
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STAR ATTENTION: EFFICIENT LLM INFERENCE OVER
LONG SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference with Transformer-based Large Language Models (LLMs) on long se-
quences is both costly and slow due to the quadratic complexity of the self-
attention mechanism. We introduce Star Attention, a two-phase block-sparse ap-
proximation that improves computational efficiency by sharding attention across
multiple hosts while minimizing communication overhead. In the first phase, the
context is processed using blockwise-local attention across hosts, in parallel. In
the second phase, query and response tokens attend to all prior cached tokens
through sequence-global attention. Star Attention integrates seamlessly with most
Transformer-based LLMs trained with global attention, reducing memory require-
ments and inference time by up to 11x while preserving 95-100% of accuracy.

1 INTRODUCTION

Recent Large Language Models (LLMs) can support contexts up to millions of tokens in length
(Gemini-Team, 2024; Anthropic, 2024; Meta-AI, 2024), unlocking applications such as repository-
level code analysis, multi-document summarization, and large corpus retrieval. However, processing
such long sequences with LLMs requires substantial computational and memory resources due to
the quadratic complexity of the self-attention mechanism.

To address these challenges, various techniques have been proposed to reduce memory usage and
increase inference speed. For example, Flash Attention introduces an efficient GPU block-wise
implementation of the global attention, achieving significant reductions in memory overhead and
runtime (Dao et al., 2022; Dao, 2024). Ring Attention further extends this idea by distributing
the computation of self-attention and feed-forward modules across multiple devices, cleverly over-
lapping communication with shard-local attention computations to enhance scalability (Liu et al.,
2024a; Beltagy et al., 2020). More broadly, distributed strategies such as tensor, pipeline, sequence,
and data parallelism have been proposed to divide compute effectively across multiple machines
(Shoeybi et al., 2019; Huang et al., 2019; Li et al., 2023; Meta-AI, 2021).

Several prior works have shown that the attention matrix can be approximated with sparse atten-
tion mechanisms reducing the algorithmic complexity from quadratic to linear or log-linear. Child
et al. (2019) significantly reduces the complexity of attention by leveraging sparse factorizations
and (Choromanski et al., 2021) approximates attention using kernel-based methods. (Beltagy et al.,
2020) employs sliding window attention and global tokens for efficient long-sequence processing
while Xiao et al. (2024) adapts it for real-time long-sequence generation utilizing attention sinks.
Complementing these approaches, memory-efficient techniques have also emerged. Key-value (KV)
cache compression (Dai et al., 2019; Ge et al., 2024; Munkhdalai et al., 2024; Sun et al., 2024; Liu
et al., 2024b) and low-rank approximations (Srebro & Jaakkola, 2003) trade precision for reduced
memory usage.

We introduce Star Attention, a novel algorithm for efficient LLM long-context inference 1. This
method is based on the observation that LLM inference usually has two stages: (1) prompt encod-
ing, where the model processes input and stores KV vectors in the cache and (2) token generation,
where model attends to the KV cache and autoregressively generates new tokens while updating the
cache with the new KV vectors. In many long-context tasks, the input consists of a long context fol-
lowed by a short query and a short answer. The information needed for answering the query is often

1Code will be open-sourced

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

localized within small parts of the context, meaning context tokens need only attend to nearby to-
kens, while query tokens need to attend to all prior tokens. Based on this observation, Star Attention
utilizes a two-phase approach shown in Figure 1:

1. Context Encoding: The context is divided into contiguous blocks and distributed across
“context” hosts, with each host also receiving a copy of the first block (an “anchor block”).
Hosts compute self-attention only for their assigned blocks, without communicating with
each other, reducing attention complexity from quadratic to linear with respect to context
length. This distributed processing is similar to Ring Attention (Liu et al., 2024a) but
without the “ring” communication during context encoding (Figure 1a).

2. Query Encoding and Token Generation: The query is replicated across all hosts where
it initially attends to the KV cache on each host. Global attention is then computed by
aggregating the results at a designated “query” host by efficiently communicating a single
vector and scalar per token from each context host. Only the query host updates its KV
cache during this stage (Figure 1b).

Star Attention enables the context length to scale linearly with the number of hosts by distributing
the context processing across multiple hosts. Star Attention is compatible with most Transformer-
based LLMs trained with global attention, operating seamlessly out-of-the-box without additional
model fine-tuning. We evaluate Star Attention for Llama3.1-8B and Llama3.1-70B (Meta-AI, 2024)
on several long-context benchmarks. Star Attention achieves up to 11 times faster inference while
maintaining 95-100% of the baseline accuracy. Furthermore, Star Attention can be combined with
other LLM optimization methods like Flash Attention or KV cache compression, allowing for addi-
tional speedup enhancements during inference.

C1 C2

KV-Cache

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Host 1 Host 2 Host 3

Anchor

QueryC1 C2 C3

Context

C1 C1 C2

Anchor

C1 C3

C1 C3

KV-Cache

C1

KV-Cache

(a) Phase 1: Local Context Encoding with
Anchor Blocks

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

C1-KV L1

Host 1 Host 2
Host 3

(Query Host)

C1-KV L2

C1-KV LN

Next Token for
Auto Regressive

Decoding

Update
KV cache

Online Softmax

Online Softmax Online Softmax

Online Softmax

Query

C2-KV L1

C2-KV L2

C2-KV LN

C3-KV L1

C3-KV L2

C3-KV LN

(b) Phase 2: Query Encoding and Output Generation with
Global Attention

Figure 1: Star Attention inference flow. All devices in the system are grouped into hosts where
one of the hosts is labeled as the “query” host. The input sequence is processed in two phases.
Phase 1 - context encoding. The context portion of the input is partitioned into smaller blocks and
distributed across hosts. All blocks, except the first, are prefixed with the initial block, called the
“anchor” block. Each host processes its assigned block and stores the non-anchor portion of the
KV cache. Phase 2 - query encoding and token generation. The input query is broadcast to all the
hosts, where in each host, it first attends to the local KV cache computed during phase one. Then
the “query” host computes global attention by aggregating the softmax normalization statistics from
all the hosts. This process is repeated for each generated token.

2 STAR ATTENTION ALGORITHM

Star Attention operates in two phases: (1) Context Encoding, where the long context is divided
into contiguous blocks and is processed with local blockwise attention, and (2) Query Encoding

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

c1
c2
c3
c4
c5
q

Figure 2: Block sparsity pattern for a sequence partitioned into 5 context blocks ci and a query block
q. Each context block attends only to itself and the “anchor block” whereas the query attends to the
entire input.

0 500 1000 1500 2000 2500 3000 3500
Position IDs

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 A
ttn

. S
co

re

(a) Global Attention

0 500 1000 1500 2000 2500 3000 3500
Position IDs

0.00

0.02

0.04

0.06

0.08

0.10

Av
g.

 A
ttn

. S
co

re

(b) Blockwise Context Encoding

0 500 1000 1500 2000 2500 3000 3500
Position IDs

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 A
ttn

. S
co

re

(c) Blockwise Context Encoding
with Anchor Blocks

Figure 3: Attention distribution along the sequence length for context encoded with different strate-
gies in phase 1 of Star Attention. (a) Global attention shows a spike at the start, corresponding to
the attention sink. (b) Star Attention without anchor blocks shows several attention sinks present
at the beginning of each block. (c) Star Attention with anchor blocks shifts sinks to anchor tokens,
resulting in an attention distribution approximating global attention. In the plot, the input sequence
(4K tokens) is divided into 512-token chunks.

and Token Generation, where the query is processed, and answer tokens are generated using global
attention. Below, we detail each phase of the algorithm.

2.1 PHASE 1: CONTEXT ENCODING

Given an input sequence comprising a context c followed by a query q, the context c is divided into
n contiguous blocks: c = [c1, c2, . . . , cn], where each block ci contains b tokens. We introduce an
anchor block mechanism, in which, each block—except the first—is prefixed with the first block c1
of the sequence, referred to as the anchor block. This concatenation forms an augmented context c′:

c′ = [c1, (c1 c2), (c1 c3), . . . , (c1 cn)]

where each augmented block c′i contains 2b tokens: b tokens from the anchor block c1 followed by b
tokens from the current block ci (Figure 2). The positional indices of c1 are preserved, ensuring that
its tokens retain their original position indices [0, 1, . . . , b−1]. The augmented blocks are distributed
across compute hosts, where each host computes attention over the 2b tokens from its assigned block
c′i and generates the corresponding key-value (KV) vectors. While KVs for the anchor block c1 are
discarded, the KVs for the current block ci are retained in the cache.

We observe that, without anchor blocks—i.e., applying blockwise attention only to the original con-
text c—the model fails to generate correct outputs. We conjecture this failure is due to the incorrect
approximation to the attention patterns observed during phase 2 (Figure 3b), where multiple atten-
tion spikes, known as attention sinks (Xiao et al., 2024), are distributed across the sequence. These
spikes occur because each block is processed independently, creating an attention sink at the start of
each block. As a result, the model struggles to effectively focus on relevant parts of the context. To
address this issue, we prefix the blocks with the anchor block c1, shifting the attention sinks to the
anchor tokens. By discarding the KVs of the anchor tokens the intermediate attention sinks are re-
moved ensuring the attention distribution of block-local attention (Figure 3c) closely approximates
global attention (Figure 3a) while maintaining the computational efficiency of blockwise processing.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 PHASE 2: QUERY ENCODING AND TOKEN GENERATION

In phase 2, global attention is employed to encode the query and generate output tokens by using a
distributed softmax algorithm that eliminates the need to transfer KV cache between hosts (Figure
1b). A designated query-host hq coordinates this computation. The query is broadcast to all hosts
and transformed into the sequence Q ∈ Rlq×d, where lq is the query length, and d is the attention
head dimension. Each host h computes the local attention output Ah for the query Q using its
local key-value pairs Kh, Vh ∈ Rlk×d, where lk is the sequence length of the KV cache. The local
attention is computed as:

Ah =

 exp
(

QK⊤
h√
d

)
∑lk

k=1 exp
(

QK⊤
h,k√
d

)
Vh (1)

In addition to Ah, each host also stores the sum of the exponents sh from the the local softmax
operation (the denominator from Equation 1):

sh =

lk∑
k=1

exp

(
QK⊤

h,k√
d

)
(2)

The query-host hq gathers the local attention Ah and the sums of exponents sh from all hosts:

A = [A1, A2, . . . , AH ]

s = [s1, s2, . . . , sH ]

The global softmax denominator, sglobal, is then computed as the sum of all local exponents:

sglobal =

H∑
h=1

sh (3)

The query-host uses sglobal to aggregate the local attentions to compute the global attention:

Aglobal =

H∑
h=1

sh
sglobal

Ah (4)

This method ensures that the global attention scores are normalized correctly across all hosts. It
requires the communication of only a single scalar sh (the local sum of exponents) and a vector Ah

(the local attention) per token. In practice, the log-sum-exp method from online softmax (Milakov
& Gimelshein, 2018) can be used to maintain the numerical stability during global attention aggre-
gation. This distributed approach enables efficient computation by minimal data transfers between
hosts.

Output generation and cache update. After computing the global attention output, the query-host
hq generates the next token and its KV cache is updated with the key and value vectors of the new
token. This process is repeated for each generated token.

This two-phase mechanism—local context encoding with anchor blocks in Phase 1 followed by
global query encoding with token generation in Phase 2—gives significant improvements in infer-
ence speed, while keeping the accuracy close to the global attention.

3 EXPERIMENTS

We evaluate Star Attention on several Llama-based models with sequence lengths ranging from 16K
to 1M tokens on RULER (Hsieh et al., 2024) and BABILong (Kuratov et al., 2024) benchmarks.
We begin by comparing accuracy and the speed achieved by Star Attention versus baseline - Ring
attention. Further, we investigate the impact of varying block sizes on accuracy, illustrating the
trade-off between accuracy and speedup. Finally, we conduct a detailed analysis of challenging and
favorable cases for Star Attention by examining distinct RULER task categories.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Model Seq. Len. Block Size Ring-Attn Star-Attn
(K) (K) Acc.(%) ∆ Acc. ∆ Speedup

16 4 86.12 +2.47% 1.1x
32 8 82.52 +1.54% 1.2x
64 16 79.05 +1.28% 1.8x

Llama-3-8B-Instruct, 1048K
Gradient.ai (2024)

128 32 77.39 +1.23% 2.7x

16 4 95.09 -2.85% 1.7x
32 8 94.61 -2.70% 2.0xLlama-3.1-70B-Instruct, 128K

Meta-AI (2024) 64 16 88.54 -1.63% 4.7x

Table 1: Star Attention vs Ring Attention (baseline) accuracy and relative inference speed-up. The
∆ for Star Attention shows the relative accuracy improvement (+) or degradation (-). We set block
size to one-quarter of the sequence length. Star Attention achieves significant speedup over Ring
Attention while maintaining the accuracy. For larger models, the speedup of Star Attention is even
more pronounced.

3.1 SETUP

Models. We benchmark the base and instruct variants of the Llama-3.1 8B model which support
context lengths up to 128K tokens (Meta-AI, 2024). In addition, we evaluate two Gradient.ai models
that extend Llama-3-8B’s context up to 1M tokens Gradient.ai (2024). To access the scalability of
our method, we also evaluate the Llama-3.1-70B-Instruct model. We observe that large LMs achieve
even greater speedups with Star Attention on long context tasks.

Baseline. We compare Star Attention with Ring Attention (Liu et al., 2024a). Ring Attention
computes global block-wise attention by having each host communicate its respective KV cache in
a ring pattern across all the hosts . More details regarding our baseline selection in Appendix C.1.

Configuration. We implement Star Attention using HuggingFace Transformers library (Wolf et al.,
2020). All experiments are done on A100 GPUs with bfloat16 precision. More details on the
experiment configuration are in Appendix C.

Evaluation Benchmarks. We use the RULER benchmark for evaluation. It consists of 13 tasks
categorized into 4 domains: Needle-in-a-Haystack (Retrieval), Multi-Hop Tracing, Aggregation,
and Question Answering (Hsieh et al., 2024). Additionally, we report results on the BABILong
benchmark, which encompass tasks where multiple supporting facts encoded in the context are
required to generate accurate answers (Kuratov et al., 2024). Further details on the benchmarks and
specific tasks can be found in Appendix B.

3.2 RESULTS

Table 1 provides relative speedup and accuracy achieved by Star Attention versus Global (Ring) At-
tention from 16K to 128K tokens on the RULER benchmark. In each setting, the context block size
and anchor block size are set to one-quarter of the total sequence length. Star Attention achieves
similar accuracy to full global attention, with relative accuracy degradation limited to 0-3% while
also giving upto 5x inference speedup. This demonstrates that Star Attention effectively preserves
the model’s ability to retrieve relevant information, even with a significantly reduced context win-
dow. In case of larger models, such as Llama-3.1-70B Instruct, we find that these models achieves
even greater speedups at any given sequence length while maintaining similar levels of accuracy
degradation. We discuss Star Attention’s strengths and limitations based on RULER subtasks in
Section 3.4. Full RULER scores for all models can be found in Appendix E.

Extending this analysis to other benchmarks and models, we evaluate Star Attention on the BA-
BILong benchmark as well using Llama-3.1-8B-Instruct, Llama-3.1-8B-Base, and the gradientai-
Llama-3-8B-Instruct-262K model. We have a similar observation here that Star Attention achieves
similar accuracy to full global attention, with accuracy degradation limited to 0-3% across all tasks
up to 128K tokens, as shown in Figure 4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

70

80

90
RU

LE
R

 a
cc

ur
ac

y 
(%

)

gradientai/
Llama-3-8B-Instruct-262k

meta-llama/
Llama-3.1-8B-Instruct

meta-llama/
Llama-3.1-8B-Base

16K 32K 64K 128K

40

60

BA
BI

Lo
ng

 a
cc

ur
ac

y 
(%

)

16K 32K 64K 128K

Sequence Length

16K 32K 64K 128K

Global Attention Star Attention (Ours)

Figure 4: Accuracy (%) of Star Attention on RULER and BABILong evaluated on sequence lengths
of 16K, 32K, 64K, and 128K. In all experiments, the block size and anchor block size are set to
one-quarter of the total sequence length. Results using the Llama-3-8B-Instruct-262k, Llama-3.1-
8B-Instruct and Llama-3.1-8B-Base models demonstrate that Star Attention retains 95-100% of the
accuracy of global attention, and in some cases, even outperform it.

However, we observe several anomalies with the Llama-3.1 8B base model on the BABILong bench-
mark. There is a significant improvement at the 16K sequence length, but a severe drop at 128K.
These fluctuations likely stem from the benchmark’s format-specific requirements for generating an-
swers, which pose challenges for base models since they are not optimized for instruction-following
tasks. As a result, scores for base models, especially at longer sequence lengths, may be less reliable.
More details provided in Appendix D.

3.3 TRADE-OFF BETWEEN ACCURACY AND SPEED

Figure 5, illustrates the effect of varying block sizes during context encoding with sequence length
of 128K tokens. Larger block sizes correlate to higher accuracy with Star Attention. This trend is
consistent across all sequence lengths in our experiments.

From our experiments, we observe that setting the block size to approximately one-quarter of the
total sequence length strikes an optimal trade-off between accuracy and speed. However, for se-
quence lengths exceeding 128K, as shown in Table 2, we fix the block size at 32K tokens to pri-
oritize speedup, allowing for some acceptable accuracy degradation. Similarly, for larger models
such as the Llama-3.1-70B-Instruct, we limit the block size to 16K tokens. The choice of block size
is dependent on the user on how much accuracy can be traded for improved speed. As the block
size increases, Star Attention’s performance approaches that of full global attention, providing users
with flexibility in balancing computational efficiency with accuracy. Additional details regarding
the experimental setup are provided in Appendix C.2.

3.4 IN-DEPTH ANALYSIS ON RULER TASK CATEGORIES

In this section we investigate the strengths and limitations of Star Attention, using different cate-
gories of tasks within RULER. The benchmark has five primary categories: Single-NIAH, Multi-
NIAH, Multi-Hop Tracing, Aggregation, and Question Answering (QA). Figure 6 presents categor-
ical results of RULER for the Llama-3.1-8B-Instruct model on sequence length of 32K. The trend
is consistent across all sequence lengths (16K, 32K, 64K, and 128K), as detailed in Appendix E
(Figure 8). Notably, Star Attention achieves scores nearly identical to global attention in Single-
NIAH tasks. However, in more complex tasks such as Multi-NIAH and QA, it shows slight decline
in performance, with reductions ranging from 1.6% to 4.9% in Multi-NIAH and 0.9% to 6.8% in
QA tasks. Despite these challenges, Star Attention consistently retains overall 95-100% accuracy of
global attention.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4K 8K 16K 32K
Context Block Size

60

65

70

75

RU
LE

R 
Ac

cu
ra

cy
(%

)

Seq Length 128k

Global Attention
Star Attention (Ours)

Figure 5: Effect of block size on the accuracy of Star Attention on the RULER benchmark with
block sizes ranging from 4K to 32K tokens for Llama-3.1-8B instruct model at sequence length of
128K. In each setting, the anchor block size matches the context block size. The results indicate that
larger context block sizes are positively correlated with improved accuracy.

Model Seq. Len. Block Size Ring-Attn Star-Attn
(K) (K) Acc. (%) ∆ Acc. ∆ Speedup

128 32 77.39 +1.23% 2.7x
256 32 74.44 -1.04% 10.8x
512 32 69.30 -9.71% 16.2x

Llama3-8B-Instruct, 1048K
Gradient.ai (2024)

1024 32 63.70 -8.36% 16.9x

64 16 88.54 -1.63% 4.7xLlama-3.1-70B-Instruct, 128K
Meta-AI (2024) 128 16 65.29 -11.44% 8.7x

Table 2: Accuracy versus speed trade-off for Star Attention compared to Ring (Global) Attention on
RULER. The ∆ for star attention shows the relative accuracy degradation and the relative speedup
compared to global attention. When the block size remains fixed and the as sequence length in-
creases, Star Attention achieves exponential speedup over Ring (Global) Attention at the cost of
slightly more accuracy degradation. It is upto the user to decided how much accuracy they want to
trade-off for speed by setting the block size.

Tasks such as Multi-Hop Tracing and Aggregation necessitate an in-depth comprehension of con-
text. Multi-Hop Tracing poses a significant challenge for Star Attention, as it requires the model
to propagate information across multiple hops within the sequence, demanding effective inter-block
communication. However, Star Attention lacks inter-block communication, relying solely on global
attention between the query and segregated KV caches within each block. Due to this, the perfor-
mance degradation is considerable compared to global attention.

Aggregation tasks, encompassing Common and Frequent Words Extraction, assess models’ ability
to aggregate relevant information within long-range contexts. Star Attention yields significant per-
formance improvements across all sequence lengths. This enhancement stems from Star Attention’s
chunk-based context division, enabling local attention within each chunk to strengthen summa-
rization capabilities. Effective chunk-wise summarization in Phase 1 facilitates global attention’s
information aggregation in Phase 2.

4 ABLATION STUDY

The ablation experiments focus on the Needle-in-a-Haystack (NIAH) task, which tests a model’s
ability to answer queries based on a small, relevant piece of information (“needle”) embedded within
a large context (“haystack”). To increase the task’s complexity, we explore three variations from the
RULER benchmark (Hsieh et al., 2024): Single-NIAH, Multi-key NIAH, and Multi-query NIAH.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Single-NIAH Multi-NIAH Multi-hop Tracing Aggregation Question
 Answering

RULER tasks

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

100.00 99.45 99.20

54.32

66.40

100.00 97.82
92.68

70.47
65.20

Seq Length: 32K
Global Attention
Star Attention (Ours)

Figure 6: Accuracy (%) of Star Attention using the Llama-3.1-8B-Instruct model on the 5 categories
of tasks in RULER on sequence lengths of 32K. In all experiments, the block size and anchor
block size are set to one-quarter of the total sequence length. For the NIAH and QA tasks, Star
Attention retains upto 95-100% accuracy of the baseline. The Multi-Hop Tracing task becomes
quite challenging since it requires inter-block communication. In aggregation tasks, Star Attention
show significant improvement as distributed local attention helps the model in such summarization
tasks. The trend is consistent to other sequence lengths as shown in Appendix E (Figure 8)

4.1 POSITION AND CONTENT OF ANCHOR BLOCK

In this section, we explore the role of anchor blocks during Phase 1 that enables Star Attention
to approximate global attention behavior. As outlined in Section 2.1, anchor blocks are crucial in
managing the attention spikes generated at the start of each context block, helping Star Attention
approximate global attention (see Table 3 ) Drawing from the hypotheses on sink tokens in Xiao
et al. (2024), we consider two potential explanations for the effectiveness of anchor blocks: (1) the
model may develop a bias toward the absolute position of the anchor block, or (2) the semantic
content of the anchor block is essential for maintaining performance. To better understand how
anchor blocks enable Star Attention to approximate global attention distribution, we test both the
hypotheses. We conduct experiments on the Llama-3.1-8B-Instruct model, varying both the position
and content of the anchor block. We evaluate two configurations: a block size of 16K for sequences
of length 64K, and a block size of 32K for sequences of length 128K, in both the cases, with anchor
block size matching the context block size.

Position of anchor block: Here, we fix the content of the anchor block to the first context block and
vary its position IDs. We test three scenarios : (1) the position IDs are randomly sampled from the
range [0, starting position of the current block] (e.g., for a block starting at position 32K, position
IDs are sampled from [0, 32K] ); (2) the position IDs are derived from the previous block (e.g., for
a block of size 16K starting at position 32K, position IDs are sampled from [16K, 32K] ); (3) the
position IDs are fixed to the first block (our proposed approach). As shown in Table 3, varying the
position of the anchor block has minimal impact on accuracy.

Content of anchor block: We fix the position IDs of the anchor block to that of the first block but
vary its content. We explore several configurations (as shown in Table 3): (i) a single repeated token
(e.g., ‘ ’, ‘ the’, or ‘.’); (ii) random tokens; (iii) shuffling the tokens of the first block; and
(iv) using the original first block content (the proposed approach). Our results show that the content
of the anchor block significantly impacts performance, with the original first block content yielding
the best results. This outcome suggests that since global attention is performed during Phase 2, it
is important for the local context blocks to attend to anchor blocks whose content reflects what the
model would see during global attention.

Previous block as anchor block: To examine the roles of both position and content, we experiment
with using the previous block as the anchor block. For example, for a block of size 16K starting
at position 32K, the anchor block would be the block with position IDs from 16K to 32K. This
configuration has lower accuracy comparing to using the first block as the anchor(Table 3).

In summary, we found that while the positional placement of the anchor block is not important , its
content is critical for optimal performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Experiments RULER-NIAH (%)
64K ∆64k 128k ∆128k

Global attention 99.50 - 98.49 -

No anchor block 60.11 -39.59% 73.75 -25.12%

Content set to first-block, position IDs are:
randomly sampled from [0, current block) 96.79 -2.72% 97.16 -1.35%
same as previous block 97.35 -2.16% 96.80 -1.71%
same as first block 97.61 -1.90% 97.54 -0.96%

Position IDs set to first-block, content is:
constant token (ex: ‘ ’ or ‘ the’ or ‘.’ ) 0.00 -100.00% 0 -100.00%
random tokens 90.55 -8.99% 82.63 -10.15%
shuffled first block tokens 92.96 -6.57% 90.76 -3.26%
first block tokens 97.61 -1.90% 94.94 -0.96%

Previous-block used as anchor 94.20 -5.33% 96.13 -2.40%

Table 3: Experiments on analyzing the impact of varying the position and content of the anchor block
with the LLaMA-3.1-8B-Instruct model, with a block size of 16K for 64K sequence length, and 32K
for 128K sequence lengths. In each setting, the size of the anchor block matches the context block
size. The ∆ for star attention shows the relative accuracy degradation compared to global attention.
The experiments are categorized into 4 groups: (i) absence of anchor block; (ii) varying the position
IDs; (iii) varying the content; (iv) varying both the position and the content. Results indicate that
while the anchor block’s position is not critical, its content is essential for optimal performance.

0 1 10 100 512 1K 4K 8K 16K 32K
Anchor Block Size

75

80

85

90

95

RU
LE

R-
NI

AH
Ac

cu
ra

cy
(%

)

Seq Length 128k

Global Attention
Star Attention (Ours)

Figure 7: Effect of anchor block size on the accuracy of Star Attention on the RULER-NIAH bench-
mark with the Llama-3.1 8B Instruct model. In these experiments, the context block size is fixed to
32K for sequence length 128K, respectively. Results indicate that larger anchor block sizes lead to
improved accuracy. The observed trend holds for all sequence lengths in our experiments.

4.2 SIZE OF ANCHOR BLOCK

As discussed in Section 3.3, larger block sizes improve the accuracy of Star Attention. In this sec-
tion, we analyze the impact of varying anchor block size while maintaining a fixed block size of
32K for a sequence length of 128K. As illustrated in Figure 7, increasing the anchor block size en-
hances model accuracy, with the best performance observed when the anchor block size equals the
context block size. Although Figure 3b demonstrates that attention spikes predominantly occur in
the first few tokens, reducing the number of tokens in the anchor block leads to a substantial drop
in performance. This suggests that a larger anchor block is critical for maintaining model accuracy,
despite attention spikes being concentrated at the beginning of the sequence. This observation im-
plies that the anchor block’s effectiveness is not solely due to its role in managing attention sinks
but may involve other underlying factors. These findings remain consistent across both base and
instruct models, as well as for all sequence lengths. Further investigation into why the anchor block
size must be equivalent to the context block size is left for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this paper, we introduced Star Attention, a novel block-sparse attention mechanism designed to
enable efficient inference on long sequences in transformer-based LLMs. The method operates in
two phases: (1) context tokens are processed using blockwise-local attention, with the context seg-
mented into blocks where each block is prefixed with an anchor block; and (2) then the query and
response tokens attend to all prior cached tokens through sequence-global attention. Star Attention
delivers up to 11x speedup over Ring Attention while maintaining 95-100% accuracy, significantly
enhancing both memory efficiency and inference speed. Scaling Star Attention to longer sequences
(up to 1M) and larger models, we observe even greater speedups while preserving similar levels of
accuracy. Despite these advances, several open questions remain. The role and optimal size of an-
chor blocks relative to context blocks require further exploration. Additionally, while Star Attention
performs effectively with block sizes set to one-quarter of the sequence length, accuracy degrades
when using smaller blocks on longer sequences. Future work will focus on refining the anchor
block mechanism and improving performance on more complex long-context tasks to enhance the
scalability and robustness of Star Attention.

REFERENCES

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document Transformer.
arXiv:2004.05150, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. ICLR, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. ACL, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. ICLR,
2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. NeurIPS, 2022.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. ICLR, 2024.

Gemini-Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text. arXiv:2403.05530, 2024.

Gradient.ai. RULER vs. Gradient’s 1M context length Llama-3-70B. https://gradient.ai/
blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models?
COLM, 2024.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe: Efficient training of giant neural
networks using pipeline parallelism. NeurIPS, 2019.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-
Haystack. arXiv:2406.10149, 2024.

10

 https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
 https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
 https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
 https://gradient.ai/blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b
 https://gradient.ai/blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
Long sequence training from system perspective. ACL, 2023.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-
infinite context. ICLR, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. ICML,
2024b.

Meta-AI. Fully sharded data parallel: faster AI training with fewer GPUs. https://
engineering.fb.com/2021/07/15/open-source/fsdp/, 2021.

Meta-AI. Introducing Llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax.
arXiv:1805.02867, 2018.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context Transformers with infini-attention. arXiv:2404.07143, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism. arXiv:1909.08053, 2019.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. ICML, 2003.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv:2405.05254, 2024.

Thomas Wolf, Lysandre Debut, et al. Transformers: State-of-the-art natural language processing.
EMNLP: System Demonstrations, 2020.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. ICML, 2024.

11

https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A STAR ATTENTION PSEUDO-CODE

Algorithm 1 Star Attention - Phase 1: Context Encoding

Require: Context c, Block size b
1: L← length(c)
2: Split c into n = ⌈L/b⌉ blocks, such that c = [c1, c2, . . . , cn] ▷ Each block has upto b tokens
3: for i = 2 to n do
4: c′i ← (c1, ci) ▷ Each block ci is prefixed with anchor block c1
5: end for
6: for each host concurrently do
7: Initialize an empty list kv
8: end for
9: Distribute augmented blocks [c′1, c

′
2, . . . , c

′
n] across all hosts

10: for each host concurrently do ▷ Parallel processing on each host
11: for each assigned block c′i do
12: Compute attention over 2b tokens in c′i
13: Generate KV cache for c′i
14: Discard KV cache for anchor block c1
15: Append remaining KV cache (for ci) to kv
16: end for
17: end for

Algorithm 2 Star Attention - Phase 2: Query Encoding and Token Generation

Require: Query tokens q, number of output tokens no, KV cache kvh of each host from Phase 1
1: Designate one host as the query-host hq

2: Broadcast query tokens q to all hosts
3: Initialize input tokens← q
4: Initialize output tokens← []
5: for i = 1 to no do ▷ Generate no output tokens
6: for each transformer layer do ▷ Process through all transformer layers
7: for each host h concurrently do ▷ Execute parallel computations on each host
8: Compute query, key, and value vectors (Q,K, V ) using input tokens
9: if h = hq then ▷ If this is the query-host

10: Append the new K and V vectors to kvhq

11: end if
12: Compute local attention scores Ah for query Q using the local KV cache kvh
13: Compute local log-sum-exp sh (logarithm of the softmax denominator)
14: end for
15: Gather all Ah and sh from hosts: s = [s1, s2, . . . , sH ], A = [A1, A2, . . . , AH ]
16: Initialize sglobal ← s1, Aglobal ← A1

17: for h = 2 to H do ▷ Aggregate attention scores across hosts
18: Update global log-sum-exp sglobal using online softmax:

sglobal ← sglobal + log (1 + exp(sh − sglobal))

19: Update global attention scores:
Aglobal ← exp(sh − sglobal) ·Aglobal + exp(Ah − sglobal) ·Ah

20: end for
21: end for
22: Generate the next output token from the last transformer layer
23: Append the new output token to output tokens
24: Set input tokens← [new output token]
25: end for
26: return output tokens

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B EVALUATION BENCHMARKS

We evaluate Star Attention on the RULER benchmark which comprises 13 tasks covering domains
such as Needle-in-a-Haystack (Retrieval), Multi-Hop Tracing, Aggregation, and Question Answer-
ing. Each task comprises 500 samples. For the ablations, we choose four Needle-In-A-Haystack
(NIAH) tasks where Paul Graham essays serve as the distractor text (haystack): Single 2, Single 3,
MultiKey 1, and MultiQuery. In these tasks, a key-value pair is concealed within a long context, and
the model must identify the value corresponding to the key based on the provided input query. Table
4 presents the configurations of all the tasks in RULER.

Task Haystack Keys ValuesCategory Name Type Type # Type # # Outputs

Single 1 noise words 1 numbers 1 1
Single 2 book words 1 numbers 1 1
Single 3 book words 1 uuids 1 1
MultiKey 1 book words 4 numbers 1 1
MultiKey 2 line words ∞ numbers 1 1
MultiKey 3 kv uuids ∞ uuids 1 1
MultiValue book words 1 numbers 4 1

NIAH
(Retrieval)

MultiQuery book words 4 numbers 1 4

Multi-Hop
Tracing Variable Tracking –

Common Words Extraction –Aggregation Frequent Words Extraction –

Question QA 1 (squad) –
Answering QA 2 (hotpotqa) –

Table 4: Configuration of RULER tasks

Additionally, we also evaluate our method on the BABILong benchmark. In BABILong, we choose
5 tasks (shown in Table 5), each containing a 1000 samples. These tasks are generated by simulating
a set of characters and objects engaged in various movements and interactions across multiple loca-
tions. Each interaction is represented by a factual statement, and the objective is to answer questions
based on the facts derived from the current simulation.

Task Name # Facts per task

qa1 single supporting fact 2 - 10
qa2 two supporting facts 2 - 68
qa3 three supporting facts 4 - 32
qa4 two arg relations 2
qa5 three arg relations 2 - 126

Table 5: Configuration of tasks in BABILong

C EXPERIMENT DETAILS

C.1 BASELINE COMPARISON

Our implementation utilizes the HuggingFace Transformers library (Wolf et al., 2020), which cur-
rently lacks support for multi-node inference. As a result, when performing inference with the
Llama-3.1 8B model using standard causal autoregressive generation on sequences exceeding 64K
tokens with bfloat16 precision across 8 A100 GPUs, we encounter out-of-memory (OOM) errors.
Given these limitations, we adopt Ring Attention as a practical and relevant baseline for evaluating
Star Attention’s performance on sequences up to 1 million tokens in length.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6 presents the time per sample for vanilla autoregressive generation, Ring Attention, and Star
Attention across sequence lengths ranging from 16K to 128K. The results indicate that both Ring
and Star Attention can process sequences up to 128K tokens on 8 A100 GPUs, whereas vanilla
autoregressive inference encounters OOM issues beyond 64K tokens. For sequence lengths below
32K, vanilla inference is faster than the distributed attention mechanisms, primarily due to the GPU
communication overhead incurred in the distributed setups. However, in long context scenarios i.e.
on sequence lengths exceeding 32K tokens, Star Attention begins to demonstrate clear performance
advantages. As demonstrated in Table 1, the speedup achieved by Star Attention increases signifi-
cantly with longer sequence lengths.

Seq. Length Time Per Sample (s)
(K) Vanilla Ring Star

16 7 10 9
32 10 12 10
64 18 22 12
128 OOM 53 20

Table 6: Time per sample (seconds) for Llama3.1-8B-Instruct model with vanilla (global) inference,
ring (global) and star attention, using 8 A100 GPUs. Vanilla autoregressive generation encounters
out-of-memory (OOM) at 128K sequence length. It performs best in short context scenarios (i.e.
sequences upto 32K tokens) but in long context scenarios, star attention demonstrates significant
speedup.

C.2 HARDWARE FOR INFERENCE SPEED

In table 1, we use A100 GPUs to run the inference speedup tests. Table 7 describes the number of
GPUs and the number of parallel workers used to obtain these numbers for Ring Attention vs Star
Attention.

Model Size Seq. Length # GPUs # Workers

8B
16K - 128K 8 4
256K - 512K 16 8

1M 32 16

70B
16K - 32K 8 4

64K 16 4
128K 32 8

Table 7: Resources used for the speedup experiments

C.3 PROMPT TEMPLATES

Prompt structure for base models:

1 {context}{query}{answer prefix}

Prompt structure for Llama-3 and Llama-3.1 Instruct models:

1 <|begin of text|><|start header id|>system<|end header id|>
2

3 You are a helpful
assistant.<|eot id|><|start header id|>user<|end header id|>

4

5 {context}{query}<|eot id|><|start header id|>assistant<|end header id|>
6

7 {answer prefix}

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The portion in blue is processed during Phase 1 for blockwise context encoding, while the remain-
ing text in gray is processed in Phase 2 for query encoding and token generation. The {context}
and {query}{answer prefix} denote the context and the query portion of the input prompt, respec-
tively. The {answer prefix} is only relevant for the RULER benchmark.

D ACCURACY OF STAR ATTENTION

Table 8 shows the exact accuracy scores of star attention vs global attention across the RULER and
the BABILong benchmark from Figure 4.

Model Seq. Block RULER (%) BABILONG (%)
length size Global Star ∆ Global Star ∆

GradientAI
Llama-3-8B
-Instruct-262k

16K 4K 88.92 89.48 +0.63% 43.60 43.40 -0.46%
32K 8K 85.25 85.74 +0.58% 40.00 39.40 -1.50%
64K 16K 83.17 82.30 -1.05% 40.40 39.00 -3.47%

128K 32K 79.25 77.79 -1.83% 30.80 33.20 +7.79%

Meta
Llama-3.1-8B
-Instruct

16K 4K 99.78 91.27 -1.02% 59.60 59.80 +0.34%
32K 8K 99.66 88.70 +1.34% 54.60 54.00 -1.10%
64K 16K 98.72 83.37 -1.67% 49.20 46.60 -5.28%

128K 32K 92.54 74.41 -2.49% 40.00 38.60 -3.50%

Meta
Llama-3.1-8B
-Base

16K 4K 77.18 78.64 +1.9% 22.00 25.20 +14.55%
32K 8K 74.76 76.91 +2.88% 22.60 24.00 +6.19%
64K 16K 70.01 69.09 -1.32% 26.80 27.20 +1.49%

128K 32K 64.68 69.58 +7.58% 31.00 26.40 -14.84%

Table 8: Accuracy (%) of star attention on RULER and BABILONG evaluated on sequence lengths
of 16K, 32K, 64K, and 128K. In all experiments, the block size and anchor block size are set to
one-quarter of the total sequence length. Results using the Llama-3-8B-Instruct-262k, Llama-3.1-
8B-Instruct and Llama-3.1-8B-Base models demonstrate that star attention retains 95-100% of the
accuracy of global attention, and in some cases, even outperform it.

E ACCURACY ON ALL RULER TASKS

This section contains the accuracy of all the models we evaluated across all 13 tasks in RULER.

Llama-3.1-8B-Instruct

Block
Size
(K)

Seq.
Len.
(K)

Retrieval (NIAH)

Single 1 Single 2 Single 3 Multi-
Key 1

Multi-
Key 2

Multi-
Key 3

Multi-
Value

Multi-
Query

Global
Attn.

16 100 100 100 99.8 100 99 99.9 99.5
32 100 100 100 99.8 99.8 99.6 99 99.05
64 100 100 100 99.4 99.2 96.8 95.15 99.2
128 100 99.6 99.8 97.6 87.2 66.8 91.55 97.8

4 16 100 99.4 100 98 98.8 99 91.1 98.25
8 32 100 100 100 99.2 99.4 98.2 94 98.3
16 64 100 100 100 99.2 98 90 85.35 97.9
32 128 100 100 99.6 96.4 84.8 59 82.7 96.55

Table 9: Accuracy of Llama-3.1-8B-Instruct on retrieval tasks in RULER with Global Attention and
Star Attention

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Llama-3.1-8B-Instruct

Multi-Hop Aggregation Question AnsweringBlock Size
(K)

Seq. Len.
(K) VT CWE FWE QA 1 QA 2

Global
Attn.

16 99.56 75 88.87 80.8 56.4
32 99.2 14.7 93.93 78.8 54
64 95.44 1.96 85.13 78.8 51.2

128 61.76 0.04 72.33 76 41.6

4 16 91.96 85.72 89.73 80.2 54.4
8 32 92.68 45.66 95.27 78.6 51.8

16 64 92.32 5.78 86.47 78.4 50.4
32 128 62.8 0.04 75.87 68 41.6

Table 10: Accuracy of Llama-3.1-8B-Instruct on multi-hop, aggregation, and question answering
tasks in RULER with Global Attention and Star Attention

Llama-3.1-8B-Base

Block
Size
(K)

Seq.
Len.
(K)

Retrieval (NIAH)

Single 1 Single 2 Single 3 Multi-
Key 1

Multi-
Key 2

Multi-
Key 3

Multi-
Value

Multi-
Query

Global
Attn.

16 100 100 100 99.2 100 99.4 99.45 99.85
32 100 100 100 99 99.4 99.4 99.55 99.4
64 100 100 100 98.8 86.2 95.4 96.8 97.55
128 100 100 98 93.8 53.6 64 80.9 85.3

4 16 100 100 100 97.4 99.2 99 98.4 99.15
8 32 100 100 100 96.2 98.2 99.2 98.55 98.7
16 64 100 100 100 96.6 90.6 85.6 94.9 96.15
32 128 100 100 98.2 88.8 67 47.6 72.75 77.55

Table 11: Accuracy of Llama-3.1-8B-Base on retrieval tasks in RULER with Global Attention and
Star Attention

Llama-3.1-8B-Base

Multi-Hop Aggregation Question AnsweringBlock Size
(K)

Seq. Len.
(K) VT CWE FWE QA 1 QA 2

Global
Attn.

16 99.92 65.66 17.4 11 11.4
32 99.28 23.56 28.27 13.8 10.2
64 96.8 2.04 13.73 14.2 8.6

128 71.68 0.64 30.53 51.2 11.2

4 16 97.24 86.46 20.67 11.6 13.2
8 32 97.2 58.72 30.47 11.8 10.8

16 64 94.44 8.86 11.2 10.6 9.2
32 128 81.6 2.98 81.27 48.2 38.6

Table 12: Accuracy of Llama-3.1-8B-Base on multi-hop, aggregation, and question answering tasks
in RULER with Global Attention and Star Attention

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Llama-3.1-70B-Instruct

Block
Size
(K)

Seq.
Len.
(K)

Retrieval (NIAH)

Single 1 Single 2 Single 3 Multi-
Key 1

Multi-
Key 2

Multi-
Key 3

Multi-
Value

Multi-
Query

Global
Attn.

16 100 100 100 97.8 99.8 98.6 99 99.65
32 100 100 100 99.6 99 99 99.1 100
64 100 100 100 99.8 96 97.6 95.65 99.95
128 97.2 99.2 99.4 93 26 27.4 92.05 92.45

4 16 100 100 100 97.4 99.4 99.2 80.9 97.2
8 32 100 100 100 98.2 96.4 95 87.85 97.4
16 64 100 100 100 98 93.2 95.4 86.25 96.45
32 128 98.2 100 99.4 80 19.2 16.4 61.65 70.8

Table 13: Accuracy of Llama-3.1-70B-Instruct on retrieval tasks in RULER with Global Attention
and Star Attention

Llama-3.1-70B-Instruct

Multi-Hop Aggregation Question AnsweringBlock Size
(K)

Seq. Len.
(K) VT CWE FWE QA 1 QA 2

Global
Attn.

16 100 99.3 97 82.6 62.4
32 100 94.22 98.87 80.4 59.8
64 100 39.7 93.73 74.6 54

128 50.08 2.98 77 58.4 33.6

4 16 87.32 99.52 97.13 82.2 60.6
8 32 90.08 94.5 99.2 80.2 58

16 64 91.52 49.54 94.93 73.4 53.6
32 128 41.4 2.7 80.07 50.8 31

Table 14: Accuracy of Llama-3.1-70B-Instruct on multi-hop, aggregation, and question answering
tasks in RULER with Global Attention and Star Attention

GradientAI Llama-3-8B-Instruct-262K

Block
Size
(K)

Seq.
Len.
(K)

Retrieval (NIAH)

Single 1 Single 2 Single 3 Multi-
Key 1

Multi-
Key 2

Multi-
Key 3

Multi-
Value

Multi-
Query

Global
Attn.

16 100 100 99.8 99.6 100 96 95.35 99.85
32 100 100 100 99.8 100 95 96.2 99.75
64 100 100 100 98.4 99.4 91.4 97.75 99.6
128 100 97.8 98.8 98.8 99.8 79.8 94.65 98.05
256 100 100 99.4 96.4 89.6 25.6 87.3 93.2

4 16 100 98.4 96.6 99.6 99.4 97 89.2 99.75
8 32 100 100 100 99.2 99.6 96 91.6 99.7
16 64 100 100 100 99.4 99.4 90 91.45 99.3
32 128 100 100 100 98.4 97.8 66.8 89.3 96.8
32 256 100 99.6 98.4 91.4 53 23 75 81.05

Table 15: Accuracy of GradientAI Llama-3-8B-Instruct-262K on retrieval tasks in RULER with
Global Attention and Star Attention

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

GradientAI Llama-3-8B-Instruct-262K

Multi-Hop Aggregation Question AnsweringBlock Size
(K)

Seq. Len.
(K) VT CWE FWE QA 1 QA 2

Global
Attn.

16 95.36 42.1 91.07 80.2 56.6
32 93.88 4.5 90.53 74 54.6
64 92.28 0.22 82.73 69.8 49.6

128 77.88 0.36 73.27 65.6 45.4
256 52.8 1.8 77.93 67 37

4 16 90.64 67.32 90.53 77.2 57.6
8 32 92.16 19.2 89.6 73.8 53.8

16 64 88.6 0.4 84.13 69.6 47.6
32 128 81.12 0.3 75.4 61.6 43.8
32 256 72.64 1.8 81.6 61.6 33

Table 16: Accuracy of GradientAI Llama-3-8B-Instruct-262K on multi-hop, aggregation, and ques-
tion answering tasks in RULER with Global Attention and Star Attention

GradientAI Llama-3-8B-Instruct-1048K

Block
Size
(K)

Seq.
Len.
(K)

Retrieval (NIAH)

Single 1 Single 2 Single 3 Multi-
Key 1

Multi-
Key 2

Multi-
Key 3

Multi-
Value

Multi-
Query

Global
Attn.

16 100 99.2 100 99 99.6 90.2 96.1 99.25
32 100 100 100 99.4 99.2 69.8 96.3 98.45
64 100 100 100 99 99 51.4 96 98.75
128 100 98.2 99.8 99.8 98.8 42.8 98.2 97.75
256 100 100 100 98.4 97 22.4 96.1 97.15
512 100 99.8 100 95.6 88.4 9.4 89.25 92.55

1024 99.4 99.4 100 92.6 67.8 1.4 82 88.85

4 16 100 98 96.8 98.6 99 94.4 90.3 98.1
8 32 100 99.8 100 98.8 99.4 87 91 97.6
16 64 100 100 100 99.4 99 66.8 92.3 97.95
32 128 100 100 100 99.4 98.4 62.8 92.25 96.8
32 256 100 99.8 100 95.4 90.4 53.8 76.5 88.6
32 512 99.8 95.8 97.6 85.8 64.2 19.4 57.2 63.8
32 1024 99.6 97.2 100 84.2 27 1 55.15 60.3

Table 17: Accuracy of GradientAI Llama-3-8B-Instruct-1048K on retrieval tasks in RULER with
Global Attention and Star Attention

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

GradientAI Llama-3-8B-Instruct-1048K

Multi-Hop Aggregation Question AnsweringBlock Size
(K)

Seq. Len.
(K) VT CWE FWE QA 1 QA 2

Global
Attn.

16 93.32 22.52 88.73 76.8 54.8
32 91.96 0.54 87.27 75.4 54.4
64 81.6 0.32 79.8 75.4 46.4

128 76.68 0.22 76.67 68.4 48.8
256 63 0.22 78.27 71.4 43.8
512 34.8 0.86 85.6 66.8 37.8
1024 24.28 3.5 72.53 66.2 30.2

4 16 90 62.64 86.53 77.4 55.4
8 32 90.08 11.38 85.2 75.2 53.8

16 64 81.96 0.38 82 74.4 46.6
32 128 79.32 0.22 78.33 64.6 46.4
32 256 66.4 0.22 81.53 67.4 37.6
32 512 50.76 0.24 85 63 30.8
32 1024 63.68 6.9 79.67 57.8 26.4

Table 18: Accuracy of GradientAI Llama-3-8B-Instruct-1048K on multi-hop, aggregation, and
question answering tasks in RULER with Global Attention and Star Attention

Sin
gle

-NIAH

Mult
i-N

IAH

Mult
i-h

op

 Tra
cin

g

Agg
reg

ati
on QA

40

60

80

100

Ac
cu

ra
cy

 (%
)

Seq Length: 16K

Sin
gle

-NIAH

Mult
i-N

IAH

Mult
i-h

op

 Tra
cin

g

Agg
reg

ati
on QA

40

60

80

100

 

Seq Length: 32K

Sin
gle

-NIAH

Mult
i-N

IAH

Mult
i-h

op

 Tra
cin

g

Agg
reg

ati
on QA

40

60

80

100

 

Seq Length: 64K

Sin
gle

-NIAH

Mult
i-N

IAH

Mult
i-h

op

 Tra
cin

g

Agg
reg

ati
on QA

40

60

80

100

 

Seq Length: 128K

Global Attention Star Attention (Ours)

Figure 8: Accuracy (%) of star attention using the Llama-3.1-8B-Instruct model on the 5 categories
of tasks in RULER on sequence lengths of 16K, 32K, 64K, and 128K. In all experiments, the block
size and anchor block size are set to one-quarter of the total sequence length. For the NIAH and
QA tasks, Star Attention retains upto 95-100% accuracy of the baseline. The Multi-Hop Tracing
task is notably challenging because it requires inter-block communication, which leads to expected
performance degradation. Interestingly, Star Attention performs better with sequence lengths of
128k on this task, but this may be due to noise given the suboptimal baseline. In aggregation tasks,
Star Attention show significant improvement as distributed local attention helps the model in such
summarization tasks.

19


	Introduction
	Star Attention Algorithm
	Phase 1: Context Encoding
	Phase 2: Query Encoding and Token Generation

	Experiments
	Setup
	Results
	Trade-off between accuracy and speed
	In-Depth Analysis on RULER Task Categories

	Ablation Study
	Position and Content of Anchor Block
	Size of Anchor block

	Conclusion
	Star Attention Pseudo-code
	Evaluation Benchmarks
	Experiment Details
	Baseline Comparison
	Hardware for Inference Speed
	Prompt Templates

	Accuracy of Star Attention
	Accuracy on all RULER Tasks

