

000 VARIATIONAL INFERENCE BASED PROBABILISTIC 001 PROMPT FOR REHEARSAL-FREE CONTINUAL LEARN- 002 ING 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Continual learning aims to enable models to learn a sequence of tasks without
014 catastrophic forgetting, a phenomenon where new information overwrites previously
015 acquired knowledge. Traditional solutions for this problem, including regularization,
016 replay buffers, and dynamic architectures, struggle with trade-offs in
017 scalability, privacy, and adaptability. Prompt-based learning, initially developed in
018 NLP, offers parameter-efficient alternatives by prepending learnable vectors to input
019 tokens. However, existing prompt methods in continual learning, such as L2P
020 and DualPrompt, rely on deterministic selection mechanisms that lack uncertainty
021 modeling, making them less effective in dynamic and ambiguous task scenarios.
022 In this work, we propose a novel framework called Variational Inference based
023 Probabilistic Prompt (VPrompt) that introduces a stochastic latent variable for-
024 mulation over prompt selection using variational inference. Our method learns
025 an approximate posterior distribution over prompt assignments conditioned on in-
026 puts, and regularizes this with a uniform prior to ensure diversity and mitigate
027 overconfidence. This probabilistic mechanism enables uncertainty-aware adap-
028 tation, improves robustness under domain shift, and eliminates the need for task
029 labels or rehearsal buffers. We evaluate our method across Split CIFAR100, Split
030 ImageNet-R, and a diverse 5-dataset benchmark. VPrompt consistently outper-
031 forms state-of-the-art baselines, including CODA-Prompt, L2P, DualPrompt, reg-
032 ularized and rehearsal-based methods, in terms of average accuracy and reduced
033 forgetting. These results confirm that modeling uncertainty at the prompt level
034 offers a scalable, buffer-free, and more flexible solution for continual learning.

035 1 INTRODUCTION

037 Continual learning (CL) Belouadah et al. (2021); De Lange et al. (2021); Masana et al. (2022);
038 Van de Ven & Tolias (2019) refers to the ability of a model to learn from a sequence of tasks or data
039 distributions without forgetting knowledge from earlier experiences. Unlike standard supervised
040 learning, where the assumption is that all training data are available simultaneously and inde-
041 pendently sampled, continual learning operates under sequential exposure to tasks, often with limited or
042 no access to previous data. The primary research problem in continual learning is to achieve knowl-
043 edge adaptation to new tasks while preserving prior knowledge, thus preventing what is known as
044 catastrophic forgetting, the phenomenon where updating the model for a new task leads to abrupt
045 performance degradation on previously learned tasks Lee et al. (2017); McCloskey & Cohen (1989);
046 Mehta et al. (2023); Ramasesh et al. (2021).

047 Catastrophic forgetting remains a fundamental challenge for continual learning systems. When
048 models are trained via standard gradient-based optimization, they tend to completely overwrite pa-
049 rameters important for previous tasks in favor of minimizing loss on the current task. As a result,
050 maintaining a balance between stability (preserving old knowledge) and plasticity (adapting to new
051 knowledge) becomes a critical requirement for successful continual learning.

052 To mitigate catastrophic forgetting, several major classes of solutions have been proposed:
053 Regularization-based methods (e.g., Elastic Weight Consolidation Kirkpatrick et al. (2017), Synap-
tic Intelligence Zenke et al. (2017)) introduce penalties on parameter updates for important weights,

054 trying to preserve previously learned knowledge without relying on past data. Rehearsal-based
 055 methods (e.g., iCaRL Rebuffi et al. (2017), DER++ Buzzega et al. (2020)) store a buffer of sam-
 056 ples from past tasks and replay them during training on new tasks. Dynamic architecture methods
 057 (e.g., Progressive Neural Networks Rusu et al. (2016)) expand the model’s architecture to allocate
 058 task-specific modules.

059 While these approaches show varying levels of success, they face notable limitations.
 060 Regularization-based methods often struggle when task distributions are highly diverse, as simple
 061 penalties are insufficient for complex knowledge retention. Dynamic architectures become impracti-
 062 cally large over long sequences of tasks. Rehearsal-based methods Bonicelli et al. (2022); Yoon et al.
 063 (2021), although highly effective, are increasingly recognized as problematic because they require
 064 storing raw data from previous tasks, raising privacy, scalability, and memory footprint concerns,
 065 especially in real-world or resource-constrained environments where data storage is not permissible
 066 (e.g., healthcare, robotics).

067 In this context, several core questions for advancing continual learning arise: First, how can models
 068 effectively adapt to new tasks without catastrophically forgetting old ones in the absence of stored
 069 data? Second, how can continual learners maintain flexibility without uncontrolled model expan-
 070 sion or excessive reliance on rigid regularization? Third, how can models explicitly account for
 071 uncertainty when deciding how to leverage past knowledge in new situations?

072 Our goal is to address these questions by developing a method that is rehearsal-free, parameter-
 073 efficient, and uncertainty-aware Gao et al. (2022); Liu et al. (2022b); Smith et al. (2021); Zhang
 074 et al. (2023); Liu et al. (2022a). Recently, prompt-based learning Smith et al. (2023); Tang et al.
 075 (2023); Pei et al. (2023) has emerged as a highly effective strategy in Natural Language Process-
 076 ing (NLP). Prompting techniques (e.g., prefix-tuning Li & Liang (2021), soft prompts Lester et al.
 077 (2021)) allow models to adapt to new tasks by prepending learnable input vectors while keeping
 078 the large pre-trained backbone models frozen. This reduces the number of trainable parameters and
 079 enables rapid adaptation. Inspired by this success, prompt-based methods like Learning to Prompt
 080 (L2P) Wang et al. (2022c) and DualPrompt Wang et al. (2022b) have been adapted to the vision
 081 domain for continual learning. However, applying prompt-based techniques to continual learning
 082 introduces unique challenges. Unlike NLP tasks where task identities and boundaries are often clear,
 083 in continual learning tasks in vision, the task information is ambiguous, overlapping, and often not
 084 explicitly provided. Static prompt selection strategies, as used in L2P and DualPrompt, do not model
 085 uncertainty and ambiguity during task transitions, making them vulnerable to forgetting in harder
 086 continual learning scenarios with domain shifts and ambiguous inputs.

087 To overcome these limitations, we propose a novel method called variational inference-based
 088 probabilistic prompting (VPrompt) for rehearsal-free continual learning. Rather than deterministically
 089 selecting or fusing prompts, our method models the selection of prompts as a latent probabilistic
 090 variable. Using a variational inference framework, we maintain an approximate posterior over
 091 prompts conditioned on the current input, and regularize it with a prior distribution to control prompt
 092 usage entropy. This enables the model to capture uncertainty in task identification and prompt rele-
 093 vance, allowing for better generalization across tasks while mitigating forgetting, without requiring
 094 any task labels or memory buffers.

095 Our work makes three key contributions:

- 096 • **Variational Probabilistic Prompting:** We introduce a novel variational inference-based
 097 probabilistic prompt selection mechanism for continual learning, explicitly modeling un-
 098 certainty in prompt usage to improve adaptability and memory retention without replay
 099 buffers.
- 100 • **Unified Framework for Continual Learning:** We integrate probabilistic prompting into a
 101 simple, scalable architecture based on pre-trained Vision Transformers (ViT), achieving
 102 rehearsal-free continual learning without fine-tuning the base model.
- 103 • **Extensive Benchmarking:** We conduct comprehensive experiments across Split CIFAR100,
 104 Split ImageNet-R, and a heterogeneous 5-dataset benchmark, demonstrating superior per-
 105 formance in terms of accuracy and reduced forgetting compared to prompt-based, replay
 106 and regularization-based state-of-the-art methods.

108

2 RELATED WORK

109

110 2.1 FINE-TUNING PRETRAINED MODELS

111
112 In recent years, the rise of pretrained *foundation models*, especially large-scale models like
113 BERT Devlin et al. (2019), GPT Radford et al. (2019), and ViT Dosovitskiy et al. (2020), has
114 revolutionized the field of machine learning. These models are initially trained on massive datasets
115 to learn general-purpose representations, which can later be transferred to downstream tasks. The
116 most straightforward method for leveraging such models is fine-tuning, where the entire pretrained
117 network is updated using the labeled data of the target task Chung et al. (2024); Touvron et al.
118 (2023); Liu et al. (2023a). While this approach often leads to strong performance, it has significant
119 drawbacks: it is computationally intensive, requires storing and updating all model weights for each
120 task, and tends to suffer from catastrophic forgetting when applied in a continual learning setting.
121122

2.2 PROMPT TUNING

123 To address some of these limitations, the concept of prompt tuning Lester et al. (2021); Li & Liang
124 (2021) has been introduced. Instead of updating the entire model, prompt tuning freezes the pre-
125 trained backbone and learns a small set of input embeddings, called prompts, that guide the model
126 towards solving a specific task Liu et al. (2023b). These prompts can be thought of as learnable
127 tokens prepended to the input, effectively modulating the model’s internal attention mechanisms.
128 This approach significantly reduces the number of trainable parameters and memory footprint, en-
129 abling more efficient adaptation to new tasks. Prompt tuning has shown remarkable success in
130 natural language processing and, more recently, in vision-language and purely vision domains using
131 architectures like ViT Jia et al. (2022); Khattak et al. (2023).
132133

2.3 CONTINUAL LEARNING

134 Continual learning (CL) Wang et al. (2024); Ebrahimi et al. (2020), also known as lifelong learn-
135 ing Sarfraz et al. (2025); Zhao et al. (2022), is a setting where models learn from a sequence of tasks
136 without forgetting previously acquired knowledge. This setting is fundamentally different from the
137 standard supervised learning paradigm, which assumes access to the full dataset at once. In contin-
138 ual learning, data from previous tasks is no longer accessible after training. A major challenge in
139 CL is catastrophic forgetting, where the model’s performance on earlier tasks significantly degrades
140 as it adapts to new ones Serra et al. (2018). This challenge is exacerbated in deep networks due to
141 weight sharing across tasks. Various approaches to mitigate forgetting include regularization Kirk-
142 patrick et al. (2017); Zenke et al. (2017), memory replay Rebuffi et al. (2017); Buzzega et al. (2020),
143 and architectural methods such as dynamically expanding the model Rusu et al. (2016); Van de Ven
144 et al. (2022).
145146 **Regularization-based continual learning** techniques introduce constraints to preserve previously
147 learned knowledge. Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017) estimates the
148 importance of each parameter to previous tasks using the Fisher Information Matrix and penalizes
149 significant changes during subsequent updates. Synaptic Intelligence (SI) Zenke et al. (2017) builds
150 on this idea by accumulating task-relevant parameter importance over time using an online approx-
151 imation. While effective, these methods often struggle when task boundaries are unclear or when
152 tasks share overlapping distributions, limiting their flexibility in real-world settings. On the other
153 hand, LwF Li & Hoiem (2017) proposes a framework that employs the knowledge distillation to
154 regularize the network to mitigate the catastrophic forgetting problems.
155156 **Rehearsal-based continual learning** methods address forgetting by maintaining a memory buffer
157 of data from past tasks. iCaRL Rebuffi et al. (2017) and GDumb Prabhu et al. (2020) periodically
158 replay this data during training to retain performance on previous tasks. Some approaches aug-
159 ment this buffer with synthetic data or prototypes, further enhancing generalization Buzzega et al.
160 (2020); Cha et al. (2021). Although highly effective in practice, rehearsal-based methods often vi-
161 olate privacy or memory constraints, especially in scenarios where storing past data is infeasible or
162 prohibited.
163164 **Architecture-based continual learning** focuses on dynamically modifying the network structure.
165 Progressive Neural Networks Rusu et al. (2016) expand the architecture by allocating new subnet-
166

162 works for each task, preventing interference at the cost of unbounded model growth. Other methods
 163 selectively activate task-specific submodules or freeze parts of the network Parisi et al. (2019); Wang
 164 et al. (2022a). While this approach eliminates forgetting through modularization, it poses scalability
 165 concerns and often requires explicit task labels.

166

167 2.4 PROMPT TUNING FOR CONTINUAL LEARNING

168

169 Prompt tuning presents an appealing alternative in the continual learning landscape. By freezing the
 170 backbone and learning task-specific prompts, it allows for the isolation of task information while
 171 maintaining a shared representation space.

172 *Learning to Prompt (L2P)* Wang et al. (2022c) is a pioneering framework that merges prompt tuning
 173 with continual learning. L2P introduces a learnable prompt pool and employs an attention mech-
 174 anism over learned keys to select relevant prompts for each input. This formulation enables task-
 175 conditioned inference using a frozen ViT backbone, reducing interference between tasks and achiev-
 176 ing strong performance on standard CL benchmarks such as Split CIFAR100 and ImageNet-R.

177 However, L2P’s prompt selection strategy is inherently deterministic, relying on nearest-neighbor
 178 key-query attention. This design choice ignores uncertainty in prompt-task relationships and limits
 179 the model’s capacity to handle ambiguous or overlapping tasks. Our work addresses this limitation
 180 by introducing a probabilistic perspective to prompt selection, thereby enhancing both flexibility
 181 and robustness in non-stationary settings. Other work like progressive prompts Razdaibiedina et al.
 182 (2023) learns a new soft prompt for each task and sequentially concatenates it with the previously
 183 learned prompts, while keeping the base model frozen. DualPrompt Wang et al. (2022b) proposes
 184 to learn general prompt and task-specific prompts to insert into transformer layers to ensure the
 185 continual learning process. CODA prompt Smith et al. (2023) proposes to use attention mechanism
 186 to learn prompt components that can be used to contribute to the prompt learning process with
 187 a classification loss as the end to end learning framework. However, the stochastic processes of
 188 prompt selection has not been employed in these methods.

189

190 2.5 TOWARDS PROBABILISTIC PROMPTING

191 This work proposes extending prompt selection with a probabilistic framework grounded in vari-
 192 ational inference. In this formulation, the selection of prompts is modeled as a stochastic process
 193 over a learned distribution, where prompt keys define a latent space over which uncertainty can be
 194 quantified. This formulation not only maintains modularity and parameter efficiency but also intro-
 195 duces uncertainty-awareness in prompt selection. This helps the model make more cautious updates
 196 and better handle task ambiguity, particularly useful in non-stationary environments.

197

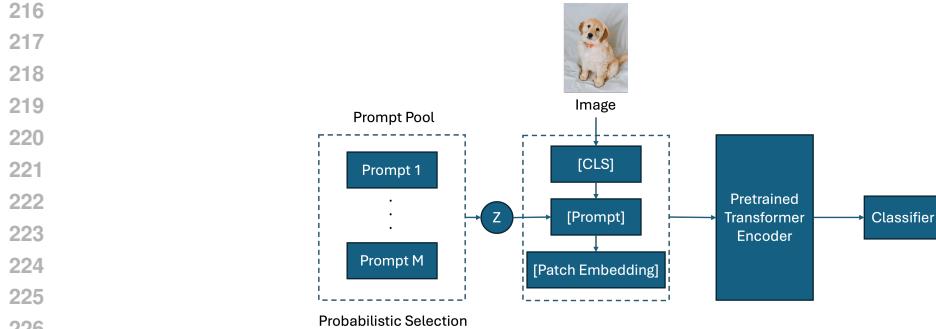
198 3 METHOD

199

200 Continual learning (CL) requires models to learn from a sequence of tasks $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_T$ without
 201 catastrophic forgetting, the degradation in performance on previously learned tasks. In traditional
 202 setups, neural networks tend to overwrite prior knowledge when fine-tuned on new data, especially
 203 under task-agnostic conditions where no explicit task identifiers are given during inference.

204 The Learning to Prompt (L2P) framework Wang et al. (2022c) addresses this by freezing the back-
 205 bone (e.g., Vision Transformer, ViT) and attaching a pool of learnable prompts, denoted as $\mathcal{P} = \{P_1,$
 206 $\dots, P_M\}$. Here M represents the predefined number of prompts. For a given input x , prompts are
 207 selected based on nearest neighbors in a learned key space, and the selected prompts are prepended
 208 to the input tokens before being passed through the transformer.

209 In traditional Learning to Prompt (L2P) methods for continual learning, prompt selection is per-
 210 formed using a deterministic mechanism: for each input, the top- k most similar prompt keys (often
 211 based on dot-product similarity with the input representation) are selected from a fixed pool and
 212 used to guide the model’s representation. This method has proven effective in enabling parameter-
 213 efficient adaptation across tasks. However, its deterministic nature can lead to several limitations.
 214 As tasks change over time, fixed prompt selection strategies may overfit to early-task distributions or
 215 fail to adapt to subtle shifts in the input space. This inflexibility exacerbates catastrophic forgetting,
 where knowledge acquired from earlier tasks degrades as new ones are learned.



228 Figure 1: Our Variational-based Probabilistic Prompt framework for the rehearsal-free continual
229 learning. An input (e.g., image) is passed through a query function (we use the pretrained ViT
230 encoder) and used for a novel condition to formulate a probabilistic selection procedure for the
231 prompts in the prompt pool. The weighted prompts are aggregated into a single prompt to prepend
232 onto the input embeddings as the input to the classifier (the task head). Our prompt method is
233 parameter efficient and no training data is stored for replay which is memory efficient and privacy
234 preserving. Importantly, our probabilistic prompt selection scheme can be optimized end-to-end.

235
236 Table 1: Comparison between L2P and our probabilistic prompting method

Feature	Traditional L2P	Probabilistic Prompting (Ours)
Prompt Selection	Deterministic (Top-K NN)	Probabilistic (Latent variable)
Uncertainty	Not modeled	Explicitly modeled via entropy of $q(z x)$
Prompt Usage	Fixed	Input-conditional and adaptive
Regularization	Hard boundary per task	Smooth distribution with KL regularization
Knowledge Sharing	Limited across tasks	Encouraged through latent space reuse
Continual Learning	Effective but rigid	Flexible and uncertainty-aware

245
246 To address these limitations, we propose a variational formulation of prompt selection (See Figure 1), where the choice of prompts is treated as a stochastic process governed by a learned probability distribution. Specifically, instead of selecting prompts based solely on fixed similarity scores, we define a latent variable z that determines which prompts are used for a given input. We then learn an approximate posterior distribution $q(z|x)$, which reflects the model's belief over relevant prompts given input x . This posterior is typically parameterized using a Softmax function over the similarity scores between input representations and prompt keys. A prior distribution $p(z)$, often chosen as a uniform distribution over the prompt pool, is also defined to encourage even prompt utilization and avoid mode collapse. Specifically, we introduce a discrete latent variable $z \in \{1, \dots, M\}$, representing the index of the prompt used for input x . Instead of hard-selecting prompts, we learn a distribution over prompts $q(z|x)$ and define the model as:

$$p(y|x) = \sum_{z=1}^M p(y|x, P_z) \cdot q(z|x).$$

259
260 Here, y represents the labels that we are predicting. This probabilistic approach enables soft prompt
261 routing and introduces variational uncertainty into the prompt selection mechanism, aligning with
262 the demands of continual learning.

263 3.1 VARIATIONAL FORMULATION

265 Since the marginal likelihood $\log p(y|x)$ involves an intractable sum over prompts, we use variational
266 inference (VI) to approximate it. We define the evidence lower bound (ELBO):

$$\log p(y|x) \geq \mathbb{E}_{q(z|x)}[\log p(y|x, z)] - \text{KL}(q(z|x) || p(z)),$$

267
268 where $q(z|x)$ is the variational posterior, modeled as a softmax distribution over learned similarity
269 scores between the input embedding and prompt keys, $p(z)$ is a prior over prompts, typically uniform

270 to encourage general usage, and KL is the Kullback-Leibler divergence, acting as a regularizer. The
 271 first term encourages good performance by weighting prompt-conditioned predictions. The second
 272 term regularizes q toward uniformity to prevent overfitting and collapsing to few prompts. This
 273 allows the model to make uncertainty-aware decisions about which prompts to use, avoid hard-
 274 coded task boundaries, and learn shared structure in prompt usage across tasks, crucial for continual
 275 learning. We compute $q(z|x)$ using:

$$277 \quad q(z|x) = \text{Softmax} \left(\frac{f(x)^T K}{\tau} \right),$$

279 where $f(x)$ is the normalized embedding of input x , $K \in \mathbb{R}^{M \times d}$ is the prompt key matrix (also
 280 normalized), and τ is a temperature parameter. This soft distribution allows the model to assign
 281 varying levels of confidence to each prompt, encouraging shared use of prompts across tasks and
 282 more robust generalization. This probabilistic extension introduces multiple benefits for continual
 283 learning: uncertainty-aware prompt selection (inputs from ambiguous or transitional regions be-
 284 tween tasks can use a mixture of prompts, smoothing the decision boundary and reducing abrupt
 285 forgetting), adaptive knowledge sharing (prompts are reused across tasks through soft allocation,
 286 helping to retain knowledge without task-specific overfitting), mitigation of overconfidence (by reg-
 287 ularizing $q(z|x)$ via KL divergence, the model avoids collapsing to a few prompts, a common issue
 288 in deterministic L2P), and dynamic generalization (prompt distributions evolve as tasks arrive, en-
 289 abling the model to discover emerging similarities between tasks and adaptively merge knowledge).
 290 Table 1 contrasts L2P and our probabilistic prompting method.

291 4 EXPERIMENTAL SETUP

294 4.1 DATASETS

296 To evaluate the effectiveness of our variational probabilistic prompting framework for continual
 297 learning, we perform experiments on three benchmark settings that span class-incremental, domain-
 298 incremental, and cross-domain generalization challenges. The three benchmarks are: (1) Split CI-
 299 FAR100, (2) Split ImageNet-R, and (3) a heterogeneous 5-dataset sequence composed of SVHN,
 300 MNIST, CIFAR10, NotMNIST, and FashionMNIST. Each of these datasets introduces a unique do-
 301 main with non-overlapping label spaces and significant variations in data distributions, rendering
 302 the benchmark highly challenging. We treat each dataset as a separate task in a 5-task continual
 303 learning sequence. All images are resized to 224×224 and converted to RGB if needed. This bench-
 304 mark is particularly well-suited for assessing the effectiveness of probabilistic prompts in capturing
 305 task-specific nuances across disjoint visual modalities. These datasets were selected for their diver-
 306 sity in semantics, visual styles, and domain shifts, providing a comprehensive testbed for assessing
 307 catastrophic forgetting, prompt generalization, and task adaptation under uncertainty.

308 4.2 BASELINES

310 To rigorously evaluate the performance of our probabilistic prompting framework, we compare it
 311 against a range of state-of-the-art continual learning baselines spanning multiple methodological
 312 categories. These baselines include prompt-based, regularization-based, and rehearsal-based ap-
 313 proaches, each offering different strengths and assumptions regarding continual learning.

314 The main baselines that we consider include: CODA-Prompt Smith et al. (2023), Learning to
 315 Prompt (L2P) Wang et al. (2022c), DualPrompt Wang et al. (2022b), Elastic Weight Consolida-
 316 tion (EWC) Kirkpatrick et al. (2017), Learning without Forgetting (LwF) Li & Hoiem (2017),
 317 Synaptic Intelligence (SI) Zenke et al. (2017), iCaRL (Incremental Classifier and Representation
 318 Learning) Rebuffi et al. (2017), DER++ (Dark Experience Replay) Buzzega et al. (2020), Co2L
 319 (Contrastive Continual Learning) Cha et al. (2021).

320 By benchmarking against these baselines, we ensure a comprehensive evaluation across variations
 321 in continual learning paradigm, prompt selection, weight regularization, knowledge retention, and
 322 replay. Our goal is to demonstrate that modeling uncertainty in prompt selection via variational
 323 inference offers consistent improvements, especially in scenarios involving high domain shift or
 ambiguous class boundaries.

324
 325 Table 2: Results on Split-Imagenet-R dataset. Results are included for 5 tasks (40 classes per task),
 326 10 tasks (20 classes per task), and 20 tasks (10 classes per task). A_N represents the average accuracy
 327 across tasks and F_N represents the average forgetting. We report results over 3 trials.

Tasks	5		10		20	
Metrics	$A_N(\uparrow)$	$F_N(\downarrow)$	$A_N(\uparrow)$	$F_N(\downarrow)$	$A_N(\uparrow)$	$F_N(\downarrow)$
UB	79.13	-	79.13	-	79.13	-
iCaRL	65.38 \pm .71	22.28 \pm .67	62.30 \pm .55	25.54 \pm .88	59.55 \pm .85	22.74 \pm .33
DER++	69.11 \pm .45	18.87 \pm .35	66.73 \pm .87	20.67 \pm 1.24	64.45 \pm .34	23.35 \pm .55
Co2L	67.38 \pm .25	20.28 \pm .62	65.90 \pm .14	23.36 \pm .71	61.12 \pm .93	28.86 \pm .26
SI	40.55 \pm .79	51.15 \pm .29	37.76 \pm .95	54.43 \pm .55	35.52 \pm .69	57.73 \pm .31
EWC	38.33 \pm .56	54.43 \pm .98	35.00 \pm .43	56.16 \pm .88	31.67 \pm .45	59.95 \pm .85
LwF	40.86 \pm .43	50.22 \pm .37	38.54 \pm 1.23	52.37 \pm .64	31.44 \pm 1.15	57.25 \pm .78
L2P	63.25 \pm .55	4.48 \pm .33	61.14 \pm .35	5.35 \pm .13	59.33 \pm .43	9.73 \pm .25
DualPrompt	70.22 \pm .27	4.13 \pm .23	68.13 \pm .49	4.68 \pm .20	64.55 \pm .44	5.92 \pm .19
CODA-Prompt	71.51 \pm .38	4.99 \pm .19	70.45 \pm .56	7.64 \pm .10	66.37 \pm 1.19	9.96 \pm .15
VPrompt(Ours)	75.80 \pm .45	4.41 \pm .17	72.04 \pm .35	7.81 \pm .20	69.70 \pm .31	9.81 \pm .16

338
 339 Table 3: Results on Split-Cifar100 and 5-datasets dataset. A_N represents the average accuracy
 340 across tasks and F_N represents the average forgetting. We report results over 3 trials. The Cifar100
 341 results are included for 10 tasks (10 classes per task).

Datasets	Split-Cifar100		5-Datasets	
	$A_N(\uparrow)$	$F_N(\downarrow)$	$A_N(\uparrow)$	$F_N(\downarrow)$
UB	90.85	-	93.93	-
iCaRL	81.38 \pm .65	18.21 \pm .82	83.35 \pm .29	15.31 \pm 1.22
DER++	83.94 \pm .34	14.55 \pm .73	84.88 \pm .57	10.46 \pm 1.02
Co2L	82.49 \pm .89	17.48 \pm 1.80	86.05 \pm 1.03	12.28 \pm 1.44
SI	49.33 \pm .22	35.45 \pm 1.45	51.32 \pm .28	32.35 \pm .16
EWC	47.01 \pm .29	33.28 \pm 1.17	50.93 \pm .09	34.94 \pm .07
LwF	60.69 \pm .63	27.77 \pm 2.17	47.91 \pm .33	38.01 \pm .28
L2P	83.96 \pm .28	6.32 \pm .38	81.14 \pm .93	4.64 \pm .52
DualPrompt	86.51 \pm .33	5.16 \pm .09	88.08 \pm .36	2.21 \pm .69
CODA-Prompt	86.25 \pm .74	6.67 \pm .26	83.24 \pm .59	4.46 \pm .09
VPrompt(Ours)	89.28 \pm .63	4.08 \pm .20	90.74 \pm .28	3.97 \pm .30

357 4.3 EVALUATION METRICS

358
 359 To assess the performance of continual learning methods, we employ two primary evaluation met-
 360 rics: average accuracy and forgetting. Accuracy measures how well the model performs on all seen
 361 tasks after training up to the current point. Specifically, we report the average classification accuracy
 362 across all tasks at the end of training, which provides a direct indicator of the model’s ability to retain
 363 knowledge while acquiring new information. In addition to accuracy, we use a forgetting measure
 364 to quantify the extent of performance degradation on previous tasks. Forgetting is computed as the
 365 difference between the maximum accuracy achieved on a task and the accuracy on that task after the
 366 final training phase. This metric is crucial for capturing catastrophic forgetting, one of the central
 367 challenges in continual learning, and is particularly important in scenarios where retaining previ-
 368 ously acquired knowledge is as critical as learning new information. Together, these metrics offer a
 369 balanced evaluation of both plasticity (ability to learn new tasks) and stability (ability to retain old
 370 tasks), and are standard in the continual learning literature.

371 4.4 IMPLEMENTATION DETAILS

372
 373 Variational-based probabilistic prompts is a model-agnostic continual learning method that can
 374 be used for any transformer-based model. In this paper, we use the vision transformer model
 375 (ViT) Dosovitskiy et al. (2020) adopted by the previous lines of work in Continual Learning for
 376 vision recognition tasks. We use pretrained ViT model for the implementation of variational-based
 377 probabilistic prompts as the L2P Wang et al. (2022c) method, to compare with recent continual
 378 learning approaches.

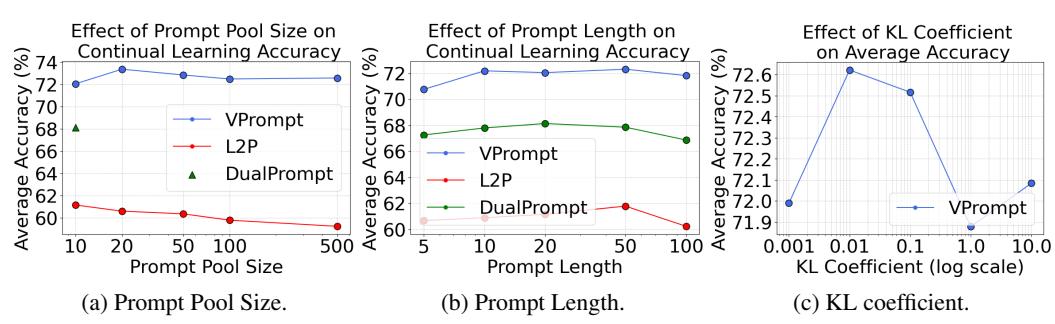


Figure 2: Ablation Analysis.

For ViT following Dosovitskiy et al. (2020), we use the representation of its first token $h_{[\text{CLS}]}$ as an image representation to predict the class of the input image x . Here $[\text{CLS}]$ is a symbol that is encoded as a special beginning of a sentence, and h is the whole input representation matrix from the ViT backbone encoder. We use a classification head as a linear transformation and a softmax function to obtain the classification probabilities over classes $c \in \{1, \dots, \mathcal{C}\}$.

In the experiments we use cross entropy between the predicted classification probabilities and ground truth class labels to represent the classification loss. We use the Adam optimizer and set the batch size to 16. We set the learning rate to 0.03 and 0.005 varying for different datasets and experiments, $\beta_1 = 0.9$ and $\beta_2 = 0.999$. We set the prompt length from 5 to 20 tokens according to different datasets and experiments. In addition, we set the number of training epochs from 5 to 50 according to different datasets and experiments. For the code implementation, we use Pytorch Library Paszke et al. (2019) and HuggingFace Transformers library Wolf et al. (2019). All experiments are conducted on two Nvidia RTX A5000 graphic cards.

5 EXPERIMENTS

Table 2 compares performance of our variational inference-based probabilistic prompt method across 5, 10, 20 tasks with existing continual learning approaches for the ViT backbone model, including the previous SOTA: DualPrompt Wang et al. (2022b) and CODA-Prompt Smith et al. (2023). This benchmark on imangenet-r is attractive because the distribution of training data has significant distance to the pre-training data on imangenet, thus providing a fair and challenging problem setting. It is worth to notice that our method has strong gains in average accuracy across all three task lengths, with as much as 7%-8% improvement in average accuracy over CODA-Prompt. We also noticed that our method has a large performance gap between regularization-based approaches and even rehearsal-based approaches that used 500-5000 replay samples. On the other hand, we can see from the table that our method suffers marginally slighter more forgetting than DualPrompt. We can regard this as the higher capacity that our method has for the learning. In fact, this is very reasonable and reflects the strength of our method. As we can see that with the increase of the tasks, the forgetting slightly increases but tends to be stable. In the whole scope, comparing with the regularization-based and the rehearsal-based approaches, our method has a much smaller forgetting rate.

Table 3 compares the performance of our probabilistic prompt method on Split-Cifar100 and 5-Datasets datasets with the existing continual learning approaches. These two benchmarks are attractive too because they include both diverse classes with various domain properties that have a large distance to the pre-training data on imangenet. We notice that our method has a strong performance that outperforms the SOTA-DualPrompt by average 3%. In the mean time, the forgetting rate that our method suffers is small comparing with the other approaches.

In Figure 2, we conduct several experiments to further analyze the performance of our algorithms against some hyper-parameter settings. Our aim is to conduct a detailed analysis on the capacity of our method to discover more insights. In Figure 2a, we plot the average accuracy while increasing the prompt pool size. We can see that for L2P the optimal pool size is 10: with the increase of the pool size the performance keeps dropping. For our method, the optimal pool size is 20, and it tends to

432 be saturated with similar performances. On the other hand, we can find that no matter how we adjust
 433 the prompt pool size, our method can consistently outperform the DualPrompt SOTA, showing that
 434 our method is highly competitive. In Figure 2b, we plot the average accuracy against the prompt
 435 length. We can see from the figure that by increasing the token length, the performance of our
 436 method also increases, and it also reaches a saturated point. Comparing with the other two baselines,
 437 our method has similar effect of prompt length on continual learning accuracy. In Figure 2c, we
 438 plot the effect of the KL coefficient on the average accuracy. We can see from the figure that the
 439 optimal KL coefficient is 0.01. This might be due to the trade-offs between the diversity of prompt
 440 selection and the task specific knowledge concentration: stronger regularization towards the KL
 441 term might make the posterior of latent distribution more diverse so that all the prompt components
 442 could be considered, which leads to more general knowledge sharing among the prompts but could
 443 not improve the performance of our method further. Weaker regularization of the KL term might
 444 lead to the latent distribution concentrating more on the specific prompt component. However the
 445 effect on the performance of our method is still limited.

446 6 CONCLUSION & DISCUSSION

447
 448 In this paper, we introduce a novel framework called Variational Inference-Based Probabilistic
 449 Prompting (VPrompt) for rehearsal-free continual learning. Our approach reformulates prompt se-
 450 lection as a probabilistic inference problem, where the choice of prompts is modeled as a discrete
 451 latent variable conditioned on input features. Leveraging variational inference, our method esti-
 452 mates a posterior distribution over prompt selections and regularizes it with a uniform prior using
 453 KL divergence. This formulation enables uncertainty-aware prompt selection, allowing the model
 454 to flexibly adapt to new tasks while minimizing catastrophic forgetting, without requiring access to
 455 past data or task labels.

456 Our framework integrates seamlessly with frozen pre-trained Vision Transformers (ViT), requir-
 457 ing only a small pool of learnable prompts and achieving parameter-efficient continual learning.
 458 Through extensive experiments on Split CIFAR100, Split ImageNet-R, and a heterogeneous 5-
 459 dataset benchmark, our method demonstrates superior performance in terms of average accuracy
 460 and lower forgetting compared to existing state-of-the-art baselines, including CODA-Prompt, L2P,
 461 DualPrompt, EWC, and DER++. The probabilistic nature of our method particularly shines un-
 462 der domain shift and ambiguous task boundaries, where deterministic prompt selection strategies
 463 struggle.

464 Despite its strengths, our method has some limitations. The variational approximation assumes a
 465 fixed prior (uniform), which may not always capture the true dynamics of task relevance. Addition-
 466 ally, the method assumes a fixed-size prompt pool, which could become a bottleneck in extremely
 467 long task sequences or in cases requiring more granular prompt specialization. Furthermore, al-
 468 though we avoid using task labels, performance could be further enhanced with more structured
 469 priors or task-inferred guidance.

470 Looking forward, we plan to explore adaptive priors that evolve over time based on observed
 471 prompt usage, as well as hierarchical prompting to capture both coarse and fine-grained task fea-
 472 tures. Another promising direction involves integrating our framework with generative replay or
 473 self-supervised contrastive objectives to further improve performance in low-data or unlabeled con-
 474 tinual learning settings. Finally, we aim to extend this approach to multi-modal continual learning
 475 scenarios and real-world edge deployments where memory and compute are highly constrained.

476 Our work takes a significant step toward making continual learning more scalable, flexible, and
 477 robust, especially in privacy-preserving or buffer-constrained environments.

479 REFERENCES

481 Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremen-
 482 tal learning algorithms for visual tasks. *Neural Networks*, 135:38–54, 2021.
 483

484 Lorenzo Bonicelli, Matteo Boschini, Angelo Porrello, Concetto Spampinato, and Simone Calder-
 485 ara. On the effectiveness of lipschitz-driven rehearsal in continual learning. *Advances in Neural*
486 Information Processing Systems, 35:31886–31901, 2022.

486 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
 487 perience for general continual learning: a strong, simple baseline. *Advances in neural information*
 488 *processing systems*, 33:15920–15930, 2020.

489

490 Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *Proceedings of*
 491 *the IEEE/CVF International conference on computer vision*, pp. 9516–9525, 2021.

492

493 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
 494 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
 495 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.

496

497 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
 498 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
 499 tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.

500

501 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 502 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 503 *the North American chapter of the association for computational linguistics: human language*
 504 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

505

506 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 507 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 508 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 509 *arXiv:2010.11929*, 2020.

510

511 Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
 512 sarial continual learning. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow,*
 513 *UK, August 23–28, 2020, Proceedings, Part XI 16*, pp. 386–402. Springer, 2020.

514

515 Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. R-dfcil: Relation-guided represen-
 516 tation learning for data-free class incremental learning. In *European Conference on Computer*
 517 *Vision*, pp. 423–439. Springer, 2022.

518

519 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 520 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 521 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

522

523 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 524 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 525 Springer, 2022.

526

527 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 528 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
 529 *computer vision and pattern recognition*, pp. 19113–19122, 2023.

530

531 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 532 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 533 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 534 114(13):3521–3526, 2017.

535

536 Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
 537 catastrophic forgetting by incremental moment matching. *Advances in neural information pro-*
 538 *cessing systems*, 30, 2017.

539

540 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 541 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-*
 542 *cessing*, pp. 3045–3059, 2021.

543

544 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 545 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 546 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 547 pp. 4582–4597, 2021.

540 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 541 and machine intelligence

542 , 40(12):2935–2947, 2017.

543 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 544 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 545 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022a.

546 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Advances*
 547 in *Neural Information Processing Systems*, volume 36, pp. 34892–34916, 2023a.

548 Huan Liu, Li Gu, Zhixiang Chi, Yang Wang, Yuanhao Yu, Jun Chen, and Jin Tang. Few-shot
 549 class-incremental learning via entropy-regularized data-free replay. In *European Conference on*
 550 *Computer Vision*, pp. 146–162. Springer, 2022b.

551 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 552 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 553 cessing. *ACM computing surveys*, 55(9):1–35, 2023b.

554 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
 555 Van De Weijer. Class-incremental learning: survey and performance evaluation on image clas-
 556 sification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533,
 557 2022.

558 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 559 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 Elsevier, 1989.

560 Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investi-
 561 gation of the role of pre-training in lifelong learning. *Journal of Machine Learning Research*, 24
 562 (214):1–50, 2023.

563 Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
 564 *arXiv preprint arXiv:1710.10628*, 2017.

565 German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
 566 lifelong learning with neural networks: A review. *Neural networks*, 113:54–71, 2019.

567 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 568 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 569 high-performance deep learning library. *Advances in Neural Information Processing Systems*, 32,
 570 2019.

571 Yixuan Pei, Zhiwu Qing, Shiwei Zhang, Xiang Wang, Yingya Zhang, Deli Zhao, and Xueming Qian.
 572 Space-time prompting for video class-incremental learning. In *Proceedings of the IEEE/CVF*
 573 *International Conference on Computer Vision*, pp. 11932–11942, 2023.

574 Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
 575 our progress in continual learning. In *Computer Vision–ECCV 2020: 16th European Conference,*
 576 *Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 524–540. Springer, 2020.

577 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 578 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

579 Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
 580 forgetting in neural networks. In *International conference on learning representations*, 2021.

581 Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Alma-
 582 hairi. Progressive prompts: Continual learning for language models. In *The Eleventh Interna-
 583 tional Conference on Learning Representations*, 2023.

584 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 585 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 586 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

594 Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
595 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint*
596 *arXiv:1606.04671*, 2016.

597

598 Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Semantic aware representation learning for life-
599 long learning. In *The Thirteenth International Conference on Learning Representations*, 2025.

600

601 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
602 forgetting with hard attention to the task. In *International conference on machine learning*, pp.
603 4548–4557. PMLR, 2018.

604

605 James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always
606 be dreaming: A new approach for data-free class-incremental learning. In *Proceedings of the*
607 *IEEE/CVF international conference on computer vision*, pp. 9374–9384, 2021.

608

609 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
610 Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
611 composed attention-based prompting for rehearsal-free continual learning. In *Proceedings of the*
612 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11909–11919, 2023.

613

614 Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning does
615 not meet strong pretraining. In *Proceedings of the IEEE/CVF International Conference on Com-
616 puter Vision*, pp. 1706–1716, 2023.

617

618 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
619 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
620 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

621

622 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint*
623 *arXiv:1904.07734*, 2019.

624

625 Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
626 *Nature Machine Intelligence*, 4(12):1185–1197, 2022.

627

628 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and com-
629 pression for class-incremental learning. In *European conference on computer vision*, pp. 398–414.
630 Springer, 2022a.

631

632 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
633 learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine*
634 *Intelligence*, 2024.

635

636 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
637 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
638 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
639 Springer, 2022b.

640

641 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
642 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-
643 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,
644 2022c.

645

646 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
647 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
648 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

649

650 Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coresnet selection for
651 rehearsal-based continual learning. *arXiv preprint arXiv:2106.01085*, 2021.

652

653 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
654 In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

648 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
 649 with classifier alignment for continual learning on a pre-trained model. In *Proceedings of the*
 650 *IEEE/CVF International Conference on Computer Vision*, pp. 19148–19158, 2023.

651
 652 Tingting Zhao, Zifeng Wang, Aria Masoomi, and Jennifer Dy. Deep bayesian unsupervised lifelong
 653 learning. *Neural Networks*, 149:95–106, 2022.

655 A DETAILED DATASETS

658 **Split Cifar100** The CIFAR100 dataset is a widely used image classification benchmark consisting
 659 of 60,000 color images (32×32 pixels), spanning 100 distinct object categories. Each class in
 660 CIFAR100 contains 600 samples, with 500 for training and 100 for testing.

661 In our experiments, we employ a class-incremental learning setting where the 100 classes are partitioned
 662 into 10 sequential tasks, each containing 10 mutually exclusive classes. The model is trained
 663 on one task at a time in a strict continual fashion without revisiting past task data. For compatibility
 664 with Vision Transformer (ViT) architectures, images are resized from 32×32 to 224×224. This benchmark provides a balanced, yet challenging setting for studying forgetting and knowledge
 665 transfer, particularly in the presence of subtle inter-class variations and dense object representations.

667 **Split Imagenet-R** ImageNet-R is a curated subset of the standard ImageNet dataset, featuring
 668 30,000 images from 200 ImageNet classes. What sets ImageNet-R apart is its use of non-naturalistic
 669 renditions of objects, such as sketches, cartoons, art, and paintings, to evaluate model robustness to
 670 distributional shifts and out-of-domain generalization. The dataset was introduced to assess how
 671 well models trained on natural images can recognize the same semantic categories rendered in atypical
 672 styles.

673 We split the 200 classes into 10 continual learning tasks of 20 classes each, preserving the class-
 674 incremental protocol used in CIFAR100. All images are resized to 224×224 to match ViT input
 675 size. This benchmark poses a significant challenge due to the visual mismatch between training
 676 and testing styles. Our probabilistic prompting mechanism, which incorporates uncertainty through
 677 variational inference, is particularly well-suited to handle such ambiguity in visual appearance across
 678 tasks.

680 **5-Datasets** To further challenge the model’s generalization capability, we evaluate it on a domain-
 681 incremental benchmark composed of five structurally diverse datasets: SVHN (Street View House
 682 Numbers): Derived from real-world house number images in Google Street View. It contains digit
 683 crops from natural scenes with significant background clutter, offering a noisy and complex digit
 684 recognition task. MNIST: A classic benchmark of handwritten digits in grayscale, MNIST is simple
 685 but highly structured. Each image is 28×28, representing digits from 0 to 9. CIFAR10: consists of
 686 10 coarse-grained classes including animals and vehicles. It is used here to inject a natural image
 687 task amid digit-centric domains. NotMNIST: Composed of glyphs from typefaces representing
 688 letters A–J, NotMNIST is similar in format to MNIST but more visually diverse and slightly noisier.
 689 FashionMNIST: A drop-in replacement for MNIST, this dataset consists of grayscale images of
 690 clothing items, representing 10 categories such as shirts, shoes, and trousers.

692 B DETAILED BASELINES

694 **Learning to Prompt (L2P)** Wang et al. (2022c): L2P introduces the idea of using a prompt pool
 695 in conjunction with a frozen Vision Transformer backbone, where a learned key-query mechanism
 696 selects task-relevant prompts. It achieves strong performance without accessing previous data, making
 697 it a compelling baseline for parameter-efficient continual learning. L2P serves as a primary
 698 baseline in our experiments due to its close methodological relationship with our approach.

699 **DualPrompt** Wang et al. (2022b): An extension of prompt-based learning, DualPrompt decouples
 700 prompts into task-shared and task-specific components. The task-shared prompts capture common
 701 knowledge across tasks, while task-specific prompts specialize in preserving task identity. This

702 architecture provides greater flexibility in representing inter-task relationships and is particularly
 703 effective in settings with moderate task overlap.
 704

705 **Elastic Weight Consolidation (EWC)** Kirkpatrick et al. (2017): EWC is a classic method that
 706 regularizes updates to parameters that are deemed important for previous tasks. It approximates
 707 a Fisher Information Matrix to constrain future updates, reducing forgetting by preserving critical
 708 knowledge in the model weights.
 709

710 **Learning without Forgetting (LwF)** Li & Hoiem (2017): LwF mitigates forgetting by enforcing
 711 output consistency with the model’s previous predictions. This method uses knowledge distillation
 712 loss from the model trained on earlier tasks to maintain performance, making it applicable even in
 713 the absence of task boundaries or access to old data.
 714

715 **Synaptic Intelligence (SI)** Zenke et al. (2017): Similar to EWC, SI accumulates importance
 716 scores for each parameter during training and applies path-integral-based regularization to slow
 717 down updates to those weights. It is particularly efficient and well-suited for online settings.
 718

719 **iCaRL (Incremental Classifier and Representation Learning)** Rebuffi et al. (2017): A
 720 rehearsal-based method that stores exemplars from past tasks and combines nearest-class-mean clas-
 721 sification with incremental feature learning. Though it uses memory, it provides a strong benchmark
 722 for hybrid strategies.
 723

724 **DER++ (Dark Experience Replay)** Buzzega et al. (2020): DER++ stores logits of previous
 725 tasks along with exemplars, enabling knowledge distillation and replay-based learning. While not
 726 rehearsal-free, it performs very competitively in class-incremental learning.
 727

728 **Co2L (Contrastive Continual Learning)** Cha et al. (2021): A recent contrastive learning-based
 729 approach that uses self-supervised losses to preserve representations across tasks. Co2L is effective
 730 in both supervised and unsupervised continual learning.
 731

732 C DETAILED RELATED WORK

733 C.1 PROMPT TUNING AND ADAPTER METHODS

735 Recent advances in transfer learning have highlighted the efficiency of *prompt tuning*, which has
 736 emerged as a powerful alternative to full model fine-tuning. Originally developed for NLP, prompt
 737 tuning techniques such as prefix-tuning Li & Liang (2021) and soft prompt tuning Lester et al. (2021)
 738 train small, continuous prompt vectors while freezing the rest of the model. This paradigm has been
 739 successfully extended to vision transformers (ViTs), offering a parameter-efficient mechanism for
 740 domain adaptation in computer vision.
 741

742 Closely related are *adapter methods* Houlsby et al. (2019), which introduce small trainable bot-
 743 tleneck modules between transformer layers. Adapters enable selective tuning without modifying
 744 the backbone model, thus reducing computational cost and mitigating overfitting. Compared to
 745 adapters, prompt tuning is often more lightweight and modular, lending itself naturally to continual
 746 learning settings where rapid, task-specific adaptation is critical.
 747

748 C.2 UNCERTAINTY IN CONTINUAL LEARNING

749 Incorporating uncertainty is essential for robustness in CL, especially under ambiguous task bound-
 750 aries and limited data. Bayesian Neural Networks model parameter uncertainty using posterior
 751 distributions, while Variational Continual Learning (VCL) Nguyen et al. (2017) uses variational
 752 inference to approximate posterior beliefs over weights. Ensemble methods and dropout approxi-
 753 mations have also been employed to estimate prediction uncertainty in CL.
 754

755 Existing uncertainty-based methods focus primarily on the model parameters or output predictions.
 In contrast, our work introduces uncertainty at the prompt selection level. By using variational infer-
 ence to learn a posterior distribution over prompts, we provide a lightweight and scalable mechanism
 756

756 for uncertainty-aware task conditioning. This approach enhances the model’s ability to generalize
757 and reason under ambiguity without necessitating full Bayesian modeling of the entire network.
758

759 **C.3 PROBABILISTIC PROMPTING**
760

761 Our method introduces a novel probabilistic prompting framework for continual learning. We for-
762 mulate prompt selection as a latent variable problem and use variational inference to approximate
763 the posterior distribution over prompt selections. The learning objective includes a KL-divergence
764 regularizer that penalizes deviation from a prior distribution, encouraging diverse exploration of the
765 prompt space during early training and promoting consolidation as learning progresses.

766 This probabilistic perspective enables the model to manage uncertainty in prompt-task alignments,
767 leading to improved robustness and reduced overfitting. Unlike L2P’s deterministic mechanism,
768 our approach allows the model to hedge between multiple prompt candidates, which is especially
769 beneficial in task-agnostic or non-i.i.d. settings. Empirical results confirm that this method enhances
770 stability and flexibility, making it a compelling alternative for scalable, uncertainty-aware continual
771 learning.

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809