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Abstract

We present Kernel QuantTree (KQT), a non-
parametric change detection algorithm that moni-
tors multivariate data through a histogram. KQT
constructs a nonlinear partition of the input space
that matches pre-defined target probabilities and
specifically promotes compact bins adhering to
the data distribution, resulting in a powerful de-
tection algorithm. We prove two key theoretical
advantages of KQT: i) statistics defined over the
KQT histogram do not depend on the stationary
data distribution ¢g, so detection thresholds can
be set a priori to control false positive rate, and
ii) thanks to the kernel functions adopted, the
KQT monitoring scheme is invariant to the roto-
translation of the input data. Consequently, KQT
does not require any preprocessing step like PCA.
Our experiments show that KQT achieves supe-
rior detection power than non-parametric state-of-
the-art change detection methods, and can reliably
control the false positive rate.

1. Introduction

Change Detection (CD) is the problem of detecting distri-
bution changes ¢y — ¢; in a datastream, namely detecting
when the data-generating process drifts from a stationary
distribution ¢ towards an unknown post-change distribu-
tion ¢;. Here, we address the problem of batch-wise CD,
where data are analyzed in fixed-size batches that, under
normal conditions, contain samples drawn from ¢y. The
timely detection of distribution changes and the control
over the false alarm rate are fundamental problems that
have been widely explored in both the Machine Learning
(Gama et al., 2014) and Statistical Process Control (Bas-
seville et al., 1993) literature. Among the many applications
of change-detection algorithms, we mention fault detection
(Tartakovsky et al., 2006), financial monitoring (Ross et al.,
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2011), cryptographic attacks (Frittoli et al., 2020), and qual-
ity control (Hawkins et al., 2003).

Most CD algorithms consist of three major ingredients: 7)
a model qASO describing stationary data, which is usually
learned from a training set, ii) a statistical test, where a test
statistic 7 is computed to assess the consistency of incoming
data to 50, and iii) a decision rule on 7T to establish whether
a change has occurred. In many real-world multivariate
scenarios, estimating a density model for the stationary data
is often unfeasible. Therefore, non-parametric methods that
describe stationary data by flexible models are preferred.
Unfortunately, most non-parametric statistics are based on
ranking (Ross & Adams, 2012) and can only be applied
to univariate data. In Section 3, we overview the few non-
parametric solutions to monitor multivariate datastreams.
A relevant example is QuantTree (QT) (Boracchi et al.,
2018), a change detection algorithm based on a histogram
partitioning of the input space, which is supported by sound
theoretical results. In particular, QT allows to operate at a
controlled false alarm rate without knowing ¢ nor resorting
to bootstrap to estimate detection thresholds.

A fundamental limitation of QT is that splits are defined
along the axis, as in Figure 1(a), resulting in a partitioning
that does not always adhere to the input distribution. To
mitigate this problem, a preprocessing stage is typically
introduced to align the split directions to the principal com-
ponents of the training set, as shown in Figure 1(b). While
this procedure is often beneficial, we observe (Section 6)
that it can worsen the detection performance in some unpre-
dictable cases. Moreover, many bins in Figure 1(a)(b) have
non-finite volumes, which can lead to poor estimation of
bin probabilities.

In this paper, we introduce Kernel QuantTree (KQT), a non-
parametric and multivariate CD algorithm that constructs
histogram bins via measurable kernel functions, resulting
in a powerful CD test. In contrast with the QT algorithm,
which constructs bins by axis-aligned splits, KQT partitions
the space in K — 1 compact bins defined by kernel functions
evaluated on the training data. An additional bin, denoted as
the residual bin, is non-compact and gathers all the points
that do not fall in any other bin. Figure 1(c)-(d)-(e) shows
that the KQT bins are compact subsets of the domain. Our
intuition is that compact bins increase the flexibility when
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Figure 1. QuantTree generates bins as intersection of hyperplanes, performing cuts along the axis (a). After a preprocessing through
PCA, the cuts are oriented along the principal directions (b). Kernel QuantTree generates bins that are subsets of d-dimensional spheres
according to the underlying kernel functions, namely the Euclidean (c), Mahalanobis (d) and Weighted Mahalanobis (e) distances.

modeling ¢ by fitting a histogram h to training data. More-
over, estimating the bin probabilities under ¢g, which are
fundamental to compute the test statistic 7y, is less accurate
on non-compact bins.

In Section 5, we prove that KQT features two theoretical
properties that have significant implications in change detec-
tion. First, the distribution of the test statistic 7;, computed
from a KQT histogram h does not depend on the stationary
distribution ¢g. Consequently, detection thresholds 7 can be
set a priori as in QT, without knowing ¢q. Second, the mon-
itoring performed by KQT using specific kernel functions is
not influenced by preprocessing based on roto-translations,
including alignment to principal components. Thanks to
these properties, KQT outperforms state-of-the-art alterna-
tives on a broad experimental testbed illustrated in Section
6. In particular, KQT achieves better detection performance
than the alternatives independently of preprocessing steps
based on roto-translations.

In summary, these are our main contributions:

i) We present Kernel QuantTree, a non-parametric CD
method based on a histogram where bins are defined
by kernel functions. KQT achieves state-of-the-art
detection performance on multivariate datastreams;

i) We prove that statistics defined over the KQT his-
tograms do not depend on ¢, but only on few KQT
parameters. This enables control of the FPR by thresh-
olds 7 set a priori, via Monte Carlo simulations;

iii) We prove that the monitoring performed by KQT is
independent of any preprocessing by roto-translations.

2. Problem Formulation

We address the problem of change detection in batch-wise
monitoring settings, where stationary data are realizations
of a random vector X with unknown probability density
function ¢y. We assume that a training set of stationary
samples TR = {xy,...,xy} C R?is provided, and that

incoming data are processed in batches W of v € N samples
each. We denote as W ~ ¢o when all the samples in the
batch W are drawn from ¢.

Our goal is to design a CD algorithm that: i) detects distribu-
tion changes in incoming batches, and ii) controls the False
Positive Rate (FPR), namely the probability of mistakenly
detecting a change in stationary data. We formulate this CD
problem as a Hypothesis Test to establish whether W ~ ¢
(null hypothesis) or W ~ ¢1 # ¢g, where ¢ is the un-
known post-change distribution. We pursue the mainstream
approach of computing a test statistic 7 on each batch W
and detecting a change when

T(W) > T, (1)
where 7 € R is the threshold that we set to control the FPR.

For the sake of simplicity, we assume that a batch W is ei-
ther drawn from ¢ or from a different unknown distribution
@1 # ¢o. However, CD algorithms can in principle detect
batches drawn from a mixture of ¢y and ¢;, even though
the detection power is expected to be lower in this case.

3. Related Work

Change detection in multivariate datastreams is a challeng-
ing problem, which can be significantly simplified when ¢g
belongs to a known parametric family since the model $0
is obtained by estimating its parameters. The most popu-
lar solutions pursuing this approach consist in monitoring
the likelihood of incoming data with respect to g/b\o fitted
on TR. Viable options for QASO are Gaussian process (Saat¢i
et al., 2010), Gaussian Mixtures (Kuncheva, 2011) or kernel
density estimators (Krempl, 2011). In (Kuncheva, 2011)
and (Kuncheva & Faithfull, 2013), the Semiparametric Log-
Likelihood (SPLL) algorithm fits a Gaussian Mixture Model
(GMM) to TR and compares incoming batches with batches
from TR by a likelihood test. Moreover, in SPLL, it is not
possible to set a priori the detection threshold to control the
FPR, as the distribution of the test statistic depends on ¢y.
Moreover, adopting a GMM to approximate ¢y might not
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always fit real-world data, as demonstrated by our experi-
ments on high-dimensional datasets.

There are only a few recent multivariate methods that per-
form non-parametric change detection, namely, that assume
that ¢y and ¢; are unknown. Among these, we focus on
histogram-based algorithms, since these are non-parametric
by design and can efficiently process datastreams in batches.
As such, histogram-based algorithms represent very practi-
cal solutions to monitor multivariate datastreams. Density
Tree (Criminisi et al., 2012) constructs a space partitioning
by iteratively splitting regions to maximize an information-
gain metric. In this case, the distribution of the test statistic
depends on ¢y, thus detection thresholds need to be set by
bootstrap on TR. Equal Intensity K-means (EIKM) (Liu
et al., 2020) divides the input space using K -means cluster-
ing, resulting in bins that yield an equal probability under ¢y.
EIKM is designed to handle multimodal distributions, e.g.,
Gaussian Mixtures, and the detection thresholds are given
by asymptotic approximations of the Pearson test statistic.
QuantTree (Boracchi et al., 2018) defines a partitioning S
of the input space in K bins by axis-aligned cuts. The the-
oretical properties of QT guarantee that the distribution of
test statistics defined over bin probabilities does not depend
on ¢, which allows to set detection thresholds a priori,
with synthetically generated data through a very efficient
scheme. The splits are performed such that the probability
of a stationary sample to fall in each bin is close to a set
of target probabilities {7} provided as input parameters.
Since the data splits are limited to the axis directions, the
bins in QT require a preprocessing stage whose outcome, in
terms of detection power, is uncertain, as demonstrated in
our experiments (Section 6). KQT preserves the properties
of QT in terms of setting detection thresholds and FPR con-
trol, and overcomes QT limitation by constructing compact
bins that are not affected by roto-translations, thus better
approximate the probability measure of each bin under ¢y.

4. Kernel QuantTree

We present Kernel QuantTree (KQT)!, a CD algorithm that
solves a major limitation of QuantTree (QT) while gener-
alizing and extending its theoretical guarantees. The KQT
histogram is constructed by iteratively splitting the input
space R? into K bins {5} such that the probability of a
stationary sample x ~ ¢ to fall in .Sy, is close to a target
probability 7, which are provided as input parameters. The
peculiarity of KQT is that each bin Sy for k& < K is de-
fined by a measurable kernel function f;, : R? — R and a
split value ¢, € R, and corresponds to a compact set in R
We denote as Generalized QuantTree (GQT) partitioning
the resulting histogram h = {(Sy, 7%) }/_,, which yields a
partition of the input space R?, where 7}, is the empirical

'Code available at github.com/diegocarrera89/quantTree.

Si={xeR?| fi(x) < @1}

Sy ={x € R\ S | fo(x) < g2}

Sk ={x e RN\U, x5 | fi(%) <qx1}
Sk

Figure 2. The Generalized QuantTree histogram is a binary split-
ting tree where splits isolate leaves, i.e. bins of the histogram.

probability of x ~ ¢q to fall in Sk.

As illustrated in Figure 2, a GQT partitioning corresponds
to an extremely imbalanced binary tree, where each split
isolates a leaf, corresponding to a bin Si. In what fol-
lows (Section 4.1 and 4.2), we illustrate in detail the GQT
partitioning scheme, providing a few examples of kernel
functions. In Section 5, we demonstrate that the distribution
of any test statistic 7, defined over a GQT partitioning does
not depend on ¢, extending the theoretical results from QT.
This property enables setting the detection threshold 7 in
(1) a priori by Monte Carlo simulations.

The monitoring scheme by KQT operates as follows. Given
an input batch W containing v test samples, we compute the
test statistic 75, (W) and detect changes when this exceeds
the threshold 7. While the theoretical properties of KQT
hold for all the statistics that only depend on {y}, the
numbers of samples in W falling in bins {S} }, we consider
the Pearson 2 statistic (Lehmann et al., 2005):

o (o~ vm)?
E(W)Zﬁ(yhy%m,yk):zu, 2)

v
k=1 L

where {7} are the target bin probabilities. In Section 5.3,
we also prove that under some mild assumption on the kernel
function f, this monitoring scheme becomes independent
of any roto-translation applied to the data, including the
PCA preprocessing. Finally, in Section 4.4, we analyze the
computational complexity of KQT both at the training and
monitoring stages.

4.1. Generalized QuantTree (GQT) Partitioning

The two elements defining each bin in a GQT are: i) a
measurable function f;, : R? — R mapping multivariate
data to a single dimension and ii) a split value q; € R,
chosen to match the target probability 7. Algorithm 1
illustrates the GQT histogram construction, which requires
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Algorithm 1 Construction of the GQT histogram
1: Input: training set TR = {x;}}¥., C R target proba-
bilities {my }5_,
Output: GQT histogram h = {(Sk, 7) H<,
Set ¥y = TR
fork=1,...,K —1do
Compute 77, = (1 — 32, ;)"
Compute { fx(x;)} forx; € Xj_1
Set gy, as the T-quantile of { fx(x;)}
S = 1x € Mot S | f1x) < ai}
Xp={x€Xp_1 ] fr(x) > q}
end for
Sk =R\ U<k 5

TeYR RNk

—

as input a training set TR and the target probabilities {7y }.
The rationale underpinning the space partitioning of KQT
is to iteratively construct bins by selecting sublevel sets of
the kernel functions fj. In particular, 57 is defined as the
sublevel set of f; with respect to the split value ¢;:

Si={xeR?| fi(x) <q}. 3)

The other bins Si,1 < k£ < K are obtained by isolating
sublevel sets from the space that is not yet assigned to a bin

Se={xe S| fs(x) <q}fork <K, (4
i<k

where ST denotes the complement of S; in R?. The last bin,
Sk = R4\ UKK S;, is the residual bin, which contains
all the points that do not fall in the previous bins.

The split values q;, are defined at each iteration by first
identifying the set X', C TR which contains the training
points that do not fall in any bin {S; | j < k}. In the
beginning, no training samples have been assigned to a bin,
thus, we set Xy = TR and Ny = |TR| (line 3). At the k-th
step, we first the percentage of points of X;_; that must
fall in S}, to meet the target probability 7y (line 5), which
we denote as:

%k:ﬂk(l—ZWJA, )

i<k

such that Sy, contains 7 N = 7, | X—1| points. Then, we
evaluate f, on all the samples in X';;_; (line 6), and compute
the split value g, as the m,-quantile of the projected samples
{fr(x),x € Xi_1} (line 7). Finally, we define S, as in
(4) (line 8), and we update the set of points X, that will
be used to construct the next bin (line 9). The process
results in the GQT histogram h = {(Sy, 7x)}/_,, where
T is the percentage of training points that fall in Sy and
approximates the probability of x ~ ¢ to fall in Sj.

The GQT extends the partitioning scheme underpinning QT,
which corresponds to using linear split functions:

fu(x) = £1- Pjx, 6)

where P; is the projection over a randomly selected com-
ponent j and 1 randomly introduces a sign flip for the
projection. In the next section, we present specific measur-
able functions f, that we employ in KQT.

4.2. Employed Kernel Functions in KQT

We define the kernel functions f;, : R? — R as distances
from a centroid cj, € TR, selected from the training set:

fr(x) = (x —cp) T A(x — ci), (7)

where A € R¥*4 ig the kernel matrix, which induces a
distance measure in R?. In particular, the bins {S;} in (4)
are subsets of d-dimensional spheres centered in {cj } and
having radii {q }, where the distances are measured with
respect to the metric induced by A. Since spheres in R? are
compact sets, all the bins Sy, of a KQT, but the residual Sk,
are compact and have a finite volume.

Here, we construct KQT using the Euclidean, the Maha-
lanobis, and the Weighted Mahalanobis (Tipping, 1999)
distances, whose bins are illustrated in Figure 1. We ob-
tain the Euclidean distance by setting A = I;, namely, the
d-dimensional identity matrix, resulting in isotropic bins.
Figure 1(c) shows that these bins poorly fit the data dis-
tribution. We obtain the Mahalanobis distance by setting
A =Y"1 where ¥ € R s the sample covariance matrix
of TR, and in this case, the bins are anisotropic. Figure 1(d)
also shows that bins are elongated towards the directions
with larger variance, resulting in a better fit to the data. How-
ever, these bins poorly approximate TR when this exhibits
multiple clusters, since multiple bins might span different
clusters. To promote bins containing samples from a single
cluster, we adopt the Weighted Mahalanobis distance and
fit a Gaussian Mixture of M components to TR, and then
assign a larger distance to points that belong to different
components of the GMM. In KQT, we use M = 4 compo-
nents, and the Weighted Mahalanobis kernel matrix is then
defined as:

A(x) = Zn]\f:}wpm im(x,¢) - Ct

2 m=1Pm * im (X, €)
where fi,,, Cyy,, and p,,, denote the mean, covariance matrix,
and mixing probability of the m-th Gaussian, respectively.
The matrix A in (8) represents a weighted average of the
inverse covariance matrices of the GMM components. As in
(Tipping, 1999), the weights are proportional to the mixing
probabilities p,, and i,,(x, ¢), which is a computationally-
tractable approximation of the distance between the point x
and the bin centroid c.

®)
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In the following, we discuss the centroid selection strategy
employed in KQT.

4.3. Centroid Selection

The criteria to select the centroids {cy} from TR is key in
KQT, as this determines both the spatial location of the bin
S}, and the split value g, associated with the kernel function
fx. Therefore, we select the centroid in TR by optimizing a
partition-quality metric I, namely,

¢, = argmax I [c], )
ceEX 1

where X'y, _1 are the training samples used to construct Sy,
and I[c| denotes the value of the metric when we select ¢
as a centroid. In KQT, we consider two centroid selection
strategies: i) maximizing the information gain associated
with the split and ii) minimizing the Gini index of the dis-
tances to the centroid. For computational reasons, when
Xj,—1 is large, we restrict the search space to a subset of
randomly sampled potential centroids {¢} C Xj_1.

The information gain (Mitchell, 1997) measures the de-
crease in the overall entropy H after a split in the data and
is typically used to assess the split quality in a data set, for
example by Density Tree (Criminisi et al., 2012). The best
split lowers the data entropy, maximizing the information
gain. In KQT, we compute the information gain yielded by
the split that divides X1 into Xy and Xy = Xp_1 \ X
In particular, we can compute the entropy H (B) of a set of
points B using the Gaussian approximation:

H(B) = (1/2)log ((2we)ddet(cov[3])>. (10)

where cov[B] represents the sample covariance matrix com-
puted over B. The information gain associated with the
centroid c is defined as

Ie] = [Xp—1| H(Xy—1) — (| X | H(X) + | X | H(X)).

1D
In the supplementary material, we discuss the simplifica-
tions we introduced to lower the computational burden of
assessing (11) for multiple potential centroids, like the Gaus-
sian approximation of H, which does not influence the non-
parametric nature of KQT.

The Gini index (Gini, 1912) measures the level of uniformity
in an empirical distribution and takes values between 0
(perfect equality) and 1 (maximum inequality). In KQT,
we use the Gini index to prevent the selection of centroids
in low-density regions. Specifically, we compute the Gini
index of the distances between the training samples and the
centroid as

> k(xi) = fiu(x5)]
2| Xk —1] 30, fr(xi)

Ile] = (12)

We select the centroid that minimizes (12) to promote bins
that cover densely populated regions of the input space.

4.4. Computational Remarks

In terms of computation cost, the training of a KQT com-
prises i) the projection of TR by f, whose cost depends on
the specific kernel function, ii) the computation of the split
value, which costs O(N), and iii) the centroid selection. The
cost of computing the Euclidean distance is O(d), while the
Mahalanobis costs O(d?) and the Weighted Mahalanobis
costs O(Md?), where M is the number of Gaussian compo-
nents fitted to TR. The cost of computing the information
gain is dominated by the computation of the determinant
in (10), which costs O(d?) while computing the Gini index
only requires the distances between the training samples and
the centroids, already computed to define Sy. Overall, the
cost of the index computation is multiplied by the number
of centroids 7 tested during the selection procedure by (9).
Therefore, an upper bound for the cost of KQT construction
is O(KT(N + MNd? + d®)) when using the Weighted
Mahalanobis distance and the information gain. During
monitoring, the only operation performed is the projection
by fi of the samples of a batch W, resulting in a cost of
O(vK Md?) in case of the Weighted Mahalanobis distance.

Table 1 reports the complexity of all the methods considered
in our experiments, showing that KQT with the Weighted
Mahalanobis distance is most computationally demanding,
both in terms of training and inference. However, the experi-
ments discussed in Section 6 prove that this cost is balanced
by superior detection performance.

Table 1. Comparison of the computational complexity of KQT and
the other considered methods, where M is the number of Gaussian
components employed by KQT with the Weighted Mahalanobis
distance, and R is the number of splits of Density Tree.

Method Training Cost Inference Cost
KQT (Weighted Maha.) O(KT(N + MNd? +d?%)) OWwKMd?)
QuantTree O(KNlogN) O(vK)

EIKM O(K%Nlog N) O(VK)

SPLL O(Nd?) O(vd?)
Density Tree O(K Rd?) O(vK)

5. Theoretical Guarantees

This section illustrates the theoretical properties of KQT
and is organized as follows. In Section 5.1, we prove that
the distribution of the test statistic computed by GQT over
stationary data is independent of ¢, hence generalizing the
main result of QT from (Boracchi et al., 2018) to a more
extensive set of histogram-based monitoring schemes, in-
cluding KQT. Then, in Section 5.2, we show how to exploit
this result to compute detection thresholds by Monte Carlo
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simulations such that the empirical FPR matches any tar-
get value «. Finally, in Section 5.3, we prove that KQT is
invariant to roto-translations of the data when we use the
kernel functions in Section 4.2.

5.1. Generalization of the QT Independence Theorem

The following result implies that the distribution of a test
statistic like (2) computed over stationary batches by a GQT
is independent of ¢y, the input dimension d and the em-
ployed functions fj. Thus, such distribution can be empir-
ically computed via Monte Carlo simulations and used in
any monitoring scenario as long as {my }«, the training set
size N, and the batch size v are fixed.

Theorem 5.1. Let h = {(Sk,7x)}i, be a Generalized
QuantTree histogram constructed using measurable func-
tions fi, : R — R, VEk. Let Ty, be a statistic defined over
batches W such that T, (W) only depends on the number of
samples y1, ..., yx of W falling in the bins of h. Then, the
distribution of Ty, over stationary batches W ~ ¢ depends
only on the batch size v, the number of training points N
and target probabilities {my, } .

The proof of Theorem 5.1 follows three propositions as the
proof of Theorem 1 in (Boracchi et al., 2018), which we
generalize to a broader set of partitioning schemes. The first
proposition states that the probability of a point drawn from
the stationary distribution ¢q to fall in any bin of a GQT
histogram follows a Beta distribution.

Proposition 5.2. Let x1,Xs,...,Xp be i.i.d. realizations
of a continuous random vector X defined over D C R%. Let
f : R? — R be a measurable function, and let 7 = f(X).
We denote with z(1y < 22y < -+ - < z(ar) the sorted images

of {x;} through f. Forany L € {1,2,..., M}, we define
the sublevel sets
Qpr:=1{xeD: f(x) <z} (13)

Then, the random variable p = Px(Qy,1.) is distributed as
Beta(L,M — L + 1).

The proof of Proposition 5.2 is reported in the supple-
mentary material. In the following, we denote the prob-
ability of a stationary point x ~ ¢¢ to fall in bin k as
pr = Py, (x € Si). Moreover, we denote as py, = Py, (x €
Sk | x ¢ U~ S;) the probability of x to fall in S, and not
in any of the previous bins.

Proposition 5.3. For a Generalized QuantTree histogram,
the following relation holds:

po=pe- (1= p) = [[(1-%) a4
i<k i<k

Proposition 5.4. For a Generalized QuantTree histogram,
the random variables {py, } are independent.

The proofs of Propositions 5.3 and 5.4 are equivalent to
the proofs of the Proposition 2 and 3 for QT (Boracchi
et al., 2018). Finally, the proof of Theorem 5.1 follows from
Propositions 5.2-5.3-5.4 and from the following facts: i)
the employed statistic (2) only depends on the number of
samples falling in each bin {yy }, and ii) when the batch is
drawn from ¢y, the vector [y1, ..., yx] is a realization of a
Multinomial distribution of parameters (v, p1,...,DK).

5.2. Threshold Computation for FPR Control

From Theorem 5.1, it follows that in GQT we can compute
a detection threshold 7 = 7(«) yielding an FPR « when
used as in (1) for any test statistic 7;, that only depends
on {yy}. For this purpose, we estimate by Monte Carlo
simulations the empirical distribution of 7, on stationary
batches. Interestingly, (Frittoli et al., 2022) prove that the
empirical distribution of N samples drawn from ¢g in a
QT histogram follows a Dirichlet distribution of parameters
{mN,...,mx_1N, 7N + 1}, where {7} are the target
probabilities used for constructing the histogram. Since the
projection function does not influence the proof in (Frittoli
et al., 2022), the same result holds for GQT. Moreover,
the distribution of a batch W ~ ¢y in the histogram bins
follows a Multinomial distribution. Thus, we can efficiently
simulate the construction of a GQT and compute the values
Tn over W ~ ¢y by Monte Carlo simulations, such that 7
is the (1 — a)-quantile of the resulting distribution.

Remarkably, the distribution of the test statistic does not
depend on the employed kernel functions { f }. Therefore,
we can use the same detection thresholds for any GQT that
uses any measurable function fj. Moreover, these detection
thresholds also work for QT, which is a special case of GQT
that uses (6).

5.3. Roto-Translation Invariance of KQT

In this section, we prove that KQT is invariant under roto-
translations when the employed kernel function is either the
Euclidean, Mahalanobis or Weighted Mahalanobis distance.
We denote a roto-translation as ® : R? — R% and the
image of a set B C R% as ®(B) = {®(x) | x € B}.
The following theorem states that the two KQT histograms
h = {(Sk, 7))} and b’ = {(S},,7}.) }. constructed with and
without preprocessing by ®, respectively, are equivalent.

Theorem 5.5. Let & : RY — R? be a roto-translation.
Let h = {(Sk, )} and I/ = {(S},, 7))} be the KOT
histograms constructed from the training sets TR C R?
and TR = ®(TR), where the kernel function is either
the Euclidean, Mahalanobis or Weighted Mahalanobis dis-
tance. Then, we have that S;, = ®(Sy) and 7, = Ty, for
k=1..., K. Inparticular, for any batch W, if we compute
W' = &(W), we have that Tp,( W) = T (W').
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Theorem 5.5 proves that, for the considered kernel functions,
the value of the test statistic computed over a batch W of
data does not change when we employ a roto-translation
& for preprocessing, including PCA, that is sometimes re-
quired for QT to achieve good detection performance. The
proof of Theorem 5.5 is reported in the supplementary ma-
terial and relies on the fact that the construction of the
two histograms uses the same points (up to ®), namely
X}, = ®(X}), to define each bin. In particular, we need to
prove that our centroid selection strategy results in the same
centroid (up to ®) for Sy, and Sy

Lemma 5.6. Let X1 and X}, = ®(X_1) be the set
of points used to construct the KQT histogram bins Sy, and
S, respectively. Then, the centroid selection by (9) results
in centroids ¢, and cj, = ®(cy).

In the supplementary material, we prove this lemma, and we
use it in the proof of Theorem 5.5 to show by induction that
Sy = S|, for every k. Consequently, every batch W will
result in the same value of test statistic because if a point
x € W falls in Sk, then ®(x) € W’ will fall in 5.

6. Experiments

In this section, we validate KQT through several experi-
ments, proving that KQT i) reaches detection performance
that are statistically superior than state-of-the-art algorithms,
and ii) can accurately control the FPR.

6.1. Datasets

We present the synthetic and real-world datasets that we
employ in our experiments.

In each experiment, we consider TR made of N = 4096
points sampled without replacement by ¢g. During testing,
we randomly sample 5000 batches of v samples from ¢g
and 5000 batches of v samples from ¢; to robustly assess
detection performance.

Synthetic. We consider two synthetic settings with d = 4,
the unimodal and the bimodal. In the unimodal setting, the
stationary distribution ¢ is a 0-mean Gaussian with a ran-
dom covariance matrix. The post-change distribution ¢;
is obtained by roto-translation using the CCM framework
(Alippi et al., 2017), such that the Kullback-Leibler distance
between ¢y and ¢, is 1. In the bimodal setting, ¢g is a
Gaussian mixture of two slightly-overlapping components,
and ¢ is again generated by a roto-translation of each com-
ponent of ¢y computed using CCM. In the supplementary
material, we discuss the same experiment performed with
d € {4,8,16, 32,64, 128}.

INSECTS. The INSECTS dataset (Souza et al., 2020) con-
tains feature vectors (d = 33) extracted from sensor mea-
surements describing the wing-beat frequency of six (anno-

tated) species of flying insects. This dataset contains real
changes caused by temperature modifications that affect the
insects’ flying behavior. We set up the change detection
experiment such that ¢, describes measurements acquired
at a temperature, and the change ¢y — ¢1 corresponds to a
temperature change. We denote as 7 — ¢ + 1 the considered
temperature changes, with i € {1,2,3,4,5}.

UCI. We employ real-world datasets from the UCI Ma-
chine Learning Repository (Dua & Graff, 2017) and from
(Dal Pozzolo et al., 2017), with dimensions ranging from
d = 5 to d = 50, reported in Table 2. We standardize these
datasets and add a negligible amount of noise 17 ~ N (0, o)
to each component to prevent the many repeated values
from harming the histogram construction. The values of
o for each dataset are reported in the supplementary mate-
rial. These datasets contain no distribution changes, thus
stationary samples are drawn by sampling the dataset. We
generate a post-change distribution ¢; by shifting stationary
data in a random direction with a magnitude proportional to
the variance of each component.

Swarm. The Swarm Behavior classification dataset from
the UCI Machine Learning Repository (Dua & Graff, 2017)
comprises high-dimensional data (d = 2400) describing
the motion of large groups of animals, which are labeled as
flocking or not-flocking. We define the stationary distribu-
tion ¢ as the distribution of data describing flocking groups
of animals. In contrast, the post-change distribution ¢; is
defined by data corresponding to non-flocking animals.

High-dimensional datasets represent a challenging scenario
for change detection algorithms, especially when they re-
quire estimating a density model. Therefore, these al-
gorithms typically employ dimensionality-reduction tech-
niques to map data to lower dimensions (Thudumu et al.,
2020). To show that high-dimensional problems can be
tackled by KQT upon employing such techniques, in our
experiments we apply a PCA-based preprocessing step, re-
taining the 32 components explaining the most variance in
the data.

6.2. Figures of Merit

We assess the performance of CD algorithms with two stan-
dard figures of merit, FPR and AUC. We set the detection
thresholds in our experiments to yield an empirical FPR of
a = 5%. To compare the detection power, we rank the algo-
rithms according to their AUC, and we report their average
rank (Demsar, 2006) over all the datasets and over 500 runs
of each experiment. Moreover, we report the p-values of
the Nemenyi post-hoc test (Nemenyi, 1963), comparing the
AUC:s of each method against the best-performing one. In
Table 2, we mark in bold the largest AUC achieved over each
dataset. We also underline values when the Nemenyi test
confirms that the difference with the second best-performing
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Table 2. FPR/AUC achieved by the considered methods with K = 16 bins and batches of v = 128 points. We report the average ranking
with respect to the AUC and the p-value of the Nemenyi test. For each dataset, we mark in bold the AUCs of the best-performing method,
and underline them when found to be significantly different from the second best-performing.

QT QT KQT KQT KQT EIkM SPLL PCA-SPLL DT DT
d (w/o PCA) (w/ PCA) (Euclidean)  (Mahalanobis) (Weighted Maha.) (C=3) (C=3) (w/o PCA) (w/ PCA)
unimodal 4 4.83%/096 4.81%/ 098 4.86%/0.95  4.82%/0.99 4.83%/ 0.99 4.82%/0.87 5.46%/1.00  5.92%/0.99 7.84%/0.79 7.75%/ 0.81
bimodal 4 4.80%/ 090 4.81%/0.93 4.80%/0.90  4.81%/0.95 4.80%/ 0.97 4.82%/0.82  5.53%/0.92  6.02%/ 0.90 7.65%/0.75 7.62%/ 0.77
nino 5  5.04%/0.84 4.99%/0.91 5.00%/0.61  5.02%/ 0.90 5.01%/ 0.92 4.83%/0.53  6.14%/0.82  7.69%/ 0.84  7.55%/ 0.73 7.57%/ 0.58
protein 9  497%/090 4.98%/ 098 4.97%/0.62  4.98%/ 0.99 5.03%/ 0.99 4.88%/0.51 13.15%/0.92  8.42%/0.95  7.65%/0.70  7.64%/ 0.59
spruce 10 4.81%/1.00 4.83%/1.00 4.82%/0.60  4.84%/ 1.00 4.90%/ 1.00 4.86%/0.51 11.43%/1.00 11.56%/1.00 7.56%/1.00 7.57%/ 1.00
lodgepole 10 4.83%/1.00 4.82%/ 1.00 4.85%/0.65  4.80%/1.00 4.90%/ 1.00 4.92%/0.51 10.78%/ 1.00  10.89%/ 1.00  7.60%/ 1.00 7.58%/ 1.00
credit 28 4.83%/0.70 4.96%/ 0.87 4.89%/0.60  4.85%/0.78 5.06%/ 1.00 4.96%/0.51  8.67%/ 0.60  16.06%/ 0.66 7.63%/0.69 7.59%/ 0.82
insects (1 —2) 33 4.92%/1.00 4.93%/0.96 4.91%/0.96  4.93%/0.97 5.19%7 0.99 4.93%/0.84 590%/0.81  6.48%/0.87 7.57%/1.00 7.60%/ 1.00
insects (2 —3) 33 4.93%/0.99 4.91%/1.00 4.92%/1.00  4.96%/ 1.00 5.25%/ 1.00 4.96%/0.96  5.54%/1.00  6.16%/1.00 7.60%/ 1.00 7.59%/ 1.00
insects (3 —4) 33 4.92%/0.98 4.89%/0.90 4.90%/0.90  4.88%/ 0.94 5.22%/ 0.99 4.89%/0.83  6.09%/0.75  6.69%/ 0.74  7.59%/ 1.00 7.54%/ 1.00
insects (4 — 5) 33 4.92%/1.00 4.95%/1.00 4.91%/1.00  4.92%/ 1.00 5.25%/ 1.00 491%/0.95 5.48%/1.00  6.01%/ 1.00 7.63%/1.00 7.56%/ 1.00
insects (5 — 6) 33  4.91%/1.00 4.90%/0.97 4.90%/0.98  4.92%/ 0.99 5.26%/ 1.00 4.90%/0.96  5.86%/0.98  6.19%/0.98  7.61%/1.00 7.63%/ 1.00
sensorless 48 4.84%/0.86 5.01%/1.00 4.82%/0.54  5.01%/ 1.00 7.42%1 1.00 493%/0.50 4.33%/1.00  4.83%/1.00 7.55%/0.74 7.58%/ 0.60
particle 50 4.85%/0.89 4.87%/0.93 4.81%/0.55  4.94%/0.98 5.80%/ 0.99 4.84%/0.51 593%/0.84  6.07%/ 0.90 7.52%/0.80 7.60%/ 0.54
Average Ranking 5.24 4.93 7.08 3.82 2.98 9.37 5.57 5.34 5.11 5.56
Nemenyi p-value < 10716 < 10716 < 10716 < 10716 - < 10716 < 10716 < 10716 < 10716 < 10716

method is statistically significant. Confidence intervals are
reported in the supplementary material.

6.3. Methods

We configure all the histogram-based methods to partition
the space in K bins with uniform target probabilities 7, =
%, as advised by (Boracchi et al., 2018). The number of
bins K and the batch size v must be chosen to guarantee
that batches contain enough samples for a stable measure
of these target probabilities. In particular, since histograms
approximate the probability of a point falling in a bin by the
number of training samples per batch that falls in each bin,
we expect that a larger number of points per bin (i.e., the
ratio v/ K) yield better detection performance. We confirm
this by considering two settings: the high-ratio setting (K =
16, v = 128) and the low-ratio one (K = 32, v = 64).

QuantTree. QuantTree (Boracchi et al., 2018) uses a his-
togram to monitor incoming batches while controlling the
FPR. Bins are constructed with axis-oriented splits along
random components, and the changes are detected by the
Pearson statistic. Detection thresholds are computed via
Monte Carlo simulations. We test QT with and without
PCA preprocessing of the data.

Equal Intensity K-Means (EIKM). EIKM (Liu et al.,
2020) constructs a histogram with K bins using a /{-means
clustering to guarantee an equal proportion of stationary
data in each bin. EIKM uses the Pearson statistic and its
asymptotic approximation to set the detection thresholds.

Semiparametric Log-Likelihood (SPLL). SPLL
(Kuncheva, 2011) models the stationary distribution ¢ as
a Gaussian Mixture Model (GMM) and suggests fitting
C = 3 components. During inference, the test statistic
associated with a batch W is computed by an upper bound
of the log-likelihood of its samples. Since SPLL comes

without a threshold computation strategy, we employ
Welch’s t-test (Welch, 1947) to detect batches whose
average SPLL is statistically different from the training set.

PCA-SPLL. Presented in (Kuncheva & Faithfull, 2013),
PCA-SPLL extends SPLL by transforming data through the
PCA and monitoring by SPLL only the components with
the lowest variance. Here, we keep up to 5% of the variance
and fit C' = 3 Gaussians.

Density Tree. Inspired by (Criminisi et al., 2012), the
bins of Density Tree minimize the entropy after each split.
Density Tree employs the Pearson test statistic, and sets
the detection threshold via bootstrapping over a portion of
training data. We test Density Tree with and without PCA
preprocessing of the data.

6.4. Results and Discussion

Table 2 reports the FPR and AUC achieved by all the con-
sidered methods in the high-ratio setting, averaged over 500
runs. Here, we only report the performance of KQT maxi-
mizing the information gain (11) to select centroids. In the
supplementary material, we also report the results for the
low-ratio and a comparison showing that minimizing the
Gini index (12) leads to comparable performance.

Table 3. FPR and AUC achieved by QuantTree and Kernel Quant-
Tree on the Swarm dataset processed by a PCA to retain d = 32
components. In parenthesis, the standard deviation of the results.

FPR AUC
QuantTree 4.61% (1.65%)  1.00 (0.00)
KQT (Euclidean) 4.53% (1.63%)  1.00 (0.00)
KQT (Mahalanobis) 4.50% (1.58%)  1.00 (0.00)
KQT (Weighted Maha.)  4.61% (1.67%)  1.00 (0.00)

In most experiments, the empirical FPR achieved by KQT is
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close to the target « = 5% for all the considered kernel func-
tions. However, the KQT with the Weighted Mahalanobis
distance struggles to control the FPR when d is large. This
is a known limitation of high-dimensional settings, where
the estimated GMM might be poorly conditioned when TR,
is not sufficiently large. Therefore, when the GMM fit from
TR yields Gaussians having covariances with large condi-
tion numbers, it is convenient to use KQT with the Maha-
lanobis distance. This latter, in fact, can control the FPR and
usually achieves comparable detection performance with
the Weighted Mahalanobis distance.

To further investigate how the dimension d influences the
detection performance of KQT, we run another experi-
ment where we train KQT on synthetic data with d €
{4,8,16,32,64,128} and with N € {4096, 16384}. The
results reported in the supplementary material prove that the
FPR control worsens when d increases, but also that using
large training sets heavily mitigates this problem. More-
over, this issue can be avoided by employing dimension-
ality reduction techniques on high-dimensional data. To
this purpose, we run an experiment on the Swarm dataset
(d = 2400) preprocessed by a PCA transformation that re-
tains only the first 32 principal components. Table 3 shows
that thanks to this preprocessing, KQT can seamlessly oper-
ate without incurring the loss of FPR control observed on
some UCI datasets. The large AUC achieved by all the meth-
ods on this dataset proves that classes are very far apart, and
we argue that a similar situation would have happened if we
had artificially added a change (which would not correspond
to a real-world problem) to offset each component. In fact,
even a small perturbation would result in a very apparent
change. This is probably the reason why change detection
benchmarks are of lower dimensions (e.g., INSECTS d=33).

As for the other methods, QT and EIKM accurately control
the FPR. In contrast, SPLL and PCA-SPLL mostly exceed
the target, and we speculate that the distribution of the SPLL
test statistic does not satisfy the ¢-test assumptions. Finally,
Density Tree largely overshoots the target FPR, being unable
to learn a detection threshold from bootstrapping.

KQT with the Weighted Mahalanobis and the Mahalanobis
distance represent the best and second-best method in terms
of AUC, mostly outperforming the alternatives in most set-
tings. In particular, the advantage over the third-ranked
method (QT w/ PCA) is considerable, and the p-values of
the Nemenyi post-hoc test show that the advantage of KQT
is also statistically significant. However, when using the
Euclidean distance on real-world data, the performance of
KQT worsens because its anisotropic bins cannot model
the intricate data distributions of real data. As for the other
methods, SPLL performs well over the synthetic datasets
but fails over the INSECTS and UCI, achieving significantly
low performance on the latter. Instead, PCA-SPLL mainly

improves the performance of SPLL, even though it cannot
compete with the top-performing methods. Finally, Density
Tree mostly achieves low detection performance, except on
the INSECTS dataset, where it surpasses the other methods.

Our experiments show that preprocessing by PCA is in
general beneficial for QT, as the average rank of QT w/PCA
is lower than QT w/o PCA. However, in some settings, QT
w/o PCA performs better. In contrast, KQT achieves the
best AUC independently of the PCA preprocessing, thanks
to the invariance to roto-translation proved in Section 5.3,
and Density Tree is also not affected by the PCA.

The supplementary material reports the detection results in
the low-ratio setting (K = 32, v = 64). Overall, the results
conform to those in the high-ratio setting and confirm that
a larger expected number of points per bin improves the
detection performance for all the methods. For the same
reason, QT and KQT achieve lower FPR in the low-ratio
setting than in the high-ratio, since the Pearson statistic
assumes fewer distinct values. Thus, while still controlling
the FPR, this results in a slightly lower percentage of false
alarms. The KQT with the Weighted Mahalanobis distance
achieves the highest AUC in the low-ratio setting, with a
statistically significant advantage over the competitors.

We conclude by remarking that data in the INSECTS and
UCI datasets are not drawn from multivariate Gaussian dis-
tributions, as suggested by the low performance achieved
by SPLL, which is based on a GMM. To confirm this, we
run the Shapiro-Wilk normality test on the marginals of our
real-world data, showing that these are not univariate Gaus-
sians. In the supplementary material, we report the p-values
of these tests, which are in the range of 1072°,

7. Conclusions

In this paper we presented KQT, a non-parametric multi-
variate change detection method for batch-wise monitoring.
KQT constructs a space partitioning via kernel functions,
resulting in bins which are compact and lead to superior
detection power. We compare our method to several state-
of-the-art approaches for CD, achieving the best results in
terms of detection power and false positives control. Future
work includes integrating KQT in a sequential monitoring
scheme, where data are processed in a continuous stream.
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Kernel QuantTree (Supplementary Material)

1 Introduction

This document provides additional material omitted from the main article due to space limitations.
Section 2 reports the proofs of the theoretical results supporting the Kernel QuantTree (KQT) algo-
rithm, namely, the independence of the test statistic from the stationary distribution (Theorem 1)
and the roto-translational invariance of KQT (Theorem 2). Then, Section 3 illustrates additional
experimental settings that complete the empirical analysis of the KQT algorithm. In particular, we
test the normality of the employed real-world datasets (Section 3.1), investigate the performance on
high-dimensional datasets (Section 3.2), compare the performance of the proposed centroid selection
strategies (Section 3.3), and report the complete results of the experiments from the main article
(Section 3.4).

2 Theoretical Results

In this section, we report the proofs of the theorems introduced in Section 5 of the main article. To
make this section self-contained and improve the overall readability, we recall some definitions that
were already introduced in the article.

2.1 Controlling the False Alarm Rate

The Generalized QuantTree (GQT) histogram h = {(Sk, 7x)} partitions the input space R? such that
the probability 7 of a stationary sample x ~ ¢q to fall in bin Sy, is close to a target probability m
provided as an input parameter. During testing, GQT monitors batches W of v samples by computing
a test statistic T, whose value only depends on the number of samples of W falling in each bin. Then,
the test statistic is compared against a detection threshold 7 € R, and a change is detected when

Th(W) > 1. (1)

A peculiarity of GQT is that each bin Sk is defined as a subset of the sublevel set of a measurable
kernel function f; : R* — R. In this section, we prove Theorem 5.1 of the main article, which we
recall here:

Theorem 1. Let h = {(Sk,7)}E5_, be a Generalized QuantTree histogram constructed using mea-
surable functions fi, : R4 — RVk. Let Ty, be a statistic defined over batches W such that T, (W) only
depends on the number of samples y1,...,yx of W falling in the bins of h. Then, the distribution of
Trn over stationary batches W ~ ¢o depends only on the batch size v, the number of training points N
and target probabilities {my, }i.

Theorem 1 implies that the distribution of 7 computed over stationary batches by a GQT is
independent of ¢g, d or {fi}, thus allowing us to empirically estimate its distribution and compute a
threshold 7 such that the False Positive Rate (FPR) achieved by GQT is controlled. The threshold
computation strategy is presented in Section 5.2 of the main article. Theorem 1 is a generalization
of Theorem 1 from [Boracchi et al., 2018] and its proof follows the same structure based on three
propositions. Here, we prove the first of these propositions:
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Proposition 1. Let x1,Xo,...,X) be i.i.d. realizations of a continuous random vector X defined
over D C Re. Let f:R% = R be a measurable function, and let Z = f(X). We denote with 21y <
22y < --- < 2y the sorted images of {x;} through f. For any L € {1,2,...,M}, we define the
sublevel sets

Qf’L = {XGD:f(X) SZ(L)} (2)
Then, the random variable p = Px(Qy,1) is distributed as Beta(L,M — L +1).

Proof. We prove the proposition by showing that p is an order statistic of the uniform distribution,
which in turn follows a Beta distribution [Lehmann et al., 2005]. Since f is a measurable function for
the considered probability space and X is a continuous random variable (r.v.) in R¢, by the properties
of continuous r.v. [Papoulis and Pillai, 2002], we have that Z = f(X) is also a continuous r.v. in R.
Then, we define U = Fz(Z), where Fy is the cdf of Z. Since Fz is monotonically non-decreasing, we
can also define the inverse cdf as:

F 1 (t) =inf{z € R| Fz(z) > t}. (3)
Then, we have that

Fy(u)=Py(U <u)=Pz(Fz(Z) <u) =

_ O (4)
— Py(Z < F;'(w) = F4(F;'(w) = u,

hence U is a uniform random variable, since its cumulative density function is the identity. Recall
that we assumed that X is defined over D, i.e., Px(R\ D) = 0. Then, exploiting (4), we can express
p as follows:

p=Px(Qrr) =Px(x€D| f(x) <zyp)) =
:Pz(ZER‘ZSZ(L)): (5)
=Py(ue(0,1] |u<wy)) =uw,

where we define u(r) = Fz(2(1)). From (5), we have that p is the L-th order statistic of M samplings of
the uniform distribution, and its distribution is Beta(L, M — L+ 1) [Balakrishnan and Rao, 1998]. [

We refer the reader to [Boracchi et al., 2018] for a thorough description of the derivation of the
proof of Theorem 1 from Proposition 1.

2.2 Centroid Selection and Invariance to Roto-Translation

Kernel QuantTree (KQT) defines a partition of the input space by iteratively splitting it in bins S
that match a target probability, as shown in Figure 2 of the main article. The KQT bins are defined
as subsets of sublevel sets of the adopted measurable kernel functions fr. We report here the formal
definition of the KQT histogram bins:

Si={x € B[ i(x) < 1)
Sk’:{xeﬂj<ksj | fo(x) <gx}for k<K (6)
Sk =RINU; <k S;
where 57 denotes the complement of S; in R?, and gy, is the split value computed as a quantile of the
training samples projected via fy.

Section 4.2 of the main article illustrates the kernel functions f; : R? — R adopted by KQT, which
are defined as distances from a selected centroid c; € TR:

fr(x) = (x = c)TA(x — cp), (7)
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where A € R is the kernel matriz, which determines the employed distance. In our experiments, we
construct KQT using the Euclidean, the Mahalanobis, and the Weighted Mahalanobis [Tipping, 1999
distances. The corresponding kernel matrices are A = I; for the Euclidean distance, A = cov[TR] ™!
for the Mahalanobis distance and

Yot P (%, €) - Ot
A= 17 . (8)
Zmzl Pm * Zrn(xv C)

for the Weighted Mahalanobis distance, where p,,, Cy,, and p,, denote the mean, covariance matrix,
and mixing probability of the m-th Gaussian component of a GMM fitted to TR, and the term
im (X, c) approximates the integral over the path from x to ¢ with respect to the measure induced by
the Gaussian Mixture Model (GMM). We refer the reader to [Tipping, 1999] for an explanation of the
rationale behind this distance.

2.2.1 Selecting Centroids by Maximizing the Information Gain

In Section 4.3 of the paper, we propose a centroid selection strategy that consists in maximizing the
information gain introduced by the split that divides X_; in Xy and Xy = Xjp—1 \ Xk, namely:

9)

| Xk —1]

cEX)_1 cEXE_1

¢ = argmax [[c] = argmax {H(Xk1) . | X% | H(X) + | Xe| H(X) } ’

where H(B) is the entropy of a set of points B C R%, which we compute by its Gaussian approximation,
that is
H(B) = (1/2)log ((zm)d det(cov[B])), (10)

where e is Euler’s number. This approximation is only used to ease the computation of H(B) for
centroid selection purposes, and does not influence the non-parametric nature of KQT. The expression
in (10) can be reformulated:

H(B) = %l (log(2r) + 1) + H(B) (1)

where H(B) = logdet (cov[B]). This gives rise to an optimization problem equivalent to (9), where
the centroid is selected by

¢ = argmin {I}(?k) + 5]?()(@}, (12)
ceEX_1
where [ is a constant that can be derived by (9) through algebraic manipulation. Solving this min-
imization problem is computationally less demanding than the original maximization, thus lowering
the computational burden of such centroid selection strategy.

2.2.2 Invariance to roto-translations

In Section 5.3 of the main article, we state that KQT is invariant under roto-translations when the
employed kernel function is either the Euclidean, Mahalanobis or Weighted Mahalanobis distance.
Here, we prove it together with an intermediate result. In the following, we define a roto-translation
®: R R? as

B(x) = R(x — p1), (13)

where R € SO(d) is the rotation matrix and p € R? is the shift vector. Moreover, we denote as
®(B) = {®(x) | x € B} the image of a set B C R%. From basic calculus, it is easy to show that the
covariance of a set B C R? after roto-translation ® factorizes as

cov[®(B)] = Rcov[B|RT. (14)
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Moreover, in our discussion, we will denote as D : R* — R the distance employed by KQT when
no preprocessing is employed, while we denote as D’ the same distance when data are preprocessed
by a roto-translation ®. D and D’ coincide when we employ the Euclidean distance, where A is
simply the indentity matrix. However, the kernel matrices for the Mahalanobis and Weighted Maha-
lanobis distances depend on the training set TR, thus change when we transform it to TR’ = ®(TR).
Nevertheless, all the considered distances are invariant under roto-translation, namely it holds that

D(x,y) = D' (2(x),2(y)) (15)

for any x,y € R% The identity in (15) can be derived from algebraic manipulation of the definition
of the adopted distances and considering (14).

Theorem 5.5 of the main article, which we report here, states that the histograms h = {(Sk, 7x)}
and h' = {(S},, 7))}, respectively constructed by KQT with and without preprocessing TR by ®, are
equivalent.

Theorem 2. Let ® : R? — R? be a roto-translation. Let h = {(Sk,T%)} and h' = {(S,,7})} be the
KQT histograms constructed from the training sets TR C R and TR’ = ®(TR), where the employed
kernel function is either the Fuclidean, Mahalanobis or Weighted Mahalanobis distance. Then, we
have that S, = ®(Sk) and 7, =7, fork=1..., K. In particular, for any batch W and W' = &(W),
we have that Tp,(W) = Tp (W).

Theorem 2 proves that, for specific choices of kernel functions, the value of the test statistic
computed over a batch W of data does not change if we employ a roto-translation-based preprocessing.
As such, KQT does not require preprocessing by PCA, which is sometimes necessary for QT to achieve
good detection performance. To prove the theorem, we first prove an intermediate result regarding
the centroid selection:

Lemma 1 (Information Gain). Let Xy_1 and X]_; = ®(Xjy_1) be the set of points used to construct
the KQT histogram bins S, and S}, respectively. Then, the centroid selection by mazimizing the
information gain as in (9) results in centroids ci, and cj, = ®(cy).

Proof. As showed in Section 2.2.1, maximizing (9) is equivalent to minimizing (12). Let ¢ € X1 be
an available training sample, then there exists ¢’ = ®(c) € X]_,. If we assume that X} is the set of
training samples falling in .S}, when we use c as a centroid, we have that

Xp={x'eX_,|D'(x,c)<q}=
={®(x) | x € Xy—1, D'(®(x),2(c)) < qi.} =
={®(x) |x € Xp—1, D(x,¢) < g} =
=d({x € X1 | D(x,¢) < qi}) = P(X),

(16)

where we used (15) to substitute g, with g;. Analogously, we have that f;c = ®(X%). Then, from
(12), we have that

H(X}) = logdet (cov[X]]) =
= logdet (R cov[Xy|RT) = (17)

= logdet (cov[X]) + 2logdet (R) = H (X)) + 7,

where 7 is a constant which depends only on R. In (17), we used the factorization (14) and the fact
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that R is orthogonal. The same relation holds for ?;C, and we can finally prove that

cj, = argmin {fI(T;) + Bﬁ(X,;)} =
cEXy

= (argmin {ﬁ(?k) + BH(X) + (1 + ﬁ)}) = (18)

ceEX_1

= (argmin {ﬁ(fk) + Bf[(XQ}) = ®(cy).

ceEXf_1

Lemma 2 (Gini Index). Let X1 and X]_, = ®(Xj_1) be the set of points used to construct the
KQT histogram bins Sy and Sy, respectively. Then, the centroid selection by minimizing the Gini
index in results in centroids ci and cj, = ®(cg).

Proof. 1t can be shown by simple algebraic manipulation of the definition of Gini index. O

Lemma 1 and Lemma 2 ensure that the construction of the histograms h and h’ will maintain the
correspondance through ® of all their elements, including the selected centroids. We can now prove
Theorem 2.

Proof of Theorem 2. Here, we show by induction that every bin S} of A’ is the result of the roto-
translation of the corresponding bin Sy of h. First, we have that X} = TR’ = ®(TR) = ®(X,) by
definition. Then, for kK = 1, Lemma 1 and 2 state that ¢, = ®(c;). Moreover,
Si={xeR!'|D'(x,c}) < qi} =
= {2(x) | x e R, D'(®(x),¢}) < g1} = (19)
= {<I>(X) | x € RY, D(x,¢1) < ql} = ®(5).
In the same manner, we prove that
Xi={x'eXj | D'(x,c}) >q} =

={P(x) | x € Xy, D(x,¢1) > q1} = P(X1), (20)

and ?ll = ®(Xy).
Now, suppose that Vj < k we have that ¢} = ®(c;), S} = ®(5;) and X = (). Then, we have

b e J
that x € (), S; < x' = ®(x) €, 5}, and, with the same derivation as in the case k =1,

j<k*jo

i {x < ()51 Dy <) -
i<k

—o({xe NI Dxe) <a)}) = B(Sk). @)
<k

and also X/ = ®(X)). In conclusion, we proved that S = ®(Sy) for Vk = 1,..., K. In particular, we
conclude that

x €S, <= D(x,¢;) >q; Vi <k N D(x,ci) < qp =
= D'(®(x),cj) >q; Vj <k A D'(®(x),¢c;) < qp < (22)
— ®(x) €S},
and, consequently, the number of samples from any batch W C R? falling in the S, is the same as

the number of samples of W/ = ®(W) falling in S;,. Then, we have that 7, = 7}, and T,(W)
Tr (W7).

Ol
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3 More Experiments and Discussion

This section extends the experimental evaluation of KQT from Section 6 of the main article to cor-
roborate the findings discussed there. First, we investigate the real-world datasets employed in our
experiments, proving that these do not follow a Gaussian distribution. Then, we perform additional
experiments on high-dimensional data to investigate the control of the FPR in this challenging sce-
nario. Finally, we extend the results from the main article by comparing the proposed centroid
selection strategies and reporting the complete results for both the low- and high-ratio settings.

3.1 Remarks about the real-world datasets

In Section 6.1 of the main article, we introduce the real-world datasets that are used in our ex-
periments. The INSECTS dataset [Souza et al., 2020] is a benchmark for concept-drift detection
algorithms and comprises data describing the wing-beat frequency of six species of insects at different
temperatures. The other datasets are from the UCI Machine Learning Repository [Dua and Graff,
2017] and from [Dal Pozzolo et al., 2017], and comprise data following a unique distribution, thus
require the introduction of artificial distribution changes for our experiments. We standardize these
datasets and add a negligible amount of noise n ~ N(0,0) to each component to prevent the many
repeated values from harming the histogram construction. Table 1 lists all the datasets and reports
their dimension d and the level o of noise applied to their components.

Since data in the synthetic settings are drawn from Gaussian distributions, one could argue that
KQT provided with the Mahalanobis or Weighted Mahalanobis kernels have an advantage over the
alternatives. However, this is not true for the real-world datasets considered in our experiments,
which are far from Gaussian. This claim is empirically supported by the low detection performance
of SPLL, which is itself based on a GMM. To confirm this intuition, we also run the Shapiro-Wilk
normality test [Shapiro and Wilk, 1965], an Hypothesis Test used to determine whether a population
{z;}1; C R is drawn from a univariate Gaussian distribution. If the p-values associated to the HT
is lower than 0.05, than we can conclude that the population is not normally distributed. Since the
marginals of a multivariate Gaussian distribution are univariate Gaussian distributions, we show that
the real-world datasets introduced in Section 6.1 of the main article are not drawn from multivariate
Gaussians by showing that their covariates are not. For this purpose, we extract a subset of n = 4096
samples from the real-world datasets and perform the Shapiro-Wilk test on each of their covariates.
Table 1 reports the p-values yielded by the test, averaged over the covariates and over 250 iteration
of the test performed over different subsets. The p-values obtained in these tests are in the range of
10~29, thus confirming that the real-world datasets employed in our experiments are not drawn from
multivariate Gaussian distributions.

Table 1: List of the real-world datasets employed in the experiments. For each dataset, we report
the dimension d, the noise level o and the average p-value of the Shapiro-Wilk test computed on the
marginals.

Dataset Name d o p-value Reference

El Nino Southern Oscillation nino 5 1072 3.3 x107% [Dua and Graff, 2017]
Physicochemical Properties of PTS  protein 9 —  75x107% [Dua and Graff, 2017]
ForestCovertype 1 spruce 10 107! 2.5 x107° [Dua and Graff, 2017]
ForestCovertype 11 lodgepole 10 107! 1.8 x107% [Dua and Graff, 2017]
Credit Card Fraud Detection credit 28 1072 9.9 x 1078 [Dal Pozzolo et al., 2017]
Insects’ Flying Behavior INSECTS 33 - <107 [Souza et al., 2020]
Sensorless Drive Diagnosis sensorless 48 1072 4.9 x107® [Dua and Graff, 2017]
MiniBooNE Particle Identification  particle 50 1072 8.5x 1073 [Dua and Graff, 2017
UNSW Swarm Behavior swarm 2400 - 1.8 x 1072 [Dua and Graff, 2017]
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3.2 Curse of dimensionality

In this section, we investigate the ability of KQT to control the FPR as the data dimension d increases.
Our experiments (Section 6.4 of the main article) have shown that the Kernel QuantTree with the
Weighted Mahalanobis distance deviates from the desired FPR when the data dimension grows. As
discussed in the article, this deviation is due to the challenge of fitting a Gaussian Mixture Model
(GMM) to high-dimensional data. To analyze the impact of the dimensionality on Kernel QuantTree,
we perform experiments in three synthetic settings with d € {4, 8,16,32,64,128}. In these settings,
denoted as unimodal, bimodal, and trimodal, the stationary distribution ¢ is defined as a GMM with 1,
2, and 3 Gaussian components, respectively. Then, we use the CCM framework [Alippi et al., 2017] to
generate a post-change distribution by applying a roto-translation to each Gaussian component of ¢q
such that the Kullback-Leibler distance between these and the three resulting post-change components
is fixed to 1. We perform each experiment twice, one with NV = 4096 training samples and the other
with V = 16384, to show that when a large training set is available the limitation of the KQT with
Weighted Mahalanobis is avoidable.

Table 2 reports the FPR achieved by KQT adopting different distances in the unimodal, bimodal
and trimodal settings for all the considered dimensions d and training set sizes N. In all experiments
we construct a KQT histogram with K = 16 bins, we set the detection thresholds to yield an FPR
a = 5%, and we test KQT on 5000 stationary batches with v = 128 samples. In the experiment
with N = 4096 (left columns), we notice that when d increases, the FPR achieved by KQT when
using the Mahalanobis and Weighted Mahalanobis distances deviates further from the target value.
In contrast, when we train KQT on N = 16384 samples (right columns), the deviation from the target
FPR is significantly reduced. To further corroborate our hypothesis that the issue is in the GMM
fitting, we compute the average condition number of the covariance matrices of the GMM components
yielded when using KQT with the Weighted Mahalanobis distance. These results show that, in the
high-dimensional datasets, using a larger training set yields covariance matrices with smaller condition
numbers.

3.3 Comparing the centroid selection strategies

In the main article, we propose two strategies for the centroid selection, namely, maximizing the
information gain introduced by splitting Xj_; in X and X} and minimizing the Gini index of the
distances between the centroid and the training samples in Xj_;. In Table 1 of the article, we
report the average FPR and AUC achieved by KQT using the maximization of the information
gain as a centroid selection strategy. Here, Table 3 reports the results achieved by KQT with the
Euclidean, Mahalanobis, and Weighted Mahalanobis distance for both strategies and proves that
their performance is comparable in every experimental setting.

3.4 Complete experimental results

In this section, we report the complete results of the high- and low-ratio experiments presented in
Section 6 of the main article. For each result, we include the corresponding confidence interval.

Table 5 reports the FPR and AUC achieved by the methods presented in Section 6.3 of the main
article in the high-ratio setting, namely when v = 128 and K = 16. As already discussed in the paper,
QuantTree, Kernel QuantTree and EIKM achieve an empirical FPR close to the target a = 5% in most
experiments. In contrast, SPLL and PCA-SPLL mostly exceed the target and Density Tree largely
overshoots it. However, the KQT with the Weighted Mahalanobis distance does not control the FPR
accurately when d increases, and we speculate that this is due to the GMM underlying the definition
of distance. This known limitation is discussed in Section 6.4 of the main article and investigated in
Section 3.2 of this document.

As for the AUC, KQT with the Weighted Mahalanobis distances outperforms the alternatives in
most settings. At the bottom of Table 5, we report the ranking of each method computed from the
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Table 2: Comparison between the FPR achieved by KQT using the Euclidean, Mahalanobis, and
Weighted Mahalanobis distances in the synthetic settings for various dimensions d and training set
sizes N. In parenthesis, the average condition numbers of the covariance matrices of the GMM used
by KQT with the Weighted Mahalanobis distance. The underlined values indicate an FPR above the

target of 5%.

KQT(Euclidean) KQT(Mahalanobis)  KQT(Weighted Mahalanobis)
N=4096 N=16384 N=4096 N=16384 N=4096 N=16384

d=4 4.88% 477%  4.84%  A479% (20.1)  4.85% (16.3)
d=8 4.83% 481%  4.86%  AT1% (32.1) 4.83% (37.7) g
d=16  4.81% 481%  4.89%  A88% (995) 4.79% (67.7) E
d=32  4.84% 4.95%  488%  4.99% (150.6) 4.81% (123.6) 2
d=64  4.84% 580%  4.95%  5.81% (315.2) 4.87% (223.8) £
d=128 4.91% 16.52% 5.31%  77.74% (344.0) 5.45% (307.0)
d=14 4.83% 4.76% 4.88% 4.77% (12.9)  4.89% (13.7)
d=38 4.88% 4.86% 4.87% 4.79% (40.0)  4.84% (36.3)
d=16 4.83% 4.88% 4.82% 4.88% (68.3)  4.87% (90.3) E
d=32 4.86% 4.95% 4.86% 5.36% (177.2) 4.83% (120.4) &
d=64  4.80% 5.66%  4.86%  5.70% (253.9) 5.03% (220.3) =
d=128  4.84% 15.44%  5.32%  76.60% (276.9) 5.46% (244.7)
d=4  4.72% 486%  4.85%  4.82% (24.9)  4.84% (16.1)
d=8 4.84% 479%  4.82%  4.83% (31.7)  4.80% (38.2) o
d=16  4.85% 485%  480%  4.86% (66.1)  4.83% (59.9) E
d=32 4.81% 4.91% 4.84% 5.13% (108.7) 4.86% (120.7) &
d=64 4.93% 5.67% 4.87% 5.53% (209.4) 5.01% (176.9) =
d=128 4.81% 15.86% 5.37%  77.49% (258.1) 5.47% (214.2)

AUC, together with the p-value of the Nemenyi post-hoc statistic, which proves that the advantage
of the best-performing method is statistically significant. In the main article, we also discuss the
performance of QuantTree, which shows how the preprocessing by PCA decreases the detection per-
formance in some cases. Remarkably, the KQT monitoring is invariant under roto-translations (see
Section 5.3 of the main article) and surpasses QuantTree independently of the application of the PCA
preprocessing.

Table 4 reports the FPR and AUC achieved by the considered methods in the low-ratio setting,
namely when v = 64 and K = 32. The results of this experiment are overall in line with the high-ratio
setting. However, as we speculate in Section 6.3 of the main article, histogram can better model a data
distribution when the expected number of points per bin v/K is large. This low-ratio setting confirms
our speculation, as the considered methods achieve an AUC lower than in the high-ratio experiment
on most datasets. However, KQT with the Weighted Mahalanobis distance still achieves the best
AUC with a statistically significant advantage over the alternatives, as demonstrated by the Nemenyi
post-hoc test. Moreover, the Pearson test statistic is discrete and in the low-ratio setting assumes
fewer distinct values. Thus, it is more challenging to set detection thresholds and the results show
that the empirical FPR of QuantTree and Kernel QuantTree is slightly lower than in the high-ratio
experiment.
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Table 3: Comparison between the detection performance achieved by KQT with the Euclidean, Ma-
halanobis and Weighted Mahalanobis distances, when selecting the centroids by maximization of the
Information Gain (left) and minimization of the Gini Index (right), in the high-ratio setting (K = 16,
v = 128 points). The table reports the achieved FPR (top) and AUC (bottom). In parenthesis the
standard deviation.

Gini Index
Mahalanobis

Information Gain

Euclidean Mahalanobis =~ Weighted Maha. Euclidean Weighted Maha.

unimodal  4.86% (0.47%) 4.82% (0.45%)  4.83% (0.48%)  4.83% (0.47%) 4.81% (0.48%)  4.83% (0.49%)
bimodal 4.80% (0.46%) 4.81% (0.44%)  4.80% (0.45%)  4.81% (0.47%) 4.84% (0.46%)  4.83% (0.46%)
nino 5.00% (0.53%) 5.02% (0.53%)  5.01% (0.54%)  5.02% (0.55%) 5.06% (0.54%)  5.02% (0.54%)
protein 4.97% (0.52%) 4.98% (0.54%)  5.03% (0.55%)  4.99% (0.54%) 5.03% (0.56%)  5.06% (0.53%)
spruce 4.82% (0.47%) 4.84% (0.49%)  4.90% (0.47%)  4.84% (0.49%) 4.85% (0.48%)  4.88% (0.49%)
lodgepole  4.85% (0.49%) 4.80% (0.47%)  4.90% (0.50%)  4.84% (0.50%) 4.82% (0.49%)  4.93% (0.51%)
credit 4.89% (0.48%) 4.85% (0.46%)  5.06% (0.56%)  4.89% (0.50%) 4.90% (0.52%)  5.10% (0.61%)
insects (1 = 2)  4.91% (0.50%) 4.93% (0.52%)  5.19% (0.64%)  4.90% (0.49%) 4.92% (0.54%)  5.19% (0.61%)
insects (2 —3)  4.92% (0.52%) 4.96% (0.52%)  5.25% (0.62%)  4.88% (0.50%) 4.93% (0.52%)  5.24% (0.63%)
insects (3 —4)  4.90% (0.52%) 4.88% (0.53%)  5.22% (0.64%)  4.91% (0.55%) 4.92% (0.53%)  5.24% (0.64%)
insects (4 — 5)  4.91% (0.51%) 4.92% (0.54%)  5.25% (0.65%)  4.92% (0.52%) 4.95% (0.49%)  5.28% (0.66%)
insects (5 — 6)  4.90% (0.56%) 4.92% (0.53%)  5.26% (0.72%)  4.90% (0.55%) 4.91% (0.57%)  5.29% (0.71%)
sensorless  4.82% (0.49%) 5.01% (0.56%)  7.42% (1.61%)  4.87% (0.48%) 4.98% (0.58%)  7.54% (1.56%)
particle 4.81% (0.46%) 4.94% (0.52%)  5.80% (1.02%)  4.84% (0.48%) 4.93% (0.52%)  5.86% (1.00%)
unimodal 0.946 (0.105)  0.993 (0.016)  0.994 (0.013)  0.946 (0.103)  0.994 (0.015)  0.994 (0.014)
bimodal 0.904 (0.118)  0.954 (0.060)  0.968 (0.042)  0.903 (0.119)  0.955 (0.056)  0.970 (0.039)
nino 0.607 (0.072)  0.904 (0.138)  0.922 (0.122)  0.609 (0.071)  0.903 (0.139)  0.922 (0.122)
protein 0.617 (0.074)  0.993 (0.035)  0.995 (0.027)  0.615 (0.074)  0.993 (0.030)  0.994 (0.030)
spruce 0.601 (0.066)  1.000 (0.000)  1.000 (0.000)  0.600 (0.068)  1.000 (0.000)  1.000 (0.000)
lodgepole 0.654 (0.099)  1.000 (0.000)  1.000 (0.000)  0.653 (0.099)  1.000 (0.000)  1.000 (0.000)
credit 0.602 (0.053)  0.780 (0.146)  1.000 (0.000)  0.605 (0.055)  0.787 (0.141)  1.000 (0.000)
insects (1 —2)  0.962 (0.035)  0.972 (0.039)  0.993 (0.019)  0.961 (0.038)  0.970 (0.037)  0.994 (0.015)
insects (2 —3)  1.000 (0.001)  1.000 (0.000)  1.000 (0.000)  1.000 (0.001)  1.000 (0.000)  1.000 (0.000)
insects (3 —4)  0.904 (0.054)  0.942 (0.049)  0.990 (0.024)  0.903 (0.058)  0.946 (0.044)  0.989 (0.025)
insects (4 —5)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)
insects (5 — 6)  0.985 (0.016)  0.992 (0.008)  1.000 (0.000)  0.986 (0.014)  0.991 (0.009)  1.000 (0.001)
sensorless 0.542 (0.027)  1.000 (0.000)  1.000 (0.000)  0.543 (0.026)  1.000 (0.000)  1.000 (0.000)
particle 0.555 (0.030)  0.976 (0.051)  0.985 (0.039)  0.556 (0.032)  0.977 (0.051)  0.985 (0.042)
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Table 4: FPR (top) and AUC (bottom) achieved by the considered methods in the high-ratio setting,
namely when histogram-based methods define K = 32 bins and the monitored batches contain v = 64
points. In parenthesis, the width of the 95%-confidence interval of the results.

QT QT KQT KQT KQT EIKM SPLL(C=3) SPLL(C=3) DT DT
(PCA) (Buclidean) (Mahalanobis) ~ (Weighted Maha.) (PCA) (PCA)

unimodal 4.20% (0.34%)  4.27% (0.32%) 4.30% (0.32%) 4.30% (0.34%)  4.28% (0.33%)  4.91% (0.44%)  6.10% (0.66%)  7.24% (1.03%) 7.08% (1.01%) 7.06% (1.00%)
bimodal 4.31% (0.32%)  4.27% (0.32%) 4.29% (0.33%) 4.32% (0.33%)  4.20% (0.33%)  4.91% (0.44%)  6.29% (0.79%)  7.57% (1.26%)  6.99% (1.00%) 6.92% (0.97%)
nino 5.01% (0.38%) 5.18% (0.38%) 5.23% (0.37%) 5.18% (0.38%)  5.21% (0 38%)  4.91% (0.48%) 7.28% (1.16%)  9.60% (1.75%)  6.77% (0.98%) 6.86% (1.09%)
protein 4.98% (0.38%)  5.13% (0.39%) 5.17% (0.39%) 5.19% (0.40%)  5.21% (0.43%) 1 92% (0.47%)  15.38% (3.01%) 10.74% (2.28%) 6.81% (0.98%) 6.73% (1.08%)
spruce 4.26% (0.33%)  4.29% (0.32%) 4.30% (0.32%) 4.20% (0.33%)  4.29% (0.34%) % (0.45%) 13.42% (3.15%) 13.64% (3.18%) 6.76% (0.99%) 6.89% (1.08%)
lodgepole 4.27% (0.32%) 4.27% (0.34%)  4.20% (0.35%) 4.30% (0.36%)  4.31% (0.34%) 4 93% (0.52%)  12.57% (3.45%) 12.73% (3.46%) 6.89% (1.00%) 6.74% (1.06%)
credit 4.34% (0.39%) 4.46% (0.46%) 4.39% (0.43%) 4.38% (0.42%)  4.47% (0.44%)  4.91% (0.61%) 11.88% (2.16%) 23.23% (3. 66%) 6.74% (1.04%)  6.75% (1.02%)
insects (1 —2)  4.69% (0.47%) 4.84% (0.57%) 4.84% (0.58%) 4.84% (0.56%)  4.97% (0.59%)  4.91% (0.45%) 6.73% (1.63%)  8.05% (1.95%) 6.86% (1.04%) 6.77% (1.10%)
insects (2—3)  4.73% (0.50%) 4.87% (0.59%) 4.85% (0.56%) 4.86% (0.60%)  5.04% (0.61%)  4.90% (0.45%) 6.67% (1.51%)  8.02% (1.77%)  6.83% (1.03%) 6.77% (1.04%)
insects (3 —4)  4.72% (0.49%) 4.84% (0.56%) 4.85% (0.58%) 4.84% (0.58%)  5.02% (0.60%)  4.93% (0.48%) 7.29% (1.75%)  8.71% (2.03%)  6.80% (1.07%) 6.75% (1.03%)
insects (4—5)  4.69% (0.50%) 4.84% (0.58%) 4.82% (0.57%) 4.83% (0.60%)  4.99% (0.64%)  4.90% (0.44%) 6.56% (1.55%)  7.89% (1.87%) 6.83% (1.03%) 6.71% (1.03%)
insects (5—6)  4.77% (0.53%) 4.90% (0.56%) 4.90% (0.56%) 4.89% (0.58%)  5.07% (0.60%)  4.86% (0.43%) 7.18% (1.72%)  8.09% (1.89%)  6.77% (1.04%) 6.76% (1.00%)
sensorless 4.29% (0.35%)  4.43% (0.39%) 4.30% (0.34%) 4.35% (0.36%)  5.32% (0.65%)  4.94% (0.49%) 4.93% (1.19%)  4.29% (0.71%)  6.53% (1.06%) 6.67% (1.07%)
particle 4.28% (0.32%) 4.32% (0.36%) 4.30% (0.35%) 4.33% (0.35%)  4.71% (0.46%)  4.86% (0.50%) 6.92% (1.52%)  8.80% (1.96%) 6.70% (1.12%) 6.78% (1.12%)
unimodal 0.883 (0.101)  0.936 (0.059)  0.881 (0.115)  0.957 (0.031) 0.957 (0.031) 0.779 (0.157)  0.975 (0.016)  0.972 (0.047)  0.676 (0.148)  0.712 (0.174)
bimodal 0.796 (0.109) 0.825 (0.102) 0.821 (0.112) 0.868 (0.075) 0.885 (0.062) 0.709 (0.130) 0.859 (0.132) 0.845 (0.154) 0.636 (0.106) 0.652 (0.122)
nino 0.736 (0.143)  0.804 (0.170)  0.555 (0.042)  0.809 (0.173) 0 (0.163) 0511 (0.012)  0.739 (0.176)  0.771 (0.191)  0.630 (0.111)  0.545 (0.048)
protein 0.848 (0.104)  0.980 (0.055)  0.582 (0.048)  0.985 (0.050)  0.991 (0.035) 0.508 (0.009)  0.906 (0.118)  0.945 (0.098)  0.638 (0.117)  0.599 (0.081)
spruce 1.000 (0.003)  1.000 (0.000)  0.590 (0.060)  1.000 (0.000) 1 000 (0.000) 0.504 (0.005)  1.000 (0.002) 1.000 (0.002)  1.000 (0.001)  1.000 (0.001)
lodgepole 1.000 (0.001)  1.000 (0.001)  0.639 (0.085)  1.000 (0.000)  1.000 (0.000) 0,506 (0.006)  1.000 (0.002)  1.000 (0.002)  1.000 (0.000)  1.000 (0.000)
credit 0.611 (0.043)  0.813 (0.144) 0550 (0.021)  0.685 (0.137)  1.000 (0.000) 0.504 (0.005)  0.565 (0.060)  0.624 (0.108)  0.603 (0.051)  0.739 (0.116)
insects (1 —2)  0.976 (0.022)  0.887 (0.054)  0.902 (0.041)  0.967 (0.025) 0.959 (0.037) 0.698 (0.057)  0.733 (0.033)  0.786 (0.031)  1.000 (0.000)  0.999 (0.002)
insects (2—3)  0.968 (0.031)  0.981 (0.018)  0.994 (0.005)  0.999 (0.001)  1.000 (0.001) 0.895 (0.052)  1.000 (0.000)  0.999 (0.000)  0.987 (0.008)  0.996 (0.009)
insects (3—4)  0.915 (0.045)  0.804 (0.068)  0.821 (0.046)  0.909 (0.036) 0.940 (0.051) 0.688 (0.066)  0.691 (0.021)  0.687 (0.023)  0.995 (0.003)  0.987 (0.007)
insects (4 —5)  0.989 (0.015)  0.991 (0.015)  0.998 (0.003)  1.000 (0.001)  1.000 (0.000) 0.878 (0.071)  1.000 (0.000)  1.000 (0.000)  0.999 (0.001)  0.994 (0.010)
insects (5 — 6) 0.974 (0.017) 0.890 (0.044) 0.922 (0.023) 0.961 (0.019) 0.982 (0.011) 0.860 (0.051) 0.932 (0.007) 0.933 (0.008) 0.997 (0.001) 0.996 (0.002)
sensorless 0.832 (0.112)  0.999 (0.008)  0.523 (0.013)  1.000 (0.000) 1.000 (0.000) 0.501 (0.003)  1.000 (0.000)  1.000 (0.000)  0.715 (0.139)  0.582 (0.083)
particle 0.860 (0.129)  0.876 (0.107)  0.530 (0.015)  0.922 (0.101) 0.941 (0.089) 0503 (0.004)  0.786 (0.143)  0.861 (0.127)  0.706 (0.143)  0.526 (0.035)
Average Ranking 5.32 4.96 7.28 3.78 2.96 9.54 5.26 4.97 5.33 5.60
Nemenyi p-value <1071 <1071 <1071 <1071 - <1076 <1071 <1071 <1076 <1071

Table 5: FPR (top) and AUC (bottom) achieved by the considered methods in the high-ratio setting,
namely when histogram-based methods define K = 16 bins and the monitored batches contain v = 128
points. In parenthesis, the width of the 95%-confidence interval of the results.

QT QT KQT KQT KQT EIKM SPLL(C=3) SPLL(C=3) DT DT

(PCA) (Euclidean) (Mahalanobis)  (Weighted Maha.) (PCA) (PCA)
unimodal 1.83% (0.48%) 4.81% (0.46%) 4.86% (0.47%) 4.82% (0.45%)  4.83% (0.48%)  4.82% (0.53%) 5.46% (0.75%)  5.92% (L04%) 7.84% (1.16%) 7.75% (1.17%)
bimodal 480% (0.45%)  481% (0.46%) A80% (04G6%) 481% (0.41%)  AS0% (0.45%)  482% (0.51%)  5.53% (0.75%)  6.02% (1L06%)  7.63% (1.20%) 7.62% (1.09%)
nino 5.04% (0.49%) 4.99% (0.50%) 5.00% (0.53%) 5.02% (0.53%)  5.01% (0.54%)  4.83% (0.55%) 6.14% (1.21%)  7.69% (2.05%) 7.55% (1.20%) 7.57% (L. 10%)
protein 1.97% (0.50%) 4.98% (0.56%) 4.97% (0.52%) 4.98% (0.54%)  5.03% (0.55%)  4.88% (0. 61%) 13.15% (3.54%)  8.42% (2.33%) 7.65% (1.25%) 7.64% (1.25%)
spruce 1.81% (0.50%) 4.83% (0.48%) 4.82% (0.47%) 4.84% (0.49%)  4.90% (0.47%)  A4.86% (0.59%) 11.43% (3.93%) 11.56% (3.97%) T7.56% (1.21%) 7.57% (1. 16%)
lodgepole 4.83% (0.47%)  4.82% (0.50%) 4.85% (0.49%) 4.80% (0.47%)  4.90% (0.50%)  4.92% (0.57%) 10.78% (4.64%) 10.89% (4.68%) 7.60% (1.14%) 7.58% (1.12%)
credit 4.83% (0.47%) 4.96% (0.54%) 4.89% (0.48%) 4.85% (0.46%)  5.06% (0.56%)  4.96% (0.68%) 8.67% (2.26%) 16.06% (3.63%) 7.63% (1.15%) 7.59% (1.23%)
insects (1—2)  4.92% (0.50%) 4.93% (0.51%) 4.91% (0.50%) 4.93% (0.52%)  5.19% (0.64%)  4.93% (0.63%) 5.90% (2.04%)  6.48% (2.15%) 7.57% (1.16%) 7.60% (1.20%)
insects (2—3)  4.93% (0.53%) 4.91% (0.54%) 4.92% (0.52%) 4.96% (0.52%)  5.25% (0.62%)  4.96% (0.65%) 5.54% (1.85%)  6.16% (1.96%) T7.60% (1.19%) 7.59% (1.23%)
insects (3 —4)  4.92% (0.48%) 4.89% (0.52%) 4.90% (0.52%) 4.88% (0.53%)  5.22% (0.64%)  4.80% (0.58%) 6.09% (1.99%)  6.69% (2.11%) 7.59% (L19%) 7.54% (1.17%)
insects (4 - 5)  4.92% (0.50%) 4.95% (0.52%) 4.91% (0.51%) 4.92% (0.54%)  5.25% (0.65%)  4.91% (0.61%) 5.48% (L76%)  6.01% (L84%) 7.63% (L24%) 7.56% (1.17%)
insects (5 — 6)  4.91% (0.54%) 4.90% (0.54%) 4.90% (0.56%) 4.92% (0.53%)  5.26% (0.72%)  4.90% (0.64%) 5.86% (2.05%)  6.19% (2.11%) T7.61% (L22%) 7.63% (1.24%)
sensorless 1.84% (0.50%) 5.01% (0.55%) 4.82% (0.49%) 5.01% (0.56%)  7.42% (1.61%)  4.93% (0.61%) 4.33% (1.03%)  4.83% (0.76%) 7.55% (L.19%) 7.58% (1.22%)
particle 1.85% (0.50%) 4.87% (0.51%) 4.81% (0.46%) 4.94% (0.52%)  5.80% (1.02%)  4.84% (0.61%) 5.93% (2.01%)  6.07% (2.05%)  7.52% (1.10%) 7.60% (1.19%)
unimodal 0.957 (0.079) 0.976 (0.057) 0.946 (0.105) 0.993 (0.016) 0.994 (0.013) 0.874 (0.154) 0.996 (0.006) 0.989 (0.040) 0.786 (0.167) 0.806 (0.190)
bimodal 0.900 (0.110)  0.930 (0.090)  0.904 (0.118)  0.954 (0.060) 0.968 (0.042) 0.821 (0.158)  0.915 (0.126)  0.895 (0.164)  0.751 (0.155)  0.767 (0.160)
nino 0.845 (0.143)  0.905 (0.135)  0.607 (0.072)  0.904 (0.138)  0.922 (0.122) 0528 (0.020)  0.816 (0.172)  0.841 (0.183)  0.726 (0.152)  0.582 (0.081)
protein 0.899 (0.104)  0.985 (0.051)  0.617 (0.074)  0.993 (0.035)  0.995 (0.027)  0.514 (0.015)  0.918 (0.118)  0.954 (0.093)  0.704 (0.148)  0.595 (0.085)
spruce 0.999 (0.014)  1.000 (0.000)  0.601 (0.066)  1.000 (0.000)  1.000 (0.000)  0.507 (0.007)  1.000 (0.000)  1.000 (0.000)  1.000 (0.002)  1.000 (0.002)
lodgepole 1.000 (0.000)  1.000 (0.000)  0.654 (0.099)  1.000 (0.000)  1.000 (0.000)  0.511 (0.016)  1.000 (0.002)  1.000 (0.002)  1.000 (0.000)  1.000 (0.000)
credit 0.698 (0.079)  0.867 (0.127)  0.602 (0.053)  0.780 (0.146)  1.000 (0.000)  0.508 (0.011)  0.597 (0.085)  0.660 (0.132)  0.695 (0.091)  0.820 (0.131)
insects 0.998 (0.005)  0.962 (0.048)  0.962 (0.035)  0.972 (0.039) 0.993 (0.019) 0.836 (0.071)  0.810 (0.035)  0.866 (0.029)  1.000 (0.000)  1.000 (0.000)
0.993 (0.017) 0.995 (0.012) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000) 0.962 (0.014) 1.000 (0.000) 1.000 (0.000) 0.999 (0.002) 1.000 (0.001)
insects (3 —+4)  0.983 (0.029)  0.897 (0.078)  0.904 (0.054)  0.942 (0.049) 0.990 (0.024) 0 83) (0.084)  0.753 (0.025)  0.745 (0.028)  1.000 (0.000)  1.000 (0.001)
insects (4 - 5)  0.998 (0.008)  0.997 (0.008)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 0(0.021)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  0.999 (0.004)
insects (5 6)  0.999 (0.003)  0.971 (0.033)  0.985 (0.016)  0.992 (0.008) 1.000 (0.000) 0 963 (0.017)  0.979 (0.004)  0.979 (0.005)  1.000 (0.000)  1.000 (0.000)
sensorless 0.862 (0.120)  1.000 (0.004)  0.542 (0.027)  1.000 (0.000)  1.000 (0.000)  0.502 (0.003)  1.000 (0.000)  1.000 (0.000)  0.738 (0.179)  0.595 (0.104)
particle 0.886 (0.116)  0.931 (0.090)  0.555 (0.030)  0.976 (0.051)  0.985 (0.039)  0.506 (0.006)  0.838 (0.135)  0.901 (0.112)  0.798 (0.140)  0.542 (0.054)

Average Ranking 5.24 4.93 7.08 3.82 2.98 9.37 5.57 5.34 5.11 5.56
Nemenyi p-value < 10716 < 10716 <1071 < 10716 - <1076 < 10716 < 10716 <1076 <1076




References

[Alippi et al., 2017] Alippi, C., Boracchi, G., and Carrera, D. (2017). Ccm: Controlling the change
magnitude in high dimensional data. In Angelov, P., Manolopoulos, Y., Iliadis, L., Roy, A., and
Vellasco, M., editors, Advances in Big Data, pages 216-225, Cham. Springer International Publish-
ing.

[Balakrishnan and Rao, 1998] Balakrishnan, N. and Rao, C. R. (1998). Handbook of statistics. v. 16:
Order statistics: theory and methods.

[Boracchi et al., 2018] Boracchi, G., Carrera, D., Cervellera, C., and Maccio, D. (2018). Quanttree:
Histograms for change detection in multivariate data streams. In International Conference on
Machine Learning, pages 639-648. PMLR.

[Dal Pozzolo et al., 2017] Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and Bontempi, G.
(2017). Credit card fraud detection: a realistic modeling and a novel learning strategy. [EEE
transactions on neural networks and learning systems, 29(8):3784-3797.

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[Lehmann et al., 2005] Lehmann, E. L., Romano, J. P.; and Casella, G. (2005). Testing statistical
hypotheses, volume 3. Springer.

[Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. U. (2002). Probability, random variables, and
stochastic processes. Tata McGraw-Hill Education.

[Shapiro and Wilk, 1965] Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for
normality (complete samples). Biometrika, 52(3/4):591-611.

[Souza et al., 2020] Souza, V. M., dos Reis, D. M., Maletzke, A. G., and Batista, G. E. (2020).
Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and
Knowledge Discovery, 34(6):1805-1858.

[Tipping, 1999] Tipping, M. E. (1999). Deriving cluster analytic distance functions from gaussian
mixture models.

21



