate various
dependency relationship between tokens. The main difference for the two causal masks is that the
content stream should ensure xzt can be attended to itself while the query stream is the contrary.
The two-stream attention allows us to arbitrarily change the sequential order without confronting
the inconsistency as mentioned above. For each self-attention layer l = 1, . . . , L, the two streams
of representations are schematically updated with a shared set of parameters. In the l-th layer, the
outputs of a self-attention head A

(l)
h and A

(l)
g in the two-stream are computed in the form of:

Qh = H(l−1)Wl
Q, Kh = H(l−1)Wl

K , Vh = H(l−1)Wl
V

Qg = G(l−1)Wl
Q, Kg = H(l−1)Wl

K , Vg = H(l−1)Wl
V

A
(l)
h = softmax(

QhK
⊤
h√

dk
+Mh)Vh,A

(l)
g = softmax(

QgK
⊤
g√

dk
+Mg)Vg,

(7)

where H(l−1) and G(l−1), the representations before the (l − 1)-th layer of the content stream and
the query stream, are linearly projected to queries, keys and values using shared trainable parameter
matrices Wl

Q,W
l
K ,Wl

V respectively, and dk is the dimension of the representations. Mh,Mg ∈
R(S+T )×(S+T ) are the causal masks in the content stream and the query stream, respectively, which
are the key factors in our framework. The value of each element (M)ij in either causal mask can
only be 0 or −∞, where (M)ij = 0 means the j−th token can be attended to the i−th token and
(M)ij = −∞ means the j−th token cannot be attended to the i−th token. This indicates that the
causal mask has a one-to-one correspondence with the dependency relationship between tokens.
Therefore, we only need to alter the causal masks Mh and Mg to adapt to different choices of
z,K, n0, . . . , nK−1, which eliminate the need of using multiple architectures. We will show how
to construct the corresponding attention masks in the next section.
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4.3 UNIVERSAL CAUSAL MASKS

In this section, we will show how to design causal masks Mh and Mg to suit various target formula-
tions inside the expectation in Equation (6). Review that the value of each element (M)ij in either
causal mask can only be 0 or −∞, where (M)ij = 0 means the j−th token can be attended to the
i−th token and (M)ij = −∞ means the j−th token cannot be attended to the i−th token. This
implicates that by finding out the dependency between each token we can determine the causal mask.

We will start from the simplest formulation

− log pθ(xz≥1 | yextra) = −
T∑

t=1

log pθ(xt | xz<t,yextra). (8)

where the index sequence is selected to be [1, 2, . . . , T ] and each group has only one element. In
this situation, a certain condition information token can be attended to all xt, 1 ≤ t ≤ T and
ys, 1 ≤ s ≤ S, but does not depend on any xt. Therefore, for both (Mh)ij and (Mg)ij , the value
equals 0 if j ≤ S and equals −∞ if j > S and i ≤ S. Besides, every xi depends on xj with i > j.
In addition, in order to build contextual information, every xi should depends on itself in the content
stream. In conclusion, the causal masks for the two streams should be

(Mh)ij =


0 j ≤ S
−∞ j > S ≥ i
0 i ≥ j > S
−∞ j > i > S

, (Mg)ij =


0 j ≤ S
−∞ j > S ≥ i
0 i > j > S
−∞ j ≥ i > S

(9)

which is also visualized in Figure 1. If we consider putting a part of x into the condition and get the
formulation

− log pθ(xz≥m | xz<m,yextra) = −
T∑

t=m

log pθ(xt | xz<t,yextra), (10)

the new causal masks can be attained by modifying the S to S +m− 1 since the first m tokens of x
are integrated into the condition. Then we consider the general situation where tokens are segmented
into groups as in Equation (5). Let f(t) denote the index of the group to which xt belongs. In this
situation, xi will be dependent on xj if f(i) > f(j). Besides, tokens in the same group is dependent
on each other in the content stream to provide contextual information. Therefore, note that xi is the
(S + i)-th token in the whole sequence, by additionally defining f(t) to be 0 with non-positive t, the
causal masks for the two streams should be

(Mh)ij =


0 j ≤ S +m− 1
−∞ j > S +m− 1 ≥ i
0 f(i− S) ≥ f(j − S) > 0
−∞ f(j − S) > f(i− S) > 0

, (Mg)ij =


0 j ≤ S +m− 1
−∞ j > S +m− 1 ≥ i
0 f(i− S) > f(j − S) > 0
−∞ f(j − S) ≥ f(i− S) > 0

(11)
At last, we consider varying the index sequence z. To fit an given order z = z1z2 . . . zT , we only
need to swap the columns and the rows of the original causal masks with order [1, 2, . . . , T ], which
we assume to be Mh and Mg. Let z′(i) be the reversed sequence map of z, i.e., z′(i) = i if i ≤ S
and z′(zi + S) = i+ S. Then we can obtain the causal masks Mz

h and Mz
g with index sequence z

by:
(Mz

h)ij = (Mh)z′(i)z′(j), (M
z
g)ij = (Mg)z′(i)z′(j) (12)

By now, we have constructed the causal masks for all possible dependency relations between tokens
in our framework.

5 EXPERIMENTS

We conduct self-supervised pretraining on the ImageNet-1K (Deng et al., 2009) training set. Then we
conduct experiments under two protocols: first is linear probing, where we train a classification head
on top of the learned representations while keeping the backbone frozen; second is fine-tuning, where
we fine-tune the whole parameters for the classification task. We also include results on transfer
learning to better evaluate the quality of the representations. More results and ablation studies can be
found in the Appendix.

To fully validate our proposed framework, we conduct experiments with three variants of GVP under
three settings of embedding layer and target mentioned in Section 4.1: (1) GVP-p2p (pixel-to-pixel):
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Table 1: Top-1 accuracy of linear probing and fine-tuning on ImageNet-1k. Auto. is short for
autoregressive modeling. MIM is short for masked image modeling. LP Acc. is short for linear
probing accuracy. FT Acc. is short for fine-tuning accuracy. The number of parameters for MAGE
and GVP-d2d includes VQ-GAN tokenizer and ViT encoder.

Methods Paradigm Model #params Epochs LP Acc.(%) FT Acc.(%)

Scratch on Pixels - ViT-B 86M - 27.3 77.1
Scratch on Tokens - ViT-B 24M+86M - 37.1 75.3
MaskGIT(Chang et al., 2022) MIM BERT 227M 300 63.1 -
iGPT(Chen et al., 2020) Auto. iGPT-L 1362M 100 60.3 66.3
BEiT(dVAE)(Bao et al., 2022) MIM (p2d) ViT-B 86M 200 52.1 82.4
BEiT(VQGAN) MIM (p2d) ViT-B 86M 200 54.3 82.6
MAE(He et al., 2022) MIM (p2p) ViT-B 86M 200 55.3 82.9
SimMIM(Xie et al., 2022) MIM (p2p) ViT-B 86M 200 52.5 82.8
MAGE(Li et al., 2022) MIM (d2d) ViT-B 24M+86M 200 67.2 81.5
RandSAC(Hua et al., 2023) Auto. (p2p) ViT-B 86M 200 58.2 83.0

GVP-p2p Auto. & MIM ViT-B 86M 200 61.4 83.2
GVP-p2d Auto. & MIM ViT-B 86M 200 58.3 83.4
GVP-d2d Auto. & MIM ViT-B 24M+86M 200 69.8 81.7

linear projection as the embedding layer and pixel reconstruction as the target; (2) GVP-p2d (pixel-
to-discrete): linear projection as the embedding layer and discrete classification as the target; (3)
GVP-d2d (discrete-to-discrete): VQGAN tokenizer as the embedding layer and discrete classification
as the target. Since there is no extra information in this scene, we just replace the yextra with a
class token. The index sequence z is uniformly selected in all permutations. For the embedding
layer of linear projection, we set the input image resolution as 224 and the token sequence length
is 14 × 14. For the embedding layer of VQGAN tokenizer, we set it as 256 × 256. After passing
through the embedding layer, the token sequence length is 16× 16. Following MAE (He et al., 2022),
we use random resize crop (with rate of 0.2 to 1) and random flipping as our default augmentations.
The default architecture is ViT-B and we use AdamW (Loshchilov & Hutter, 2019) to train the
model for 200 epochs with batch size of 4096. We use a cosine learning rate schedule (Loshchilov
& Hutter, 2017) with 10-epoch warm-up. The base learning rate is 1.5 × 10−4 and scaled by
batch size/256. For linear probing, we keep the causal mask to maintain the same feature distribution
with pretraining, and we drop the causal mask when we fine-tune the model for a larger receptive field.
Our proposed flexible network design integrates the modeling paradigm from both mask modeling
and autoregressive tasks, which is proved to be beneficial to various downstream tasks in the field of
NLP (Yang et al., 2019). The flexible attention masks enable the pretrained model suitable for both
classification task (Section 5.1) and generation task (Appendix F).

5.1 IMAGE CLASSIFICATION

Linear Probing. Linear probing is a common evaluation protocol for self-supervised learning. We
compare our results with various masked modeling methods and autoregressive methods. For methods
using ViT, we mark their setting of embedding layer and target in order to fairly compare. The original
BEiT uses dVAE (Vahdat et al., 2018) to get the target and we conduct BEiT using VQGAN to match
the setting. As shown in Table 1, GVP-d2d outperforms MAGE by 2.6% for ImageNet-1K linear
probe top-1 accuracy, which achieve state-of-the-art results among all mentioned methods, which
proves the effectiveness of the general framework. Besides, GVP-p2p surpasses MAE and simMIM
by at least 6% and GVP-p2d surpasses BEiT(VQGAN) by 4.0%, where the methods compared in the
same group share the same embedding layer and target. This further indicates the superiority of our
modeling on the dependency of the tokens.

Fine-tuning. Table 1 also hows the fine-tuning performance of GVP and other methods. Our GVP-
p2p outperforms the autoregressive method RandSAC by 0.4% and the masked modeling method
MAE by 0.5%. GVP-p2d also has a improvement of 0.8% over BEiT(VQGAN). These results show
the strong representation learning ability of our modeling.

Transfer Learning. Following the protocol in the work of Ericsson et al. (2021) and Zhao et al.
(2023), we evaluate the transfer learning performance pretrained on ImageNet-1K on 9 downstream
datasets, which are FGVC Aircraft (Maji et al., 2013), Caltech-101 (Fei-Fei et al., 2004), Stanford
Cars (Krause et al., 2013), CIFAR10(Krizhevsky, 2009), CIFAR100(Krizhevsky, 2009), DTD(Cimpoi
et al., 2014), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Food-101 (Bossard et al., 2014)
and Oxford-IIIT Pets (Parkhi et al., 2012). For linear evaluation, multinomial logistic regression is fit
on the extracted features. Results are shown in Table 2. We see that GVP-p2p outperforms MAE by
4.73% in average and GVP-p2d outperforms BEiT(VQGAN) by 2.77% in average. This results again
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Table 2: Transfer learning performance of ViT-B pretrained on ImageNet-1K using different methods.
Linear probing accuracy (%) is adopted. The Avg takes the average of the performance of nine
datasets.

Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets Avg
MAE 81.09 82.54 82.61 90.12 66.82 64.22 96.17 76.54 77.24 79.71
GVP-p2p 83.56 86.19 87.28 96.12 73.41 71.44 95.89 76.78 89.30 84.44

BEiT(VQGAN) 78.24 81.13 76.24 88.14 67.13 66.25 94.44 74.69 82.32 78.73
GVP-p2d 80.97 83.93 77.13 92.98 70.44 72.87 95.77 73.32 86.12 81.50

Table 3: Linear probing accuracy and fine-tuning accuracy of GVP-p2p with fixed index sequence
z = [1, 2, . . . , T ] and random index sequence.

Index Sequence Epochs LP Acc.(%) FT Acc.(%)

Fixed 200 58.6 82.7
Random 200 61.4 83.2

indicate that under the same setting of embedding layer and target, our modeling is superior to the
conventional masked modeling.

5.2 ABLATION STUDY

In this section, we analyze the key component of GVP framework: the index sequence and the
dependency relationship between tokens. All experiments are conducted on ViT-B using the setting
of linear projection and pixel reconstruction. We also include ablation study exploring the key factor
in our proposed methods in Appendix H.

Patch Ordering. We first study the effect of unfixed index sequence. As shown in
Table 3, GVP with random index sequence performs better than that with fixed index

Table 4: Linear probing accuracy and fine-tuning accuracy of
GVP-p2p with different group segmentation setting.

Segmentation setting K LP Acc.(%) FT Acc.(%)

Fixed Length

1 51.2 82.1
5 53.2 82.6
20 54.4 82.5
40 54.2 82.5

196 52.2 82.3

Random Length
5 57.8 82.7
20 55.6 82.4
40 56.4 82.5

Mixed Length
5 58.4 82.7
20 61.4 83.2
40 60.8 83.1

sequence in both protocols under
200 epochs pretraining, indicating
that modeling with random index se-
quence will help the model better cap-
ture bidirectional contextual informa-
tion.

Analysis on Auto-regressivity. We
find that the quality of the learned
representation can be greatly affected
by the setting of group segmentation.
We conduct experiments using the
three settings mentioned in Section
3.2 and explore the best segmenta-
tion amount K. As shown in Table
4, modeling with mixed length will
bring the best performance. Group
segmentation with fixed length will
lead to low accuracy, which is be-
cause fixed length modeling is lack of
flexibility, disabling the model build-
ing more dependency relationship between tokens.

6 CONCLUSION

In this paper, we proposed a generative visual pretraining framework named GVP. In particular, we
formally analyzed autoregressive and masked modeling methods in a probabilistic way. We proposed
a general formulation and modeling framework combining the benefits of both, which focused on the
dependency relationship between tokens. Specifically, we designed universal causal masks based on
the two-stream attention to implement all the formulation using only one architecture. Empirically,
we compared our proposed framework in the accuracy of linear probing, finetuning and transfer
learning. We found that our modeling on the dependency relationships between tokens improved
representation learning ability. We hope that our general framework can provide new insights for the
community and inspire future works.
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A EXAMPLES AND EXPLANATION ON CAUSAL MASKS

In this section, we will provide more details and examples on the design of causal masks under
different formulations. We assume that yextra = [y1; y2] and x = [x1;x2;x3;x4;x5]. Therefore, we
have S = 2 and T = 5. We will provide the full causal masks with this example when reviewing the
reasoning process in Section 4.3. For the simplest formulation

− log pθ(xz≥1 | y1, y2) = −
5∑

t=1

log pθ(xt | xz<t, y1, y2), (13)

as we have analyzed in Section 4.3, both in content stream and query stream, y1 and y2 can be
attended to every token including themselves and xi can be attended to xj if i < j. Additionally, xi
can be attended to itself in the content stream. Therefore, the causal mask for content stream Mh and
the causal mask for query stream Mg should be:

Mh = Mg =

0 0 −∞ −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞ −∞ −∞

0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 0 −∞
0 0 0 0 0 0 0





0 0 −∞ −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞ −∞ −∞

0 0 −∞ −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 0 −∞


(14)

If we consider putting a part of x, let us say x1, into the condition and get the formulation

− log pθ(xz≥2 | x1, y1, y2) = −
5∑

t=2

log pθ(xt | xz<t, x1, y1, y2), (15)

then x1, y1, y2 can be attended to every token. The two masks should be:

Mh = Mg =

0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞

0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 0 −∞
0 0 0 0 0 0 0





0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞

0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 0 −∞


(16)

Then we consider the situation that every group Gk may have more than one elements. Suppose
that G0 = [1], G1 = [2, 3], G2 = [4, 5]. That is K = 2, n0 = 1, n1 = 3, n2 = 5. Then xi will be
dependent on xj only if the serial number of xi’s group is larger than that of xj’s group. Therefore,
the two masks should be

Mh = Mg =

0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞

0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞

0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞ −∞
0 0 0 0 0 −∞ −∞
0 0 0 0 0 −∞ −∞


(17)

At last, we consider varying the index sequence z. Suppose we are given the index sequence
z = [2, 3, 4, 5, 1]. We only need to swap the columns and the rows of the original causal masks
Mh and Mg with index sequence of [1, 2, 3, 4, 5]. The z′(i) mentioned in Section 4.3 should be
z′(1) = 1, z′(2) = 2, z′(3) = z′(1 + 2) = 5 + 2 = 7, z′(4) = z′(2 + 2) = 1 + 2 = 3, z′(5) =
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z′(3 + 2) = 2+ 2 = 4, z′(6) = z′(4 + 2) = 3+ 2 = 5, z′(7) = z′(5 + 2) = 4+ 2 = 6. Notice that
in this situation xz1

= x2 is integrated into the condition. By

(Mz
h)ij = (Mh)z′(i)z′(j), (M

z
g)ij = (Mg)z′(i)z′(j), (18)

we can obtain that

Mz
h = Mz

g =

0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 −∞ −∞ −∞

0 0 0 0 0 0 0
0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 0 0 −∞
0 0 −∞ 0 0 0 −∞
0 0 0 0 0 0 0





0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 −∞ −∞ −∞

0 0 −∞ 0 0 0 −∞
0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 −∞ −∞ −∞
0 0 −∞ 0 0 0 −∞


(19)

B DETAILS ON SELECTING GROUP SEGMENTATION

In this section, we will illustrate the selecting details in the settings of the group segmentation proposed
in Section 3.2. In the Random Length setting, we let n0, n1, . . . , nK−1 uniformly distributed in the
range [1, T − 1]. We implement this by first randomly permuting [1, 2, . . . , T − 1], selecting the first
K elements of the permuted list and then sorting them in an ascending order. Here we provide the
python code in PyTorch style:

# Python code for selecting n_0, n_1,..., n_{K-1} in random length
setting

import torch

def generate_random_length(K, T):
# Create a tensor containing all integers in the range [1, T-1]
integers = torch.arange(1, T)

# Shuffle the tensor of integers randomly
shuffled_integers = integers[torch.randperm(T-1)]

# Select the first K unique integers from the shuffled tensor
selected_integers = shuffled_integers[:K]

# Sort the selected integers in ascending order
sorted_integers, _ = torch.sort(selected_integers)

return sorted_integers

For the Mixed Length setting, we first generate p and get nK−1 = round(p · T ). Then similarly, we
select the n0, n1, . . . , nK−2 in the range [1, nK−1 − 1]. Here we provide the python code in PyTorch
style:

# Python code for selecting n_0, n_1,..., n_{K-1} in mixed length
setting

import torch

def generate_mixed_length(K, T):
# Generate a Gaussian distribution with mean 0.5 and variance

0.1
p = torch.normal(mean=0.5, std=0.1)

# Calculate n_{K-1} by rounding p multiplied by T to the
nearest integer

n = int(torch.round(p * T))

# Create a tensor containing all integers in the range [1, n-1]
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integers = torch.arange(1, n)

# Shuffle the tensor of integers randomly
shuffled_integers = integers[torch.randperm(n-1)]

# Select the first K-1 unique integers from the shuffled tensor
selected_integers = shuffled_integers[:K-1]

# Sort the selected integers in ascending order
sorted_integers, _ = torch.sort(selected_integers)

# Concat the selected integers with n
sorted_integers = torch.cat([sorted_integers, torch.tensor(n)])

return sorted_integers

C EXPERIMENTS ON LONGER TRAINING

In this section, we conduct experiments for longer pretraining. We train our GVP-p2p and GVP-p2d
for 800 epochs and warm up for 40 epochs. The other settings still keep the same. We provide linear
probing and finetuning results in Table 5 and compare with other methods which also take longer
training. We outperform the three MIM methods BEiT, SimMIM and MAE both in linear probing
and finetuning results. It is noteworthy that our methods are on par with the autoregressive model
RandSAC but we have much fewer pretraining epochs.

Table 5: Linear probing accuracy and fine-tuning accuracy of GVP-p2p and GVP-p2d pretrained with
800 epochs, along with the results of other methods.

Method Epochs LP Acc.(%) FT Acc.(%)

BEiT(dVAE) (Bao et al., 2022) 800 56.7 83.2
SimMIM (Xie et al., 2022) 800 56.7 83.8
MAE (He et al., 2022) 800 65.1 83.6
RandSAC (Hua et al., 2023) 1600 68.9 83.9

GVP-p2p 800 69.6 84.0
GVP-p2d 800 67.4 83.8

D EXPERIMENTS ON SEMANTIC SEGMENTATION

In this section, we conduct experiments on semantic segmentation task to verify the effectiveness
of our proposed approach on representation learning. We experiment on the ADE20K (Zhou et al.,
2016) benchmark with 25K images and 150 semantic categories using the end-to-end framework,
which follows the same setting of BEiT (Bao et al., 2022). We report the metric of mean Itersection
of Union (mIoU) averaged over all semantic categories, which is adopted in many previous works
(He et al., 2022; Bao et al., 2022; Hua et al., 2023). We compare our GVP-p2p and GVP-p2d with
BEiT (Bao et al., 2022), MAE (He et al., 2022) and RandSAC (Hua et al., 2023). The results are
shown in Table 6. When GVP-p2p outperforms the p2p methods MAE and RandSAC by 0.6, 0.2,
respectively, GVP-p2d outperforms the p2d methods BEiT by 0.9, showing that our methods have
better representation learning ability.

E EXPERIMENTS ON THE yextra MODULE

In this section, we conduct additional experiments to demonstrate that the incorporation of yextra can
improve the performance on downstream tasks. The proposed yextra in the framework enables our
approach adapt to many different tasks. The experimental settings are as follows: we feed the image
into a pretrained VQGAN model to extract and pool the features of each patch. This pooled outcome
represents a form of global information for the image, hereby designated as yextra. The integration
of yextra is applied to both the pretraining and downstream task stages in GVP-p2p variant, while
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Table 6: Semantic Segmentation on ADE20K.

Method Pretraining Epochs mIoU

BEiT (Bao et al., 2022) 800 46.5
MAE (He et al., 2022) 800 48.1
RandSAC (Hua et al., 2023) 1600 48.5

GVP-p2p 200 48.7
GVP-p2d 200 47.4

other parameters remain constant. The results are shown in Table 7. While the VQGAN feature alone
does not exhibit strong linear probing performance, its integration into the process results in a notable
improvement of 4%. This outcome underscores the positive impact of incorporating yextra.

Table 7: Experiments on using pooled features from VQGAN as yextra. The dataset is ImageNet100.
The model is pretrained with ViT-B for 200 epochs. yextra as pretrained model means directly using
yextra as the pretrained features to conduct linear probing. This control group is to verify that yextra
itself does not contain much class information.

Pretrained Model LP Acc.

GVP-p2p (vanilla) 69.4
yextra 42.2
GVP-p2p (with yextra) 73.1

F IMAGE RECONSTRUCTION

In this section, we conduct image reconstruction experiments, which can be visualized in Figure
2. We calculate the average LPIPS loss (Zhang et al., 2018) on the validation set of each method.
Both in terms of intuitive visual perception and numerical results, our method outperforms other
approaches with same epochs of pretraining.

Discussion. In the image reconstruction task, both conventional autoregressive methods and MIM
methods exhibit shortcomings. When provided with patches at random positions within an image,
conventional autoregressive methods like iGPT struggle to capture bidirectional information, limiting
their ability to leverage complete information from the given patches. On the other hand, MIM
methods like MAE may overlook the dependency relations between predicted patches, potentially
encountering multimodality issues as discussed in (Gu et al., 2018), resulting in lower-quality
generation. In contrast, our proposed methods GVP can leverage the added flexibility to enhance
the generation performance. With the given patches as the condition information, we can perform
the proposed group autoregressive modeling, generating predicted patches group by group. This
approach will enjoy better reconstruction quality than MAE.

Table 8: Image reconstruction experiments on ImageNet validation set. The mask ratio is set to 0.75.
We calculate the average LPIPS loss (Zhang et al., 2018) on the validation set of each method. Our
approach outperforms the others within the same input and target configuration.

Method MAE GVP-p2p MAGE GVP-d2d.

Recon. loss 0.176 0.152 0.133 0.129

G EXPERIMENTS ON MS COCO

We conduct object detection experiments on the MS COCO dataset (Lin et al., 2015). We adopt ViT
as the backbone of Mask-RCNN (He et al., 2018), following the setting of ViT Benchmarking (Li
et al., 2021). We finetune on the MS COCO dataset for 25 epochs. We show the performance of
representations learned through different self-supervised methods and supervised training. We report
box AP for object detection in Table 9.
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Figure 2: Image reconstruction visualization on ImageNet validation set. From left to right: Original
image, mask, MAE reconstruction, GVP-p2p reconstruction. Note that GVP-p2p reconstruction has
much less artifact than MAE’s.

Table 9: Experiments on MS COCO dataset. The results of ViT-iGPT are borrowed from (Qi et al.,
2022).

Method Pretraining Epochs Finetuning Epochs COCO-APbb

ViT-iGPT 300 100 45.5
MAE 200 25 46.2
GVP-p2p (ours) 200 25 46.6

We observe that our method achieves 46.6 bbox mAP with 25 epochs of finetuning. The result is
better than autoregressive method iGPT and MIM method MAE. The results indicate that our method
can benefit from both MIM and autoregressive methods and learn high-quality representations.

H ABLATION STUDY ON KEY FACTORS

We conduct ablation study by incrementally adding the modifications. The models are pretrained
using ViT-B with 200 epochs on ImageNet-1k. The results are presented in Table 10. From the
results, we observe that (1) Directly adding causal masks on masked modeling introduces the problem
that the model is unaware of the next position it will predict, as discussed in A2. This problem will
lead to deteriorated performance. Leveraging the two-stream attention mechanism mitigates this
issue. (2) Without a well-designed grouping method, the performance still remains consistent with
the baseline. However, with the introduction of mixed length grouping, the performance surpasses
the baseline by a large margin. This underscores the significance of a well designed grouping method
in the modeling.

Table 10: Ablation study on the key factor of our proposed method. The models are pretrained using
ViT-B with 200 epochs on ImageNet-1k.

Modification Linear Acc. Finetuning Acc.

Pure Masked Modeling 52.5 82.8
+Causal Masks 28.4 78.4
+Causal Masks+Two-stream Attention 52.2 82.3
+Causal Masks+Two-stream Attention+Mixed Length Grouping 61.4 83.2
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I ABLATION EXPERIMENTS WITHIN P2D SETTING

We further explore experiments using both fixed length and random length settings on p2d, with the
segmentation amount K set to 20. The models in these experiment are trained for 200 epochs with
ViT-B on ImageNet, following the setting in Section 5. The results are presented in Table 11. The
findings suggest that modeling with mixed length yields the optimal performance, aligning with the
outcomes observed in the p2p experiments.

Table 11: Ablation study on different segmentation settings in the p2d setting.

Segmentation setting LP Acc. (%) FT Acc. (%)

Fixed Length 53.9 82.6
Random Length 56.2 82.6
Mixed Length 58.3 83.4
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