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ABSTRACT

In this work, we study the problem of cross-subject motor imagery (MI) decoding
from electroencephalography (EEG) data. Multi-subject EEG datasets present
several kinds of domain shifts due to various inter-individual differences (e.g.
brain anatomy, personality and cognitive profile). These domain shifts render
multi-subject training a challenging task and also impede robust cross-subject gen-
eralization. Inspired by the importance of domain generalization techniques for
tackling such issues, we propose a two-stage model ensemble architecture built
with multiple feature extractors (first stage) and a shared classifier (second stage),
which we train end-to-end with two novel loss terms. The first loss applies cur-
riculum learning, forcing each feature extractor to specialize to a subset of the
training subjects and promoting feature diversity. The second loss is an intra-
ensemble distillation objective that allows collaborative exchange of knowledge
between the models of the ensemble. We compare our method against several
state-of-the-art techniques, conducting subject-independent experiments on two
large MI datasets, namely PhysioNet and OpenBMI. Our algorithm outperforms
all of the methods in both 5-fold cross-validation and leave-one-subject-out eval-
uation settings, using a substantially lower number of trainable parameters. We
demonstrate that our model ensembling approach combining the powers of cur-
riculum learning and collaborative training, leads to high learning capacity and ro-
bust performance. Our work addresses the issue of domain shifts in multi-subject
EEG datasets, paving the way for calibration-free brain-computer interfaces.

1 INTRODUCTION

Brain-Computer Interfaces (BCIs) (Yadav et al., 2020) are communication systems that enable hu-
man users to interact with computers, robotic limbs or wheelchairs, translating brain activity into
commands. BCIs have a wide spectrum of applications, including post-stroke rehabilitation of
limb motor impairments (Baniqued et al., 2021), character typing through visual spellers (Xu et al.,
2020b) and interactive image generation (Spape et al., 2021). The operation of BCI systems lever-
ages neuroimaging techniques to collect brain signals, with the most prevalent one being electroen-
cephalography (EEG) (Berger, 1929). Advancing EEG-based BCIs towards out-of-the-lab settings,
requires equipping them with machine learning models that have robust cross-subject generalization.

With the advent of deep learning (DL), significant steps have been made in the exploration of train-
ing methodologies and model architectures that can accomodate learning from EEG datasets with
increasingly large number of participants. Inter-subject variability is one of the biggest challenges
for EEG-based BCIs, referring to the existence of differences in the characteristics of EEG signals
acquired from different individuals (i.e., there are different data distributions for each subject) (Ma
et al., 2019). In the literature, often the data of each individual are considered as a separate do-
main (Kostas & Rudzicz, 2020), hence inter-subject differences are treated as domain shifts.

In this work, we consider the problem of EEG-based motor imagery (MI) decoding in subject-
independent settings. Motor imagery is a well-known paradigm for BCIs, involving the imagination
of motor acts, without overt motor execution or muscle activation (Lotze & Cohen, 2006). The us-
age of the MI paradigm is based on the phenomenon of sensorimotor rhythms (Yuan & He, 2014),
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i.e. rhythmic oscillations over the sensorimotor cortex that are modulated during motor imagery.
There are several sources of variation that lead to domain shifts in cross-subject MI decoding prob-
lems, such as personality type, cognitive profile, neurophysiological predictors, brain anatomy and
familiarity with BCI technology (Jeunet et al., 2014; 2015). These variations in turn lead to spa-
tial, spectral and temporal differences in the manifestation of sensorimotor rhythms across indi-
viduals (Rimbert et al., 2022). These differences are the sources of domain shifts that we aim to
overcome in order to obtain robust performance in subject-independent settings.

Domain generalization has been explored as a learning paradigm for building convolutional neural
networks (CNNs) with strong cross-subject accuracy. A category of domain generalization tech-
niques (Wang et al., 2022) that has been successfully applied on EEG-based problems (Bakas et al.,
2022; Reuben et al., 2020) is ensemble learning (Zhou et al., 2021). A resulting property of ensem-
bling is the emergence of diverse feature representations, leading to better generalization. However,
existing ensembling works achieve this diversity at the cost of increased computational complex-
ity (Du & Liu, 2022) and lengthy model selection procedures (Dolzhikova et al., 2021) that cannot
be implemented in a single end-to-end trainable pipeline. Another line of works explore multi-
branch architectures, assigning a separate branch per training subject (Wei et al., 2021) or per EEG
frequency band (Ma et al., 2022). Such approaches are compromised by the fact that they focus on
individual aspects of the feature extraction, model training or model selection processes.

We argue that further unleashing the potential of ensembling methods for representation learning
on neural signals, requires to jointly consider the design of network architectures and training ob-
jectives. We frame our approach as a model ensembling method combined with: (i) a curricu-
lum learning strategy to promote the diversity on individual models and (ii) a collaborative training
scheme to exchange knowledge between the models through a distillation loss. We design a training
curriculum, such that each model of the ensemble is trained on all the source domains (i.e. train-
ing subjects), yet progressively specializes to a specific subset of subjects. This leads each model
to capture patterns that are mostly specific to the EEG signal characteristics of a subset of train-
ing subjects, rather than the entire training set. Training our architecture under such a curriculum,
equips it with strong generalization capabilities, by covering a wide range of patterns through sev-
eral models that act as diverse feature extractors. To regulate the trade-off between diversity and
generalization (Bian & Chen, 2021), we introduce an intra-ensemble distillation loss that pushes the
predictions of each individual model close to the average of the predictions of all the other models,
thereby controlling the diversity between the models of the ensemble. In essence, our collaborative
training scheme leads to distillation of knowledge across models, working complementary with the
curriculum that is applied within each model. The balance between diversity and generalization is
controlled through a hyperparameter that weighs the contribution of the distillation loss to the total
loss.

Our contributions are the following:

• We propose a model ensembling architecture which we pair with a novel curriculum learn-
ing scheme. Our curriculum promotes diversity on the models of the ensemble, driving
each model to specialize to a different subset of training subjects. To our knowledge, cur-
riculum learning has not been previously explored for cross-subject MI decoding.

• We propose an auxiliary intra-ensemble distillation loss, allowing the exchange of knowl-
edge between the individual models of the ensemble. This balances the diversity-
generalization trade-off, leading to further performance improvement. Our work is the
first to propose a pseudo-labelling scheme for EEG-based knowledge distillation.

• We conduct our experimental analysis on two large motor imagery datasets (Phys-
ioNet (Goldberger et al., 2000) and OpenBMI (Lee et al., 2019)) totalling more than 150
subjects. We compare our method against four state-of-the-art techniques, namely TID-
Net (Kostas & Rudzicz, 2020), EEGSym (Pérez-Velasco et al., 2022), MIN2Net (Autthasan
et al., 2021) and ATL (Zhang et al., 2021), showing superior results.

• We make our code publicly available1 to support reproducibility.

1Link to the source code has been withheld during the review period
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The rest of the manuscript is organized as follows. In Section 2 we outline relevant previous works,
while in Section 3 we describe our proposed method. In Section 4 we present the results of our
experimental analyses and ablation studies. Lastly, in Section 5 we conclude the manuscript.

2 RELATED WORK

In this Section, we present an overview of the related work on the topics of domain generalization,
ensemble learning and feature diversity.

Domain generalization: Several works building subject-independent models for EEG data (which
by nature is a domain generalization problem), do not explicitly take care of inter-subject vari-
ability (Autthasan et al., 2021; Zhu et al., 2022; Pérez-Velasco et al., 2022). Such methods adopt
approaches based on Empirical Risk Minimization (ERM) (Vapnik, 1998) that simply minimize the
training loss over all source domains (i.e. training subjects). Other methods that have been occasion-
aly used for multi-subject EEG training are Euclidean/Riemannian Alignment (EA/RA) (He & Wu,
2019; Kostas & Rudzicz, 2020; Xu et al., 2020a), which are powerful baselines for learning domain-
invariant representations. In our work, we leverage the benefits of RA, along with our proposed
curriculum learning and intra-ensemble distillation techniques.

Ensemble learning: A successful example of model ensembling using CNNs is the work of Bakas
et al. (2022), where a k-fold cross validation process results in k trained models, with each model
trained on data from all the available training subjects. Reuben et al. (2020) leverage the power
of available crowdsourced algorithms for an EEG-based seizure prediction competition (Kuhlmann
et al., 2018), exploring the possibility of obtaining performance improvements by combining them
through model ensembling. The model ensemble proposed by Dolzhikova et al. (2021) requires
multiple hyperparameter tuning runs to train each base model. In IENet (Du & Liu, 2022), an en-
semble of models with convolutional layers of varying kernel length across multiple scales is utilized
to extract rich feature representations. However, each base model of IENet has more than seventy
convolutional layers, bringing into question the practicality and interpretability of the proposed ar-
chitecture.

Feature diversity: One of the key properties of ensemble learning, is the emergence of diverse fea-
ture representations across the individual base models of ensembles. Feature diversity can also be
obtained through alternative techniques which do not fall within the category of ensemble learning,
as they explore ways to obtain diverse features through a single model. Ma et al. (2022) propose a
multi-branch network architecture where the input EEG signal is divided in four frequency bands,
with a dedicated branch for each band. Altuwaijri et al. (2022) introduce a multi-branch network
based on EEGNet (Lawhern et al., 2018), where each branch contains a different number of tem-
poral filters, as well as a different temporal filter length. Wei et al. (2021) propose a multi-branch
Separate-Common-Separate Network (SCSN) to tackle the issue of negative transfer learning. Neg-
ative learning can appear when training subject-agnostic feature extractors, i.e. when all the layers
of a single model are trained on all the training subjects. As a remedy to this, SCSN has a separate
feature extractor for each training subject. However we claim that such an approach leads to non-
optimal solutions, as training subject-specific layers compromises their generalization capability.
We propose a model ensembling approach that differs from these two scenarios (i.e. subject-specific
or subject-agnostic layers), yet combines the best of both worlds. In contrast to SCSN, we train mul-
tiple feature extraction models on all training subjects, yet we guide each individual feature extractor
to specialize on a subset of multiple subjects.

3 PROPOSED METHOD

In this section we describe the proposed methodology, which consists of a model ensemble architec-
ture, a curriculum training scheme and an intra-ensemble distillation loss. We provide an overview
of the training pipeline for our proposed architecture in Fig. 1 and present its individual compo-
nents in the following subsections. Specifically, we begin by explaining our ensemble architecture
in Subsection 3.1. Then, we introduce the first loss term that materializes our curriculum learning
scheme in Subsection 3.2, as well as the second loss term that enables collaborative training across
the models of the ensemble in Subsection 3.3.
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Figure 1: Our proposed architecture has K first stage feature extractors and a shared classifier in
the second stage. Each feature extractor is trained: i) on an ensemble curriculum learning objective
(Lsubj) and ii) on a knowledge distillation objective (Ldistill).

3.1 ARCHITECTURE

Single model: In this work, we use the well-established EEGNet (Lawhern et al., 2018) architec-
ture as our strong single-model baseline. The selection of EEGNet is justified from the fact that
it achieves compelling performance, with a reasonably small number of trainable parameters and
a simple network design (e.g. without streams of varying kernel lengths, or band-wise processing
streams). In the task of MI decoding, the time-series signals x ∈ RC×T of an EEG trial with C
electrodes and T samples in the temporal dimension, are fed as input to EEGNet. The class-wise
scores ŷ ∈ RNC (where NC is the number of classes) are obtained as output, while the groundtruth
label y ∈ RNC is represented in the form of a one-hot vector. Thus, in the case of EEGNet the output
scores are computed as ŷ = EEGNet(x) and the network is optimized by minimizing the cross-
entropy (CE) loss LCE = CE(ŷ,y), given by CE(ŷ,y) = −

∑NC

i=1 yi log
(
softmax(ŷi)

)
where yi

and ŷi are the i-th elements of y and ŷ respectively.

Model ensemble: Our model ensemble architecture (shown in Fig. 1) consists of two stages and
uses EEGNet as its elementary component. The first stage contains multiple models in parallel,
with all models having exactly the same architecture design. These models act as feature extractors
on an input sample, with each model producing a feature vector. We use Fk(·) and fk to denote
the k-th feature extractor and its output feature vector. The output feature vectors from the first
stage, are computed as [f1, f2, . . . , fK] = [F1(x),F2(x), . . . ,FK(x)]. The second stage has a single
shared classification head G(·), that computes the class-wise prediction scores for each feature vector
originating from the first stage. We use ŷk to denote the scores corresponding to the k-th feature
vector fk. The scores are computed as [ŷ1, ŷ2, . . . , ŷK] = [G(f1),G(f2), . . . ,G(fK)]. In the simple
scenario where no curriculum learning occurs, this architecture is trained by minimizing the sum of
the individual losses for the predictions of each model. The loss Lk

CE for the predictions ŷk of the
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k-th model, and the total loss Ltotal
CE , are computed as Lk

CE = CE(ŷk,y) and Ltotal
CE =

∑K
k=1 Lk

CE. In
the inference phase, to classify an input sample x we fuse the model-wise scores through a simple
average operation and obtain a final score vector ŷens as ŷens = 1

K

∑K
k=1 ŷk. To this end, the

described architecture is purely subject-agnostic, having no subject-specific layers in both stages. In
the following subsection we propose an ensemble curriculum learning scheme that is applied during
training and changes the nature of the first stage layers. Our curriculum provides a strong alternative
to the typical subject-agnostic layers, that can be adopted in ensemble learning.

3.2 ENSEMBLE CURRICULUM LEARNING

Our goal is to make each feature extractor to specialize on a specific subset of subjects. That is, we
want to induce local (i.e. focused on a subset of the entire training set) feature extraction power to
each model in the first stage. Let D = {D1,D2, . . . ,DN} be a dataset with the data of N subjects,
where Dn denotes the sub-dataset containing the trials of the n-th subject. For an ensemble with
K models (K ≥ 2), we split D into K non-overlapping subsets S: D = {S1, . . . ,SK}. We do this
splitting process by randomly assigning the sub-dataset of each subject to one of the K subsets, with
a uniform probability for all subsets. Therefore, we have

⋃K
k=1 Sk = D and Si ∩ Sj = ∅ for i ̸= j.

Each subset Sk corresponds to the k-th model and contains the sub-datasets of the subjects on which
we drive the k-th model to specialize.

To achieve this specialization, we design a subject-weighted loss function where we inject subject-
specific coefficients to weigh the contribution of each subject to the loss of each model. Considering
the subject-weighted loss Lk

subj that is used to train the k-th model, the purpose of the subject-
specific coefficients is to linearly decay over epochs the loss contribution of the subjects that do not
belong to Sk. Effectively, this makes the k-th model to focus more on the subjects of Sk, which
have a non-decaying loss contribution. We scale the contribution of a training sample x to the loss
Lk
subj through the coefficient β(x, k). If trial x corresponds to a subject that belongs in Sk (hence

x ∈ Sk), then we keep β(x, k) = 1 throughout the whole training process. Otherwise (x /∈ Sk), we
decay β(x, k) from 1 to 0 while training progresses, that is:

β(x, k) =

{
1 , if x ∈ Sk

α , if x /∈ Sk
, (1)

where α = 1 − epoch
Nepochs

∈ [0, 1] represents the progression of training, as Nepochs is the maximum
number of training epochs and epoch is the current epoch. The loss Lk

subj of the k-th model and the
total subject-weighted loss Ltotal

subj are computed as Lk
subj = β(x, k) · Lk

CE and Ltotal
subj =

∑K
k=1 Lk

subj.
An indicative illustration of our curriculum learning scheme is shown in the appendix.

3.3 INTRA-ENSEMBLE DISTILLATION FOR COLLABORATIVE TRAINING

In this subsection we propose a collaborative training scheme which helps to regulate the diversity-
generalization trade-off in our model ensemble. In order to classify a sample, we extract its first stage
representations, feed them to the shared classifier of the second stage and average the individual
scores across models. The diversity between the first stage representations of a sample can make
the classifier to compute inconsistent class scores across models. This, in turn, can negatively affect
the final prediction scores, as they will be the result of fusing multiple contradicting predictions. We
observe that, although feature diversity is a desirable property of our ensemble, it can also have an
adverse effect on the generalization capabilities.

To overcome this phenomenon, we introduce a loss term that promotes consistency across the mul-
tiple model predictions, in order to improve the performance of the entire ensemble. We design
our proposed intra-ensemble distillation loss to operate on the predicted scores of the second stage,
instead of operating on the features extracted from the first stage. An overview of our distilla-
tion loss is shown in Fig. 1. Considering each prediction ŷk of the k-th model, our loss pushes
it closer to the softmaxed average of the predictions from all the other models (which is the pseu-
dolabel in our distillation loss). Specifically, we compute the pseudolabel ỹk for the k-th model as

ỹk = softmax

(
1

K−1

∑K
i=1,i̸=k ŷi

)
and minimize the cross-entropy loss between the prediction

ŷk and the pseudolabel ỹk. We note that we apply a stop-gradient (Chen & He, 2021) operation on
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the pseudolabels, as shown in Fig. 1. We do this to ensure that only the weights of the k-th model
are updated based on this loss term, while the other models remain unaffected. For the k-th model,
we opt to not apply this loss on the samples of Sk. This is done through a binary mask that zeroes
out the distillation loss of these samples. We do so, as our curriculum learning objective ensures that
the k-th model is sufficiently trained on the samples of Sk through their groundtruth labels y.

We note that it is necessary to scale the contribution of the intra-ensemble distillation loss to the total
loss of the architecture, in accordance with the progress of training. In the beginning of the training
process, the weights of the architecture are randomly initialized. Hence, penalizing the distance
of individual model predictions from the derived pseudolabels is not so meaningful in the early
epochs. As training proceeds, each feature extractor progressively focuses on a subset of subjects
and feature diversity increases. As shown later in the experiments, our distillation loss indirectly
controls this emerging feature diversity by bringing closer the class scores computed from various
first stage features. We linearly increase the contribution of the distillation loss to the total loss,
across training epochs, by multiplying it with the scalar (1−α) that quantifies the training progress.
The distillation loss Lk

distill of the k-th model, and the total distillation loss Ltotal
distill are computed as

Lk
distill = 1(x /∈ Sk) · CE(ŷk, ỹk) · (1 − α) and Ltotal

distill =
∑K

k=1 Lk
distill. We compute the total

loss Ltotal of our architecture as Ltotal = λsubj · Ltotal
subj + λdistill · Ltotal

distill, where we empirically set
λsubj = K and λdistill = 0.7.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We apply our method on the problem of motor imagery decoding and work on two large datasets:
PhysioNet (Goldberger et al., 2000; Schalk et al., 2004) and OpenBMI (Lee et al., 2019). First we
provide a brief description of the datasets and then we describe the common signal preprocessing
pipeline that is followed for both datasets.

PhysioNet dataset: The dataset contains EEG recordings from 109 participants, with trials that
belong to 4 classes: left-hand, right-hand and feet imagery, as well as rest. The data are recorded
with 64 EEG electrodes at a sampling frequency of 160Hz. We choose to work on the two-class
problem of classifying left-hand versus right-hand imaginary movements, discarding the data from
the other classes. Similarly to other works (Kostas & Rudzicz, 2020; Barmpas et al., 2023), we also
discard data from 6 participants (specifically S088, S090, S092, S100, S104 and S106) that
have inconsistent sampling frequencies or trial lengths. In our experiments we use the signals from
all 64 electrodes.

OpenBMI dataset: The data of OpenBMI correspond to trials of 2 classes (left-hand and right-hand
imagery) collected from the EEG recordings of 54 participants, with 62 electrodes at a sampling
frequency of 1000Hz. Each participant has data from two sessions and each session has two runs.
The first run of each session is done in an offline manner, i.e. without feedback. The second run
is done in an online manner, providing real-time visual feedback to the user. When not otherwise
stated, we use a subset of 20 electrodes and we use the data from the two offline runs (i.e. the
first run of the first and second session) for each participant, following the default settings of the
MOABB (Jayaram & Barachant, 2018) benchmark.

Preprocessing: Our preprocessing steps are the following: (i) we remove powerline interferences
through notch filtering (ii) we perform bandpass filtering (4Hz-38Hz) (iii) we resample the signals
to 100Hz and (iv) for each trial, we crop a temporal window of 4 seconds, starting from its onset
event. Upon obtaining the cropped trials, we use the session-wise covariance matrices of the EEG
signals and perform Riemannian Alignment on the time-series of each trial, as done in Zoumpourlis
& Patras (2022).

4.2 COMPARISON WITH OTHER WORKS AND BASELINE

We compare our proposed method with four state-of-the-art techniques that provide their source
code, namely Adaptive Transfer Learning (ATL) (Zhang et al., 2021), EEGSym (Pérez-Velasco
et al., 2022), TIDNet (Kostas & Rudzicz, 2020) and MIN2Net (Autthasan et al., 2021). In order to
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fairly judge the impact of our proposed methodology, we also implement two additional methods:
a single model baseline and an ensembling technique using the EEGNet architecture. The baseline
method (mentioned as “EEGNet-Single”) is a single EEGNet model, that serves as a reference for
the performance of an EEGNet architecture without ensembling. We implement the ensembling
technique by training multiple individual EEGNet models. During inference, we fuse their predic-
tions through a simple averaging operation, to obtain the final prediction. In essence, this method
(mentioned as “EEGNet-Ensemble”) represents a post-training model ensemble. In the appendix,
we provide more details about the implementations of all the aforementioned methods.

Evaluation settings: We perform evaluation in two ways: (i) in a 5-fold cross-validation (CV)
manner and (ii) in a Leave-One-Subject-Out (LOSO) manner. In the 5-fold CV scenario, we split
the subjects of our dataset into 5 disjoint folds and run 5 experiments. In each experiment, we use
a different fold as our test set and then assign 3 folds to our training set and the 1 remaining fold
to our validation set. In the LOSO scenario for a dataset with N subjects, we run N experiments
where in the n-th experiment we use the data of the n-th subject as our test set. In each experiment,
we split the remaining N − 1 subjects into our training and validation set. Specifically, we assign
80% of these subjects to the training set and the rest 20% to the validation set of the experiment. In
both CV and LOSO scenarios, the reported accuracy is the average of the test accuracies across all
experiments.

Training details: We train all models (i.e. our proposed method, the single model baseline and the
model ensembling method) for 120 epochs with a batch size of 64. We use a Stochastic Gradient
Descent (SGD) optimizer, setting the momentum to 0.9 and weight decay to 0.01. We initialize the
learning rate at 0.01 for the first 60 epochs and then decrease it to 0.002 for the remaining 60 epochs.

4.3 RESULTS (5-FOLD CROSS-VALIDATION)

In the first part of our experimental analysis we evaluate against methods that provide source code,
under a 5-fold cross-validation scenario, without any model adaptation on test data or pretraining
on external datasets. We note that these experiments are performed using exactly the same train,
validation and test splits, the same trial length and the same number of electrodes for all methods
(except for the method of EEGSym that has an architectural requirement of 16 electrodes). Having
the same experimental settings enables us to fairly judge the performance of all methods. Table 1
shows the results of the methods trained on the datasets of PhysioNet and OpenBMI with 5-fold
cross-validation. Regarding the reported results of our proposed method, we note that the opti-
mal number of first stage feature extractors K is inferred from the accuracy on the validation set.
Similarly, regarding the reported results of the EEGNet-Ensemble method, the optimal number of
individual EEGNet models within an ensemble is chosen based on the validation accuracy.

PhysioNet: Our proposed method presents a substantial boost of +1.80% over the standard en-
semble scenario, reaching an accuracy of 86.36% when we use seven first stage models in our
architecture. The model of EEGSym achieves an accuracy of 83.91%, using ∼ 10× more trainable
parameters than the best performing architecture of our method. EEGSym without pretraining on
external data, performs worse than both our method and the standard model ensemble. The accuracy
of TIDNet (82.19%) is similar to that of our EEGNet-Single baseline model.

OpenBMI: Our proposed method performs superiorly to our baselines, yielding an accuracy of
79.73% when using three first stage networks. The method of MIN2Net has a low performance,
with an accuracy of 69.44%. Regarding the method of ATL, the accuracy of 77.52% falls behind
the results of both our proposed method and our baseline, using ∼ 60× more trainable parameters
than our proposed method. Our results show that a simple ensemble architecture trained with a
curriculum learning scheme and an auxiliary loss can achieve high cross-subject generalization,
without any adaptation on test data or complex model architecture.

4.4 RESULTS (LEAVE-ONE-SUBJECT-OUT)

In this experiment, we compare our method against other state-of-the-art works that report LOSO
results on PhysioNet and OpenBMI. We note that we mention the results of these methods as re-
ported in their original works, ensuring that they do not utilise labelled data from the test subjects.
The results are shown in Table 2.
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Table 1: Performance of various methods on the datasets of PhysioNet and OpenBMI, under 5-fold
CV evaluation settings.

Dataset Method Parameters Accuracy (%)

PhysioNet

EEGNet-Single 2.5K 82.09
EEGNet-Ensemble, 8 models 20.0K 84.56
EEGSym (Pérez-Velasco et al., 2022) 147.8K 83.91
TIDNet (Kostas & Rudzicz, 2020) 694.2K 82.19
Ours, K=7 15.7K 86.36

OpenBMI

EEGNet-Single 1.8K 78.31
EEGNet-Ensemble, 8 models 14.3K 78.98
MIN2Net (Autthasan et al., 2021) 37.1K 69.44
ATL (Zhang et al., 2021) 278.8K 77.52
Ours, K=3 4.6K 79.73

Table 2: Comparison with other state-of-the-art methods on the datasets of PhysioNet and OpenBMI
with LOSO evaluation settings. (*) denotes pretraining on external data.

Dataset Method Parameters Accuracy (%)

PhysioNet
Causal Viewpoint (Barmpas et al., 2023) N/A 83.90
EEGSym* (Pérez-Velasco et al., 2022) 147K 88.56
Ours, K=7 15.7K 85.82

OpenBMI

MIN2Net (Autthasan et al., 2021) 37.1K 72.03
TSMNet (Kobler et al., 2022) 4.5K 74.60
ATL (Zhang et al., 2021) 305K 84.19
EEGSym* (Pérez-Velasco et al., 2022) 147K 84.72
Ours, K=4 8.7K 85.07

PhysioNet: The method of EEGSym achieves state-of-the-art performance reaching an accuracy
of 88.56%. EEGSym performs transfer learning by pretraining on four external datasets, which
proves to be highly valuable. Our proposed method is the best performing model among the works
that do not train on external data. We outperform the method of Barmpas et al. (2023) that trains
separate convolutional layers for each training subject. This indicates the existence of more efficient
alternatives to complex deep architectures and the incorporation of subject-specific components.

OpenBMI: Our method presents state-of-the-art performance, scoring an accuracy of 85.07% when
using all 62 electrodes of OpenBMI and having K = 4 first stage models. We outperform all
other techniques, including the method of EEGSym that employs pretraining on external data. The
geometric deep learning approach of TSMNet (Kobler et al., 2022) presents an accuracy gap of
more than ∼ 10% from the methods of ATL, EEGSym and our technique. This indicates that
deep architectures operating on covariance matrices of EEG time-series (e.g. Kobler et al. (2022)
and Kwon et al. (2019)), are generally less suitable for cross-subject MI decoding.

4.5 ABLATION STUDIES

In our ablation studies we investigate the impact of three components on the performance of our
ensemble architecture. The first component is the number of first stage models K in the architecture.
The second component is the loss Ltotal

subj , that materializes our curriculum learning scheme. The
third component is the distillation loss Ltotal

distill that enables collaborative training. We concurrently
explore the effects of all these component choices, performing a sweep over the hyperparameter K
and trying combinations of our loss terms.

Our first set of experiments (denoted as “LCE”) corresponds to the scenario of training a model
ensemble architecture as described in Sec. 3.1, i.e. without curriculum learning and without our
distillation loss. In our second set of experiments (denoted as “Lsubj”) we train our architecture
with ensemble curriculum learning, as described in Sec. 3.2, i.e. without our distillation loss. In the
third experimental run (denoted as “Ltotal”) we apply our entire method, training our architecture
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Table 3: Ablation study on the datasets of PhysioNet and OpenBMI with 5-fold CV evaluation
settings. Rows correspond to experiment sets done with different optimization objectives. Columns
correspond to the number of first stage models (K) in our architecture.

Dataset Loss terms Accuracy (%)
K=2 K=3 K=4 K=5 K=6 K=7

PhysioNet
LCE 83.34 84.70 84.97 84.93 85.53 85.34
Lsubj 84.38 84.72 85.10 85.40 85.62 85.68
Ltotal 83.76 84.78 85.02 85.48 86.04 86.36

OpenBMI
LCE 79.15 79.08 78.96 79.24 78.94 79.20
Lsubj 79.02 79.58 79.13 79.15 79.01 79.31
Ltotal 79.25 79.73 79.53 79.46 79.10 79.66

with the Ltotal loss. All experiments are performed with a 5-fold cross-validation setting. The
results of our ablation study are shown in Table 3.

PhysioNet: We observe a general trend of increasing accuracy for all our experimental sets, as K
increases up to the value of 7 (further increasing K does not yield performance improvements).
The only exception is the case where we train our architecture without curriculum learning (i.e.
first row in Table 3), where the accuracy saturates at K = 6. This indicates that training multiple
feature extractors by equally fitting them to the entire training set, is a suboptimal approach of
training on multiple source domains. Thus, applying our curriculum learning scheme through Lsubj

to induce diversity in the feature extractors, is a straightforward step. The results of the second row
in Table 3 verify the positive impact of curriculum learning in our ensemble architecture. When
further incorporating our distillation loss in the total optimization objective of our architecture (i.e.
third row in Table 3), we get additional accuracy boosts in most cases. The beneficial effect of
regulating the balance between feature diversity and model generalization through our distillation
loss, is higher in the cases of K = 6 and K = 7 where the accuracy boosts are +0.42% and +0.68%
respectively. This finding is particularly interesting, showing that the combination of our two loss
terms can increase the performance of model ensembles, even when using many feature extraction
models. On the contrary, an ensemble architecture trained solely with the standard cross-entropy
loss, is more prone to performance saturation.

OpenBMI: The standard ensemble architecture trained without curriculum learning (i.e. first row in
Table 3) achieves a maximum accuracy of 79.24% when K = 5. By using our curriculum learning
scheme, we improve the accuracy of our architecture in four out of six cases, achieving a maximum
accuracy of 79.58% when K = 3. The incorporation of our distillation loss term in the total loss
of our architecture (i.e. third row in Table 3) provides consistent improvements in all cases. Our
best model has an accuracy of 79.73% when K = 3, with a boost of 0.65% over its corresponding
standard ensemble model.

5 CONCLUSION

In this work, we propose a method for cross-subject motor imagery decoding that leverages the com-
bined strengths of model ensembling, curriculum learning and collaborative training. We design an
ensemble architecture that is trained end-to-end in a single phase. We show that our curriculum
training scheme can induce diversity to the feature extraction models of our architecture, improving
its performance over standard ensembling. Our method also benefits from the exchange of knowl-
edge between the models of our ensemble, that occurs through our auxiliary distillation loss. We
conduct experiments on the datasets of PhysioNet and OpenBMI, demonstrating state-of-the-art re-
sults. Our proposed method outperforms other approaches that try to tackle MI decoding using
complex networks (Zhang et al., 2021; Kostas & Rudzicz, 2020), multi-task learning (Autthasan
et al., 2021), geometric deep learning (Kobler et al., 2022), subject-specific layers (Barmpas et al.,
2023) or pretraining on multiple external datasets (Pérez-Velasco et al., 2022). Our work highlights
the importance of feature diversity as a property of model ensembles, paving the way for robust
EEG-based domain generalization techniques.
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Hans Berger. Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und ner-
venkrankheiten, 87(1):527–570, 1929.

Yijun Bian and Huanhuan Chen. When does diversity help generalization in classification ensem-
bles? IEEE Transactions on Cybernetics, 2021.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Irina Dolzhikova, Berdakh Abibullaev, Reza Sameni, and Amin Zollanvari. An ensemble cnn for
subject-independent classification of motor imagery-based eeg. In 2021 43rd Annual Interna-
tional Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 319–324.
IEEE, 2021.

Yipeng Du and Jian Liu. Ienet: a robust convolutional neural network for eeg based brain-computer
interfaces. Journal of Neural Engineering, 2022.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

He He and Dongrui Wu. Transfer learning for brain–computer interfaces: A euclidean space data
alignment approach. IEEE Transactions on Biomedical Engineering, 67(2):399–410, 2019.

Vinay Jayaram and Alexandre Barachant. Moabb: trustworthy algorithm benchmarking for bcis.
Journal of neural engineering, 15(6):066011, 2018.

Camille Jeunet, Fabien Lotte, Martin Hachet, and Bernard N’Kaoua. Impact of cognitive and per-
sonality profiles on motor-imagery based brain-computer interface-controlling performance. In
17th World Congress of Psychophysiology (IOP2014), 2014.

Camille Jeunet, Bernard N’Kaoua, Sriram Subramanian, Martin Hachet, and Fabien Lotte. Predict-
ing mental imagery-based bci performance from personality, cognitive profile and neurophysio-
logical patterns. PloS one, 10(12):e0143962, 2015.

10



Under review as a conference paper at ICLR 2024

Reinmar J Kobler, Jun-ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe. Spd domain-specific
batch normalization to crack interpretable unsupervised domain adaptation in eeg. arXiv preprint
arXiv:2206.01323, 2022.

Demetres Kostas and Frank Rudzicz. Thinker invariance: enabling deep neural networks for bci
across more people. Journal of Neural Engineering, 17(5):056008, 2020.

Levin Kuhlmann, Philippa Karoly, Dean R Freestone, Benjamin H Brinkmann, Andriy Temko,
Alexandre Barachant, Feng Li, Gilberto Titericz Jr, Brian W Lang, Daniel Lavery, et al. Epilep-
syecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracra-
nial eeg. Brain, 141(9):2619–2630, 2018.

O-Yeon Kwon, Min-Ho Lee, Cuntai Guan, and Seong-Whan Lee. Subject-independent brain–
computer interfaces based on deep convolutional neural networks. IEEE transactions on neural
networks and learning systems, 31(10):3839–3852, 2019.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
interfaces. Journal of neural engineering, 15(5):056013, 2018.

Min-Ho Lee, O-Yeon Kwon, Yong-Jeong Kim, Hong-Kyung Kim, Young-Eun Lee, John
Williamson, Siamac Fazli, and Seong-Whan Lee. Eeg dataset and openbmi toolbox for three
bci paradigms: An investigation into bci illiteracy. GigaScience, 8(5):giz002, 2019.

Martin Lotze and Leonardo G Cohen. Volition and imagery in neurorehabilitation. Cognitive and
behavioral neurology, 19(3):135–140, 2006.

Bo-Qun Ma, He Li, Wei-Long Zheng, and Bao-Liang Lu. Reducing the subject variability of eeg
signals with adversarial domain generalization. In International Conference on Neural Informa-
tion Processing, pp. 30–42. Springer, 2019.

Weifeng Ma, Haojie Xue, Xiaoyong Sun, Sijia Mao, Liudi Wang, Yang Liu, Yuchen Wang, and Xue-
fen Lin. A novel multi-branch hybrid neural network for motor imagery eeg signal classification.
Biomedical Signal Processing and Control, 77:103718, 2022.
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A APPENDIX

A.1 ENSEMBLE CURRICULUM LEARNING

In our main paper, we presented the training pipeline of our architecture that employs an ensemble
curriculum learning scheme and a distillation loss, in Fig. 1. We also described the subject-weighted
loss that materializes our curriculum learning scheme, and presented its formula, in Subsection 3.2.
To allow a better understanding of the coefficient β(x, k) that is involved in Lsubj, we show an
overview of our curriculum learning scheme in Fig. 2. Specifically, we consider an example where
we are provided with a dataset D containing EEG data from 10 human subjects and our proposed
model ensemble architecture consists of K = 3 models. The dataset D = {D1,D2, . . . ,D10}
containing the sub-datasets of 10 subjects is split into K = 3 non-overlapping subsets: S1, S2 and
S3. Our curriculum learning scheme aims to make the k-th model to specialize on the subjects
belonging to subset Sk of D, while still training on the whole dataset D. This is done using the
coefficient β(x, k) that controls the loss contribution of a training sample x on the weight updating
process for the k-th model. To achieve specialization on the samples of Sk, when x ∈ Sk we set
β(x, k) = 1 throughout the training process. We also want to train the k-th model on the rest of
the subjects of D (i.e. those that do not belong to Sk), albeit with a progressively decreasing loss
contribution over time. For this reason, when x /∈ Sk we set β(x, k) = α, with α decaying from 1
to 0 while training progresses.
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Figure 2: Indicative illustration of our curriculum learning scheme. In this example, we are provided
with a dataset D containing EEG data from 10 human subjects and our proposed model ensemble
architecture consists of K = 3 models.

A.2 SINGLE MODEL BASELINE

EEGNet-Single: Our baseline method (mentioned as “EEGNet-Single”) is a single EEGNet model,
trained in the entire training set as described in Subsection 3.1 of our main paper. The detailed
architecture of EEGNet is shown in Table 4.

A.3 MODEL ENSEMBLING METHODS

EEGNet-Ensemble: We implement the first ensembling method by training multiple individual
EEGNet models in the entire training set. During inference, we fuse their predictions through a
simple averaging operation to obtain the final prediction. In essence, this ensembling method (men-
tioned as “EEGNet-Ensemble”) represents a post-training model ensemble.

EEGNet-Bagging: We implement the second ensembling method by training multiple individual
EEGNet models in random subsets of the training set. Specifically, we train each individual EEGNet
model on 85% of all the available training subjects. We choose the subjects to be kept for training
in each experiment, by simply performing random subsampling. During inference, we fuse the
predictions of all models through an averaging operation to obtain the final prediction. This method
(mentioned as “EEGNet-Bagging”) represents the well-known ensembling technique of bootstrap
aggregating (Breiman, 1996). We note that we report results using this ensembling method in this
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appendix, for the sake of a more complete evaluation, without including this method in the main
manuscript of our work.

A.4 PROPOSED MODEL

Our proposed model ensemble architecture, described in Subsection 3.1 of our main paper, consists
of two stages and uses EEGNet as its elementary component. The first stage of our proposed ar-
chitecture contains multiple feature extractors in parallel, with each first stage network producing
a feature vector. Considering the EEGNet architecture that is presented in Table 4, each first stage
network of our architecture contains all the layers up to (and including) the feature flattening layer
of EEGNet. The second stage has a single shared classification head that computes the class-wise
prediction scores for each feature vector originating from the first stage. Based on the EEGNet lay-
ers that are presented in Table 4, the second stage of our architecture corresponds to the last layer of
EEGNet, i.e. a single fully connected layer that performs classification.

Table 4: Architecture of a single EEGNet model. The input of the model has a shape of B×1×C×T,
where B is the batch size, C is the number of EEG electrodes and T is the number of samples in the
temporal dimension. The output of the model has a shape of B×2, in the case of two output classes.

Layer Input shape Output shape
Dropout (p=0.4) B× 1× C× T B× 1× C× T
Temporal Convolution, 8 filters
kernel=(1, 64), stride=(1, 1), pad=(0, 32) B× 1× C× T B× 8× C× T

Spatial Convolution, 16 filters
kernel=(1, C), stride=(1, 1), pad=(0, 0)
max. weight norm=1.0

B× 8× C× T B× 16× 1× T

Temporal Pooling
kernel=(1, 4), stride=(1, 4), pad=(0, 0) B× 16× 1× T B× 16× 1× T

Batch Normalization 2D B× 16× 1× T/4 B× 16× 1× T/4
ELU activation B× 16× 1× T/4 B× 16× 1× T/4
Dropout (p=0.1) B× 16× 1× T/4 B× 16× 1× T/4
Separable Convolution Depthwise,
16 filters, 16 groups,
kernel=(1, 16), stride=(1, 1), pad=(0, 8)

B× 16× 1× T/4 B× 16× 1× T/4

Separable Convolution Pointwise
16 filters, 16 groups
kernel=(1, 1), stride=(1, 1), pad=(0, 0)

B× 16× 1× T/4 B× 16× 1× T/4

Batch Normalization 2D B× 16× 1× T/4 B× 16× 1× T/4
ReLU activation B× 16× 1× T/4 B× 16× 1× T/4
Temporal Pooling
kernel=(1, 8), stride=(1, 8), pad=(0, 0) B× 16× 1× T/4 B× 16× 1× T/32

Flatten B× 16× 1× T/32 B× T/2
Fully Connected B× T/2 B× 2

A.5 EXPERIMENTAL RESULTS (5-FOLD CROSS-VALIDATION)

In the first part of the experimental analysis presented in our main paper, we compare our proposed
method against our single model baseline as well as the standard model ensembling method, under
a 5-fold cross-validation scenario. We note that these experiments are performed using exactly the
same train, validation and test splits. Here we provide additional results, presenting the performance
of the EEGNet-Ensemble and EEGNet-Bagging methods as the number M of individual EEGNet
models varies.

EEGNet-Ensemble: In Table 5 we show the cross-subject performance of EEGNet-Ensemble on
the datasets of PhysioNet and OpenBMI under a 5-fold cross-validation scenario, when using from
2 to 9 EEGNet models. The best accuracy on PhysioNet (84.56%) is achieved when fusing the
predictions from 8 EEGNet models. Similarly, on OpenBMI the best accuracy (78.98%) is achieved
when fusing the predictions from 8 EEGNet models.
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EEGNet-Bagging: In Table 6 we show the cross-subject performance of EEGNet-Bagging on the
datasets of PhysioNet and OpenBMI under a 5-fold cross-validation scenario, when using from 2 to 9
EEGNet models. On PhysioNet, the best accuracy (84.81%) is achieved when using the predictions
from 8 EEGNet models, while on OpenBMI the best accuracy (79.28%) is achieved when using the
predictions from 7 EEGNet models.

Table 5: Performance of EEGNet-Ensemble on the datasets of PhysioNet and OpenBMI with 5-
fold cross-validation evaluation settings. Columns correspond to the number of individual EEGNet
models (M) that we use.

Dataset Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9

PhysioNet 82.99 84.01 84.10 84.21 84.04 84.26 84.56 84.47
OpenBMI 78.95 78.91 78.86 78.93 78.91 78.95 78.98 78.97

Table 6: Performance of EEGNet-Bagging on the datasets of PhysioNet and OpenBMI with 5-
fold cross-validation evaluation settings. Columns correspond to the number of individual EEGNet
models (M) that we use.

Dataset Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9

PhysioNet 83.05 84.22 84.17 84.49 84.68 84.73 84.81 84.74
OpenBMI 78.99 79.00 79.18 79.26 79.20 79.28 79.07 79.11

A.6 TRAINING DETAILS OF STATE-OF-THE-ART METHODS

In our main paper, we compare our proposed method with four state-of-the-art techniques that
provide their source code, namely Adaptive Transfer Learning (ATL) (Zhang et al., 2021),
EEGSym (Pérez-Velasco et al., 2022), TIDNet (Kostas & Rudzicz, 2020) and MIN2Net (Autthasan
et al., 2021). In the following paragraphs, we briefly refer to the details of the training settings for
each technique, regarding our 5-fold cross-validation experiments. In general, we keep the same hy-
perparameter choices with the original works, except from the temporal duration of the trials, which
we set equal to 4.0 seconds for all methods for fair comparison.

ATL: We use the official implementation2 of ATL (Zhang et al., 2021). The method employs the
Deep4Net (Schirrmeister et al., 2017) model architecture, as defined in braindecode3 toolbox.
We perform subject-independent training, i.e. no data from the test subjects are used during training.
We train all models for 200 epochs with a batch size of 16. We use an AdamW optimizer, with a
learning rate of 0.01 and a weight decay of 0.0005. We also use a temporal length of 4 seconds for
all trials.

EEGSym: We use the official implementation4 of EEGSym (Pérez-Velasco et al., 2022). The
method employs the custom model architecture that is described in the original publication (Pérez-
Velasco et al., 2022). The model architecture does not support an arbitrary number of input EEG
electrode channels, restricting the options to 8 or 16 electrodes. We choose to use 16 electrodes, to
retain more information in the input EEG signals. To ensure fair comparison with other methods and
our models, we do not use the model weights that are provided, as they are obtained by pretraining
on four external datasets. We perform training for 500 epochs with a batch size of 32, and set the
patience for early stopping to 25 epochs. We use Cross-Entropy as the loss function and employ an
Adam optimizer with a learning rate of 0.001. We set the dropout rate to 0.4 and use 24 filters per
branch in the model architecture. We also use a temporal length of 4 seconds for all trials.

TIDNet: We use the official implementation5 of TIDNet (Kostas & Rudzicz, 2020). We train the
TIDNet architecture for 30 epochs using a batch size of 16. We perform MixUp setting its hyperpa-
rameter β equal to 8.0, and employ Euclidean Alignment on the EEG time-series. We use a temporal

2https://github.com/zhangks98/eeg-adapt
3https://github.com/braindecode/braindecode
4https://github.com/Serpeve/EEGSym
5https://github.com/SPOClab-ca/ThinkerInvariance
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length of 4 seconds for all trials. We use the Kullback–Leibler (KL) divergence as the loss function.
In each epoch, we perform evaluation using the Exponentially Weighted Moving Average (EWMA)
of the model weights from the last 5 epochs.

MIN2Net: We use the official implementation6 of MIN2Net (Autthasan et al., 2021). We train the
MIN2Net model architecture for 200 epochs with a batch size of 100. We set the initial learning rate
to 0.001 and decay the learning rate by a factor of 0.5, with a patience of 20 epochs. The minimum
learning rate is set equal to 0.0001. We set the hyperparameters of MIN2Net as follows: α = 1.0,
β1 = 0.5, β2 = 0.5 and β3 = 1.0. We use a temporal length of 4 seconds for all trials.

6https://github.com/IoBT-VISTEC/MIN2Net
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