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Abstract
Much of today’s machine learning research in-
volves interpreting, modifying or visualizing mod-
els after they are trained. I present Penzai, a neural
network library designed to simplify model ma-
nipulation by representing models as simple data
structures, and Treescope, an interactive pretty-
printer and array visualizer that can visualize both
model inputs/outputs and the models themselves.
Penzai models are directly structured as composi-
tions of modular operations, and expose the model
forward pass in the structure of the model ob-
ject itself, while also using named axes to ensure
each operation is semantically meaningful. Users
can insert new logic and extract intermediate val-
ues by directly transforming the model object us-
ing Penzai’s tree-editing selector system, and get
immediate feedback by visualizing the modified
model with Treescope. I describe the motivation
and main features of Penzai and Treescope, and
discuss how treating the model as data enables a
variety of analyses and interventions to be imple-
mented as data-structure transformations, without
requiring model designers to add explicit hooks.

1. Introduction
Due to the increasing capabilities of large language models
and other foundation models, and the similarly increasing
cost to training them, much research with large models has
shifted to after their initial training run. This includes inter-
preting the “circuits” inside models (e.g. Wang et al., 2022),
probing internal representations (e.g. Luo et al., 2021), or
fine-tuning models using parameter-efficient adapters to con-
trol their behavior (e.g. Hu et al., 2021). Conducting this
research often involves either visualizing model components,
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inserting new logic to intervene on activations, replacing in-
dividual model components, or some combination of these.

Unfortunately, the original model representation is often not
well-suited for making modifications, as most model code-
bases are designed for efficient training and inference. And
working around these limitations often comes at the expense
of readability or missing functionality. As one example,
TransformerLens (Nanda & Bloom, 2022) supports a wide
set of interventions using a “hooked” reimplementation of
common transformer variants, but does not support efficient
sampling or multiple-device computation. This kind of anal-
ysis has historically been even more complex when using
JAX (Bradbury et al., 2018), because hook-based interfaces
use global state that is difficult to combine with JAX’s purely
functional transformations.

Similarly, the original model representation is not usually
designed to enable easy visualization. Existing tools, such
as the Language Interpretability Tool (Tenney et al., 2020)
or the Transformer Debugger neuron viewer (Mossing et al.,
2024), have been introduced to help researchers understand
model behavior, but tend to support visualizations of only
model outputs or specific intermediate values (such as at-
tention patterns) and do not support visualizing the model
structure itself. General-purpose plotting libraries like Mat-
plotlib (Hunter, 2007) or Plotly (Plotly Technologies Inc.,
2015) tend to prioritize tabular data and are not well-suited
to visualizing data involving multidimensional arrays.

This paper describes Penzai, a JAX library focused on mak-
ing it easier to manipulate complex neural network models
and their activations, and Treescope, a Python pretty-printer
designed to visualize models and multidimensional-array
data. These libraries aim to simplify research into pretrained
models by first treating models as simple data structures,
which are designed to be modular and can be directly manip-
ulated by the user in order to change their behavior, and then
providing general tools for visualizing and editing those
data structures in an interactive setting. This allows Penzai
and Treescope to support a “what-you-see-is-what-you-get”
research workflow: model interventions can be visualized
simply by pretty-printing the modified model, and there is
always a direct correspondence between the model’s inter-
nal structure, the structure of its pretty-printed visualization,
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and its runtime behavior.

2. Previous Model-Manipulation Strategies
A number of libraries have proposed interfaces for interven-
ing on model activations while a model runs. Transformer-
Lens (Nanda & Bloom, 2022) includes a transformer imple-
mentation with hook points, and enables users to add hook
functions that can read or modify activations. This supports
a wide variety of transformations, but also requires users
to manage global state of hooks, and does not support effi-
cient sampling or multi-device computation. pyvene (Wu
et al., 2024) similarly allows modifying internal model acti-
vations with new logic, but represents interventions using
a intervention schema instead of global hooks. NNSight
(Fiotto-Kaufman, 2024) uses a tracing context to provide
an interface where activations of PyTorch models can be
extracted and modified based on their location in the model;
these modifications are then converted to a graph and evalu-
ated on remote workers. A common difficulty with many of
these approaches is that activations must first be located be-
fore they can be modified; each transformer implementation
and modification library comes with its own conventions
and syntax for accessing them.

A different form of model modification is hot-swapping,
where parts of a model are replaced entirely with other parts.
This strategy is sometimes used to add new parameters to
pretrained models for parameter-efficient fine-tuning. For
instance, the PEFT (Mangrulkar et al., 2022) and Levan-
ter (Stanford CRFM, 2023) libraries replace internal linear
layers with low-rank adapter layers to implement LoRA
fine-tuning (Hu et al., 2021), although the details of this are
mostly abstracted away from the user.

3. Penzai: Treating the Forward Pass as Data
How can we make it as easy as possible for new users to
inspect and modify the behavior of models that they did not
train? The central idea in Penzai is to focus on decomposing
the model object into self-explanatory pieces, and allow
the user to directly modify and recombine these pieces in
new ways. This removes the need for hooks or tracing, and
makes it easy to tell how to change the behavior of a model:
simply modify the model object itself.

3.1. Combinators and Primitive Layers

Concretely, Penzai provides a library of simple neural
network components that can be combined to implement
more complex models. Many of these components are
combinators, which use child layers to implement more
complex behaviors. This includes standard combinators
such as Sequential (also provided by libraries like Py-
Torch and Keras), but also more advanced combinators

such as BranchAndMultiplyTogether, which mul-
tiplies the results of running its children in parallel, and
Attention, which routes intermediates between query,
key, and value heads. Importantly, these combinators make
minimal assumptions about their children. For instance,
the Attention combinator has no parameters and is just
responsible for routing queries, keys, values, and outputs,
not for computing dot products or attention masks; those
are implemented by child layers. This means that the same
Attention combinator is compatible with many common
attention variants, such as rotary positional embeddings
(Su et al., 2024) or grouped-query attention (Ainslie et al.,
2023), without requiring a complex implementation. In
addition to these combinators, Penzai also provides compo-
nents for primitive operations such as Linear, AddBias,
ApplyCausalAttentionMask, and Softmax. All
primitive operations are written in terms of named axes in-
stead of making assumptions about axis positions, to ensure
their behavior does not require memorizing array ordering
conventions.

To keep model structures as simple as possible, Penzai
avoids storing configuration data (such as activation func-
tions or causal decoding flags) as attributes on the model
object, and models do not use conditional branching at
runtime. Instead, each model’s sublayers are specialized
for a single configuration, and stores only the information
that it needs, using fully-documented and type-annotated
attributes. By convention, each layer accepts a single “main
input”, usually the activations from the previous layer, along
with a set of “side input” keyword arguments that are shared
across all layers and provide context such as token positions
or attention masks. This convention makes it possible to
compose layers together in a generic way, with minimal
model-specific routing logic.

Users can customize the behavior of models or change their
configuration by directly hot-swap different implementa-
tions, e.g. replacing each Attention combinator with
a KVCachingAttention combinator to enable fast au-
toregressive decoding. This means model implementations
in Penzai have a one-to-one correspondence between the
Python structure of the model object and the computations
that run during its forward pass. Users are free to change
how their model works without using hooks or intervention
schemas, by instead directly inserting a new primitive into
the model at the relevant place, and using pretty-printing to
identify which locations they need to modify. An example
Transformer block in Penzai is shown in Figure 1.

3.2. Lightweight Named Axes System

Giving axes names makes it easier to identify the purpose of
each axis, prevents users from needing to memorize specific
ordering conventions, and simplifies visualizing array data.
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Figure 1. A partially-expanded Treescope rendering of a Transformer block from Penzai’s implementation of the Gemma 7B model
(Gemma Team, 2024), showing the pz.nn.Attention combinator and some of the primitive sublayers it contains.

Unfortunately, named axis implementations often introduce
additional implementation burden due to changing the se-
mantics of each individual operation. To give the benefits
of named axes without requiring changes to the array API,
Penzai includes a lightweight named axis system based on
locally-positional semantics and inspired by Chiang et al.
(2021). Users interact with this system by constructing
positional views of a subset of axes in an array, and then
applying ordinary JAX operations to these views, which are
then “lifted” across all other axes automatically. Concretely,
each axis of a Penzai NamedArray has either a position
or a name (but not both). Individual named axes can be
converted to positional views using .untag(...), and
JAX functions can be vectorized over remaining named axes
using pz.nx.nmap; later, the positional view axes can be
re-bound to names using .tag(...). Thus, computations
like “take a softmax over axis foo” can be expressed as

pz.nx.nmap(jax.nn.softmax)(
array.untag("foo"), axis=0

).tag("foo")

without requiring a named-axis-specific implementation of
softmax. This means Penzai’s named axis system is com-
patible with the full JAX (and, thus, Numpy) array APIs.

3.3. Models Are JAX Pytrees, Plus Mutable State

Similar to Equinox (Kidger & Garcia, 2021), each of Pen-
zai’s layer classes is immutable and is registered as a JAX

pytree1, which makes it possible to manipulate using com-
mon JAX utilities. However, mutability can be useful for
implementing parameter sharing, per-layer state, and extrac-
tion of intermediate activations. To support these use cases,
Penzai layers are allowed to store mutable variables as at-
tributes, which come in two forms: Parameters, which
are updated by optimizers, and StateVariables, which
are usually updated during each layer’s forward pass. Both
types of variable can be freely shared between layers.2

To allow them to be safely used with JAX’s function trans-
formations, variables can be “frozen” before applying a
function transformation, which turns them into ordinary im-
mutable JAX pytrees. These frozen variables can then be
temporarily “unfrozen” (which creates new mutable copies)
inside the transformed function, then frozen again before
returning from the function, resulting in a purely-functional
view of the model’s behavior. Frozen parameters can also
be directly embedded into the model once they no longer
need to be updated.

3.4. Selectors Enable Flexible Tree Modifications

To help users modify Penzai models, Penzai includes a pow-
erful tree-rewriting utility, pz.select, which “selects”

1https://jax.readthedocs.io/en/latest/
pytrees.html

2Penzai’s original “V1” neural network system did not store
mutable variables in the model, and instead expressed parameter
sharing and state using a “data-effect” system, which rewrote the
model structure when the model was called. This paper describes
the newer “V2” design, which directly supports mutable state.
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Figure 2. When pretty-printing a Penzai Linear layer, Treescope
renders an inline faceted visualization of the parameter array.

parts of data structures by type or position. For instance,

pz.select(model)
.at_instances_of(pz.nn.Attention)
.at_instances_of(pz.nn.Softmax)
.insert_after(some_new_layer)

will return a copy of the model with new logic
(some new layer) after each attention pattern compu-
tation, making it possible to retrieve or modify their values.
It is similarly possible to e.g. swap out pretrained Linear
layers for low-rank finetuning layers using code like

pz.select(model)
.at_instances_of(pz.nn.Linear)
.apply(loraify)

pz.select uses the JAX pytree registry to support modi-
fying any JAX-compatible object. Because Penzai models
are JAX pytrees, pz.select can be used to perform arbi-
trary modifications to Penzai models. And because Penzai
models intentionally expose the model forward pass using
combinators, and decompose operations into independent,
semantically meaningful chunks, users are free to intervene
at arbitrary points and insert logic similar to hook-based
approaches. Direct model editing also supports a wider
set of transformations than hook points, such as replacing
individual model components with linear approximations.

4. Treescope: Automatic Visualization of
Models and Array Data

Exploratory research with neural networks often involves
manipulating deeply-nested data structures containing mul-
tidimensional arrays, which can be difficult to summarize
and visualize. When using Penzai’s model-editing tools to
change the structure of a complex model, visualizing the
modified structure can also be very useful to confirm that
the correct modification was made.

The Treescope pretty-printer simplifies this process by auto-
matically producing rich interactive visualizations of deeply-

nested machine learning data structures, including both
model objects and their inputs and outputs. Treescope di-
rectly integrates with Jupyter IPython notebook environ-
ments (Kluyver et al., 2016), and includes an automatic
array visualizer, which renders faceted summaries of multi-
dimensional array shapes and values and directly embeds
them into the pretty-printed output. To prevent outputs from
becoming too large, Treescope automatically truncates the
array contents to show only a small slice (similar to the
ordinary repr), but also adds a summary of the distribution
of values across the entire array. An example rendering of
a Linear layer with Treescope, including an inline array
visualization, is shown in Figure 2.

Users can click Treescope renderings to fold or unfold in-
dividual components, allowing them to “drill down” into
components of interest.3 Treescope also inserts “copy path”
buttons at every level of the printed tree, which show how
to extract the clicked component from the original object
for further manipulation. And in “roundtrip mode” (tog-
gled by pressing the r key), Treescope adds fully-qualified
names to all classes, making it possible to directly execute
the pretty-printed code to rebuild supported data structures.

Treescope and Penzai were designed together, and Penzai’s
model components are specifically implemented to be easy
to visualize and explore in Treescope. In particular, Pen-
zai models support fully-roundtrippable pretty-printing: the
pretty-printed output of a Penzai model is enough to rebuild
the model architecture even after modifications are made
by the user. However, Treescope also supports visualiz-
ing models and data structures from other neural network
libraries. In particular, Treescope supports rendering arbi-
trary JAX pytrees and models built using the JAX libraries
Equinox and flax.nnx (even when model weights are
sharded across multiple accelerators), and recently added
partial support for rendering PyTorch modules and tensors
as well. Treescope also includes an extension system, which
makes it possible for users to add rich visualization support
for new types, or to replace Treescope’s automatic array vi-
sualization with different types of inline figure. Ultimately,
the goal is to allow Treescope’s visualization system to be
used in combination with other interpretability tools, with-
out having to first rewrite existing models using Penzai.

5. Using Penzai and Treescope for
Interpretability Research

5.1. Transformer Implementation

As a starting point for research into interpreting and con-
trolling model behaviors, Penzai includes a generic Trans-
former (Vaswani et al., 2017) implementation, which uses

3This interface was inspired by similar interfaces in the
JavaScript console in Google Chrome and Firefox.
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Figure 3. A modified Transformer block, where the feed-forward
layer has been replaced with a LinearizeAndAdjust combi-
nator (which computes a linear approximation of its target layer)
and a RewireComputationPaths operation (which copies
activations across a named “worlds” batch axis).

Penzai’s combinators to directly mirror the transformer for-
ward pass in the the model’s structure. This implementa-
tion supports loading a variety of pretrained models, in-
cluding Gemma 2B and 7B (Gemma Team, 2024), Llama
1, 2, and 3 (Touvron et al., 2023a;b), Mistral 7B (Jiang
et al., 2023), and the Pythia scaling suite (Biderman et al.,
2023). Following Penzai’s design conventions, each of these
architecture variants corresponds to a different specializa-
tion of the same TransformerLM base class (and com-
mon components TransformerBlock, Attention,
and TransformerFeedForward). Architectural dif-
ferences are encoded by using different sublayer arrange-
ments, and each model can be freely reconfigured by the
user. Capturing or intervening on intermediates, fine-tuning,
low-rank adaptation, and sampling are all supported, and
can even be combined with each other. Additionally, due
to JAX’s simple APIs for multi-device computation, all of
these modifications can be seamlessly distributed across
multiple accelerator devices.

5.2. Utilities for Common Operations

Penzai includes a collection of extra utilities in
penzai.toolshed, including tools for patching indi-
vidual activations between counterfactual model inputs (see
Zhang & Nanda, 2023). Unlike hook-based workflows,
these tools work by inserting new layers into the model,
resulting in a copy of the model that includes the given in-
tervention, and avoiding the need to manage global state.
Directly editing the model structure also enables interven-
tions that cannot be expressed easily with hooks, such as
linearizing parts of a model for easier analysis (shown in
Figures 3 and 4).

penzai.toolshed also includes utilities for basic train-
ing, low-rank finetuning, shape annotation, and multi-device
sharding. Each utility has a self-contained implementation
as a model transformation, and can either be used as-is or
taken as a starting point for more complex workflows.

Figure 4. A visualization of a rank-3 array of logit differences
using Treescope (from the intervention in Figure 3), with a mouse
tooltip giving more information about a specific array element.

5.3. Example: Finding Induction Heads In Gemma 7B

Penzai includes a tutorial notebook walking users through
the process of analyzing the Gemma 7B open-weights model
(Gemma Team, 2024) in a Colab notebook4, starting with
exploring the model’s structure and predictions on simple
examples, then visualizing attention patterns throughout the
model to identify candidate induction heads, and finally ab-
lating and patching them to confirm that they are responsible
for the copying behavior, while using Treescope to get quick
interactive feedback throughout the process.

Because it uses JAX as a backend, exploration in Penzai
can immediately benefit from many of JAX’s features. Each
step in the notebook is seamlessly parallelized across mul-
tiple TPU devices. Additionally, the effects of individual
MLP layers can be decomposed into linear and nonlinear
components using JAX’s linearization transform jax.jvp.

6. Discussion
By representing models as compositions of simple building
blocks, and providing powerful tools for both visualizing
and editing these data structures, Penzai and Treescope can
support a wide variety of use cases without restricting ex-
pressivity. These libraries are under continued development,
and I hope they can serve as a foundation for new research
on interpreting machine learning models, understanding
their training dynamics, and steering their behaviors.
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A. Additional Penzai and Treescope Visualizations

Figure 5. The Gemma 7B open-weights model (Gemma Team, 2024), loaded using Penzai’s transformer implementation and visualized
using Treescope. The mouse cursor is hovering over a “copy path” button, which copies the location of the selected object to the clipboard
when clicked.

Figure 6. Comparison of Transformer block structures for GPT-NeoX/Pythia (Biderman et al. 2023, left) and Llama (Touvron et al. 2023a,
right) architectures. GPT-NeoX runs the attention and feedforward parts in parallel, and uses LayerNorm (Ba et al., 2016) and a standard
MLP network with biases. In contrast, Llama uses two separate residual blocks, and uses RMSNorm (Zhang & Sennrich, 2019) and a
gated feedforward network (Shazeer, 2020) with no learned bias terms. These differences can be concisely expressed using different
arrangements of Penzai combinators. (Any class with a “# Sequential” annotation simply runs its children in order, without custom
logic. Subclasses of Sequential are often used to improve readability and allow manipulation by pz.select.)
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Figure 7. A faceted rendering of attention patterns on an example sequence, produced by Treescope. The hover tooltip gives information
about the specific tokens being attended to by the head under the mouse cursor.

Figure 8. Two renderings of a batch of token sequences. The first uses Treescope’s default array visualizer for discrete data, which maps
each token ID to a unique “digitbox” pattern, where each color corresponds to one digit of the value. The second interleaves these with
the token values, using a token-visualization helper function. Control tokens and padding are easily recognizable across the two sequences
due to having single-digit token IDs, which map to solid-color box renderings.
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