
Preventing Reward Hacking with
Occupancy Measure Regularization

Cassidy Laidlaw * 1 Shivam Singhal * 1 Anca Dragan 1

Abstract

Reward hacking occurs when an agent exploits
its specified reward function to behave in undesir-
able or unsafe ways. Aside from better alignment
between the specified reward function and the
system designer’s intentions, a more feasible pro-
posal to prevent reward hacking is to regularize
the learned policy to some safe baseline. Current
research suggests that regularizing the learned
policy’s action distributions to be more similar to
those of a safe policy can mitigate reward hack-
ing; however, this approach fails to take into ac-
count the disproportionate impact that some ac-
tions have on the agent’s state. Instead, we pro-
pose a method of regularization based on occu-
pancy measures, which capture the proportion
of time each policy is in a particular state-action
pair during trajectories. We show theoretically
that occupancy-based regularization avoids many
drawbacks of action distribution-based regulariza-
tion, and we introduce an algorithm called ORPO
to practically implement our technique. We then
empirically demonstrate that occupancy measure-
based regularization is superior in both a simple
gridworld and a more complex autonomous vehi-
cle control environment.

1. Introduction
A major challenge for the designers of AI systems is speci-
fying an objective, or reward function, that is aligned with
their goals and values. If an AI agent optimizes a reward
function that is not representative of the designer’s original
intent, it may act in undesirable and potentially dangerous

*Equal contribution 1Department of Electrical Engineer-
ing and Computer Science, University of California, Berke-
ley, CA, USA. Correspondence to: Cassidy Laidlaw <cas-
sidy laidlaw@berkeley.edu>, Shivam Singhal <shivamsing-
hal@berkeley.edu>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

ways (Russell, 2019). This behavior is called reward hack-
ing—when the resulting policy performs well in terms of
the given proxy reward function but poorly on the unknown
true reward function (Skalse et al., 2022; Pan et al., 2022).

The best solution to prevent reward hacking would be to en-
sure better alignment between the defined proxy and hidden
true objectives. However, in practice, reward functions are
extremely difficult to properly design due to the ambigui-
ties and complex variables underlying real-world scenarios
(Ibarz et al., 2018). Recommender systems, for example,
aim to optimize the value that users attain from their time
spent on the online platforms; however, since this goal is
difficult to quantify, designers utilize proxies, such as click-
through rates, engagement time, and other types of feedback
they receive from users, which do not always match how
satisfied users are with their experience (Stray et al., 2022).
Several examples of reward hacking have been reported
throughout the literature (Krakovna, 2018).

Rather than specifying a reward or objective function by
hand, an alternative strategy is to learn the reward function
through interaction with the system designer and/or users
(Bıyık et al., 2020; Palan et al., 2019). For instance, reward
learning is used in reinforcement learning from human feed-
back (RLHF) to shape the behavior of large language models
towards more helpful output (Ouyang et al., 2022). How-
ever, even learned reward functions are often misaligned
with our true objectives as they usually fail to generalize
well outside the distribution of behavior used to train them
(McKinney et al., 2023).

Instead of blindly optimizing a proxy reward function, one
proposal to avoid reward hacking is to regularize the policy
towards a known safe policy (Yang et al., 2021). For exam-
ple, RLHF for large language models generally optimizes
the learned reward plus a term that penalizes divergences
from the pre-trained language model’s output. Intuitively,
this kind of regularization pushes the learned policy away
from “unusual” behaviors for which the reward function may
be misaligned. These could include unforeseen strategies
in the case of a hand-specified reward function or out-of-
distribution states in the case of a learned reward function.

While this idea of regularizing towards a safe policy is use-

Preventing Reward Hacking with Occupancy Measure Regularization

ful, it implicitly assumes a distance metric over the space
of policies. So far, this has been the Kullback–Leibler (KL)
divergence between action distributions, which has a lot of
benefits: it is easy to compute and optimize within common
deep RL algorithms (Vieillard et al., 2021), and it appears
to effectively prevent reward hacking in RLHF for large
language models (Ouyang et al., 2022). However, we argue
that, in general, regularizing based on the action distribu-
tions of policies also has significant drawbacks. Specifically,
small shifts in action distributions can lead to large differ-
ences in outcomes, and on the other hand, large shifts in
action distributions may not actually result in any difference
in outcome.

Consider the illustrative example of training a self-driving
car policy that is driving along the side of a steep cliff. Sup-
pose there is a safe policy that drives slowly and avoids
falling off the cliff, but the agent is incentivized by a faulty
objective function that rewards driving fast without penaliz-
ing going off the road. When regularizing to the safe policy
based on action distributions, it may be very difficult to
avoid a learned policy that drives off the cliff. This is be-
cause even one wrong action—a small change in the action
distributions at a single state—could lead to a disaster. In
addition, for the learned policy to improve on the reward of
the safe policy, the car would have to go faster, which likely
means significant changes to the car’s action distributions
at many states. Thus, it is probably impossible to use ac-
tion distribution regularization to avoid a single catastrophic
action while still performing better than the safe policy.

Instead of regularizing based on action distributions, we
propose that the learned policy be regularized based on
the divergence between its and a safe policy’s occupancy
measures. An occupancy measure (OM) represents the
distribution of states and actions seen by a policy when it
interacts with its environment. Unlike action distribution-
based metrics, OM takes into account not just the actions
taken by the policy, but also the states that the agent reaches.

Going back to our example, while a single catastrophic ac-
tion from the self-driving policy may not change its action
distribution much, it will significantly increase the distance
between the policies’ occupancy measures: the learned pol-
icy will have a high probability of reaching states where
the car is off the cliff and crashed, while the safe policy
never reaches such states. As a result, occupancy measure
regularization more strongly penalizes actions that lead to
potentially calamitous consequences. Furthermore, it less
strongly penalizes deviations from the safe policy that are
likely to improve the self-driving car’s performance. If
the self-driving policy learns to drive faster, the agent will
mostly see many of the same states along the road that the
safe policy does, and therefore, there will not be a large
divergence in occupancy measures to penalize.

In this paper, we show both theoretically and empirically
that regularizing policy optimization using occupancy mea-
sure divergence is more effective at preventing reward hack-
ing. Theoretically, we show that there is a direct relationship
between the divergence in occupancy measures between two
policies and their returns under any reward function, while
no such relationship holds for divergences between action
distributions of the two policies. Empirically, regularizing
the occupancy measure of a policy is more challenging than
regularizing its action distributions. To address this, we
derive an algorithm, occupancy-regularized policy optimiza-
tion (ORPO), for approximating the occupancy measure
divergence with a discriminator network that can be easily
incorporated in deep RL algorithms like Proximal Policy
Optimization (PPO). We use this to optimize policies trained
with misaligned proxy reward functions in multiple envi-
ronments and compare our method’s performance to that
of action distribution regularization. The results of our
experiments show that regularization based on occupancy
measures is more effective at preventing reward hacking,
while still allowing optimization that increases an unseen
true reward function. Our findings suggest that regulariza-
tion based on occupancy measures should replace action
distribution-based regularization for the purpose of prevent-
ing reward hacking.

2. Related work
A few previous works have focused on defining and char-
acterizing reward hacking. Pan et al. (2022) conduct a sys-
tematic study of reward misspecification. They characterize
three particular ways in which rewards can be misspecified
and show across several environments that increasing the
optimization power of RL agents can result in sudden shifts,
or phase changes, in the agents’ reward hacking behavior.
Skalse et al. (2022) define reward hacking, also known as
reward gaming (Leike et al., 2018), as an increase in a proxy
reward function accompanied by a noticeable drop in the
true reward function. Everitt et al. (2019) focus on reward
tampering, a special type of reward hacking where the agent
tampers with or corrupts a reward signal embedded in the
environment in some way in order to achieve higher proxy
reward values. Krakovna (2018) provides a list of many
examples of reward hacking from the literature.

Various methods have been proposed to avoid reward hack-
ing and/or mitigate its dangerous effects. As we described
in the introduction, a widely used technique when training
large language models with RL is to regularize the KL diver-
gence of their action distributions (Ouyang et al., 2022).
Quantilizers (Taylor, 2016) are an alternative to reward
maximizing-agents that are designed to avoid reward hack-
ing behavior. Inverse reward design (Hadfield-Menell et al.,
2017) attempts to infer the true reward function based on the

Preventing Reward Hacking with Occupancy Measure Regularization

given proxy reward function and environment context. Value
reinforcement learning (Everitt & Hutter, 2016) focuses on
preventing reward tampering in particular. Other methods
aim to prevent unintended “side effects” from agents with
possibly misspecified reward functions (Krakovna et al.,
2019; 2020). These methods avoid the need for a safe policy
but can require other inputs, like a list of “auxiliary” re-
ward functions (Turner et al., 2020). They are also generally
difficult to integrate into deep RL algorithms.

The method of regularizing policy optimization to a safe
policy with KL divergence was first proposed by Stiennon
et al. (2020) and has since been widely used in the context
of optimizing large language models using learned reward
functions (Ouyang et al., 2022; Bai et al., 2022). KL regular-
ization for RLHF has been further studied by Vieillard et al.
(2021), Gao et al. (2022), and Korbak et al. (2022). Human-
in-the-loop variants of RLHF allow for misspecified reward
functions to be corrected in real-time (Lee et al., 2021),
which could avoid the need for regularization in some cases.

3. Occupancy measure-based regularization
We formalize our method of regularizing policy optimiza-
tion with occupancy measure divergences in the setting of
an infinite-horizon Markov decision process (MDP). An
agent takes actions a ∈ A to transition between states
s ∈ S over a series of timesteps t = 0, 1, 2, The first
state s0 is sampled from an initial distribution µ0(s), and
when an agent takes action at in st at time t, the next state
st+1 is reached at timestep t + 1 with transition probabil-
ity p(st+1 | st, at). The agent aims to optimize a reward
function R : S ×A → [0, 1], and rewards are accumulated
over time with discount factor γ ∈ [0, 1). A policy π maps
each state s to a distribution over actions to take at that state
π(a | s). We define the (normalized) return of a policy π
for a reward function R as

J(π,R) = (1− γ)Eπ

[∞∑
t=0

γtR(st, at)

]
where Eπ refers to the expectation under the distribution
of states and actions induced by running the policy π in
the environment. The normalizing factor guarantees that
J(π,R) ∈ [0, 1] always.

We define the state-action occupancy measure µπ of a policy
π as the expected discounted number of times the agent will
be in a particular state and take a specific action:

µπ(s, a) = (1− γ)Eπ

[∞∑
t=0

γt1{st = s ∧ at = a}

]
.

Intuitively, the occupancy measure represents the distribu-
tion of states and actions visited by the policy over time.
If the policy spends a lot of time taking action a in state s,
then µ(s, a) will be high. Conversely, if the policy never
visits a state s, then µ(s, a) = 0 for all actions a.

s1

R(s1, ·) = 1

s2

R(s2, ·) = 0

a2a1

a1, a2

0 1

π(a2 | s1)

0

1

J
(π

,R
)

πsafe π πsafe
′

Figure 1. The MDP on the left, used in the proof of Proposition 3.1,
demonstrates one drawback of using divergence between policies’
action distributions for regularization. The agent stays in state s1,
where it receives 1 reward per timestep, until it takes action a2,
after which it remains in state s2 forever and receives no reward.
The plot on the right shows the return J(π,R) for a policy π when
γ = 0.99 as a function of the policy’s action distribution at s1.
While πsafe and π (shown on the plot as dotted lines) are close
in action distribution space, they achieve very different returns.
Meanwhile, π is far from πsafe

′ in action distribution space, but
achieves nearly the same return. Propositions 3.2 and A.2 show
that occupancy measure divergences do not have these drawbacks.

3.1. Regularized policy optimization

The standard approach to solving an MDP is to find a policy
which maximizes its return:

maximize J(π,R). (1)

However, as we discussed in the introduction, an AI system
designer often does not have access to a reward function
which is perfectly aligned with their preferences and values.
Instead, the designer might optimize π using a learned or
hand-specified proxy reward function R̃ which is misaligned
with the true reward function R. Blindly maximizing the
proxy reward function could lead to reward hacking. Thus,
a widely-used approach is to optimize the policy’s return
with respect to R̃ plus a regularization term that penalizes
the KL divergence of the policy’s action distributions from
a safe policy πsafe:

maximize J(π, R̃) (2)

− λ(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
.

The regularization term can be easily incorporated into deep
RL algorithms like PPO since the KL divergence between
action distributions can usually be calculated in closed form.

Although it is simple, the action distribution-based regular-
ization method in (2) has serious drawbacks. These arise
from the complex relationship between a policy’s action
distribution at various states and its return under the true re-
ward function. In some cases, a very small change in action
distribution space can result in a huge change in reward, and
in other cases, a large change in action distribution space
can result in a negligible change in reward. We formalize
this in the following proposition.

Proposition 3.1. Fix ϵ > 0 and δ > 0 arbitrarily small,

Preventing Reward Hacking with Occupancy Measure Regularization

and c ≥ 0 arbitrarily large. Then there is an MDP and true
reward function R where both of the following hold:

1. There is a pair of policies π and πsafe where the action
distribution KL divergence satisfies

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ

but |J(πsafe, R)− J(π,R)| ≥ 1− δ.

2. There is a safe policy πsafe
′ such that any other policy

π with

(1−γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c

satisfies |J(πsafe
′, R)− J(π,R)| ≤ δ.

The first part of Proposition 3.1 shows that in the worst
case, a KL divergence smaller than some arbitrary threshold
ϵ from the safe policy’s action distributions can induce a
change in the return under true reward function R that is
almost as large as the entire possible range of returns. Thus,
when regularizing using action distribution KL divergence
like in (2), one might have to make λ extremely large to
prevent drastic changes from the safe policy. However, the
second part of Proposition 3.1 shows that in the same MDP,
for a different safe policy, any learned policy with arbitrarily
large action distribution KL divergence from the safe policy
has an extremely small difference in return. This means that
one might need to set λ extremely small in order to allow
for the large divergence in the policies’ action distributions
necessary for optimization to have any effect. See Figure 1
for a graphical illustration of Proposition 3.1.

Since Proposition 3.1 shows that small KL divergence in ac-
tion distribution from the safe policy can have large effects,
and vice versa, it may be impossible in some environments
to regularize effectively using the objective in (2). We pro-
pose instead to regularize based on the divergence between
the occupancy measures of the learned and safe policies:

maximize J(π, R̃)− λ ∥µπ − µπsafe∥1 . (3)
In (3), we use the total variation (TV) between the occu-
pancy measures, defined as

∥µπ − µπsafe∥1 =
∑

(s,a)∈S×A

|µπ(s, a)− µπsafe(s, a)|.

Why should using the occupancy measure divergence to
regularize perform better than using the divergence between
action distributions? The following proposition shows that
the TV between occupancy measures does not have the
same problems as action distribution divergence: a small
divergence cannot result in a large change in policy return.

Proposition 3.2. For any MDP, reward function R, and
pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)

Proposition 3.2 shows that the first issue with action distri-
bution divergence from Proposition 3.1 does not also affect
occupancy measure divergence. Instead, a small difference
between the occupancy measure of the safe and learned
policies guarantees that they have similar returns. In fact,
Proposition A.2 (see Appendix A) shows we cannot do any
better in general than the bound from Proposition 3.2.

These results suggest that the divergence between the occu-
pancy measures of the learned and safe policies is a much
better measure of how similar those policies are than the
divergence between the policies’ action distributions. In
the following sections, we will show that these theoretical
results match with intuition and empirical performance.

3.2. Example of action distribution and occupancy
measure divergences

Figure 2 shows an intuitive example of why regularizing to
a safe policy with occupancy measure divergence is superior
to regularizing with action distribution divergence. Figure
2a depicts a simplified version of the tomato-watering AI
Safety Gridworld proposed by Leike et al. (2017). The
agent, a robot that starts in the lower right, can move up,
down, left, right, or stay in place. Its objective is to water the
tomatoes on the board, and it receives reward each time it
moves into a square with a tomato. However, there is also a
sprinkler in the upper right corner of the environment. When
the robot moves into the sprinkler’s square, its sensors see
water everywhere, and it believes all tomatoes are watered.
In this environment, the true reward function R only rewards
watering tomatoes, while the proxy reward function R̃ also
highly rewards reaching the sprinkler.

The top row of Figure 2b shows three policies for this en-
vironment: a desired policy, which achieves the highest
true reward, a safe policy, which achieves lower true reward
because it stays in place more often, and a reward hacking
policy, which exploits the sprinkler state to achieve high
proxy reward but low true reward. The arrows between
the policies on the top row of Figure 2b show the action
distribution KL divergences between them as used for regu-
larization in (2). The action distribution divergences suggest
that the reward hacking policy is actually closer to the safe
policy than the desired policy is. This is because the safe
policy is nearly identical to the reward hacking policy in the
upper right square, where the reward hacking policy spends
most of its time; they both take the “stay” action with high
probability. Thus, if we regularize to the safe policy using
action distribution KL divergence, we would be more likely
to find a policy that hacks the proxy reward rather than one
like the left policy, which we prefer. The problem is that the
safe policy rarely reaches the sprinkler in the first place, but
the action distribution divergence doesn’t account for this.

Using occupancy measure divergences avoids this problem.

Preventing Reward Hacking with Occupancy Measure Regularization

(a)

Desired policy Safe policy Reward hacking policy

True reward = 14.9
Proxy reward = 37.0

True reward = 13.0
Proxy reward = 37.3

KL = 43.0

TV = 0.8

KL = 18.2

TV = 1.5

True reward = 2.2
Proxy reward = 153.4

0

1

A
ct

io
n

pr
ob

.

10−2

10−1

100

O
cc

.m
ea

su
re

(b)

Figure 2. This simple gridworld provides an intuitive example of why occupancy measure divergences are superior to action distribution
divergences for regularizing to a safe policy. See Section 3.2 for the details.

The bottom row of Figure 2b shows the occupancy measures
for each policy in the top row, and the arrows between the
columns show the total variation (TV) distance ∥µ− µ′∥1
between occupancy measures. Unlike the action distribution
KL divergence, the occupancy measure TV distance sug-
gests that the desired policy on the left is closer to the safe
policy than the reward hacking policy is. This is because
both the desired and safe policies spend most of their time
actually watering tomatoes, as evidenced by the higher oc-
cupancy measure they assign to the tiles on the board with
the tomatoes. In contrast, the reward hacking policy spends
almost all of its time in the sprinkler square and as a result,
has a very different occupancy measure. Thus, if we trained
a policy regularized with occupancy measure divergence in
this environment, we could hope to find a policy like the
desired one on the left and avoid a reward hacking policy
like the one on the right.

3.3. Occupancy-regularized policy optimization (ORPO)

In the previous section, we showed strong theoretical ev-
idence that regularizing using occupancy measure diver-
gence is superior to action distribution divergence. We now
introduce an algorithm, occupancy-regularized policy opti-
mization (ORPO), which enables occupancy measure-based
regularization for deep reinforcement learning.

While our theory is based on regularization using the TV
distance between occupancy measures, we find that the KL
divergence is more stable to calculate in practice. Since
Pinsker’s inequality bounds the TV distance by the KL di-
vergence for small KL values, and the Bretagnolle-Huber
bound holds for larger KL values, our mathematical intu-
ition remains valid (Canonne, 2022). Our objective from (3)
can be reformulated with the KL divergence in place of the
TV distance:

maximize J(π, R̃)− λDKL(µπ ∥ µπsafe). (5)

We optimize (5) using a gradient-based method. The gra-
dient of the first term is estimated using PPO, a popular

policy gradient method (Schulman et al., 2017). However,
calculating the occupancy measure divergence for the sec-
ond term is intractable to do in closed form since it requires
the enumeration of all possible state-action pairs, an infeasi-
ble task in the case of deep RL. Thus, we approximate the
KL divergence between the occupancy measures of policies
by training a discriminator network, a technique that has
previously been used for generative adversarial networks
(GANs) (Goodfellow et al., 2014) and GAIL (Ho & Ermon,
2016).

The discriminator network d : S ×A → R assigns a score
d(s, a) ∈ R to any state-action pair (s, a) ∈ S×A, and it is
trained on a mixture of data from both the learned policy π
and safe policy πsafe. The objective used to train d incentives
low scores for state-action pairs from πsafe and high scores
for state-action pairs from π:

d = argmin
d

∞∑
t=0

(
Eπ[γ

t log(1 + e−d(st,at)})]

+Eπsafe [γ
t log(1 + ed(st,at)})]

)
.

(6)

Huszár (2017) proves that if the loss function in (6) is min-
imized, then the expected discriminator scores for state-
action pairs drawn from the learned policy distribution will
approximately equal the KL divergence between the occu-
pancy measures of the two policies:

DKL(µπ(s, a) ∥ µπsafe(s, a)) ≈ (1−γ)Eπ

[∞∑
t=0

γtd(st, at)

]

Applying the definitions of the learned policy returns and the
KL divergence between the polices’ occupancy measures,
we can now rewrite our ORPO objective:

maximize Eπ

[∞∑
t=0

γt
(
R̃(st, at)− λ d(st, at)

)]
. (7)

Note that (7) is identical to the normal RL objective with a
reward function R′(s, a) = R̃(s, a)− λd(s, a). Thus, once

Preventing Reward Hacking with Occupancy Measure Regularization

the discriminator has been trained, we add the discriminator
scores to the given reward function and use the combined
values to update π with PPO. The training process for ORPO
is split into two phases: one in which data from both the
safe and learned policies is used to train the discriminator to
minimize (6), and one in which data from the learned policy
is used to train the PPO agent with the augmented reward
function in (7).

4. Experiments
We compare the empirical performance of ORPO to reg-
ularization with action distribution KL divergence in two
environments: a slightly different version of the tomato-
watering environment we focused on in Section 3.2 and an
autonomous vehicle control environment introduced by Wu
et al. (2022). As before, the tomato environment contains
a sprinkler state where the agent perceives all tomatoes as
being watered and thus receives high proxy reward but no
true reward. For our safe policy, we train a PPO agent with
the true reward, and then add a 10% chance of taking a
random action to ensure there is room to improve upon it.

The traffic environment consists of a number of vehicles
driving through a road network where cars on an on-ramp at-
tempt to merge into traffic on a highway. Some vehicles are
controlled by a human model and some are RL-controlled
autonomous vehicles. The true objective of the self-driving
agent is to ensure that there is fast traffic flow at all times
in order to reduce the mean commute time, while observing
the positions and velocities of nearby vehicles. The proxy
reward is the average velocity of all cars in the simulation.
When the traffic agent begins to reward hack, it stops cars
on the on-ramp from merging into traffic. This way, the
proxy reward is optimized because cars on the straightway
can continue forward at a fast speed instead of having to
wait for a car to merge, which increases the average velocity
of all vehicles. However, the true objective is not achieved
as the commute time for the cars on the on-ramp increases
indefinitely. As the safe policy for the traffic environment
we used the Intelligent Driver Model (IDM), a standard
approximation of human driving behavior (Treiber et al.,
2000). In practice, safe policies are often learned via imita-
tion learning, so to simulate this we generate data from the
IDM controller and train a behavioral cloning (BC) policy
on it.

We train RL policies in each environment using action dis-
tribution regularization and OM regularization, varying the
regularization coefficient λ across a wide range. We com-
pare the performance of the regularization techniques to the
safe policies πsafe, as well as policies trained to optimize the
proxy reward and true reward without regularization.

The results of our experiments are shown in Tables 1 and

Regularization λ Proxy True
method reward reward

PPO w/ proxy R̃ w/o regularization 406.14 24.88
PPO w/ true R w/o regularization 83.75 83.16
Safe policy πsafe 77.02 76.89

Action dist. KL 10−2 400.13 24.31
Action dist. KL 10−1 228.80 39.45
Action dist. KL 100 77.77 77.68
Action dist. KL 101 77.03 77.02

Occ. measure KL 10−2 399.82 23.39
Occ. measure KL 10−1 309.10 26.11
Occ. measure KL 100 79.61 79.61
Occ. measure KL 101 79.72 79.70

Table 1. In the tomato environment, the ORPO policy with λ = 10
performed the best among policies trained with the proxy reward.

Regularization λ Proxy True
method reward reward

PPO w/ proxy R̃ w/o regularization 3014 -63976
PPO w/ true R w/o regularization 1437 -640
Safe policy πsafe 1444 -2162

Action dist. KL 10−3 3005 -60208
Action dist. KL 10−2 2230 -55817
Action dist. KL 3 ∗ 10−2 1528 -1254
Action dist. KL 10−1 1503 -1503
Action dist. KL 100 1451 -2114

Occ. measure KL 10−3 2993 -62107
Occ. measure KL 3 ∗ 10−3 1533 -1041
Occ. measure KL 10−2 1457 -2040
Occ. measure KL 10−1 1454 -2556
Occ. measure KL 100 1361 -3624

Table 2. In the traffic environment, the ORPO policy with λ =
3 ∗ 10−3 performed the best among policies trained with the proxy
reward.

2. In both environments, both forms of regularization help
the learned policy perform better than the unregularized
PPO agent (“PPO w/ proxy R̃ w/o regularization”). The
ORPO policies achieved the highest true reward out of all
policies that were trained with the proxy reward function.
Not only did they outperform the baseline policies, but they
also achieved higher true reward than the policies trained
with action distribution-based regularization.

5. Conclusion
We have presented theoretical and empirical evidence that
occupancy measure regularization can more effectively pre-
vent reward hacking than action distribution regularization
when training with a misaligned proxy reward function. In
the future, we hope to experiment with learned proxy reward
functions in addition to the hand-specified reward functions
we considered in this paper.

Preventing Reward Hacking with Occupancy Measure Regularization

References
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-

Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernan-
dez, D., Hume, T., Johnston, S., Kravec, S., Lovitt,
L., Nanda, N., Olsson, C., Amodei, D., Brown, T.,
Clark, J., McCandlish, S., Olah, C., Mann, B., and
Kaplan, J. Training a Helpful and Harmless Assistant
with Reinforcement Learning from Human Feedback,
April 2022. URL http://arxiv.org/abs/2204.
05862. arXiv:2204.05862 [cs].

Bıyık, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk,
G., and Sadigh, D. Learning Reward Functions from
Diverse Sources of Human Feedback: Optimally Inte-
grating Demonstrations and Preferences. 2020. doi:
10.48550/ARXIV.2006.14091. URL https://arxiv.
org/abs/2006.14091. Publisher: arXiv Version
Number: 2.

Canonne, C. L. A short note on an inequality between KL
and TV, February 2022. URL http://arxiv.org/
abs/2202.07198. arXiv:2202.07198 [math, stat].

Everitt, T. and Hutter, M. Avoiding Wireheading with Value
Reinforcement Learning, May 2016. URL http://
arxiv.org/abs/1605.03143. arXiv:1605.03143
[cs].

Everitt, T., Hutter, M., Kumar, R., and Krakovna, V. Re-
ward Tampering Problems and Solutions in Reinforce-
ment Learning: A Causal Influence Diagram Perspec-
tive. 2019. doi: 10.48550/ARXIV.1908.04734. URL
https://arxiv.org/abs/1908.04734.

Gao, L., Schulman, J., and Hilton, J. Scaling
Laws for Reward Model Overoptimization, Octo-
ber 2022. URL http://arxiv.org/abs/2210.
10760. arXiv:2210.10760 [cs, stat].

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. Generative Adversarial Networks,
June 2014. URL http://arxiv.org/abs/1406.
2661. arXiv:1406.2661 [cs, stat].

Hadfield-Menell, D., Milli, S., Abbeel, P., Rus-
sell, S., and Dragan, A. Inverse Reward De-
sign, 2017. URL http://arxiv.org/abs/1711.
02827. arXiv:1711.02827 [cs].

Ho, J. and Ermon, S. Generative Adversarial Im-
itation Learning. In Advances in Neural Infor-
mation Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://papers.

nips.cc/paper_files/paper/2016/hash/
cc7e2b878868cbae992d1fb743995d8f-Abstract.
html.

Huszár, F. Variational Inference using Implicit Distribu-
tions, February 2017. URL http://arxiv.org/
abs/1702.08235. arXiv:1702.08235 [cs, stat].

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences
and demonstrations in Atari. 2018. doi: 10.48550/
ARXIV.1811.06521. URL https://arxiv.org/
abs/1811.06521. Publisher: arXiv Version Number:
1.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z.
On Convergence and Stability of GANs, Decem-
ber 2017. URL http://arxiv.org/abs/1705.
07215. arXiv:1705.07215 [cs].

Korbak, T., Perez, E., and Buckley, C. L. RL with KL
penalties is better viewed as Bayesian inference, Oc-
tober 2022. URL http://arxiv.org/abs/2205.
11275. arXiv:2205.11275 [cs, stat].

Krakovna, V. Specification gaming exam-
ples in AI, April 2018. URL https:
//vkrakovna.wordpress.com/2018/04/02/
specification-gaming-examples-in-ai/.

Krakovna, V., Orseau, L., Kumar, R., Martic, M., and Legg,
S. Penalizing side effects using stepwise relative reacha-
bility, March 2019. URL http://arxiv.org/abs/
1806.01186. arXiv:1806.01186 [cs, stat].

Krakovna, V., Orseau, L., Ngo, R., Martic, M., and
Legg, S. Avoiding Side Effects By Considering Future
Tasks. In Advances in Neural Information Processing
Systems, volume 33, pp. 19064–19074. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
dc1913d422398c25c5f0b81cab94cc87-Abstract.
html.

Lee, K., Smith, L., and Abbeel, P. PEBBLE: Feedback-
Efficient Interactive Reinforcement Learning via Re-
labeling Experience and Unsupervised Pre-training,
June 2021. URL http://arxiv.org/abs/2106.
05091. arXiv:2106.05091 [cs].

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,
T., Lefrancq, A., Orseau, L., and Legg, S. AI Safety
Gridworlds, November 2017. URL http://arxiv.
org/abs/1711.09883. arXiv:1711.09883 [cs].

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction, November 2018. URL http://

http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2006.14091
https://arxiv.org/abs/2006.14091
http://arxiv.org/abs/2202.07198
http://arxiv.org/abs/2202.07198
http://arxiv.org/abs/1605.03143
http://arxiv.org/abs/1605.03143
https://arxiv.org/abs/1908.04734
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1711.02827
http://arxiv.org/abs/1711.02827
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
http://arxiv.org/abs/1702.08235
http://arxiv.org/abs/1702.08235
https://arxiv.org/abs/1811.06521
https://arxiv.org/abs/1811.06521
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/2205.11275
http://arxiv.org/abs/2205.11275
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/1806.01186
https://proceedings.neurips.cc/paper/2020/hash/dc1913d422398c25c5f0b81cab94cc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/dc1913d422398c25c5f0b81cab94cc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/dc1913d422398c25c5f0b81cab94cc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/dc1913d422398c25c5f0b81cab94cc87-Abstract.html
http://arxiv.org/abs/2106.05091
http://arxiv.org/abs/2106.05091
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1811.07871

Preventing Reward Hacking with Occupancy Measure Regularization

arxiv.org/abs/1811.07871. arXiv:1811.07871
[cs, stat].

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. I., and Stoica, I. RL-
lib: Abstractions for Distributed Reinforcement Learning,
June 2018. URL http://arxiv.org/abs/1712.
09381. arXiv:1712.09381 [cs].

McKinney, L., Duan, Y., Krueger, D., and Gleave, A.
On The Fragility of Learned Reward Functions, Jan-
uary 2023. URL http://arxiv.org/abs/2301.
03652. arXiv:2301.03652 [cs].

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano, P.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. 2022. doi:
10.48550/ARXIV.2203.02155. URL https://arxiv.
org/abs/2203.02155.

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh,
D. Learning Reward Functions by Integrating Human
Demonstrations and Preferences. 2019. doi: 10.48550/
ARXIV.1906.08928. URL https://arxiv.org/
abs/1906.08928. Publisher: arXiv Version Number:
1.

Pan, A., Bhatia, K., and Steinhardt, J. The Effects of Reward
Misspecification: Mapping and Mitigating Misaligned
Models, February 2022. URL http://arxiv.org/
abs/2201.03544. arXiv:2201.03544 [cs, stat].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, Decem-
ber 2019. URL http://arxiv.org/abs/1912.
01703. arXiv:1912.01703 [cs, stat].

Russell, S. J. Human compatible: artificial intelligence and
the problem of control. Viking, New York?, 2019. ISBN
978-0-525-55861-3.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal Policy Optimization Algo-
rithms, August 2017. URL http://arxiv.org/
abs/1707.06347. arXiv:1707.06347 [cs].

Skalse, J., Howe, N. H. R., Krasheninnikov, D., and Krueger,
D. Defining and Characterizing Reward Hacking, Septem-
ber 2022. URL http://arxiv.org/abs/2209.
13085. arXiv:2209.13085 [cs, stat].

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Christiano, P.
Learning to summarize from human feedback, Septem-
ber 2020. URL http://arxiv.org/abs/2009.
01325. arXiv:2009.01325 [cs].

Stray, J., Halevy, A., Assar, P., Hadfield-Menell, D.,
Boutilier, C., Ashar, A., Beattie, L., Ekstrand, M., Lei-
bowicz, C., Sehat, C. M., Johansen, S., Kerlin, L., Vick-
rey, D., Singh, S., Vrijenhoek, S., Zhang, A., Andrus, M.,
Helberger, N., Proutskova, P., Mitra, T., and Vasan, N.
Building Human Values into Recommender Systems: An
Interdisciplinary Synthesis, July 2022. URL http://
arxiv.org/abs/2207.10192. arXiv:2207.10192
[cs].

Taylor, J. Quantilizers: A Safer Alternative to Max-
imizers for Limited Optimization. March 2016.
URL https://www.semanticscholar.
org/paper/Quantilizers%
3A-A-Safer-Alternative-to-Maximizers-for-Taylor/
4e8ff3b4069a12a00196d62925bab8add7389742.

Treiber, M., Hennecke, A., and Helbing, D. Con-
gested Traffic States in Empirical Observations and
Microscopic Simulations. Physical Review E, 62
(2):1805–1824, August 2000. ISSN 1063-651X,
1095-3787. doi: 10.1103/PhysRevE.62.1805. URL
http://arxiv.org/abs/cond-mat/0002177.
arXiv:cond-mat/0002177.

Turner, A. M., Hadfield-Menell, D., and Tadepalli, P.
Conservative Agency via Attainable Utility Preserva-
tion. In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, pp. 385–391, February 2020.
doi: 10.1145/3375627.3375851. URL http://arxiv.
org/abs/1902.09725. arXiv:1902.09725 [cs].

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos,
R., and Geist, M. Leverage the Average: an Analysis of
KL Regularization in RL, January 2021. URL http://
arxiv.org/abs/2003.14089. arXiv:2003.14089
[cs, stat].

Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., and Bayen,
A. M. Flow: A Modular Learning Framework for Mixed
Autonomy Traffic. IEEE Transactions on Robotics, 38
(2):1270–1286, April 2022. ISSN 1552-3098, 1941-
0468. doi: 10.1109/TRO.2021.3087314. URL http://
arxiv.org/abs/1710.05465. arXiv:1710.05465
[cs].

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ra-
madge, P. J. Accelerating Safe Reinforcement
Learning with Constraint-mismatched Policies, July
2021. URL http://arxiv.org/abs/2006.
11645. arXiv:2006.11645 [cs, stat].

http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/2301.03652
http://arxiv.org/abs/2301.03652
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1906.08928
https://arxiv.org/abs/1906.08928
http://arxiv.org/abs/2201.03544
http://arxiv.org/abs/2201.03544
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2209.13085
http://arxiv.org/abs/2209.13085
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2207.10192
http://arxiv.org/abs/2207.10192
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
http://arxiv.org/abs/cond-mat/0002177
http://arxiv.org/abs/1902.09725
http://arxiv.org/abs/1902.09725
http://arxiv.org/abs/2003.14089
http://arxiv.org/abs/2003.14089
http://arxiv.org/abs/1710.05465
http://arxiv.org/abs/1710.05465
http://arxiv.org/abs/2006.11645
http://arxiv.org/abs/2006.11645

Preventing Reward Hacking with Occupancy Measure Regularization

A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1. Fix ϵ > 0 and δ > 0 arbitrarily small, and c ≥ 0 arbitrarily large. Then there is an MDP and true reward
function R where both of the following hold:

1. There is a pair of policies π and πsafe where the action distribution KL divergence satisfies

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ

but |J(πsafe, R)− J(π,R)| ≥ 1− δ.

2. There is a safe policy πsafe
′ such that any other policy π with

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c

satisfies |J(πsafe
′, R)− J(π,R)| ≤ δ.

Proof. Consider the following MDP, also shown in Figure 1:

s1

R(s1, ·) = 1

s2

R(s2, ·) = 0

a2a1

a1, a2

In this MDP, S = {s1, s2}, A = {a1, a2}, and the transition probabilities and reward function are defined by

p(s1 | s1, a1) = 1 p(s2 | s1, a2) = 1

p(s2 | s2, a1) = 1 p(s2 | s2, a2) = 1

∀a ∈ A R(s1, a) = 1 R(s2, a) = 0.

The initial state is always s1. Thus, the agent stays in state s1 and receives 1 reward each timestep until it takes action a2, at
which point it transitions to s2 and receives no more reward. Define for any p ∈ [0, 1] a policy πp that takes action a2 in s1
with probability p, i.e. πp(a2 | s1) = p; in s2, suppose πp chooses uniformly at random between a1 and a2. Then

J(πp, R) = (1− γ)

∞∑
t=0

γtP(st = s1)

(i)
= (1− γ)

∞∑
t=0

γt(1− p)t

(ii)
=

1− γ

1− γ(1− p)
(8)

where (i) is due to the fact that remaining in s1 after t timesteps requires t independent events of 1− p probability, and (ii)
uses the formula for sum of an infinite geometric series.

We will prove the proposition using

γ = max

{
1− ϵδ

2 log(2/δ)
, 1− δ

2

}
π = π2(1−γ)/δ

πsafe = π(1−γ)δ/2

πsafe
′ = πq where q = max

{
1− 1

2 exp {2(1/e+ c(δ + γ)/δ)}
, (1− γ)/δ

}
.

Preventing Reward Hacking with Occupancy Measure Regularization

To start, we need to show that

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ. (9)

Since π and πsafe are identical at s2, we need only consider the KL divergence between the policies’ action distributions at
s1. Thus we can rewrite the LHS of (9) as

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
= (1− γ)

∞∑
t=0

γt(1− 2(1− γ)/δ)tDKL(π(· | s1) ∥ πsafe(· | s1))

=
δ

2γ + δ
DKL(π(· | s1) ∥ πsafe(· | s1))

(i)
≤ δ

2
DKL(π(· | s1) ∥ πsafe(· | s1)).

(i) is due to the fact that γ ≥ 1− δ/2 by definition. Expanding the KL term gives

δ

2

(
2(1− γ)/δ log

(
2(1− γ)/δ

(1− γ)δ/2

)
+
(
1− 2(1− γ)/δ

)
log

(
1− 2(1− γ)/δ

1− (1− γ)δ/2

))
. (10)

Assuming δ < 1 (otherwise the result is trivially true), we have

2(1− γ)/δ > (1− γ)δ/2

1− 2(1− γ)/δ < 1− (1− γ)δ/2.

This implies that the right log term in (10) is negative, so we can bound (10) as

< (1− γ) log

(
2(1− γ)/δ

(1− γ)δ/2

)
= 2(1− γ) log

(
2

δ

)
(i)
≤ 2

ϵδ

2 log(2/δ)
log

(
2

δ

)
= ϵ,

which is the desired bound in (9). (i) uses the fact that γ ≥ 1− ϵδ
2 log(2/δ) by definition.

Next, we will show that |J(πsafe, R)− J(π,R)| ≥ 1− δ. First, we can calculate the return of πsafe using (8):

J(πsafe, R) =
1− γ

1− γ(1− (1− γ)δ/2)

=
1

1 + γδ/2
(i)
≥ 1− γδ/2

≥ 1− δ/2. (11)

(i) uses the fact that 1
1+x ≥ 1− x for positive x. The return of π can be calculated similarly as

J(π,R) =
1− γ

1− γ(1− 2(1− γ)/δ)

=
δ

2γ + δ
(i)
≤ δ

2
, (12)

where (i) uses the fact that γ ≥ 1− δ/2. Combining (11) and (12) gives |J(πsafe, R)− J(π,R)| ≥ 1− δ as desired.

To prove part 2, consider any π satisfying

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c.

Preventing Reward Hacking with Occupancy Measure Regularization

Let p = π(a2 | s1). Then clearly by the definition of πsafe,

(1− γ)Eπ

[∞∑
t=0

γtDKL(πp(· | st) ∥ πsafe
′(· | st))

]
≤ c, (13)

i.e. πp also satisfies the inequality. Furthermore, note that J(π,R) = J(πp, R). We will show that p ≥ (1− γ)/δ. This will
imply that

J(π,R) = J(πp, R)

=
1− γ

1− γ(1− p)

≤ 1− γ

1− γ(1− (1− γ)/δ)

=
δ

γ + δ
≤ δ.

Since πsafe
′ = πq and q ≥ (1 − γ)/δ by definition, J(πsafe

′, R) ≤ δ also. Since the return of both policies must also be
nonnegative, this implies |J(πsafe

′, R)− J(pi, R)| ≤ δ, which is the desired bound.

Now, we just need to show that p ≥ (1− γ)/δ. We do so by contradiction, i.e. assume that p < (1− γ)/δ. We can rewrite
the LHS of (13) as

1− γ

1− γ(1− p)︸ ︷︷ ︸
(a)

[
p log

(
p

q

)
︸ ︷︷ ︸

(b)

+(1− p) log

(
1− p

1− q

)
︸ ︷︷ ︸

(c)

]
. (14)

We will give lower bounds for each part of (14). For (a), we have
1− γ

1− γ(1− p)
>

1− γ

1− γ(1− (1− γ)/δ)
=

δ

γ + δ
.

For (b), note that q ≤ 1, so

p log

(
p

q

)
≥ p log p ≥ −1

e
,

since the function f(x) = x log x has its minimum at f(x) = −1/e. For (c), note that 1 − p > 1 − (1 − γ)/δ ≥
1− (1− (1− δ/2))/δ = 1/2. Thus we can bound

(1− p) log

(
1− p

1− q

)
>

1

2
log

(
1

2(1− q)

)
≥ 1

2
log

(
1

2 1
2 exp{2(1/e+c(δ+γ)/δ)}

)

=
1

e
+ c

δ + γ

δ
.

Combining the three bounds on the components of (14) gives

(1− γ)Eπ

[∞∑
t=0

γtDKL(πp(· | st) ∥ πsafe
′(· | st))

]

>
δ

γ + δ

[
−1

e
+

1

e
+ c

δ + γ

δ

]
= c,

which contradicts (13), thus completing the proof.

A.2. Proof of Proposition 3.2

We first prove another useful proposition:

Proposition A.1. The return of a policy π under a reward function R is given by

J(π,R) =
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

Preventing Reward Hacking with Occupancy Measure Regularization

Proof. Applying the definitions of return and occupancy measure, we have

J(π,R) = (1− γ)Eπ

[∞∑
t=0

γtR(st, at)

]

= (1− γ)

∞∑
t=0

γt
∑

(s,a)∈S×A

R(s, a)Pπ (st = s ∧ at = a)

= (1− γ)
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt Pπ (st = s ∧ at = a)

=
∑

(s,a)∈S×A

R(s, a) (1− γ)Eπ

[∞∑
t=0

γt 1 {st = s ∧ at = a}

]

=
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

According to Proposition A.1, the return of a policy is simply a weighted sum of the reward function, where the weights are
given by the occupancy measure. We now prove Proposition 3.2.

Proposition 3.2. For any MDP, reward function R, and pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)

Proof. Applying Proposition A.1, Hölder’s inequality, and the fact that R(s, a) ∈ [0, 1], we have

|J(πsafe, R)− J(π,R)|

=

∣∣∣∣∣∣
∑

(s,a)∈S×A

(µπsafe(s, a)− µπ(s, a))R(s, a)

∣∣∣∣∣∣
≤
(

max
(s,a)∈S×A

|R(s, a)|
) ∑

(s,a)∈S×A

|µπsafe(s, a)− µπ(s, a)|

≤ ∥µπ − µπsafe∥1 .

A.3. Additional results

The following proposition demonstrates that there is always some reward function for which the bound in (4) is tight up to a
factor of two.

Proposition A.2. Fix an MDP and pair of policies π, πsafe. Then there is some reward function R such that

|J(πsafe, R)− J(π,R)| ≥ 1

2

∥∥µπ − µπsafe

∥∥
1
.

Proof. Define two reward functions

R1(s, a) = 1{µπsafe(s, a) ≥ µπ(s, a)}
R2(s, a) = 1{µπsafe(s, a) ≤ µπ(s, a)}.

Preventing Reward Hacking with Occupancy Measure Regularization

Using Proposition A.1, we have
|J(πsafe, R1)− J(π,R1)|+ |J(π,R2)− J(πsafe, R2)|
≥ J(πsafe, R1)− J(π,R1) + J(π,R2)− J(πsafe, R2)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)(
R1(s, a)−R2(s, a)

)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)
1 µπsafe(s, a) > µπ(s, a)

−1 µπsafe(s, a) < µπ(s, a)

0 µπsafe(s, a) = µπ(s, a)

=
∑

(s,a)∈S×A

∣∣∣µπsafe(s, a)− µπ(s, a)
∣∣∣

= ∥µπ − µπsafe∥1.
Since both of the terms on the first line are positive, one must be at least 1

2∥µπ − µπsafe∥1, which completes the proof.

B. Environment details
B.1. Tomato environment

In Figure 3, we have the setup of the tomato environment board we used for training.

Figure 3. Here, the gray squares represent walls, and the white squares represent open spaces where the agent can travel.

The sprinkler state is down a shallow hallway, and on the other end a tomato is down another shallow hallway. We wanted
to try out a scenario where the reward hacking would be relatively difficult for the agent to find to see whether or not our
method works for more complex gridworld scenarios.

B.2. Traffic environment

In Figure 4, we have a simplified rendering of the traffic flow environment merge scenario.

Within this particular frame, reward hacking is taking place. As we can see the blue RL vehicle has stopped completely on
the on-ramp, resulting in cars to collect behind it. This way, the proxy reward, which is the average velocity of all vehicles

Preventing Reward Hacking with Occupancy Measure Regularization

Figure 4. Here, the green cars are controlled by the human driver model IDM controller, and the blue cars are controlled by RL.

in the simulation, is optimized as the cars on the straightway are able to continue speeding along the road without having to
wait for merging cars. However, little to no true reward of the average commute time is achieved as the cars on the on-ramp
aren’t able to continue their commute.

C. Experiment details
Here, we give some extra details about the architectures and hyperparameters we used for training the ORPO agents. We
build ORPO using RLLib (Liang et al., 2018) and PyTorch (Paszke et al., 2019). For all RL experiments we train with 5
random seeds and report the median reward.

Network architectures The policy model for both the traffic and tomato environments was a simple fully connected
network (FC-net) with a width of 512 and depth of 4. This model size was chosen as it empowered the agents significantly,
enough for them to reward hack consistently. The discriminator model for both environments was a simple FC-net with a
width of 256 and depth of 4.

Replay buffer We found that our initial implementation of ORPO suffered from instability in the traffic environment.
Adversarial training algorithms like GANs are known to be unstable, since they try to use a gradient-based method to find
a solution to a saddle point problem (Kodali et al., 2017). To address this instability, we use a replay buffer to train the
discriminator. When trajectories are sampled from the learned and safe policies, they are added to a buffer; if the buffer
reaches a certain capacity, previously stored trajectories are evicted. Then, the trajectories used to train the discriminator at
each iteration are randomly sampled from the replay buffer.

C.1. Hyperparameters

Some hyperparameters for the traffic environment were tuned by Pan et al. (2022).

Preventing Reward Hacking with Occupancy Measure Regularization

Hyperparameter Value (Tomato) Value (Traffic)

Training iterations 500 250
Batch size 3000 6000
SGD minibatch size 128 6000
SGD epochs per iteration 5 5
Optimizer Adam Adam
Learning rate 1e-3 5e-5
Gradient clipping 0.1 0.1
Discount rate (γ) 0.99 0.99
GAE coefficient (λ) 0.98 0.97
Entropy coefficient 0.01 0.01
KL target 0.01 0.02
Value function loss clipping 10 10,000
Value function loss coefficient 0.1 0.5

Table 3. PPO/ORPO hyperparameters.

Hyperparameter Value (Tomato) Value (Traffic)

Extra discriminator training batches 2 2
Discriminator reward clipping 1000 10
Replay buffer capacity 100 100
Regularization coefficient (λ) Varied Varied

Table 4. ORPO-specific hyperparameters.

For the ORPO-specific parameters, specifying a greater number of extra discriminator training batches means that the
discriminator will be trained with that many extra batches sampled from the replay buffer. The replay buffer capacity
specifies roughly how many previous iterations of data to keep in the buffer. The coefficient λ that is used for determining
how much regularization to apply was varied throughout the experiments and noted in our result tables 1 and 2.

