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Abstract

As AI technologies improve, people are increasingly willing to delegate tasks
to algorithmic agents. A human decision-maker decides whether to delegate to
an AI agent based on features of the decision-making instance they are faced
with; since humans typically lack full awareness of these features, they perform
a kind of categorization by treating decision-making instances that agree in all
their observable features as indistinguishable from one another. In this paper, we
define the problem of designing the optimal algorithmic delegate in the presence of
categorization, and reveal the fundamentally combinatorial nature of this problem.
We show that finding the optimal delegate is computationally hard in general, but
we find an efficient algorithm for a large family of settings.

1 Introduction

Algorithmic agents – such as robots, AI assistants, and chatbots – are increasingly accurate and
effective. In many cases, a human user works with the algorithmic agent to select an action, and
the quality of the algorithmic agent must be measured by the performance of the combined human-
algorithm system, or the team performance [1, 2]. Recent work has demonstrated that the algorithmic
agent with the highest standalone accuracy does not necessarily achieve the optimal team performance
[2, 3]. Thus, it is important and natural to ask: How can one design the optimal algorithmic teammate?

The answer to this depends on the nature of the team. There are many ways a human may partner with
an algorithmic agent; we focus on teams where the machine is a delegate to whom the human may
hand off the choice of action [4–6]. In cases where it is impossible or prohibitively time-consuming
for the human and algorithm to communicate before selecting each action, the algorithm must be a
delegate. Moreover, as AI technology improves, users may prefer to delegate low-stakes decisions to
increase efficiency. Examples of algorithmic delegates include autonomous vehicles where a driver
must decide whether to drive herself or to engage an AI system [7, 8], or AI assistants that may be
dispatched to answer emails, schedule meetings, or buy products online [9, 10].

A key question is whether a human user – presented with a scenario where an action must be selected
and taken – will delegate the choice of action or not. In real scenarios, the human will not have
complete information about the specific instance of the decision-making problem she faces, and as a
result cannot make this delegation decision perfectly [1]. For example, the user of an AI shopping
agent may not have details about past trends in the online market, and a driver may not know about
rough road conditions ahead or a nearby hidden driveway that tends to cause accidents. The human
must then make the best delegation and action decisions she can given what she can observe. We refer
to these sets of human-indistinguishable instances as categories. The algorithmic agent – hereafter,
the machine – similarly has incomplete information [11]. The AI shopping agent may not have full
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knowledge of the user’s preferences, and the autonomous vehicle may not know about a large sports
event in the neighborhood and other social context. Thus the machine also only observes its own
categories of states.

Overview of results. In this work, we investigate how to design the optimal algorithmic delegate in
the presence of categorization. We first develop a simple model of human delegation to an algorithmic
agent where both the human and algorithm have incomplete information about the world, and set up
the problem of finding the optimal algorithmic delegate. We prove a characterization theorem which
says the optimal delegate is designed for the categories in which it is used, and reveals a fundamental
combinatorial structure in the problem. We then show that finding the optimal algorithmic delegate is
tractable when the ground truth optimal action is a decomposable function of the human and machine
features, but that it is NP-hard in general.

Related work. This paper extends a long line of work addressing how to design algorithmic agents to
improve performance in human-AI teams [2, 12, 6, 13, 14]. In particular, we focus on cases in which
the human must choose to either delegate to the machine [5, 15] or take action by herself; to our
knowledge, we are the first to study the design of optimal delegates that account for categorization.
Bansal et al. [2] propose that a machine’s performance should be optimized for the categories where
it is used, but do not study delegation. Other work studies machine design in other team structures,
such as settings where the machine delegates to the human [16, 17], settings where the human may
observe the machine’s output before deciding [2, 12], and settings where a human chooses between
accepting a machine’s prediction and delegating to another human [18].

Categorization is a well-known aspect of human decision-making [19, 20]. This act of agents grouping
decision-making scenarios has been modeled both as a behavioral phenomenon [19–21], and as
a consequence of limited information [1, 11, 22]. We focus on the second type of categorization;
our focus on information-driven categorization is consistent with contemporary human-algorithm
collaboration work: “mental models” [1] and “indistinguishable” inputs [11] are analogous to our
human and machine categories respectively. Moreover, our human categories are captured by
“generalization functions” in Vafa et al. [22] when the human maintains equivalent beliefs about all
states with the same human-accessible features. Iakovlev and Liang [23] also study a model where a
human and machine have access to different information in the form of binary features, but focus on
the problem of a third party selecting an evaluator. Some of these prior works study delegation in the
presence of categorization [5, 22], but do not investigate the question of optimal delegate design.

This work also interfaces with a variety of other disciplines. Our model can represent a type of
interpretability [24] by the number of shared features between the human and machine: in our model,
more shared features corresponds to more similar categories and actions taken. Categorization can
cause over-reliance [25]: the need to make the same delegation decision across a category can
result in over- or under-delegation within categories. In human factors analysis, function allocation
prescribes a qualitative process by which a designer determines which tasks in a system should be
automated [26, 27]; we take a quantitative approach which is more suited to modern AI design.

2 Model

Let the world be described by d binary features x1, ..., xd ∈ {0, 1}. There are then n = 2d possible
states of the world x = (x1, ..., xd) ∈ {0, 1}d; for simplicity, we let each state occur with equal
probability. In each state x, there is some ground truth correct action f∗(x) ∈ R that any agent
should take. If an agent takes action a ∈ R, it will receive a loss of (a− f∗(x))2.

There are two agents, a human and a machine. The human can observe features IH ⊆ {1, ..., d}; the
machine can observe features IM ⊆ {1, ..., d}. A delegation setting is determined by IH , IM , and
f∗. While IH and IM can each be arbitrary, we will assume for simplicity that the set of features is
partitioned into IH and IM ; in Appendix C we show how our results generalize. Let xH and xM

denote the restrictions of x to human and machine-observable features.

To situate how this formalism works through a brief example, suppose that the machine is an AI
shopping agent as in the introduction, which can traverse the Web to purchase items on a user’s
behalf. In this case, x represents the features of an item on a given day, and the ground truth optimal
action f∗(x) is the highest price a user should pay for that item on that day. The human-observable
features IH could be the users’ preferences and level of urgency for purchasing the item, and IM
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could be information on how the item’s current price compares to market trends for that item on the
Web. The human and machine might share some features – the human could communicate some
preferences to the machine – but the human cannot fully articulate the subtleties of her preferences,
(such as how urgently she needs an item or her preferences for substitutes) and the machine cannot
fully summarize all the complex market trends involved in a way that’s legible to the human.

A human category C is a set of states that are indistinguishable to a human because they all share
the same human-observable features. Formally, states x and z are in the same human category if
and only if xH = zH . Similarly, a machine category K is a set of states indistinguishable to the
machine, so that states x and z are in the same machine category if and only if xM = zM . Let
H and M denote the set of all human and machine categories respectively; H and M are each a
partition of the states. We can enumerate the human categories C1, C2, ..., Ch ∈ H and the machine
categories K1,K2, ...,Km ∈ M. For a state x, let C(x) and K(x) be the human and machine
categories containing x. Note that when IH and IM partition the feature set there is a single state
xij ∈ Ci ∩Kj .

Since each agent can’t distinguish between states within a category, the human and machine choose
actions as a function of the category they observe. Let fH : H → R and fM : M → R denote the
human and machine’s action functions. The delegation process works as follows.

1. Given state x, the human observes the category C(x).

2. The human decides whether or not to delegate based on which agent has better expected
performance in C(x).

3. If the human does not delegate, she takes action fH(C(x)).

4. If the human delegates, the machine observes the machine category K(x), and takes action
fM (K(x)).

The machine’s designer – typically another human – is aware of this process, and must design fM
accordingly; we investigate the optimal design for fM . Note that we assume the human can observe
both her own and the machine’s expected loss in each category; for example she may learn this over
time through interactions with the machine [28].

Returning to the shopping agent example, the human can observe her preferences but not the market
trends, resulting in a set of indistinguishable states corresponding to a human category C. Based on C,
she decides whether to delegate to the machine, or take action fH(C). If she delegates to the machine,
the machine observes the market trends but not all aspects of the user’s preferences, resulting in a set
of indistinguishable states that corresponds to a machine category K, and takes action fM (K). Our
results address how a designer should create the optimal agent fM for this setting.

(a) Ground truth correct actions (b) Delegate in {C2, C3} (c) Delegate in {C1, C2, C4}

Figure 1: Example delegation problem.

An illustrative example. Before formalizing the general delegation problem, we will work through
the example in Figure 1. Here, the human and machine each have four categories (as would arise
when each has access to two underlying Boolean features). Figure 1a visualizes these categories in a
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grid, where the rows are human categories and the columns are machine categories. The value of
entry (i, j) is the ground truth correct action f∗(xij).

In a given state xij , the human can observe which row i the state is in, and will either delegate to the
machine, or take action fH(Ci). Suppose that the human decides to delegate in categories {C2, C3}.
As illustrated in the upper grid of Figure 1b, her loss-minimizing action in categories C1 and C4 is to
take the average action across the category. When the human delegates, the machine can observe
the column j and take some action fM (Kj). If the machine knows that the human doesn’t delegate
in states C1 and C4, its loss-minimizing action is to take the average action across only C2 and C3,
shown in the lower grid of Figure 1b.

However, these fH and fM have very high loss. Can we do better? In this example, states in the
human category C3 are difficult for the machine to handle: the optimal action 5 is often very different
than in other states in the machine’s categories. However, C3 is very easy for the human to take action
in: the human can take action 5 with no loss, as illustrated in the top grid in Figure 1c. Without C3,
the remaining values in each machine category have very low variance, and the machine achieves very
good performance even if the human delegates in all other human categories. Indeed, we can show
that the fM shown in Figure 1c that averages over the human categories excluding C3 is optimal.

The example above suggests two high-level insights. First, the optimal delegate partitions human
categories into “delegate” and “non-delegate” categories, is designed to only be used in “delegate”
categories, and is in fact only used in “delegate” categories. We generalize this in Proposition 1.
Second, to find this partition, the machine’s designer should take the non-delegate human categories
to be those with low variance, and the delegate human categories to be those that make the machine
categories have low variance. The optimal delegate is then designed to only be used in the latter set
of categories. In Proposition 2 we show this is exactly the problem of designing the optimal delegate.

Team loss minimization. We now formalize the general delegation problem. Let ℓH(fH , C) and
ℓM (fM , C) denote the expected loss of the human function fH and machine function fM respectively
in category C. Recall that we assume that the human can observe the machine’s average loss in a
category ℓM (fM , C). When the human is delegating optimally, she will delegate to the machine in
category C if and only if the machine’s loss is lower than the human’s in that category. The loss
associated with the team, in which the human with function fH optimally delegates tasks to the
machine with function fM , is denoted by ℓ(fH , fM ). For simplicity, we refer to this as the team loss.
Formally, the expected team loss is ℓ(fH , fM ) := 1

|H|
∑

C∈H min {ℓH(fH , C), ℓM (fM , C)}.

In a given category C, the human will observe C, and either delegate to the machine, or will take
an action. If the human chooses to take an action, given that the human can only observe C, the
loss-minimizing action in category C is the average value of f∗ in C; we denote the human function
that takes this optimal action in each C by f∗

H . This will be the optimal human function regardless of
the machine’s function fM , so we will restrict our consideration to fH = f∗

H .

The optimal machine action is less clear: in machine category K, the machine has access not only
to the features corresponding to K, but also to the information that the human chose to delegate to
it (by nature of having to choose an action at all). The machine could be oblivious, relying only on
the machine-interpretable features and ignoring the fact that it has been delegated to. In this case
the optimal action in machine category K would be the average value of f∗ across states in K; we
denote this function by f obliv

M . Alternatively, an optimal delegate f∗
M makes use of all the information

available and attains the optimal team loss, f∗
M ∈ argminfM ℓ(f∗

H , fM ).

3 Results

Our goal is now to find optimal delegates f∗
M . We first state two results (Propositions 1 and 2) that

give general versions of the principles from our example above. We then use these results to show
that we can efficiently find the optimal delegate for a large family of functions f∗ (Theorem 3), but
that this is hard in general (Theorem 5). We provide proofs in Appendix B.

Reformulating the problem. In Proposition 1, we transform this problem into a discrete optimization
problem, and, in Proposition 2, we show this discrete problem has a novel combinatorial formulation.
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f obliv
M

f∗
H f∗

M

f∗
H ∧ f obliv

M

f∗
H ∧ f∗

M

Figure 2: Relationships between the losses of different possible human and machine teams. fH ∧ fM
denotes a human with function fH optimally delegating to the machine fM ; an arrow from team A to
team B indicates that the loss of team B will always be (weakly) lower than team A. See Appendix A
for detailed explanations.

Proposition 1 (Informal). To find an optimal delegate f∗
M , it is sufficient and necessary to find a

set of human categories R that attains the minimum team loss when the human delegates to fR
M in

precisely the categories in R.

Proposition 2. Define a matrix V ∈ R|H|×R|M| with entries vij = f∗(xij). The problem of finding
an optimal delegate is as follows:

VARIANCEASSIGNMENT. Fix a set of rows S of V . For each row i ∈ S, pay a cost
proportional to the variance of V across row i, and remove row i from V . Then,
for each column j, pay a cost proportional to the variance across column j of the
remaining entries. Find a set S∗ that minimizes the total cost.

Then for R = {Ci : i /∈ S∗}, fR
M will be an optimal delegate.

Tractability. We first show that if f∗ is separable, that is, f∗ can be decomposed additively into
functions of the human and machine features respectively, we can efficiently find the optimal delegate.
Note that linear functions are separable.
Theorem 3. Suppose that f∗ is separable, that is, f∗(x) = u(C(x)) +w(K(x)) for some functions
u,w. Then we can find an optimal delegate f∗

M in time polynomial in the size of f∗.

We also find that if the human or machine has access to a limited number of features, the problem is
again tractable.
Theorem 4. Suppose that |IH | = O(1) or |IM | = O(1). Then we may find an optimal delegate in
time polynomial in the size of f∗.

However, there is no general efficient algorithm to find the optimal delegate.
Theorem 5. Unless P = NP, there is no algorithm to find an optimal delegate f∗

M in time polynomial
in the size of f∗ for all ground truth functions f∗.

This result motivates why the optimal delegate has not previously been characterized: the problem
has a fundamentally combinatorial nature that makes it intractable to solve.

4 Discussion

In this paper, we developed a formal model for settings where a human decides whether to delegate
to a machine, and showed that categorization arises from information asymmetries. There are many
different machine designs, ranging from an oblivious machine that ignores that it is a delegate, to
an optimal machine that accounts for delegation. In Figure 2 we describe general relationships in
performance between some of these machines. We studied the problem of designing an optimal
machine for delegation in the presence of categorization. We showed that this induces surprisingly
clean algorithmic formulations, and derived tractability results.

An interesting direction for future work is determining other delegation settings in which finding an
optimal delegate is tractable. Moreover, investigating which ground truth optimal action functions f∗

lead to qualitatively different optimal delegates could yield heuristics for intractable instances.
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A Loss comparisons

In this section, we give justifications for the relationships captured in Figure 2. Define ℓ(fA) as the
loss of agent A acting individually.

First, any model with the human optimally delegating between fH and some machine fM will
always be better than fH and fM acting individually, because the human could choose to always
delegate, thus emulating fM , or never delegate to emulate fH . Formally, ℓ(fH , fM ) ≤ ℓ(fH) and
ℓ(fH , fM ) ≤ ℓ(fM ). This produces the arrows from the standalone models to the model teams.

Moreover, ℓ(f∗
H , f∗

M ) ≤ ℓ(f∗
H , fM ) for any machine fM . This implies that delegating to the

oblivious machine will have worse loss than delegating to the optimal delegate f∗
M , i.e., ℓ(f∗

H , f∗
M ) ≤

ℓ(f∗
H , f obliv

M ). This results in an arrow from f∗
H ∧ f obliv

M to f∗
H ∧ f∗

M .

However, without delegation, the oblivious machine will perform better than the optimal delegate,
ℓ(f obliv

M ) ≤ ℓ(f∗
M ): the oblivious machine is defined to be the best machine without delegation. This

results in the final arrow from f∗
M to f obliv

M .

The last two relationships we described echo the results of [2] and [3], who show in other human-
algorithm collaboration settings the optimal individual algorithmic agent is a worse collaborator than
an algorithmic agent designed for collaboration.

B Theorem statements and proofs

In this appendix, we formalize and prove our theoretical results.

B.1 Formal statement and proof of Proposition 1

First, we formally define

fR
M (K) :=

1∑
C∈R |K ∩ C|

∑
C∈R

∑
x∈K∩C

f∗(x).

Recall Proposition 1.

Proposition 1 (Informal). To find an optimal delegate f∗
M , it is sufficient and necessary to find a

set of human categories R that attains the minimum team loss when the human delegates to fR
M in

precisely the categories in R.
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Define D(fH , fM ) = {C ⊆ H : ℓM (fM , C) < ℓH(fH , C)} to be the set of categories in which a
human with function fH will delegate to a machine with function fM .

We formalize Proposition 1 as follows.
Proposition. Let f∗ be a ground truth function. Recall that an optimal delegate f∗

M is defined as a
solution to the optimization problem

min
fM

ℓ(f∗
H , fM ) ≡ min

fM

1

|H|

 ∑
C∈H\D(f∗

H ,fM )

ℓH(f∗
H , C) +

∑
C∈D(f∗

H ,fM )

ℓM (fM , C)

 . (1)

Consider the combinatorial optimization problem

min
R⊆H

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fR
M , C)

 . (2)

If R is a solution to Problem 2, then fR
M is a solution to Problem 1.

Likewise, if f∗
M is a solution to Problem 1, then D(f∗

H , f∗
M ) is a solution to Problem 2.

Proof. First, notice that Problem 1 can be expressed as

min
fM ,R

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)


s.t. R = D(f∗

H , fM )

Moreover, Problem 2 can be expressed as

min
fM ,R

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)


s.t. fM = fR

M

We define an intermediate problem,

min
fM ,R

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)

 (3)

We will show that an optimal solution to Problem 3 is feasible for both Problems 1 (Part 1) and 2
(Part 2). Since all three functions have the same objective, this implies that the set of solutions will
be the same for each problem.

This implies that if f∗
M solves Problem 1, then f∗

M ,D(f∗
H , f∗

M ) solves Problem 3, and thus D(f∗
H , f∗

M )
solves Problem 2. Likewise, if R solves Problem 2, then fR

M ,R solves Problem 3, and fR
M solves

Problem 1.

Part 1. Suppose fM ,R is an optimal solution to Problem 3.

First, for the sake of contradiction suppose that fM ,R is not a feasible solution to Problem 1.

The constraint that R = D(f∗
H , fM ) is equivalent to requiring that both ℓM (fM , C) <

ℓH(f∗
H , C) =⇒ C ∈ R and ℓH(f∗

H , C) < ℓM (fM , C) =⇒ C ∈ H \ R.

If for some C ∈ H \ R, ℓM (fM , C) < ℓH(f∗
H , C), let R′ = R∪ {C}. Then

1

|H|

 ∑
C∈H\R′

ℓH(f∗
H , C) +

∑
C∈R′

ℓM (fM , C)

− 1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)


=

1

|H|
(ℓM (fM , C)− ℓH(f∗

H , C))

< 0
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and fM ,R is not an optimal solution to Problem 3. If instead there is some C ∈ R, and ℓH(f∗
H , C) <

ℓM (fM , C) we can similarly let R′ = R \ {C}, and

1

|H|

 ∑
C∈H\R′

ℓH(f∗
H , C) +

∑
C∈R′

ℓM (fM , C)

− 1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)


=

1

|H|
(ℓH(f∗

H , C)− ℓM (fM , C))

< 0

so fM ,R is not an optimal solution to Problem 3. Thus fM ,R must be a feasible solution to the
Problem 1.

Part 2. We now show that if f∗
M , C is an optimal solution to Problem 3, then f∗

M , C is also a solution
to Problem 2. We first simplify Problem 3.

Problem 3 ≡ min
R

min
fM

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fM , C)


≡ min

R

1

|H|
∑

C∈H\R

ℓH(f∗
H , C) + min

fM

1

|H|
∑
C∈R

ℓM (fM , C)

≡ min
R

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fR
M , C)


≡ Problem 2.

This is because
fR
M = argmin

fM

1

|H|
∑
C∈R

ℓM (fM , C),

since squared loss is uniquely minimized by the mean.

Thus Problem 3 is equivalent to Problem 2 and we are done.

B.2 Proof of Proposition 2

Recall Proposition 2.

Proposition 2. Define a matrix V ∈ R|H|×R|M| with entries vij = f∗(xij). The problem of finding
an optimal delegate is as follows:

VARIANCEASSIGNMENT. Fix a set of rows S of V . For each row i ∈ S, pay a cost
proportional to the variance of V across row i, and remove row i from V . Then,
for each column j, pay a cost proportional to the variance across column j of the
remaining entries. Find a set S∗ that minimizes the total cost.

Then for R = {Ci : i /∈ S∗}, fR
M will be an optimal delegate.

To formalize this, we must define the variance of a set. For a finite set S ⊂ R, define the mean µ of S
as µ(S) := 1

|S|
∑

x∈S x. The variance σ2 of S is σ2(S) := 1
|S|
∑

x∈S(x − µ(x))2. When we take
σ2(f∗(x) : x ∈ X) for some set of states X , we will simply write σ2(f∗|X).

Finally, if R is a set of retained human categories, define S(R) to be the set of all states in categories
in R, S(R) :=

⋃
C∈R C.

We now formalize and extend Proposition 2 in the following Proposition.
Proposition. To find an optimal delegate f∗

M , it is sufficient to find a set R that solves

min
R

1

|H|
∑

C∈H\R

σ2(f∗|C) +
1

n

(∑
K

|K ∩ S(R)|σ2 (f∗|K ∩ S(R))

)

10



and take f∗
M = fR

M . If the human and machine do not share any features, IH ∩ IM = ∅, then
there is a single xij ∈ Ci ∩ Kj for each i, j, and we can define vij = f∗(xij) to form a matrix
V ∈ R|H| × R|M|. The problem of finding an optimal delegate is as follows:

Fix a set of rows R ⊂ [|H|]. For each row i /∈ R, pay a cost 1
|H|σ

2(vij : j ∈ [|M|]).
For each column, pay a cost |R|

n σ2(vij : i ∈ R). Find the set R∗ that minimizes
the total cost.

Then for R = {Ci : i ∈ R∗}, fR
M will be an optimal delegate.

Proof. Recall from Proposition 1 that to find an optimal delegate f∗
M , it is sufficient to find R that

solves

argmin
R⊆H

1

|H|

 ∑
C∈H\R

ℓH(f∗
H , C) +

∑
C∈R

ℓM (fR
M , C)

 . (4)

and take f∗
M = fR

M . Thus for the remainder of this proof, we will focus on solving the problem
above.

First, note that each category C has size |C| = n
|H| .

Substituting in the expressions for ℓH and ℓM , we have the objective

1

|H|

 ∑
C∈H\R

∑
x∈C

1

|C|
(f∗

H(C)− f∗(x))2 +
∑
C∈R

∑
x∈C

1

|C|
(fR

M (K(x))− f∗(x))2


=

1

|H|
∑

C∈H\R

σ2(f∗|C) +
1

|H|

(∑
C∈R

∑
x∈C

|H|
n

(fR
M (K(x))− f∗(x))2

)
(by defn of f∗

H )

=
1

|H|
∑

C∈H\R

σ2(f∗|C) +
1

n

∑
K

∑
x∈K∩S(R)

(fR
M (K)− f∗(x))2


=

1

|H|
∑

C∈H\R

σ2(f∗|C) +
1

n

∑
K

|K ∩ S(R)|
∑

x∈K∩S(R)

1

|K ∩ S(R)|
(fR

M (K)− f∗(x))2


=

1

|H|
∑

C∈H\R

σ2(f∗|C) +
1

n

(∑
K

|K ∩ S(R)|σ2(f∗|K ∩ S(R))

)
(by defn of fR

M )

If the human and machine features partition the set of features, then |K ∩ C| = 1 for each human
category C and machine category K. Then

|K ∩ S(R)| ≜ |K ∩
⋃

C∈R
C| = |

⋃
C∈R

K ∩ C| =
∑
C∈R

1 = |R|.

We can thus simplify the previous expression to
1

|H|
∑

C∈H\R

σ2(f∗|C) +
|R|
n

∑
K

σ2(f∗|K ∩ S(R))

Let R(R) = {i : Ci ∈ R}. Given V as defined above,
σ2(f∗|Ci) = σ2(f∗(x) : x ∈ Ci) = σ2(vij : j ∈ [|M|]),

and
σ2(f∗|Kj ∩ S(R)) = σ2(vij : i ∈ R(R))

We can write our problem as

min
R

1

|H|
∑
i/∈R

σ2(vij : j ∈ [|M|]) + |R|
n

∑
j

σ2(vij |i ∈ R(R))

Since there is a bijective relationship between R and R, we can simply optimize to find R.
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B.3 Proof of Theorem 3

Recall Theorem 3, which showed that for functions that are separable into functions of the human
features and machine features respectively, we may find an optimal delegate in polynomial time in
the size of f∗, which is n.
Theorem 3. Suppose that f∗ is separable, that is, f∗(x) = u(C(x)) +w(K(x)) for some functions
u,w. Then we can find an optimal delegate f∗

M in time polynomial in the size of f∗.

We first provide a brief sketch of the proof. When the human and machine partition the set of all
features, we can write vij = f∗(xij) = ui +wj for each i, j, for some ui, wj ∈ R. By Proposition 2,
we need to find some set R solving

min
R

1

|H|
∑
i/∈R

σ2(vij : j ∈ [|M|]) + |R|
n

∑
j

σ2(vij |i ∈ R)

In the separable case, we may simplify this to

min
k

[(
1− k

|H|

)
· σ2(wj : j ∈ [|M|]) +

(
k

|H|

)
· min
R:|R|=k

σ2(ui : i ∈ R)

]
.

The problem is now simply to find the minimum variance subset of size k for each 1 ≤ k ≤ h,
which we can do efficiently. If the human and machine share features, then we can solve the problem
by finding the optimal function by solving a separable sub-problem with independent human and
machine features for each of the s ≤ h possible values of the shared features.

Proof. Let h := |H|, m := |M|, and define ui := u(Ci), wj := w(Kj).

Since we assume that the set of features shared by the human and machine is empty, n = hm.
Moreover, in this case, we can write vij = f∗(xij) = ui + wj . We previously did not specify how
we indexed the human categories H; we may now index H so that u1 ≤ u2 ≤ ... ≤ uh; performing
this indexing has polynomial time complexity O(h log h) = O(n log n) since h = O(n) in the worst
case.

By Proposition 2, we need to find some set R solving

min
R

1

h

∑
i/∈R

σ2(vij : j ∈ [m]) +
|R|
n

∑
j

σ2(vij |i ∈ R)

= min
R

1

h

∑
i/∈R

σ2(ui + wj : j ∈ [m]) +
|R|
n

∑
j

σ2(ui + wj |i ∈ R)

= min
R

1

h

∑
i/∈R

σ2(wj : j ∈ [m]) +
|R|
n

∑
j

σ2(ui|i ∈ R)

= min
R

h− |R|
h

σ2(wj : j ∈ [m]) +
|R|
n

mσ2(ui|i ∈ R)

= min
R

(
1− |R|

h

)
σ2(wj : j ∈ [m]) +

|R|
n

n

h
σ2(ui|i ∈ R)

= min
k

min
R:|R|=k

(
1− k

h

)
σ2(wj : j ∈ [m]) +

k

h
σ2(ui|i ∈ R)

= min
k

(
1− k

h

)
σ2(wj : j ∈ [m]) +

k

h
min

R:|R|=k
σ2(ui|i ∈ R)

where the last step was suggested in [29]. Let

Rk ∈ argmin
R⊆[h]:|R|=k

σ2(ui|i ∈ R).

Then our objective is

min
k

[(
1− k

h

)
· σ2(wj : j ∈ [m]) +

(
k

h

)
· σ2(ui|i ∈ Rk)

]
.
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We may now outline an algorithm to compute the optimal retained rows R∗. First, we compute Rk

for each k. We then iterate over each 1 ≤ k ≤ h and find the k∗ that minimizes
(
1− k

h

)
σ2(wj : j ∈

[m]) +
(
k
h

)
σ2(ui : i ∈ Rk). Then Rk∗ minimizes the objective. Take R = {Ci : i ∈ Rk∗}. By

Proposition 2, fR
M is an optimal machine design.

Given {Rk}hk=1, finding k∗ simply requires computing the objective for each 1 ≤ k ≤ h, which has
total time complexity O(h). It therefore only remains to find a polynomial-time algorithm to compute
Rk. This problem is equivalent to finding the minimum variance subset of u of size k, and setting
Rk to be the indices corresponding to that subset. This can be done by observing that the minimum
variance subset must be contiguous. This was previously conjectured [29]; we prove this formally in
Lemma 1 using a proof technique similar that suggested by [29]. We can then compute the variance
of each of the h− k + 1 contiguous subsets of {ui} in time O(h), for a total time of O(h2).

Lemma 1. For each k, there is some 1 ≤ t ≤ h− k + 1 such that

{t, t+ 1, ..., t+ k − 1} ∈ argmin
R⊆[h]:|R|=k

σ2(ui : i ∈ R).

Proof of Lemma 1. Fix k, and suppose that there is no contiguous minimum variance subset of size
k. Let Rk ∈ argminR⊆[h]:|R|=k σ

2(ui : i ∈ R). Let i = minRk, i
′ = maxRk. We may assume

without loss of generality that there is no uj = ui for j > i and j /∈ Rk; otherwise replace Rk with
Rk ∪ {j} \ {i}, which will also be a minimum variance subset. Similarly we may assume that there
is no uj = ui′ for j < i′ and j /∈ Rk.

Denote ūS = µ(us : s ∈ S), σ2(S) = σ2(us : s ∈ S).

By assumption, Rk is not contiguous, that is, there is some i < j < i′ such that j /∈ Rk and
ui < uj < ui′ . Suppose that uj ≤ ūRk . Let R0

k := Rk \ {i}. Since ui ≤ us for all s ∈ Ik,
ūR0

k ≥ ūRk .

Now, let R′
k := R0

k ∪ j; essentially R′
k is the result of replacing Ci with Cj in Rk. By altering Result

1 of [30] for the true variance rather than the sample variance, we see that

kσ2(Rk) = 1 + (k − 1)σ2(R0
k) +

k − 1

k

(
ui − ūR0

k

)2
and

kσ2(R′
k) = 1 + (k − 1)σ2(R0

k) +
k − 1

k

(
uj − ūR0

k

)2
Thus

σ2(R′
k)− σ2(Rk) =

k − 1

k2

((
uj − ūR0

k

)2
−
(
ui − ūR0

k

)2)
=

k − 1

k2

((
uj − ūR0

k

)
+
(
ui − ūR0

k

))((
uj − ūR0

k

)
−
(
ui − ūR0

k

))
=

k − 1

k2

(
uj − ūR0

k + ui − ūR0
k

)
(uj − ui)

Since uj < ui and ui, uj ≤ ūRk ≤ ūR0
k , σ2(R′

k) − σ2(Rk) < 0. Thus Rk is not the minimum
variance subset, and we have a contradiction.

If uj > ūRk , we can let R0
k := Rk \ {Ci′} and R′

k := R0
k ∪ {Cj}, which by a symmetric argument

again yields σ2(R′
k)− σ2(Rk) < 0.

B.4 Proof of Theorem 4

Recall Theorem 4.
Theorem 4. Suppose that |IH | = O(1) or |IM | = O(1). Then we may find an optimal delegate in
time polynomial in the size of f∗.

We prove each case individually. Recall that size(f∗) = n, the number of states, and again let
h := |H|, m := |M|.
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Lemma 2. If |IH | = O(1), we may find an optimal delegate in time polynomial in the size of f∗.

Proof. By Proposition 1, it is sufficient to find R ⊆ H that minimizes ℓ(f∗
H , fR

M ). If |IH | = O(1),
then |H| = 2|IH | = O(1), and there are 2O(1) = O(1) subsets of H. Moreover, we may compute
fR
M and then ℓ(f∗

H , fR
M in O(n) for each R. Thus, it is sufficient to take a brute force approach and

check the loss of fR
M for each R ⊆ H in time O(n).

Lemma 3. If |IM | = O(1), we may find an optimal delegate in time polynomial in the size of f∗.

Proof. Since we assume that IH and IM partition the set of all features, there is a single state xij in
Ci ∩Kj for each human category Ci and machine category Kj .

For any machine function fM , we may define the vector y ∈ Rm by setting yj = fM (Kj). Define
cij = f∗(xij), and r2i =

∑
j(f

∗
H(Ci)− f∗(xij))

2.

We know that a human with action function f∗
H will delegate to a machine with action function fM

in category Ci if and only if
m∑
j=1

1

m
(fM (Kj)− f∗(xij))

2 <

m∑
j=1

1

m
(f∗

H(Ci)− f∗(xij))
2,

assuming that the human breaks ties by not delegating. We can rewrite this condition as
m∑
j=1

(yj − cij)
2 < r2i ,

which is the equation for the interior of an high-dimensional sphere where y ∈ Rm. This means that
for any machine fM , fM is in the region formed by the intersection of the spheres corresponding to
the categories where fM is adopted, D(f∗

H , fM ).

If f∗(x) is rational for all x – which is a reasonable assumption if we hope top optimize on a computer
with floating point precision – then the sphere gi(y) =

∑m
j=1(yj − c2ij)− r2i is a polynomial with

maximum degree 2m in Rm, and gi(y) = 0 is the sphere corresponding to category Ci. The regions
of intersection of these h spheres are known as “arrangements” in computational geometry. There are
only O(hm) such regions, and these regions may be found in time O(hm) [31].

Thus the first step of this algorithm will be to find these regions, which takes O(hm) = O(nm) =
O(poly(n)) since h = O(n).

In Proposition 1, we showed that to find an optimal delegate, it is sufficient to find a set of categories
R∗ such that fR

M minimizes the team loss, and R∗ satisfies R∗ = D(f∗
H , f∗

M ) for some optimal
delegate f∗. This means that Ci ∈ R∗ if and only if f∗

M is in sphere i. This in turn implies that in
searching over different sets of retained categories R, we can consider only subsets of categories
whose corresponding set of spheres has a non-empty intersection.

Now, instead of 2h possible options for R, we are only searching over O(hm) different subsets R.
Since m = O(1) and h = O(n), O(hm) is polynomial in n. Moreover, since we can also compute
the loss fR

M of a given R in O(n), we may find the optimal delegate in time polynomial in n.

B.5 Proof of Theorem 5

We now prove that finding an optimal delegate is NP-hard in general. Recall from Proposition 2 that
to find an optimal delegate it is necessary to solve the problem VARIANCEASSIGNMENT.

Proposition 2. Define a matrix V ∈ R|H|×R|M| with entries vij = f∗(xij). The problem of finding
an optimal delegate is as follows:

VARIANCEASSIGNMENT. Fix a set of rows S of V . For each row i ∈ S, pay a cost
proportional to the variance of V across row i, and remove row i from V . Then,
for each column j, pay a cost proportional to the variance across column j of the
remaining entries. Find a set S∗ that minimizes the total cost.

Then for R = {Ci : i /∈ S∗}, fR
M will be an optimal delegate.
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We will show that VARIANCEASSIGNMENT is NP-hard.

First, consider the problem MAXREGULARCLIQUE.

MAXREGULARCLIQUE. Let G = (V,E) be a regular graph. A clique is a set of
nodes S ⊆ V such that for each pair of nodes u, v ∈ S, (u, v) ∈ E. Find a clique
with maximum size |S|.

[32] defines the problem REGULARCLIQUE, which determines whether a regular graph G contains
a clique of size k. They show that it is NP-hard in their Theorem 3. We can solve REGULAR-
CLIQUE by solving MAXREGULARCLIQUE and checking whether the solution has size ≥ k; thus
MAXREGULARCLIQUE is also NP-hard.

We now define the intermediate problem of densest subgraph discovery in the presence of possibly
negative weights and a regularity condition on each node.

NEGREGULARDSD. Let G = (V,E,w) be an undirected graph with weighted
edges w : E → R. Suppose that for each node v,∑

(u,v)∈E

|w(u, v)| = 1.

For a subset of nodes S ⊆ V , let E(S) be the edges in the induced subgraph, and
define

w(S) =
∑

(u,v)∈E(S)

w(u, v).

Find the subset of nodes S that maximizes the density of the induced subgraph

d(S) =
w(S)

|S|
,

where d(S) = 0 when S = ∅.

Without the regularity condition that the absolute sum of a node’s edge weights is equal to 1, this is
the NP-hard problem NEGDSD introduced in [33]. It is also folk knowledge that NEGDSD may be
proved via a reduction from MAXCLIQUE. We now show that NEGREGULARDSD is NP-hard via a
reduction from MAXREGULARCLIQUE.

Proof. Let the d-regular graph G = (V,E) be an instance of MAXREGULARCLIQUE, we construct
a complete graph G′ = (V ′, E′, w) where V ′ = V and E′ is the set of all pairs of nodes. Let

w(u, v) =
1

1 + (n− d)
·
{

1
d , (u, v) ∈ E,

−1, (u, v) /∈ E

Constructing G′ can be completed in polynomial time O(|V |2).
Now ∑

(u,v)∈E′

|w(u, v)| = d · 1
d
· 1

1 + (n− d)
+ (n− d) · 1 · 1

1 + n− d
= 1.

First note that the solution S to NEGREGULARDSD will always have non-negative density, since we
could always pick the empty set.

Now, suppose there is a solution S to NEGREGULARDSD that is not a clique in G. Then there is
some pair u, v ∈ S such that (u, v) /∈ E. Let E(N) be the edges in G′ induced by a set of nodes N .
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Then,

d(S) =

∑
(s,t)∈E(S)

|S|

=

∑
(s,t)∈E(S),t̸=v w(s, t) +

∑
(s,v)∈E(S),s ̸=u w(s, v) + w(u, v)

|S|

≤
∑

(s,t)∈E(S),t̸=v w(s, t) +
∑

(s,v)∈E(S)s̸=u w(s, v)−
1

1+n−d

|S| − 1

≤
∑

(s,t)∈E(S)t ̸=v w(s, t) + d · 1
d · 1

1+(n−d) −
1

1+n−d

|S| − 1

=

∑
(s,t)∈E(S\{v})

|S| − 1

= d(S \ {v}),
so d(S) cannot have been a solution of NEGREGULARDSD. Thus NEGREGULARDSD will produce
a solution which is a clique in G. For a subset S ⊂ V that is a clique in G, the density is

d(S) =

∑
(u,v)∈E(S) w(u, v)

|S|

=

(|S|
2

)
1
d · 1

1+(n−d)

|S|

=
1

d
· 1

1 + (n− d)

(
|S|(|S| − 1)

2

)
1

|S|

=
1

d
· 1

1 + (n− d)
· |S| − 1

2

∝ |S| − 1

Thus NEGREGULARDSD will select the clique of maximum size.

Finally, reduce NEGREGULARDSD to VARIANCEASSIGNMENT.

Proof. Let G = (V,E,w) be an instance of NEGREGULARDSD. Construct an instance A of
VARIANCEASSIGNMENT as follows.

First, create a matrix A0: for each node vi ∈ V , create a row i; for each edge ej = (i, k) create a
column j.

For each edge ej = (vi, vk) if w(vi, vk) > 0, let a0ij = a0ik =
√
|w(i, k)|/2. If w(vi, vk) ≤ 0, let

a0ij = −a0ik =
√
|w(vi, vk)|/2. Set all other entries to zero.

Now, create a matrix A as follows: for each column aj of A0, add both aj and −aj to A.

Constructing A takes time O(2|E||V |) = O(|V |3).

Let m = 2|E| and h = |V |, then A ∈ Rh × Rm and n = hm.

Now for each row i, ∑
j

aij = 0

and
∥ai∥22 =

∑
j

a2ij = 2
∑

k:(vi,vk)∈E

|w(vi, vk)|/2 = 1.

Let R be a subset of rows. Then the objective of VARIANCEASSIGNMENT is to minimize

1

h

∑
i/∈R

σ2(aij : j ∈ [m]) +
R

n

∑
j

σ2(aij |i ∈ R).
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We may expand this to

1

h

∑
i/∈R

µ(a2ij : j ∈ [m])− µ(aij : j ∈ [m])2 +
|R|
n

∑
j

µ(a2ij |i ∈ R)− µ(aij |i ∈ R)2

=
1

h

∑
i/∈R

µ(a2ij : j ∈ [m]) +
|R|
n

∑
j

µ(a2ij |i ∈ R)

−

 1

h

∑
i/∈R

µ(aij : j ∈ [m])2 +
|R|
n

∑
j

µ(aij |i ∈ R)2


The first two terms can be simplified as

1

h

∑
i/∈R

µ(a2ij : j ∈ [m]) +
|R|
n

∑
j

µ(a2ij |i ∈ R)

=
1

h

∑
i/∈R

1

m

∑
j

a2ij +
|R|
n

∑
j

1

|R|
∑
i∈R

a2ij

=
1

n

∑
i/∈R

∑
j

a2ij +
1

n

∑
i∈R

∑
j

a2ij

=
1

n

∑
i,j

a2ij

This term is constant in R, so the problem of VARIANCEASSIGNMENT is merely the problem of
minimizing the second two terms, or maximizing

1

h

∑
i/∈R

µ(aij : j ∈ [m])2 +
|R|
n

∑
j

µ(aij |i ∈ R)2.

We know that in this instance,

1

h

∑
i/∈R

µ(aij : j ∈ [m])2 =
1

h

∑
i/∈R

 1

m

∑
j

aij

2

= 0,

so – ignoring the factor of 1/n – we are really maximizing

|R|
∑
j

µ(aij |i ∈ R)2 = |R|
∑
j

(
1

|R|
∑
i∈R

aij

)2

=
1

|R|
∑
j

(∑
i∈R

aij

)2

=
1

|R|
∑
j

∑
i∈R

a2ij + 2
∑
i<k

aijakj

=
1

|R|
∑
i∈R

∑
j

a2ij + 2
∑
i<k

∑
j

aijakj

=
1

|R|
∑
i∈R

∥ai∥2 + 2
1

|R|
∑
i<k

∑
j

aijakj

= 1 + 2
1

|R|
∑

i<k:i,k∈R

∑
j

aijakj
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so in solving VARIANCEASSIGNMENT we are maximizing
∑

i<k

∑
j aijakj . Recalling the con-

struction of A, aijakj ̸= 0 if and only if ej = (vi, vk). If this is the case, aijakj = w(vi, vk). Let
S(R) = {vi : i ∈ R} Thus the objective simplifies to∑

(vi,vk)∈E(S(R)) w(vi, vk)

|R|
= d(S(R))

and in minimizing the VARIANCEASSIGNMENT objective we are maximizing d(S).

Thus VARIANCEASSIGNMENT is NP-hard.

C Additional features configurations

In the main text, we assumed that the human features IH and machine features IM formed a partition
of set of all features [d], but our theoretical results hold more generally.

First, suppose that in a delegation setting there is some set of features that are observed by neither the
human or the machine. Then the problem of finding an optimal delegate is equivalent to one in which
the human and machine together have access to all features. We show this below formally.
Proposition 6. Let xH∪M denote x restricted to the features in IH ∪ IM . Given a ground truth
optimal action function f∗, for x ∈ Ci ∩Kj define

f̄(xH∪M ) =
1

|Ci ∩Kj |
∑

z∈Ci∩Kj

f∗(z).

Then a machine function f∗
M is an optimal delegate for ground truth function f∗ if and only if f∗

M is
an optimal delegate for ground truth function f̄ .

Proof. A human or machine agent A with action function fA will have expected loss in human
category C in a delegation setting with ground truth optimal action function f∗ of

1

|C|
∑
K

∑
x∈C∩K

(fA(x)− f∗(x))2

=
1

|C|
∑
K

∑
x∈C∩K

(fA(x)− f̄(x) + f̄(x)− f∗(x))2

=
1

|C|
∑
K

∑
x∈C∩K

(fA(x)− f̄(x))2

− 1

|C|
∑
K

∑
x∈C∩K

2(fA(x)− f̄(x))(f̄(x)− f∗(x))

+
1

|C|
∑
K

∑
x∈C∩K

(f̄(x)− f∗(x))2

= (1)− (2) + (3)

Term (2) can be simplified, since fA and f̄ are constant in C ∩K:
1

|C|
∑
K

∑
x∈C∩K

2(fA(x)− f̄(x))(f̄(x)− f∗(x))

= 2
1

|C|
∑
K

(fA(x)− f̄(x))
∑

x∈C∩K

(f̄(x)− f∗(x))

= 2
1

|C|
∑
K

(fA(x)− f̄(x)) · 0 (definition of f̄ )

= 0

Term (1) is the expected loss in category C of using function fA in category C when the ground truth
action function is f̄ , and term (3) is a constant independent of fA. Thus the team loss with ground
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truth function f∗ will be different from the team loss with ground truth function f̄ by a constant
factor of

∑
C

1
|C|
∑

K

∑
x∈C∩K(f̄(x)− f∗(x))2, and the minimization problems have the same set

of solutions.

We can therefore assume without loss of generality that the human and machine together observe all
features.

Now, we consider the case when the human and the machine may share some features IS = IH ∩ IM .

The proof of Proposition 1 in Section B makes no assumptions on the relation between the human
and machine features, and thus generalizes entirely.

The proof of Proposition 2 in Section B shows that when the human and machine share features, the
insight that the relative variances is the crucial factor in determining the optimal machine design
remains true.

Theorem 5 generalizes vacuously: since the problem is hard in the restricted setting, the problem
must be hard in the more general setting.

In the definition of separable functions, we made no assumptions on the overlap between human and
machine features, and indeed Theorem 3 generalizes entirely. We prove this below.

Proof that Theorem 3 generalizes. Let xS be the values of the features in IS ; let xH\S be values
of the non-shared human features, xM\S be the values of the non-shared machine features, and
xH∪M\S be the values of all non-shared features.

There are s ≤ h ≤ n unique settings of xS . Label these as x(t)
S for 1 ≤ t ≤ s.

Recall that if f∗ is separable, we may write it as

f∗(x) = u(C(x)) + w(K(x))

for some functions u,w; equivalently we may write it as

f∗(x) = u(xH) + w(xM )

for the same functions u,w, since each xH or xM corresponds to a unique human or machine
category respectively.

Since the features IS are shared, the machine may observe x
(t)
S when selecting an action. We may

thus define fM (zM ) = fM,t(zM\S) if zS = x
(t)
S and select functions fM,xS

independently.

For z with zS = x
(t)
S ,

f∗(z) = f∗
t (zH∪M\S) = ut(zH\S) + wt(zM\S)

where ut(zH\S) := u(x
(t)
S , zH\S) = u(zH), wt(zM\S) := w(x

(t)
S , zM\S) = w(zM ).

Finally, for zS = x
(t)
S , let fH,t(zH\S) = f∗

H(x
(t)
S , zH\S) = f∗

H(zH). If the human can only observe
zH\S but x(t)

S is fixed, then f∗
H,t(zH\S) = fH,t(zH\S) will be the optimal human action in state z,

because the human is still simply choosing the optimal action in category C(z).

For each t, find the optimal delegate f∗
M,t in the delegation setting where the human has access to

IH \ IS , the machine has access to IM \ IS , and the ground truth optimal action is the separable
function f∗

t , which can be done in polynomial time. Since there are O(n) such values of t, we can
find f∗

M in polynomial time as well.

Finally, Theorem 4 also generalizes: if |IH \ IM | = O(1) or |IM \ IH | = O(1), an optimal delegate
can be found in polynomial time. This can be shown through the same argument as for Theorem 3.
For each setting of the shared features, we have a subproblem which has human features I ′H and
machine features I ′M , where |I ′H | = |IH \ IM | = O(1) and |I ′M | = |IM \ IH | = O(1). We can
then apply the algorithm from Theorem 4 to find the optimal machine function in each of the O(n)
subproblems.
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