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Abstract

Classifying subtypes of primary progressive
aphasia (PPA) from connected speech presents
significant diagnostic challenges due to overlap-
ping linguistic markers. This study benchmarks
the performance of traditional machine learn-
ing models with various feature extraction tech-
niques, transformer-based models, and large
language models (LLMs) for PPA classification.
Our results indicate that while transformer-
based models and LLMs exceed chance-level
performance in terms of balanced accuracy, tra-
ditional classifiers combined with contextual
embeddings remain highly competitive. No-
tably, MLP using MentalBert’s embeddings
achieves the highest accuracy. These findings
underscore the potential of machine learning
for enhancing the automatic classification of
PPA subtypes.

1 Introduction

Primary progressive aphasia (PPA) is a neurode-
generative disorder characterized by progressive
language deficits as the primary symptom. It is
typically classified into three subtypes (Gorno-
Tempini et al., 2011): (1) the logopenic variant
(IvPPA), associated with word-finding difficulties
and impaired sentence repetition, often linked to
Alzheimer’s pathology; (2) the semantic variant
(svPPA), marked by deficits in word comprehen-
sion and object naming; and (3) the nonfluent vari-
ant (nfvPPA), characterized by effortful, halting,
and telegraphic speech. The underlying pathol-
ogy of svPPA and nfvPPA is often frontotemporal
lobar degeneration (Rezaii et al., 2023). Diagnos-
ing these subtypes traditionally requires extensive
clinical assessment by expert neurologists, neu-
ropsychologists, and speech-language pathologists,

making the process resource-intensive and time-
consuming. As a result, there is increasing interest
in automated methods for efficient and accurate
PPA classification. However, diagnosing PPA from
textual data, such as transcripts of patient inter-
views, presents several challenges. The linguistic
and syntactic markers that differentiate PPA sub-
types are often subtle and overlapping, requiring
robust feature extraction and classification tech-
niques (Tippett, 2020). Furthermore, the limited
availability of labeled clinical datasets and indi-
vidual variability in language use exacerbate these
challenges. Distinguishing svPPA from 1vPPA is
particularly difficult, as both subtypes involve word
retrieval impairments. Despite these difficulties, ac-
curate classification is crucial, given the distinct
etiologies and treatment strategies associated with
each PPA variant.

Recent advancements in natural language process-
ing (NLP) have opened new avenues for automated
diagnostic tools based on text. Prior research has
demonstrated the potential of NLP in mental health
assessment (Zhang et al., 2022), including applica-
tions in detecting bipolar disorder and schizophre-
nia (Aich et al., 2022). However, research on ap-
plying NLP to neurodegenerative diseases, partic-
ularly PPA, remains limited. Notably, there is a
lack of systematic benchmarking studies that com-
pare multiple computational approaches for PPA
classification. To address this gap, we conduct a
comprehensive benchmarking study, systematically
evaluating a diverse range of models, from tradi-
tional machine learning (ML) methods with various
feature extraction techniques to transformer-based
models and large language models (LLMs). By pro-
viding a comparative analysis of these approaches,
our study offers new insights into the effectiveness



of different computational techniques for the auto-
mated classification of PPA subtypes.

2 Related Work

Research on PPA has primarily focused on under-
standing its clinical subtypes and linguistic man-
ifestations (Henry et al., 2016). Studies in clini-
cal neurology and neuropsychology have detailed
the unique language impairments associated with
IvPPA, svPPA, and nfvPPA, highlighting the impor-
tance of linguistic and syntactic analysis in diag-
nosis (Wauters et al., 2023). However, leveraging
computational methods for the diagnosis of PPA
remains an emerging area.

In the field of natural language processing (NLP),
traditional ML models have been widely applied to
clinical text classification tasks, including disease
detection and subtype identification. In their study,
Fraser et al. (2014) explored the use of computa-
tional linguistics for identifying different variants
of PPA. They compared various feature sets, in-
cluding acoustic, lexical, and syntactic features,
and demonstrated that combining multiple modal-
ities significantly improved classification perfor-
mance. Their findings highlighted the importance
of leveraging diverse linguistic markers to distin-
guish PPA subtypes, particularly the nonfluent vari-
ant (nfvPPA), which often exhibits clear syntactic
deficits. Similarly, Themistocleous et al. (2021)
achieved a classification accuracy of 80% by com-
bining acoustic and linguistic features and using
them as input for a deep neural network model.
Building on this foundation, Rezaii et al. (2022)
investigated the relationship between lexical and
syntactic complexity during language production
in individuals with PPA and healthy controls. Their
study identified a syntax-lexicon trade-off where
individuals with syntactic deficits, such as those
with nfvPPA, used semantically richer words, while
those with lexicosemantic deficits (e.g., svPPA or
IvPPA) produced syntactically complex sentences.
Their approach achieved a classification accuracy
of up to 92% when distinguishing nfvPPA in a
one-vs-all setup. In more recent work, Rezaii et al.
(2024) explored the use of LLMs to classify PPA
subtypes based on connected speech. Their ap-
proach incorporated verb frequency and other lin-
guistic features to align text-based speech patterns
with brain scan findings, achieving 88.5% agree-
ment on PPA clusters with LLMs. A supervised
classifier using features identified by the LLM fur-

ther improved accuracy to 97.9%. This study high-
lights the potential of LLMs in identifying linguis-
tic markers of PPA subtypes and represents a signif-
icant advance in the application of NLP to clinical
tasks. Cong et al. (2024b) also investigated the
use of LLMs for detecting the presence, subtypes,
and severity of aphasia in both English and Man-
darin Chinese speakers. Their findings revealed
that applying LLMs without fine-tuning resulted in
accuracy levels close to chance for aphasia subtyp-
ing.

Language impairments, such as PPA, are often
among the earliest signs of broader cognitive de-
cline, including dementia (Harvard Health Publish-
ing, 2022). Santander-Cruz et al. (2022) employed
a combination of syntactic and semantic analy-
ses to detect dementia in transcribed data from
the Pitt Corpus database provided by Dementia-
Bank!. They extracted features such as spelling
mistakes, grammar errors, and cosine similarity
and evaluated their effectiveness using ML mod-
els, including SVMs and neural networks. Notably,
syntactic features alone achieved an F1-score of
77% with SVMs. While their approach demon-
strated the effectiveness of syntactic features, it
remained limited in scope, focusing on a prede-
fined feature set and a small selection of models.
In contrast, our study systematically evaluates a
wider range of methodologies, from traditional ML
models with different feature extraction techniques
to transformer-based models and LLMs, to compre-
hensively assess the potential of NLP techniques
for PPA classification.

3 Dataset

3.1 Overview

The data used in this study was shared with us by
Anonym (YYYY). The dataset consists of clinical
transcripts from interviews with individuals diag-
nosed with one of the PPA subtypes, as well as
control participants without a PPA diagnosis. A
key limitation of text-based analyses is that public
sharing of voice data remains restricted due to con-
cerns about participant identification. However, an
advantage of this work is that patients can still be
classified based on their written texts (e.g., Josephy-
Hernandez et al. (2023)). Further details about the
data are provided in Appendix A.

Two versions of the dataset were used in this study:
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the original version, which includes each partici-
pant’s full interview transcript, and the expanded
version, where each transcript was split into indi-
vidual sentences, with each sentence inheriting the
label of the original transcript. The label distribu-
tion for both versions of the dataset is provided in
Tables 3 and 4 in Appendix A.

Statistics for both versions of the dataset, includ-
ing the mean, median, and standard deviation of
text lengths in words, are presented in Table 5 in
Appendix A.

3.2 Data Preprocessing

Preprocessing the data is a crucial step before ap-
plying ML models, as it ensures the integrity of the
linguistic and syntactic features. This section de-
tails the preprocessing steps undertaken to prepare
the dataset.

The first step included converting all text to lower-
case to standardize case sensitivity. Special char-
acters were removed, retaining only intentionally
included alphanumeric characters and punctuation
marks, as these features are significant in the di-
agnosis of PPA. For instance, punctuation patterns
can signify pauses, sentence boundaries, or tele-
graphic speech, which are critical markers for dis-
tinguishing between PPA subtypes. nfvPPA, in par-
ticular, is marked by halting speech and frequent
pauses. Following this, the text was tokenized into
individual words for further analysis.

It is important to mention that the preprocessing
steps were applied for the experiments with the
traditional ML models described in Section 4.2.

4 Methodology

The code used in this study is made publicly avail-
able at GitHub link.

4.1 Evaluation Reference Points

To evaluate the performance of the models in this
multi-class classification task, we define a refer-
ence metric to provide a point of comparison for
balanced accuracy:

Stratified (Weighted) Random Reference:
This reference metric accounts for class imbalance
by weighting each class proportionally to its fre-
quency in the dataset. Since this metric incorpo-
rates dataset imbalance, it provides a more realistic
reference than uniform random guessing.
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4.2 Traditional Machine Learning Models

The initial experiments in this benchmarking study
involve applying various feature extraction tech-
niques in combination with a predefined set of tra-
ditional ML models. The following subsection
provides an overview of the feature extraction tech-
niques used.

4.2.1 Feature Extraction techniques

Several feature extraction strategies were evaluated
in this study, spanning from traditional statistical
methods to more advanced embedding-based and
syntactic techniques. TF-IDF (Salton and Buckley,
1988) and Bag-of-Words (BoW) (Harris, 1954) fo-
cused on capturing word frequency and document-
level term relevance. To incorporate semantic in-
formation, we employed embedding-based mod-
els such as Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and FastText (Bo-
janowski et al., 2017); the latter also accounts
for subword structures. For contextual representa-
tion, we extracted embeddings from transformer-
based models including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), Mental BERT (Ji et al.,
2022), and Clinical BERT (Alsentzer et al., 2019).
Additional features were derived using N-grams
(from bigrams to 4-grams) (Brown et al., 1992)
to capture local context, LSA (Deerwester et al.,
1990) and LDA (Blei et al., 2003) for latent topic
modeling, and dependency parsing (Kiperwasser
and Goldberg, 2016) to model syntactic relation-
ships.

4.2.2 Machine Learning Models

Traditional ML models have played a key role in ad-
vancing Al and continue to offer advantages such as
interpretability, computational efficiency, and adap-
tation to smaller datasets (Murphy, 2012). Despite
the growing dominance of LLMs, the performance
of traditional models should not be overlooked,
particularly in tasks where linguistic and syntactic
features play a central role.

To ensure a robust benchmarking process, we
incorporate five widely-used traditional ML mod-
els: Support Vector Machine (SVM), Naive Bayes
(NB), Logistic Regression (LR), Multilayer Per-
ceptron (MLP), and XGBoost. These models were
evaluated in combination with the feature extrac-
tion techniques detailed in the previous section.

The expanded version of the dataset was used for
this experiment. The decision to split the original
dataset at the sentence level was motivated by the
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goal of aligning with a prior study that used the
same dataset to ensure comparability, as well as
to increase the number of training examples. Con-
sidering the limited sample size, default parameter
settings without hyperparameter fine-tuning were
used for all models, ensuring simplicity and repro-
ducibility in the benchmarking process.

To prevent data leakage, feature extraction was in-
tegrated within scikit-learn pipelines, ensuring that
feature computation was performed solely on the
training data during each fold and never on the test
data. Additionally, GroupKFold cross-validation
was used to ensure that all data from a single par-
ticipant appeared exclusively in either the train-
ing folds or the test fold, thereby preventing data
leakage across splits. This prevented the model
from learning to recognize individual participants
instead of the targeted PPA subtype. In total, 65
experiments were conducted (5 classifiers x 13 fea-
ture extraction techniques).

4.3 Transformer-based Models

In addition to traditional ML models, this study
evaluates the performance of transformer-based
models, which have revolutionized natural lan-
guage processing by taking advantage of attention
mechanisms and contextual embeddings. These
models are particularly well-suited for tasks involv-
ing subtle syntactic variations and capturing long-
term dependencies, making them strong candidates
for the classification task at hand. While some
transformer models were previously used to gener-
ate embeddings for feature-based approaches (as
detailed above), here, they are directly employed as
classifiers to assess their full predictive capabilities.

The transformer-based models included in this
benchmarking study are as follows: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
MentalBERT (Ji et al., 2022), and Clinical BERT
(Alsentzer et al., 2019). A detailed description of
each model is provided in Appendix B.

These models are evaluated using the same cross-
validation protocols applied to traditional ML mod-
els, ensuring fair comparison. Each training in-
volved re-initializing the model and optimizer, fol-
lowed by full fine-tuning for 10 epochs on the train-
ing split.

The dataset exhibits a moderate class imbalance
(see Table 4). Since this work presents a bench-
marking study where both traditional ML and
transformer-based classifiers are evaluated under
the same cross-validation settings without addi-

tional resampling or weighting techniques, no ex-
plicit method for addressing class imbalance (e.g.,
class weights or oversampling) was applied. This
consistent protocol allows for fair comparisons
across model types. However, we acknowledge that
class imbalance may still impact the performance
of some classifiers, especially on underrepresented
subtypes.

S Large Language Models (LLMs)

LLMs represent a significant breakthrough in artifi-
cial intelligence, demonstrating exceptional capa-
bilities across a wide range of NLP tasks. These
models, like OpenAI’s GPT series and Google’s
Gemini, are built upon transformer-based archi-
tectures and are known by their immense size,
comprising billions or even trillions of parameters.
Their extensive training, combined with their pa-
rameterization, allows them to achieve high perfor-
mance in a wide range of NLP tasks, including text
generation.

In this study, we employ a prompt-based ap-

proach to leverage LLMs for the classification of
PPA subtypes. Rather than fine-tuning these mod-
els, we evaluate their zero-shot performance by
designing a structured prompt tailored to our clas-
sification task. The following LLMs were used in
this study: LLAMA (Touvron et al., 2023), Mistral
(Jiang et al., 2023), GPT-3.5-turbo (Brown et al.,
2020), and GPT-40-mini (OpenAl, 2023). Detailed
descriptions of each model are provided in Ap-
pendix B.
The original version of the data was used, and
the prompt was carefully designed in collaboration
with a clinical expert in the field (see Appendix C).
The temperatures used for each model are pre-
sented in Table 1. For Mistral and LLAMA, we
used a relatively low temperature (0.2) to ensure
more deterministic outputs?, as these models may
exhibit greater output variability at higher tempera-
tures. In contrast, GPT-3.5 and GPT-40-mini were
assigned a moderately higher temperature (0.7) to
encourage more diverse responses while maintain-
ing overall coherence. This choice was informed by
prior observations that hallucination rates tend to
be higher in open-source models such as LLAMA
and Mistral, and that lower temperatures help miti-
gate this issue (Yang et al., 2025).

2https: //huggingface.co/docs/transformers/
main_classes/text_generation#parameters
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Model Temperature
Mistral 0.2
LLAMA 0.2
GPT-3.5 0.7
GPT-40-mini 0.7

Table 1: Temperature used for each model.

6 Results

To ensure a comprehensive evaluation, we rely on
widely recognized classification metrics, including
balanced accuracy, weighted F1-score, weighted
precision, weighted recall, Area Under the Curve
(AUC), as well as a confusion matrix for LLM
based experiments. All experiments are evaluated
using 5-fold cross-validation to ensure robustness
and minimize overfitting. The results are presented
as bar charts, with balanced accuracy’s reference
performance indicated by vertical lines to provide
a clear point of comparison. Additionally, local
feature importance analyses were conducted using
LIME (Ribeiro et al., 2016) for the top-performing
models in both the traditional ML and transformer-
based experiments, providing insight into which
input features most influenced individual predic-
tions.

6.1 Traditional Machine Learning Models

Figure 1 presents the performance of the top-
performing traditional ML models (in terms of F1-
score), namely MLP. Each colored bar represents
the ML model paired with a different feature ex-
traction technique. The results for the other models,
including LR, SVM, NB, and XGBoost, are pro-
vided in Appendix E for completeness.

In terms of balanced accuracy, features derived
from MentalBERT, followed by those from BERT,
consistently yielded the best results across nearly
all models. LR showed comparable performance
when using MentalBERT, BERT, and Bag-of-
Words features. MentalBERT also outperformed
other models across additional metrics, including
weighted precision, weighted recall, weighted F1-
score, and AUC, with BERT and RoBERTa follow-
ing closely. Notably, Mental BERT achieved over
60% on weighted precision, recall, and F1-score
for the MLP classifier, and reached or approached
80% AUC with MLP, SVM, LR, and XGBoost.

6.2 Transformer-based Models

Figure 2 illustrates the performance of the various
transformer-based classifiers. All models signif-
icantly outperform the reference metric in terms
of balanced accuracy, with ROBERTa and BERT
demonstrating comparable top-tier performance,
closely followed by Mental BERT. Regarding the
F1-score, ROBERTa and BERT achieve the high-
est results of 57%. Similar trends are observed
for weighted precision and weighted recall, where
RoBERTa and BERT achieve scores a little un-
der 60%. In terms of AUC, RoBERTa, BERT and
MentalBERT all demonstrate strong performance,
achieving results at or near 80%.

6.3 Large Language Models (LLMs)

Figure 3 presents a bar chart illustrating the per-
formance of LLAMA, which achieved the highest
weighted precision, weighted recall, and F1-score
among all LLMs. In terms of balanced accuracy,
it was outperformed only by GPT-40-mini. For
completeness, the results of Mistral, GPT-3.5-turbo
and GPT-40-mini are provided in Appendix F. All
models, except for Mistral, outperformed our refer-
ence metric.

Figures 11, 12, 13, and 14 in Appendix F present
the confusion matrices for all four models. For
LLAMA, we observe a strong performance in cor-
rectly predicting both the control group and IvPPA,
but the model struggled with predicting any svPPA
samples. Mistral’s performance, shown in Fig-
ure 12, was the weakest, as it assigned multiple
times the label, unknown, when it failed to classify
a sample correctly. Both GPT models performed
well in identifying the control group, with GPT-3.5-
Turbo showing a slight edge over the other model.
However, both models faced significant difficulty
with IvPPA. GPT-3.5 also showed limited success
with svPPA, whereas GPT-40-mini performed bet-
ter on both svPPA and nfvPPA.

7 Discussion

The results of this study provide valuable insights
into the potential of various models for detecting
primary progressive aphasia (PPA) subtypes.
Benchmarking traditional ML approaches,
transformer-based models, and LLLMs holds signifi-
cant importance in advancing clinical diagnostics.
These efforts not only reveal key trends and
performance disparities but also underscore the
broader potential of these models to improve the
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detection and classification of complex clinical
conditions, such as PPA.

The results from traditional ML models reveal
the critical role of feature extraction in deter-

mining performance. In particular, embeddings
derived from transformer-based models such as
MentalBERT, RoBERTa, and BERT consistently
outperformed classical feature engineering meth-
ods across most classifiers. This was especially
evident in MLP, where the use of MentalBERT’s
features resulted in reaching or exceeding 60%
weighted precision, weighted recall, and F1-scores,
as well as AUC values exceeding 80%. These
findings highlight the potential of combining
robust feature extraction methods with simpler
classifiers to achieve competitive results, especially
in resource-constrained environments. In addition,
in use cases where context is important relying
on contextual embeddings like those generated by
transformer-based models is generally expected
to yield better results. The LR model paired
with BoW features still demonstrated competitive
results, closely trailing behind transformer-based



embeddings. This further suggests that simpler
techniques may still be viable in certain scenarios,
particularly when interpretability is prioritized
(Itani et al., 2019). When dealing with sensitive
medical conditions such as PPA, interpretation is
paramount, as clinicians and researchers need to
understand the rationale behind model predictions.
The ability to explain why a model classified a
patient’s condition can thus foster trust.

In line with recent work by Rezaii et al. (2022), our
findings further emphasize the inherent difficulty
of the multi-class classification task for PPA
subtypes. Relying on a syntax-lexicon approach,
the authors achieved a high accuracy (92%) in a
binary classification task but reported a significant
drop to 66% accuracy in multi-class classification.
This stark contrast underscores the challenges
faced by the overlapping symptoms and complex-
ity of different PPA subtypes. Similar to their
findings, our results confirm that advanced ML
techniques, while promising, still face limitations
when addressing multi-class classification in this
domain.

Furthermore, transformer-based models such
as RoBERTa and BERT achieved balanced
accuracy and Fl-scores 57%, which highlights
the intrinsic challenges of capturing the subtle
linguistic and syntactic variations inherent in PPA
subtypes in a multi-class classification setting.
These results align with the broader challenges
outlined by Gorno-Tempini et al. (2011), who
discussed the diagnostic complexity of PPA due
to the heterogeneity and overlapping symptoms
among its subtypes. While transformer models
demonstrated promising results, they were outper-
formed by traditional ML models combined with
transformer-based embeddings. This suggests that
although transformers hold potential for capturing
complex linguistic patterns, further refinement
and task-specific adaptation are necessary to fully
leverage their capabilities. This finding was also
emphasized by Cong et al. (2024a), where the
authors reaffirmed the potential of transformer-
based models in healthcare, particularly in
identifying complex patterns essential for the early
detection and classification of neurodegenerative
diseases. In addition, an important insight is that
general-domain models appear to outperform
domain-specific ones. Specifically, RoOBERTa
and BERT consistently produced stronger results
than ClinicalBERT and MentalBERT, although
MentalBERT’s performed comparably on most

metrics. One possible explanation is that larger,
more diverse pretraining corpora may help
general-domain models capture a wider range of
linguistic cues. However, even if domain-specific
models are adjusted to specialised vocabulary, they
could overlook some contextual cues or universal
language patterns that are useful in broader tasks.
In fact, general-domain BERT can occasionally
stay competitive or even outperform specialised
models, according to Alsentzer et al. (2019),
indicating that in some situations, greater coverage
may outweigh niche specialization in certain
scenarios.

Although BERT and RoBERTa achieve the best
scores among the end-to-end transformer models,
they are still outperformed by a lighter pipeline
in which a frozen MentalBERT encoder feeds
an MLP classifier. This gap can be explained by
two factors. First, Mental BERT is pre-trained on
clinical and mental-health text, so its embeddings
inherently capture stylistic cues like telegraphic
phrases, disfluencies, domain vocabulary (that
are highly relevant to PPA), whereas generic
BERT/RoBERTa must learn these patterns from
the small fine-tuning set. Second, full fine-tuning
updates hundreds of millions of parameters and
is prone to overfitting when data are limited and
moderately imbalanced (Devlin et al., 2019).
While LLMs outperformed our reference metric in
terms of balanced accuracy (with the exception of
Mistral), their results were inconsistent across the
subtypes (see confusion matrices in Appendix F).
LLAMA achieved the highest weighted precision,
weighted recall, and Fl-score, yet it struggled
particularly with svPPA classification. = One
likely explanation is that we used these models
without fine-tuning, relying solely on prompting.
Unlike smaller models explicitly optimized for
classification through feature-based learning,
LLMs generate responses based on broad language
modeling objectives, which may not align well
with structured clinical classification. These results
highlight the limitations of zero-shot LLM classi-
fication, where performance may be constrained
without fine-tuning or domain adaptation. Table 2
highlights the best-performing models across our
experiments. While most models demonstrated
comparable performance, LLAMA stood out
negatively; despite outperforming other LLMs, it
failed to match the top models in other categories.
MLP paired with MentalBERT’s embeddings
emerged as the strongest model, achieving the



highest scores in balanced accuracy, weighted
F1-score, weighted precision, and weighted recall,
though by a narrow margin.

Model Bal. Acc. | F1 P R

LLAMA 0.42 0.46 | 0.52 | 0.49
BERT 0.51 0.57 | 0.60 | 0.58
RoBERTa 0.51 0.57 | 0.60 | 0.57
MLP & MentalBERT 0.52 0.60 | 0.61 | 0.61

Table 2: Performance metrics for the best models (Bal.
Acc. = Balanced Accuracy, P = Precision, R = Recall).
Highest value(s) in each column are in bold.

Additionally, we use LIME (Local Interpretable
Model-Agnostic Explanations) (Ribeiro et al.,
2016) to analyze local feature importance for indi-
vidual predictions from our best-performing model
(MLP with MentalBERT embeddings), as well as
BERT and RoBERTa. We present one example per
subtype in Appendix G. For svPPA (see Figures
15, 16, and 17), non-specific words like people con-
sistently received high importance across all three
models, aligning with known svPPA speech pat-
terns (Gorno-Tempini et al., 2011). Similarly, fre-
quent verbs such as sitting, getting, and eating were
among the most influential tokens, which is also
characteristic of svPPA language use (Lukic et al.,
2022). The word two was weighted negatively, in-
dicating Not svPPA, which aligns with the observa-
tion that svPPA patients tend to use vague and gen-
eral language rather than specific quantifiers (Faust
et al., 2012). In the case of IvPPA (see Figures
18, 19, and 20), patients often use interjections and
fillers to mask disfluencies such as uhh, which re-
ceived notable importance, particularly in the MLP
+ MentalBERT model. Indefinite determiners like
a were assigned the highest importance by both
MLP + Mental BERT and BERT, which aligns with
the findings of (Robertson et al., 2024) and reflects
the lexical retrieval difficulties typical of IvPPA. In
contrast, ROBERTa did not highlight these tokens
as strongly, which may be due to differences in
pretraining data or tokenization. Notably, the filler
uhh was deliberately transcribed in a specific way
that may not align with RoBERTa’s subword vocab-
ulary, limiting its interpretability. For nfvPPA (see
Figures 21, 22, and 23), the use of content nouns
like girl was consistently highlighted across the
three models, aligning with known speech patterns
of nfvPPA patients. Interestingly, the word sand-
ing -which is not a real word in this context and

was invented by the patient— received the high-
est importance in BERT. This may reflect BERT’s
sensitivity to surface morphology, particularly -ing
endings, which are frequently used by nfvPPA pa-
tients (Wilson et al., 2010). In contrast, sanding
was negatively weighted by MLP and RoBERTa,
while a concrete noun like castle was ignored only
by BERT. These inconsistencies highlight the mod-
els’ differing sensitivities and suggest that integrat-
ing their complementary perspectives may lead to
more robust and clinically meaningful interpreta-
tions in future work.

8 Conclusion

Our findings show the promise of using ML in the
classification of PPA subtypes. The results demon-
strate that although transformer-based methods
sometimes yield comparable metrics, they do not
decisively outperform classical feature based tech-
niques such as MLP paired with MentalBERT’s
embeddings. This highlights the inherent complex-
ity of the classification task, shaped by the over-
lapping symptoms across PPA subtypes. Given the
limitations observed in prompt-based LLM exper-
iments, future work should explore task-specific
fine-tuning to better align these models with the
linguistic characteristics of PPA. Further error anal-
ysis may also provide insights into systematic mis-
classifications, guiding refinements in model train-

ing.
9 Limitations

The task of classifying primary progressive aphasia
(PPA) subtypes presents a significant challenge
due to the overlapping symptoms and linguistic
impairments between subtypes. Additionally, our
dataset, while useful for benchmarking remains
relatively small and lacks demographic metadata,
preventing an analysis of potential biases across
different population groups.  Computational
constraints also limited our ability to explore
hyperparameter tuning for all our experiments,
which may have impacted model performance.
This is particularly relevant for traditional clas-
sifiers and transformer-based models, where
optimal settings could have led to improved
results.  Similarly, our exclusive reliance on
natural language prompts for LLMs (although
designed with expert input) may have limited their
performance, as we lacked fine-tuning or deeper
insights into their decision-making processes. The



small dataset size also limits our ability to fully
leverage the potential of LLMs, which typically
benefit from larger-scale training or adaptation
data. Without explicit control over how LLMs
generate classifications, their outputs can be
difficult to interpret and optimize for this task.
Future work should explore fine-tuning approaches
and systematic hyperparameter optimization
to better align model performance with the
complexities of PPA classification. Additionally, it
is generally recommended to repeat LLM-based
experiments and report average performance along
with standard deviations, especially given the
models’ non-deterministic nature and the small
size of our dataset. However, this was not feasible
in our case due to limited computational resources.

Additionally, our classification approach re-
lies solely on textual data. While this enables
certain forms of linguistic analysis, it overlooks
crucial acoustic features that are particularly
relevant in the context of Primary Progressive
Aphasia (PPA), where speech characteristics such
as pronunciation, pause duration, and stuttering
play a significant diagnostic role. Unfortunately,
due to data privacy constraints, access to audio
recordings or transcriptions was not possible in our
study.

10 Ethical Considerations

The dataset used in this research was anonymized
and sourced from a prior work. This ensures
that the privacy and data protection of the origi-
nal participants are upheld. However, due to the
anonymization process, we have limited informa-
tion about participants’ demographic backgrounds.
As a result, we cannot assess potential biases or
limitations of our classifiers across different soci-
etal groups. To ensure broader applicability and
fairness, it is essential to validate our findings on a
larger and more diverse dataset before considering
real-world deployment.

Additionally, while this work does not directly cre-
ate an automated diagnostic tool, its findings could
contribute to the development of such technologies
in the future. We emphasize that the goal is to
assist clinicians rather than replace them, and we
acknowledge the potential risk of misuse if such
tools were to be used as substitutes for expert judg-
ment.
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A Dataset statistics

All participants were shown a drawing of a fam-
ily at a picnic from the Western Aphasia Battery-
Revised (Clark et al., 2020) and were asked to
describe it using as many full sentences as pos-
sible. To prepare the written data, responses were
recorded, transcribed into text using the Microsoft
Dictate application, and then manually verified for
accuracy by a human expert who was blinded to the
group assignments. Importantly, prosodic elements
such as hesitations ("um," "uhh") and other disflu-
encies were carefully preserved in the transcripts,
as these features are critical for capturing speech
patterns characteristic of primary progressive apha-
sia. A total of 79 interviews with PPA patients were
sourced from a study conducted within the PPA pro-
gram at the Frontotemporal Disorders Unit of Mas-
sachusetts General Hospital (MGH). Expert neu-
ropsychiatrists and speech-language pathologists
carried out the assessment and annotation. The
dataset also includes 53 healthy controls, sourced
from the Speech and Feeding Disorders Labora-
tory at Massachusetts General Hospital (MGH) and
Amazon’s Mechanical Turk (MTurk). The distribu-
tion of subtypes is shown in Table 3 in Appendix
A. All participants were native English speakers
with no self-reported history of brain injury or
speech/language disorders. Healthy controls and
PPA patients were matched in terms of age, gender,
handedness, and years of education.

Subtype Nb. of Samples
Logopenic Variant (IvPPA) 26
Semantic Variant (svPPA) 24
Nonfluent Variant (nfvPPA) 29
Healthy Controls 53

Table 3: Distribution of subtypes and number of samples
in the original version of the dataset.
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Subtype Nb. of Samples
Logopenic Variant (IvPPA) 433
Semantic Variant (SVPPA) 402
Nonfluent Variant (nfvPPA) 335
Healthy Controls 960

Table 4: Distribution of subtypes and number of samples
in the expanded version dataset.

Dataset Mean | Median | Std. Dev.
Original version 132.98 | 104.00 89.47
Expanded version 7.76 7.00 493

Table 5: Statistics (mean, median, standard deviation)
of text lengths (in words) for the original and expanded
datasets.

B Models

* BERT: A bidirectional transformer that cap-
tures context from both left and right of a
word, making it effective for tasks that require
deep semantic understanding (Devlin et al.,
2019).

RoBERTa: A robustly optimized version of
BERT with improved training strategies and
increased training data, designed to improve
performance on a variety of NLP tasks (Liu
etal., 2019).

MentalBERT: A domain-specific transformer
model fine-tuned on mental health-related text,
aimed at capturing linguistic patterns specific
to this domain (Ji et al., 2022).

Clinical BERT: A transformer fine-tuned on
clinical text, optimized for healthcare-related
tasks and well-suited for medical and diagnos-
tic datasets (Alsentzer et al., 2019).

LLAMA: meta-1lama/
Meta-Llama-3-8B-Instruct, sourced
from the Hugging Face repository, developed
by Meta, with 8 billion parameters, fine-tuned
for instruction-based tasks (Touvron et al.,
2023).

Mistral: mistralai/
Mistral-7B-Instruct-ve.2, sourced
from the Hugging Face repository, developed
by Mistral AI, with 7 billion parame-
ters, optimized for instruction-based and
conversational tasks (Jiang et al., 2023).
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* GPT-3.5-turbo: Developed by OpenAl, a 175
billion parameter model known for its general-
purpose conversational and reasoning capabil-
ities (Brown et al., 2020).

* GPT-40-mini: Developed by OpenAl, a
lightweight variant of GPT-4, fine-tuned for

optimized performance on smaller computa-
tional setups (OpenAl, 2023).

C Prompt for Clinical Text Classification

The following prompt was used to guide the clinical
text classification task performed by the LLMs:

You are a clinical text classifier specializing in
language and speech characteristics related to Pri-
mary Progressive Aphasia (PPA). Based on the
provided interview transcript of a patient, classify
the text into one of the following categories:

- IvPPA: Logopenic Variant, Characterized by

word-finding difficulties and impaired repetition
abilities. Patients may frequently pause or hesitate
as they search for words, and they may struggle to
repeat phrases accurately.
Example: Patient might say, “I went to the... um...
place where... you know, people get... books,”
when trying to say "library." They may also strug-
gle to repeat phrases accurately, often omitting
words or stumbling.

- svPPA: Semantic Variant, Primarily affects the

understanding of word meanings (semantic knowl-
edge). Patients may struggle with naming and com-
prehension, even for common objects. They often
resort to broad categories instead of precise words
(e.g., thing instead of fork).
Example: When shown a picture of a dog, the pa-
tient might say, “It’s an animal... I think it’s a
pet,” without being able to retrieve the word "dog."
They may also have difficulty understanding spe-
cific terms, relying on broader descriptions.

- nfvPPA: Impacts grammar and speech produc-

tion, leading to slow, effortful, and agrammatic
speech. Patients may omit small grammatical
words (e.g., “is,” “the”) and speak in a telegraphic
manner. Patients tend to use very short sentences,
a rich vocabulary with low-frequency words, and
more nouns compared to verbs.
Example: The patient might say, “Walk. .. store...
buy milk,” instead of “I’m going to walk to the
store to buy milk.” Speech is often halting and
labor-intensive, with noticeable pauses.

- control: The individual demonstrates fluent,
grammatically correct speech, free from any mark-



ers of hesitation, effortful speech, or semantic im-
pairment. There are no indications of word-finding
difficulties or grammatical errors. The individual
uses both simple and complex sentences naturally
and appropriately. They can express themselves
clearly without notable pauses, hesitations, or sub-
stitutions. The vocabulary used is appropriate for
the context, and their language comprehension and
responses are cohesive.

Example: “I’m going to walk to the store to buy
some milk” or “After I finish work, I plan to go
for a walk and then cook dinner.” The language is
fluent, natural, and demonstrates coherent sentence-
building abilities.

Analyze the language, sentence structure, vo-
cabulary, and speech flow within the conversa-
tional context of the interview to determine the
most fitting category. Your response should include
only one of the following labels: IvPPA, svPPA,
nfvPPA, or control. If the text does not clearly
fit into one category, analyze it carefully and sug-
gest the most likely category based on available
evidence.

D Computational Resources

The experiments described in Section 4.2 and 6.2
were conducted on Google Colab Pro using an
NVIDIA L4 GPU.

The experiments described in Section 5 were con-
ducted using two different computational setups.
For LLAMA and Mistral, we ran experiments lo-
cally on a system running Ubuntu 22.04.4 LTS
(Jammy Jellyfish). This system featured an AMD
Ryzen 9 7950X 16-Core Processor (32 threads, 16
cores, 2 threads per core) with a maximum clock
speed of 5.88 GHz, 62 GB of RAM, 2 GB of swap
space, and an NVIDIA RTX A6000 GPU with 48
GB of memory, using CUDA 12.4 for GPU acceler-
ation. For GPT-3.5 and GPT-40-mini, we relied on
the OpenAl API, accessing the models via cloud-
based inference.

E Results of Traditional Machine
Learning’s experiments

This section presents the results of the remaining
traditional ML experiments conducted in our study.
For each classification model, we include perfor-
mance metric plots across the five cross-validation
folds. These graphs offer a more comprehensive
view of model behavior and complement the sum-
mary statistics discussed in the main text.
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Figure 5: Logistic Regression performance
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Figure 6: Naive Bayes performance
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Figure 7: XGBoost performance
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F Results of LLMs’ Experiments

This section presents the performance of LLMs.
We report key metrics such as balanced accuracy,
precision, recall, and F1-score across all models.
Results are visualized using bar charts for com-
parative clarity. Additionally, confusion matrices
are provided to highlight subtype-specific strengths
and weaknesses, offering a more granular view of

the classification outcomes.
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Figure 8: Mistral Performance

GPT 3.5 Turbo Classification Metrics

0.8

—— Stratified Random Baseline

0.6

Scores

04

0.2

0.0

Balanced Accuracy Precision Recall

Metric
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G Feature Importance Analysis with LIME

To better understand model behavior and interpret classification decisions, we conducted a feature
importance analysis using the LIME framework. This approach allows us to identify which input features
most influenced individual predictions, providing insights into the linguistic patterns leveraged by the
models for each PPA subtype.
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Figure 15: Token-level feature importance estimated by LIME for a svPPA representative sample - MLP +
MentalBERT’s features.
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Figure 16: Token-level feature importance estimated by LIME for a svPPA representative sample - BERT.
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Figure 17: Token-level feature importance estimated by LIME for a svPPA representative sample - RoOBERTa.
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Figure 18: Token-level feature importance estimated by LIME for a IvPPA representative sample - MLP + Mental-

BERT’s features.

Prediction probabilities

a
control 050
are
wepa [ 1.00
PP bi
SVPPA e
having
0.12
sitting
007
uhh
0.05
in|
002
and
0.02
[Woman
002
wife
001

Text with highlighted words

Woman and @ wife are sitting in @ having a pic uhh..

Figure 19: Token-level feature importance estimated by LIME for a IvPPA representative sample - BERT.

Prediction probabilities
having

control 04
a
ivpPA [T 0.99 -
nfvPPA pic
[0.00 ] o
svPPA [000 | Woman
0.09
in
005
wife]
0.04
and
0.01
uhh|
001
sitting
0.01
are|
0.00

Text with highlighted words

Woman and a wife are sitting in a having a pic uhh..

Figure 20: Token-level feature importance estimated by LIME for a IvPPA representative sample - RoOBERTa.
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Figure 21: Token-level feature importance estimated by LIME for a nfvPPA representative sample - MLP +
MentalBERT’s features.
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Figure 22: Token-level feature importance estimated by LIME for a nfvPPA representative sample - BERT.
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Figure 23: Token-level feature importance estimated by LIME for a nfvPPA representative sample - RoBERTa.
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