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Abstract001

Classifying subtypes of primary progressive002
aphasia (PPA) from connected speech presents003
significant diagnostic challenges due to overlap-004
ping linguistic markers. This study benchmarks005
the performance of traditional machine learn-006
ing models with various feature extraction tech-007
niques, transformer-based models, and large008
language models (LLMs) for PPA classification.009
Our results indicate that while transformer-010
based models and LLMs exceed chance-level011
performance in terms of balanced accuracy, tra-012
ditional classifiers combined with contextual013
embeddings remain highly competitive. No-014
tably, MLP using MentalBert’s embeddings015
achieves the highest accuracy. These findings016
underscore the potential of machine learning017
for enhancing the automatic classification of018
PPA subtypes.019

1 Introduction020

Primary progressive aphasia (PPA) is a neurode-021

generative disorder characterized by progressive022

language deficits as the primary symptom. It is023

typically classified into three subtypes (Gorno-024

Tempini et al., 2011): (1) the logopenic variant025

(lvPPA), associated with word-finding difficulties026

and impaired sentence repetition, often linked to027

Alzheimer’s pathology; (2) the semantic variant028

(svPPA), marked by deficits in word comprehen-029

sion and object naming; and (3) the nonfluent vari-030

ant (nfvPPA), characterized by effortful, halting,031

and telegraphic speech. The underlying pathol-032

ogy of svPPA and nfvPPA is often frontotemporal033

lobar degeneration (Rezaii et al., 2023). Diagnos-034

ing these subtypes traditionally requires extensive035

clinical assessment by expert neurologists, neu-036

ropsychologists, and speech-language pathologists,037

making the process resource-intensive and time- 038

consuming. As a result, there is increasing interest 039

in automated methods for efficient and accurate 040

PPA classification. However, diagnosing PPA from 041

textual data, such as transcripts of patient inter- 042

views, presents several challenges. The linguistic 043

and syntactic markers that differentiate PPA sub- 044

types are often subtle and overlapping, requiring 045

robust feature extraction and classification tech- 046

niques (Tippett, 2020). Furthermore, the limited 047

availability of labeled clinical datasets and indi- 048

vidual variability in language use exacerbate these 049

challenges. Distinguishing svPPA from lvPPA is 050

particularly difficult, as both subtypes involve word 051

retrieval impairments. Despite these difficulties, ac- 052

curate classification is crucial, given the distinct 053

etiologies and treatment strategies associated with 054

each PPA variant. 055

Recent advancements in natural language process- 056

ing (NLP) have opened new avenues for automated 057

diagnostic tools based on text. Prior research has 058

demonstrated the potential of NLP in mental health 059

assessment (Zhang et al., 2022), including applica- 060

tions in detecting bipolar disorder and schizophre- 061

nia (Aich et al., 2022). However, research on ap- 062

plying NLP to neurodegenerative diseases, partic- 063

ularly PPA, remains limited. Notably, there is a 064

lack of systematic benchmarking studies that com- 065

pare multiple computational approaches for PPA 066

classification. To address this gap, we conduct a 067

comprehensive benchmarking study, systematically 068

evaluating a diverse range of models, from tradi- 069

tional machine learning (ML) methods with various 070

feature extraction techniques to transformer-based 071

models and large language models (LLMs). By pro- 072

viding a comparative analysis of these approaches, 073

our study offers new insights into the effectiveness 074
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of different computational techniques for the auto-075

mated classification of PPA subtypes.076

2 Related Work077

Research on PPA has primarily focused on under-078

standing its clinical subtypes and linguistic man-079

ifestations (Henry et al., 2016). Studies in clini-080

cal neurology and neuropsychology have detailed081

the unique language impairments associated with082

lvPPA, svPPA, and nfvPPA, highlighting the impor-083

tance of linguistic and syntactic analysis in diag-084

nosis (Wauters et al., 2023). However, leveraging085

computational methods for the diagnosis of PPA086

remains an emerging area.087

In the field of natural language processing (NLP),088

traditional ML models have been widely applied to089

clinical text classification tasks, including disease090

detection and subtype identification. In their study,091

Fraser et al. (2014) explored the use of computa-092

tional linguistics for identifying different variants093

of PPA. They compared various feature sets, in-094

cluding acoustic, lexical, and syntactic features,095

and demonstrated that combining multiple modal-096

ities significantly improved classification perfor-097

mance. Their findings highlighted the importance098

of leveraging diverse linguistic markers to distin-099

guish PPA subtypes, particularly the nonfluent vari-100

ant (nfvPPA), which often exhibits clear syntactic101

deficits. Similarly, Themistocleous et al. (2021)102

achieved a classification accuracy of 80% by com-103

bining acoustic and linguistic features and using104

them as input for a deep neural network model.105

Building on this foundation, Rezaii et al. (2022)106

investigated the relationship between lexical and107

syntactic complexity during language production108

in individuals with PPA and healthy controls. Their109

study identified a syntax-lexicon trade-off where110

individuals with syntactic deficits, such as those111

with nfvPPA, used semantically richer words, while112

those with lexicosemantic deficits (e.g., svPPA or113

lvPPA) produced syntactically complex sentences.114

Their approach achieved a classification accuracy115

of up to 92% when distinguishing nfvPPA in a116

one-vs-all setup. In more recent work, Rezaii et al.117

(2024) explored the use of LLMs to classify PPA118

subtypes based on connected speech. Their ap-119

proach incorporated verb frequency and other lin-120

guistic features to align text-based speech patterns121

with brain scan findings, achieving 88.5% agree-122

ment on PPA clusters with LLMs. A supervised123

classifier using features identified by the LLM fur-124

ther improved accuracy to 97.9%. This study high- 125

lights the potential of LLMs in identifying linguis- 126

tic markers of PPA subtypes and represents a signif- 127

icant advance in the application of NLP to clinical 128

tasks. Cong et al. (2024b) also investigated the 129

use of LLMs for detecting the presence, subtypes, 130

and severity of aphasia in both English and Man- 131

darin Chinese speakers. Their findings revealed 132

that applying LLMs without fine-tuning resulted in 133

accuracy levels close to chance for aphasia subtyp- 134

ing. 135

Language impairments, such as PPA, are often 136

among the earliest signs of broader cognitive de- 137

cline, including dementia (Harvard Health Publish- 138

ing, 2022). Santander-Cruz et al. (2022) employed 139

a combination of syntactic and semantic analy- 140

ses to detect dementia in transcribed data from 141

the Pitt Corpus database provided by Dementia- 142

Bank1. They extracted features such as spelling 143

mistakes, grammar errors, and cosine similarity 144

and evaluated their effectiveness using ML mod- 145

els, including SVMs and neural networks. Notably, 146

syntactic features alone achieved an F1-score of 147

77% with SVMs. While their approach demon- 148

strated the effectiveness of syntactic features, it 149

remained limited in scope, focusing on a prede- 150

fined feature set and a small selection of models. 151

In contrast, our study systematically evaluates a 152

wider range of methodologies, from traditional ML 153

models with different feature extraction techniques 154

to transformer-based models and LLMs, to compre- 155

hensively assess the potential of NLP techniques 156

for PPA classification. 157

3 Dataset 158

3.1 Overview 159

The data used in this study was shared with us by 160

Anonym (YYYY). The dataset consists of clinical 161

transcripts from interviews with individuals diag- 162

nosed with one of the PPA subtypes, as well as 163

control participants without a PPA diagnosis. A 164

key limitation of text-based analyses is that public 165

sharing of voice data remains restricted due to con- 166

cerns about participant identification. However, an 167

advantage of this work is that patients can still be 168

classified based on their written texts (e.g., Josephy- 169

Hernandez et al. (2023)). Further details about the 170

data are provided in Appendix A. 171

Two versions of the dataset were used in this study: 172

1https://dementia.talkbank.org/
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the original version, which includes each partici-173

pant’s full interview transcript, and the expanded174

version, where each transcript was split into indi-175

vidual sentences, with each sentence inheriting the176

label of the original transcript. The label distribu-177

tion for both versions of the dataset is provided in178

Tables 3 and 4 in Appendix A.179

Statistics for both versions of the dataset, includ-180

ing the mean, median, and standard deviation of181

text lengths in words, are presented in Table 5 in182

Appendix A.183

3.2 Data Preprocessing184

Preprocessing the data is a crucial step before ap-185

plying ML models, as it ensures the integrity of the186

linguistic and syntactic features. This section de-187

tails the preprocessing steps undertaken to prepare188

the dataset.189

The first step included converting all text to lower-190

case to standardize case sensitivity. Special char-191

acters were removed, retaining only intentionally192

included alphanumeric characters and punctuation193

marks, as these features are significant in the di-194

agnosis of PPA. For instance, punctuation patterns195

can signify pauses, sentence boundaries, or tele-196

graphic speech, which are critical markers for dis-197

tinguishing between PPA subtypes. nfvPPA, in par-198

ticular, is marked by halting speech and frequent199

pauses. Following this, the text was tokenized into200

individual words for further analysis.201

It is important to mention that the preprocessing202

steps were applied for the experiments with the203

traditional ML models described in Section 4.2.204

4 Methodology205

The code used in this study is made publicly avail-206

able at GitHub link.207

4.1 Evaluation Reference Points208

To evaluate the performance of the models in this209

multi-class classification task, we define a refer-210

ence metric to provide a point of comparison for211

balanced accuracy:212

Stratified (Weighted) Random Reference:213

This reference metric accounts for class imbalance214

by weighting each class proportionally to its fre-215

quency in the dataset. Since this metric incorpo-216

rates dataset imbalance, it provides a more realistic217

reference than uniform random guessing.218

N∑
i=1

P (Classi)2 =
N∑
i=1

(
ClassCounti
TotalSamples

)2

(1)219

4.2 Traditional Machine Learning Models 220

The initial experiments in this benchmarking study 221

involve applying various feature extraction tech- 222

niques in combination with a predefined set of tra- 223

ditional ML models. The following subsection 224

provides an overview of the feature extraction tech- 225

niques used. 226

4.2.1 Feature Extraction techniques 227

Several feature extraction strategies were evaluated 228

in this study, spanning from traditional statistical 229

methods to more advanced embedding-based and 230

syntactic techniques. TF-IDF (Salton and Buckley, 231

1988) and Bag-of-Words (BoW) (Harris, 1954) fo- 232

cused on capturing word frequency and document- 233

level term relevance. To incorporate semantic in- 234

formation, we employed embedding-based mod- 235

els such as Word2Vec (Mikolov et al., 2013), 236

GloVe (Pennington et al., 2014), and FastText (Bo- 237

janowski et al., 2017); the latter also accounts 238

for subword structures. For contextual representa- 239

tion, we extracted embeddings from transformer- 240

based models including BERT (Devlin et al., 2019), 241

RoBERTa (Liu et al., 2019), MentalBERT (Ji et al., 242

2022), and ClinicalBERT (Alsentzer et al., 2019). 243

Additional features were derived using N-grams 244

(from bigrams to 4-grams) (Brown et al., 1992) 245

to capture local context, LSA (Deerwester et al., 246

1990) and LDA (Blei et al., 2003) for latent topic 247

modeling, and dependency parsing (Kiperwasser 248

and Goldberg, 2016) to model syntactic relation- 249

ships. 250

4.2.2 Machine Learning Models 251

Traditional ML models have played a key role in ad- 252

vancing AI and continue to offer advantages such as 253

interpretability, computational efficiency, and adap- 254

tation to smaller datasets (Murphy, 2012). Despite 255

the growing dominance of LLMs, the performance 256

of traditional models should not be overlooked, 257

particularly in tasks where linguistic and syntactic 258

features play a central role. 259

To ensure a robust benchmarking process, we 260

incorporate five widely-used traditional ML mod- 261

els: Support Vector Machine (SVM), Naive Bayes 262

(NB), Logistic Regression (LR), Multilayer Per- 263

ceptron (MLP), and XGBoost. These models were 264

evaluated in combination with the feature extrac- 265

tion techniques detailed in the previous section. 266

The expanded version of the dataset was used for 267

this experiment. The decision to split the original 268

dataset at the sentence level was motivated by the 269
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goal of aligning with a prior study that used the270

same dataset to ensure comparability, as well as271

to increase the number of training examples. Con-272

sidering the limited sample size, default parameter273

settings without hyperparameter fine-tuning were274

used for all models, ensuring simplicity and repro-275

ducibility in the benchmarking process.276

To prevent data leakage, feature extraction was in-277

tegrated within scikit-learn pipelines, ensuring that278

feature computation was performed solely on the279

training data during each fold and never on the test280

data. Additionally, GroupKFold cross-validation281

was used to ensure that all data from a single par-282

ticipant appeared exclusively in either the train-283

ing folds or the test fold, thereby preventing data284

leakage across splits. This prevented the model285

from learning to recognize individual participants286

instead of the targeted PPA subtype. In total, 65287

experiments were conducted (5 classifiers × 13 fea-288

ture extraction techniques).289

4.3 Transformer-based Models290

In addition to traditional ML models, this study291

evaluates the performance of transformer-based292

models, which have revolutionized natural lan-293

guage processing by taking advantage of attention294

mechanisms and contextual embeddings. These295

models are particularly well-suited for tasks involv-296

ing subtle syntactic variations and capturing long-297

term dependencies, making them strong candidates298

for the classification task at hand. While some299

transformer models were previously used to gener-300

ate embeddings for feature-based approaches (as301

detailed above), here, they are directly employed as302

classifiers to assess their full predictive capabilities.303

The transformer-based models included in this304

benchmarking study are as follows: BERT (De-305

vlin et al., 2019), RoBERTa (Liu et al., 2019),306

MentalBERT (Ji et al., 2022), and ClinicalBERT307

(Alsentzer et al., 2019). A detailed description of308

each model is provided in Appendix B.309

These models are evaluated using the same cross-310

validation protocols applied to traditional ML mod-311

els, ensuring fair comparison. Each training in-312

volved re-initializing the model and optimizer, fol-313

lowed by full fine-tuning for 10 epochs on the train-314

ing split.315

The dataset exhibits a moderate class imbalance316

(see Table 4). Since this work presents a bench-317

marking study where both traditional ML and318

transformer-based classifiers are evaluated under319

the same cross-validation settings without addi-320

tional resampling or weighting techniques, no ex- 321

plicit method for addressing class imbalance (e.g., 322

class weights or oversampling) was applied. This 323

consistent protocol allows for fair comparisons 324

across model types. However, we acknowledge that 325

class imbalance may still impact the performance 326

of some classifiers, especially on underrepresented 327

subtypes. 328

5 Large Language Models (LLMs) 329

LLMs represent a significant breakthrough in artifi- 330

cial intelligence, demonstrating exceptional capa- 331

bilities across a wide range of NLP tasks. These 332

models, like OpenAI’s GPT series and Google’s 333

Gemini, are built upon transformer-based archi- 334

tectures and are known by their immense size, 335

comprising billions or even trillions of parameters. 336

Their extensive training, combined with their pa- 337

rameterization, allows them to achieve high perfor- 338

mance in a wide range of NLP tasks, including text 339

generation. 340

In this study, we employ a prompt-based ap- 341

proach to leverage LLMs for the classification of 342

PPA subtypes. Rather than fine-tuning these mod- 343

els, we evaluate their zero-shot performance by 344

designing a structured prompt tailored to our clas- 345

sification task. The following LLMs were used in 346

this study: LLAMA (Touvron et al., 2023), Mistral 347

(Jiang et al., 2023), GPT-3.5-turbo (Brown et al., 348

2020), and GPT-4o-mini (OpenAI, 2023). Detailed 349

descriptions of each model are provided in Ap- 350

pendix B. 351

The original version of the data was used, and 352

the prompt was carefully designed in collaboration 353

with a clinical expert in the field (see Appendix C). 354

The temperatures used for each model are pre- 355

sented in Table 1. For Mistral and LLAMA, we 356

used a relatively low temperature (0.2) to ensure 357

more deterministic outputs2, as these models may 358

exhibit greater output variability at higher tempera- 359

tures. In contrast, GPT-3.5 and GPT-4o-mini were 360

assigned a moderately higher temperature (0.7) to 361

encourage more diverse responses while maintain- 362

ing overall coherence. This choice was informed by 363

prior observations that hallucination rates tend to 364

be higher in open-source models such as LLAMA 365

and Mistral, and that lower temperatures help miti- 366

gate this issue (Yang et al., 2025). 367

2https://huggingface.co/docs/transformers/
main_classes/text_generation#parameters
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Model Temperature
Mistral 0.2
LLAMA 0.2
GPT-3.5 0.7
GPT-4o-mini 0.7

Table 1: Temperature used for each model.

6 Results368

To ensure a comprehensive evaluation, we rely on369

widely recognized classification metrics, including370

balanced accuracy, weighted F1-score, weighted371

precision, weighted recall, Area Under the Curve372

(AUC), as well as a confusion matrix for LLM373

based experiments. All experiments are evaluated374

using 5-fold cross-validation to ensure robustness375

and minimize overfitting. The results are presented376

as bar charts, with balanced accuracy’s reference377

performance indicated by vertical lines to provide378

a clear point of comparison. Additionally, local379

feature importance analyses were conducted using380

LIME (Ribeiro et al., 2016) for the top-performing381

models in both the traditional ML and transformer-382

based experiments, providing insight into which383

input features most influenced individual predic-384

tions.385

6.1 Traditional Machine Learning Models386

Figure 1 presents the performance of the top-387

performing traditional ML models (in terms of F1-388

score), namely MLP. Each colored bar represents389

the ML model paired with a different feature ex-390

traction technique. The results for the other models,391

including LR, SVM, NB, and XGBoost, are pro-392

vided in Appendix E for completeness.393

In terms of balanced accuracy, features derived394

from MentalBERT, followed by those from BERT,395

consistently yielded the best results across nearly396

all models. LR showed comparable performance397

when using MentalBERT, BERT, and Bag-of-398

Words features. MentalBERT also outperformed399

other models across additional metrics, including400

weighted precision, weighted recall, weighted F1-401

score, and AUC, with BERT and RoBERTa follow-402

ing closely. Notably, MentalBERT achieved over403

60% on weighted precision, recall, and F1-score404

for the MLP classifier, and reached or approached405

80% AUC with MLP, SVM, LR, and XGBoost.406

407

6.2 Transformer-based Models 408

Figure 2 illustrates the performance of the various 409

transformer-based classifiers. All models signif- 410

icantly outperform the reference metric in terms 411

of balanced accuracy, with RoBERTa and BERT 412

demonstrating comparable top-tier performance, 413

closely followed by MentalBERT. Regarding the 414

F1-score, RoBERTa and BERT achieve the high- 415

est results of 57%. Similar trends are observed 416

for weighted precision and weighted recall, where 417

RoBERTa and BERT achieve scores a little un- 418

der 60%. In terms of AUC, RoBERTa, BERT and 419

MentalBERT all demonstrate strong performance, 420

achieving results at or near 80%. 421

6.3 Large Language Models (LLMs) 422

Figure 3 presents a bar chart illustrating the per- 423

formance of LLAMA, which achieved the highest 424

weighted precision, weighted recall, and F1-score 425

among all LLMs. In terms of balanced accuracy, 426

it was outperformed only by GPT-4o-mini. For 427

completeness, the results of Mistral, GPT-3.5-turbo 428

and GPT-4o-mini are provided in Appendix F. All 429

models, except for Mistral, outperformed our refer- 430

ence metric. 431

Figures 11, 12, 13, and 14 in Appendix F present 432

the confusion matrices for all four models. For 433

LLAMA, we observe a strong performance in cor- 434

rectly predicting both the control group and lvPPA, 435

but the model struggled with predicting any svPPA 436

samples. Mistral’s performance, shown in Fig- 437

ure 12, was the weakest, as it assigned multiple 438

times the label, unknown, when it failed to classify 439

a sample correctly. Both GPT models performed 440

well in identifying the control group, with GPT-3.5- 441

Turbo showing a slight edge over the other model. 442

However, both models faced significant difficulty 443

with lvPPA. GPT-3.5 also showed limited success 444

with svPPA, whereas GPT-4o-mini performed bet- 445

ter on both svPPA and nfvPPA. 446

7 Discussion 447

The results of this study provide valuable insights 448

into the potential of various models for detecting 449

primary progressive aphasia (PPA) subtypes. 450

Benchmarking traditional ML approaches, 451

transformer-based models, and LLMs holds signifi- 452

cant importance in advancing clinical diagnostics. 453

These efforts not only reveal key trends and 454

performance disparities but also underscore the 455

broader potential of these models to improve the 456
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Figure 1: MLP performance

Figure 2: Transformer-based models performance

Figure 3: LLAMA Performance

detection and classification of complex clinical457

conditions, such as PPA.458

The results from traditional ML models reveal459

the critical role of feature extraction in deter-460

mining performance. In particular, embeddings 461

derived from transformer-based models such as 462

MentalBERT, RoBERTa, and BERT consistently 463

outperformed classical feature engineering meth- 464

ods across most classifiers. This was especially 465

evident in MLP, where the use of MentalBERT’s 466

features resulted in reaching or exceeding 60% 467

weighted precision, weighted recall, and F1-scores, 468

as well as AUC values exceeding 80%. These 469

findings highlight the potential of combining 470

robust feature extraction methods with simpler 471

classifiers to achieve competitive results, especially 472

in resource-constrained environments. In addition, 473

in use cases where context is important relying 474

on contextual embeddings like those generated by 475

transformer-based models is generally expected 476

to yield better results. The LR model paired 477

with BoW features still demonstrated competitive 478

results, closely trailing behind transformer-based 479
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embeddings. This further suggests that simpler480

techniques may still be viable in certain scenarios,481

particularly when interpretability is prioritized482

(Itani et al., 2019). When dealing with sensitive483

medical conditions such as PPA, interpretation is484

paramount, as clinicians and researchers need to485

understand the rationale behind model predictions.486

The ability to explain why a model classified a487

patient’s condition can thus foster trust.488

In line with recent work by Rezaii et al. (2022), our489

findings further emphasize the inherent difficulty490

of the multi-class classification task for PPA491

subtypes. Relying on a syntax-lexicon approach,492

the authors achieved a high accuracy (92%) in a493

binary classification task but reported a significant494

drop to 66% accuracy in multi-class classification.495

This stark contrast underscores the challenges496

faced by the overlapping symptoms and complex-497

ity of different PPA subtypes. Similar to their498

findings, our results confirm that advanced ML499

techniques, while promising, still face limitations500

when addressing multi-class classification in this501

domain.502

Furthermore, transformer-based models such503

as RoBERTa and BERT achieved balanced504

accuracy and F1-scores 57%, which highlights505

the intrinsic challenges of capturing the subtle506

linguistic and syntactic variations inherent in PPA507

subtypes in a multi-class classification setting.508

These results align with the broader challenges509

outlined by Gorno-Tempini et al. (2011), who510

discussed the diagnostic complexity of PPA due511

to the heterogeneity and overlapping symptoms512

among its subtypes. While transformer models513

demonstrated promising results, they were outper-514

formed by traditional ML models combined with515

transformer-based embeddings. This suggests that516

although transformers hold potential for capturing517

complex linguistic patterns, further refinement518

and task-specific adaptation are necessary to fully519

leverage their capabilities. This finding was also520

emphasized by Cong et al. (2024a), where the521

authors reaffirmed the potential of transformer-522

based models in healthcare, particularly in523

identifying complex patterns essential for the early524

detection and classification of neurodegenerative525

diseases. In addition, an important insight is that526

general-domain models appear to outperform527

domain-specific ones. Specifically, RoBERTa528

and BERT consistently produced stronger results529

than ClinicalBERT and MentalBERT, although530

MentalBERT’s performed comparably on most531

metrics. One possible explanation is that larger, 532

more diverse pretraining corpora may help 533

general-domain models capture a wider range of 534

linguistic cues. However, even if domain-specific 535

models are adjusted to specialised vocabulary, they 536

could overlook some contextual cues or universal 537

language patterns that are useful in broader tasks. 538

In fact, general-domain BERT can occasionally 539

stay competitive or even outperform specialised 540

models, according to Alsentzer et al. (2019), 541

indicating that in some situations, greater coverage 542

may outweigh niche specialization in certain 543

scenarios. 544

Although BERT and RoBERTa achieve the best 545

scores among the end-to-end transformer models, 546

they are still outperformed by a lighter pipeline 547

in which a frozen MentalBERT encoder feeds 548

an MLP classifier. This gap can be explained by 549

two factors. First, MentalBERT is pre-trained on 550

clinical and mental-health text, so its embeddings 551

inherently capture stylistic cues like telegraphic 552

phrases, disfluencies, domain vocabulary (that 553

are highly relevant to PPA), whereas generic 554

BERT/RoBERTa must learn these patterns from 555

the small fine-tuning set. Second, full fine-tuning 556

updates hundreds of millions of parameters and 557

is prone to overfitting when data are limited and 558

moderately imbalanced (Devlin et al., 2019). 559

While LLMs outperformed our reference metric in 560

terms of balanced accuracy (with the exception of 561

Mistral), their results were inconsistent across the 562

subtypes (see confusion matrices in Appendix F). 563

LLAMA achieved the highest weighted precision, 564

weighted recall, and F1-score, yet it struggled 565

particularly with svPPA classification. One 566

likely explanation is that we used these models 567

without fine-tuning, relying solely on prompting. 568

Unlike smaller models explicitly optimized for 569

classification through feature-based learning, 570

LLMs generate responses based on broad language 571

modeling objectives, which may not align well 572

with structured clinical classification. These results 573

highlight the limitations of zero-shot LLM classi- 574

fication, where performance may be constrained 575

without fine-tuning or domain adaptation. Table 2 576

highlights the best-performing models across our 577

experiments. While most models demonstrated 578

comparable performance, LLAMA stood out 579

negatively; despite outperforming other LLMs, it 580

failed to match the top models in other categories. 581

MLP paired with MentalBERT’s embeddings 582

emerged as the strongest model, achieving the 583
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highest scores in balanced accuracy, weighted584

F1-score, weighted precision, and weighted recall,585

though by a narrow margin.586

587

Model Bal. Acc. F1 P R
LLAMA 0.42 0.46 0.52 0.49
BERT 0.51 0.57 0.60 0.58
RoBERTa 0.51 0.57 0.60 0.57
MLP & MentalBERT 0.52 0.60 0.61 0.61

Table 2: Performance metrics for the best models (Bal.
Acc. = Balanced Accuracy, P = Precision, R = Recall).
Highest value(s) in each column are in bold.

Additionally, we use LIME (Local Interpretable588

Model-Agnostic Explanations) (Ribeiro et al.,589

2016) to analyze local feature importance for indi-590

vidual predictions from our best-performing model591

(MLP with MentalBERT embeddings), as well as592

BERT and RoBERTa. We present one example per593

subtype in Appendix G. For svPPA (see Figures594

15, 16, and 17), non-specific words like people con-595

sistently received high importance across all three596

models, aligning with known svPPA speech pat-597

terns (Gorno-Tempini et al., 2011). Similarly, fre-598

quent verbs such as sitting, getting, and eating were599

among the most influential tokens, which is also600

characteristic of svPPA language use (Lukic et al.,601

2022). The word two was weighted negatively, in-602

dicating Not svPPA, which aligns with the observa-603

tion that svPPA patients tend to use vague and gen-604

eral language rather than specific quantifiers (Faust605

et al., 2012). In the case of lvPPA (see Figures606

18, 19, and 20), patients often use interjections and607

fillers to mask disfluencies such as uhh, which re-608

ceived notable importance, particularly in the MLP609

+ MentalBERT model. Indefinite determiners like610

a were assigned the highest importance by both611

MLP + MentalBERT and BERT, which aligns with612

the findings of (Robertson et al., 2024) and reflects613

the lexical retrieval difficulties typical of lvPPA. In614

contrast, RoBERTa did not highlight these tokens615

as strongly, which may be due to differences in616

pretraining data or tokenization. Notably, the filler617

uhh was deliberately transcribed in a specific way618

that may not align with RoBERTa’s subword vocab-619

ulary, limiting its interpretability. For nfvPPA (see620

Figures 21, 22, and 23), the use of content nouns621

like girl was consistently highlighted across the622

three models, aligning with known speech patterns623

of nfvPPA patients. Interestingly, the word sand-624

ing -which is not a real word in this context and625

was invented by the patient— received the high- 626

est importance in BERT. This may reflect BERT’s 627

sensitivity to surface morphology, particularly -ing 628

endings, which are frequently used by nfvPPA pa- 629

tients (Wilson et al., 2010). In contrast, sanding 630

was negatively weighted by MLP and RoBERTa, 631

while a concrete noun like castle was ignored only 632

by BERT. These inconsistencies highlight the mod- 633

els’ differing sensitivities and suggest that integrat- 634

ing their complementary perspectives may lead to 635

more robust and clinically meaningful interpreta- 636

tions in future work. 637

8 Conclusion 638

Our findings show the promise of using ML in the 639

classification of PPA subtypes. The results demon- 640

strate that although transformer-based methods 641

sometimes yield comparable metrics, they do not 642

decisively outperform classical feature based tech- 643

niques such as MLP paired with MentalBERT’s 644

embeddings. This highlights the inherent complex- 645

ity of the classification task, shaped by the over- 646

lapping symptoms across PPA subtypes. Given the 647

limitations observed in prompt-based LLM exper- 648

iments, future work should explore task-specific 649

fine-tuning to better align these models with the 650

linguistic characteristics of PPA. Further error anal- 651

ysis may also provide insights into systematic mis- 652

classifications, guiding refinements in model train- 653

ing. 654

9 Limitations 655

The task of classifying primary progressive aphasia 656

(PPA) subtypes presents a significant challenge 657

due to the overlapping symptoms and linguistic 658

impairments between subtypes. Additionally, our 659

dataset, while useful for benchmarking remains 660

relatively small and lacks demographic metadata, 661

preventing an analysis of potential biases across 662

different population groups. Computational 663

constraints also limited our ability to explore 664

hyperparameter tuning for all our experiments, 665

which may have impacted model performance. 666

This is particularly relevant for traditional clas- 667

sifiers and transformer-based models, where 668

optimal settings could have led to improved 669

results. Similarly, our exclusive reliance on 670

natural language prompts for LLMs (although 671

designed with expert input) may have limited their 672

performance, as we lacked fine-tuning or deeper 673

insights into their decision-making processes. The 674

8



small dataset size also limits our ability to fully675

leverage the potential of LLMs, which typically676

benefit from larger-scale training or adaptation677

data. Without explicit control over how LLMs678

generate classifications, their outputs can be679

difficult to interpret and optimize for this task.680

Future work should explore fine-tuning approaches681

and systematic hyperparameter optimization682

to better align model performance with the683

complexities of PPA classification. Additionally, it684

is generally recommended to repeat LLM-based685

experiments and report average performance along686

with standard deviations, especially given the687

models’ non-deterministic nature and the small688

size of our dataset. However, this was not feasible689

in our case due to limited computational resources.690

691

Additionally, our classification approach re-692

lies solely on textual data. While this enables693

certain forms of linguistic analysis, it overlooks694

crucial acoustic features that are particularly695

relevant in the context of Primary Progressive696

Aphasia (PPA), where speech characteristics such697

as pronunciation, pause duration, and stuttering698

play a significant diagnostic role. Unfortunately,699

due to data privacy constraints, access to audio700

recordings or transcriptions was not possible in our701

study.702

10 Ethical Considerations703

The dataset used in this research was anonymized704

and sourced from a prior work. This ensures705

that the privacy and data protection of the origi-706

nal participants are upheld. However, due to the707

anonymization process, we have limited informa-708

tion about participants’ demographic backgrounds.709

As a result, we cannot assess potential biases or710

limitations of our classifiers across different soci-711

etal groups. To ensure broader applicability and712

fairness, it is essential to validate our findings on a713

larger and more diverse dataset before considering714

real-world deployment.715

Additionally, while this work does not directly cre-716

ate an automated diagnostic tool, its findings could717

contribute to the development of such technologies718

in the future. We emphasize that the goal is to719

assist clinicians rather than replace them, and we720

acknowledge the potential risk of misuse if such721

tools were to be used as substitutes for expert judg-722

ment.723
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A Dataset statistics 959

All participants were shown a drawing of a fam- 960

ily at a picnic from the Western Aphasia Battery- 961

Revised (Clark et al., 2020) and were asked to 962

describe it using as many full sentences as pos- 963

sible. To prepare the written data, responses were 964

recorded, transcribed into text using the Microsoft 965

Dictate application, and then manually verified for 966

accuracy by a human expert who was blinded to the 967

group assignments. Importantly, prosodic elements 968

such as hesitations ("um," "uhh") and other disflu- 969

encies were carefully preserved in the transcripts, 970

as these features are critical for capturing speech 971

patterns characteristic of primary progressive apha- 972

sia. A total of 79 interviews with PPA patients were 973

sourced from a study conducted within the PPA pro- 974

gram at the Frontotemporal Disorders Unit of Mas- 975

sachusetts General Hospital (MGH). Expert neu- 976

ropsychiatrists and speech-language pathologists 977

carried out the assessment and annotation. The 978

dataset also includes 53 healthy controls, sourced 979

from the Speech and Feeding Disorders Labora- 980

tory at Massachusetts General Hospital (MGH) and 981

Amazon’s Mechanical Turk (MTurk). The distribu- 982

tion of subtypes is shown in Table 3 in Appendix 983

A. All participants were native English speakers 984

with no self-reported history of brain injury or 985

speech/language disorders. Healthy controls and 986

PPA patients were matched in terms of age, gender, 987

handedness, and years of education. 988

Subtype Nb. of Samples
Logopenic Variant (lvPPA) 26
Semantic Variant (svPPA) 24
Nonfluent Variant (nfvPPA) 29
Healthy Controls 53

Table 3: Distribution of subtypes and number of samples
in the original version of the dataset.
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Subtype Nb. of Samples
Logopenic Variant (lvPPA) 433
Semantic Variant (svPPA) 402
Nonfluent Variant (nfvPPA) 335
Healthy Controls 960

Table 4: Distribution of subtypes and number of samples
in the expanded version dataset.

Dataset Mean Median Std. Dev.
Original version 132.98 104.00 89.47
Expanded version 7.76 7.00 4.93

Table 5: Statistics (mean, median, standard deviation)
of text lengths (in words) for the original and expanded
datasets.

B Models990

• BERT: A bidirectional transformer that cap-991

tures context from both left and right of a992

word, making it effective for tasks that require993

deep semantic understanding (Devlin et al.,994

2019).995

• RoBERTa: A robustly optimized version of996

BERT with improved training strategies and997

increased training data, designed to improve998

performance on a variety of NLP tasks (Liu999

et al., 2019).1000

• MentalBERT: A domain-specific transformer1001

model fine-tuned on mental health-related text,1002

aimed at capturing linguistic patterns specific1003

to this domain (Ji et al., 2022).1004

• ClinicalBERT: A transformer fine-tuned on1005

clinical text, optimized for healthcare-related1006

tasks and well-suited for medical and diagnos-1007

tic datasets (Alsentzer et al., 2019).1008

• LLAMA: meta-llama/1009

Meta-Llama-3-8B-Instruct, sourced1010

from the Hugging Face repository, developed1011

by Meta, with 8 billion parameters, fine-tuned1012

for instruction-based tasks (Touvron et al.,1013

2023).1014

• Mistral: mistralai/1015

Mistral-7B-Instruct-v0.2, sourced1016

from the Hugging Face repository, developed1017

by Mistral AI, with 7 billion parame-1018

ters, optimized for instruction-based and1019

conversational tasks (Jiang et al., 2023).1020

• GPT-3.5-turbo: Developed by OpenAI, a 175 1021

billion parameter model known for its general- 1022

purpose conversational and reasoning capabil- 1023

ities (Brown et al., 2020). 1024

• GPT-4o-mini: Developed by OpenAI, a 1025

lightweight variant of GPT-4, fine-tuned for 1026

optimized performance on smaller computa- 1027

tional setups (OpenAI, 2023). 1028

C Prompt for Clinical Text Classification 1029

The following prompt was used to guide the clinical 1030

text classification task performed by the LLMs: 1031

You are a clinical text classifier specializing in 1032

language and speech characteristics related to Pri- 1033

mary Progressive Aphasia (PPA). Based on the 1034

provided interview transcript of a patient, classify 1035

the text into one of the following categories: 1036

- lvPPA: Logopenic Variant, Characterized by 1037

word-finding difficulties and impaired repetition 1038

abilities. Patients may frequently pause or hesitate 1039

as they search for words, and they may struggle to 1040

repeat phrases accurately. 1041

Example: Patient might say, “I went to the. . . um. . . 1042

place where. . . you know, people get. . . books,” 1043

when trying to say "library." They may also strug- 1044

gle to repeat phrases accurately, often omitting 1045

words or stumbling. 1046

- svPPA: Semantic Variant, Primarily affects the 1047

understanding of word meanings (semantic knowl- 1048

edge). Patients may struggle with naming and com- 1049

prehension, even for common objects. They often 1050

resort to broad categories instead of precise words 1051

(e.g., thing instead of fork). 1052

Example: When shown a picture of a dog, the pa- 1053

tient might say, “It’s an animal. . . I think it’s a 1054

pet,” without being able to retrieve the word "dog." 1055

They may also have difficulty understanding spe- 1056

cific terms, relying on broader descriptions. 1057

- nfvPPA: Impacts grammar and speech produc- 1058

tion, leading to slow, effortful, and agrammatic 1059

speech. Patients may omit small grammatical 1060

words (e.g., “is,” “the”) and speak in a telegraphic 1061

manner. Patients tend to use very short sentences, 1062

a rich vocabulary with low-frequency words, and 1063

more nouns compared to verbs. 1064

Example: The patient might say, “Walk. . . store. . . 1065

buy milk,” instead of “I’m going to walk to the 1066

store to buy milk.” Speech is often halting and 1067

labor-intensive, with noticeable pauses. 1068

- control: The individual demonstrates fluent, 1069

grammatically correct speech, free from any mark- 1070
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ers of hesitation, effortful speech, or semantic im-1071

pairment. There are no indications of word-finding1072

difficulties or grammatical errors. The individual1073

uses both simple and complex sentences naturally1074

and appropriately. They can express themselves1075

clearly without notable pauses, hesitations, or sub-1076

stitutions. The vocabulary used is appropriate for1077

the context, and their language comprehension and1078

responses are cohesive.1079

Example: “I’m going to walk to the store to buy1080

some milk” or “After I finish work, I plan to go1081

for a walk and then cook dinner.” The language is1082

fluent, natural, and demonstrates coherent sentence-1083

building abilities.1084

Analyze the language, sentence structure, vo-1085

cabulary, and speech flow within the conversa-1086

tional context of the interview to determine the1087

most fitting category. Your response should include1088

only one of the following labels: lvPPA, svPPA,1089

nfvPPA, or control. If the text does not clearly1090

fit into one category, analyze it carefully and sug-1091

gest the most likely category based on available1092

evidence.1093

D Computational Resources1094

The experiments described in Section 4.2 and 6.21095

were conducted on Google Colab Pro using an1096

NVIDIA L4 GPU.1097

The experiments described in Section 5 were con-1098

ducted using two different computational setups.1099

For LLAMA and Mistral, we ran experiments lo-1100

cally on a system running Ubuntu 22.04.4 LTS1101

(Jammy Jellyfish). This system featured an AMD1102

Ryzen 9 7950X 16-Core Processor (32 threads, 161103

cores, 2 threads per core) with a maximum clock1104

speed of 5.88 GHz, 62 GB of RAM, 2 GB of swap1105

space, and an NVIDIA RTX A6000 GPU with 481106

GB of memory, using CUDA 12.4 for GPU acceler-1107

ation. For GPT-3.5 and GPT-4o-mini, we relied on1108

the OpenAI API, accessing the models via cloud-1109

based inference.1110

E Results of Traditional Machine1111

Learning’s experiments1112

This section presents the results of the remaining1113

traditional ML experiments conducted in our study.1114

For each classification model, we include perfor-1115

mance metric plots across the five cross-validation1116

folds. These graphs offer a more comprehensive1117

view of model behavior and complement the sum-1118

mary statistics discussed in the main text.1119
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Figure 4: SVM performance

Figure 5: Logistic Regression performance
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Figure 6: Naive Bayes performance

Figure 7: XGBoost performance
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F Results of LLMs’ Experiments1120

This section presents the performance of LLMs.1121

We report key metrics such as balanced accuracy,1122

precision, recall, and F1-score across all models.1123

Results are visualized using bar charts for com-1124

parative clarity. Additionally, confusion matrices1125

are provided to highlight subtype-specific strengths1126

and weaknesses, offering a more granular view of1127

the classification outcomes.

Figure 8: Mistral Performance

1128

Figure 9: GPT-3.5 Performance

Figure 10: GPT-4o-minia performance

Figure 11: LLAMA Confusion Matrix

Figure 12: Mistral Confusion Matrix
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Figure 13: GPT-3.5-Turbo Confusion Matrix

Figure 14: GPT-4o-mini Confusion Matrix
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G Feature Importance Analysis with LIME1129

To better understand model behavior and interpret classification decisions, we conducted a feature1130

importance analysis using the LIME framework. This approach allows us to identify which input features1131

most influenced individual predictions, providing insights into the linguistic patterns leveraged by the1132

models for each PPA subtype.

Figure 15: Token-level feature importance estimated by LIME for a svPPA representative sample - MLP +
MentalBERT’s features.

1133

Figure 16: Token-level feature importance estimated by LIME for a svPPA representative sample - BERT.

Figure 17: Token-level feature importance estimated by LIME for a svPPA representative sample - RoBERTa.
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Figure 18: Token-level feature importance estimated by LIME for a lvPPA representative sample - MLP + Mental-
BERT’s features.

Figure 19: Token-level feature importance estimated by LIME for a lvPPA representative sample - BERT.

Figure 20: Token-level feature importance estimated by LIME for a lvPPA representative sample - RoBERTa.
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Figure 21: Token-level feature importance estimated by LIME for a nfvPPA representative sample - MLP +
MentalBERT’s features.

Figure 22: Token-level feature importance estimated by LIME for a nfvPPA representative sample - BERT.

Figure 23: Token-level feature importance estimated by LIME for a nfvPPA representative sample - RoBERTa.

20


	Introduction
	Related Work
	Dataset
	Overview
	Data Preprocessing

	Methodology
	Evaluation Reference Points
	Traditional Machine Learning Models
	Feature Extraction techniques
	Machine Learning Models

	Transformer-based Models

	Large Language Models (LLMs)
	Results
	Traditional Machine Learning Models
	Transformer-based Models
	Large Language Models (LLMs)

	Discussion
	Conclusion
	Limitations
	Ethical Considerations
	Dataset statistics
	Models
	Prompt for Clinical Text Classification
	Computational Resources
	Results of Traditional Machine Learning's experiments
	Results of LLMs' Experiments
	Feature Importance Analysis with LIME

