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ABSTRACT

Face obfuscation (blurring, mosaicing, etc.) has been shown to be effective for
privacy protection; nevertheless, object recognition research typically assumes
access to complete, unobfuscated images. In this paper, we explore the effects
of face obfuscation on the popular ImageNet challenge visual recognition bench-
mark. Most categories in the ImageNet challenge are not people categories; how-
ever, many incidental people appear in the images, and their privacy is a concern.
We first annotate faces in the dataset. Then we demonstrate that face blurring and
overlaying—two typical obfuscation techniques—have minimal impact on the ac-
curacy of recognition models. Concretely, we benchmark multiple deep neural
networks on face-obfuscated images and observe that the overall recognition accu-
racy drops only slightly (≤ 1.0%). Further, we experiment with transfer learning
to 4 downstream tasks (object recognition, scene recognition, face attribute clas-
sification, and object detection) and show that features learned on face-obfuscated
images are equally transferable. Our work demonstrates the feasibility of privacy-
aware visual recognition, improves the highly-used ImageNet challenge bench-
mark, and suggests an important path for future visual datasets.

1 INTRODUCTION

Visual data is being generated at an unprecedented scale. People share billions of photos daily on
social media (Meeker, 2014). There is one security camera for every 4 people in China and the
United States (Lin & Purnell, 2019). Even your home can be watched by smart devices taking
photos (Butler et al., 2015; Dai et al., 2015). Learning from the visual data has led to computer
vision applications that promote the common good, e.g., better traffic management (Malhi et al.,
2011) and law enforcement (Sajjad et al., 2020). However, it also raises privacy concerns, as images
may capture sensitive information such as faces, addresses, and credit cards (Orekondy et al., 2018).

Extensive prior research has focused on preventing unauthorized access to sensitive information
in private datasets (Fredrikson et al., 2015; Shokri et al., 2017). However, are publicly available
datasets free of privacy concerns? Taking the popular ImageNet dataset (Deng et al., 2009) as an
example, there are only 3 people categories1 in the 1000 categories of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015); nevertheless, the dataset ex-
poses many people co-occurring with other objects in images (Prabhu & Birhane, 2021), e.g., people
sitting on chairs, walking dogs, or drinking beer (Fig. 1). It is concerning since ILSVRC is freely
available for academic use2 and widely used by the research community.

In this paper, we attempt to mitigate ILSVRC’s privacy issues. Specifically, we construct a privacy-
enhanced version of ILSVRC and gauge its utility as a benchmark for image classification and as a
dataset for transfer learning.

Face annotation. As an initial step, we focus on a prominent type of private information—faces.
To examine and mitigate their privacy issues, we first annotate faces in ImageNet using face detectors
and crowdsourcing. We use Amazon Rekognition to detect faces automatically, and then refine the
results through crowdsourcing on Amazon Mechanical Turk to obtain accurate annotations.

We have annotated 1,431,093 images in ILSVRC, resulting in 562,626 faces from 243,198 images
(17% of all images have at least one face). Many categories have more than 90% images with faces,

1scuba diver, bridegroom, and baseball player
2https://image-net.org/request
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Figure 1: Most categories in ImageNet Challenge (Russakovsky et al., 2015) are not people cate-
gories. However, the images contain many people co-occurring with the object of interest, posing
a potential privacy threat. These are example images (with faces blurred or overlaid) of barber
chair, husky, beer bottle, volleyball and military uniform.

even though they are not people categories, e.g., volleyball and military uniform. Our
annotations confirm that faces are ubiquitous in ILSVRC and pose a privacy issue. We release the
face annotations to facilitate subsequent research in privacy-aware visual recognition on ILSVRC.

Effects of face obfuscation on classification accuracy. Obfuscating sensitive image areas is
widely used for preserving privacy (McPherson et al., 2016). We focus on two simple obfusca-
tion methods: blurring and overlaying (Fig. 1), whose privacy effects have been analyzed in prior
work (Oh et al., 2016; Li et al., 2017; Hasan et al., 2018). Using our face annotations, we construct
face-obfuscated versions of ILSVRC. What are the effects of using them for image classification? At
first glance, it seems inconsequential—one should still recognize a car even when the people inside
have their faces blurred. Indeed, we verify that validation accuracy drops only slightly (0.1%–0.7%
for blurring, 0.3%–1.0% for overlaying) when using face-obfuscated images to train and evaluate.
We analyze this drop in detail (identifying categories which are particularly affected), but this key re-
sult demonstrates that we can train privacy-aware visual classifiers on ILSVRC which remain highly
competitive, with less than a 1% accuracy drop.

Effects on feature transferability. Besides a classification benchmark, ILSVRC also serves as
pretraining data for transferring to domains where labeled images are scarce (Girshick, 2015; Liu
et al., 2015a). So a further question is: Does face obfuscation hurt the transferability of visual fea-
tures learned from ILSVRC? We investigate by pretraining models on the original/obfuscated images
and finetuning on 4 downstream tasks: object recognition on CIFAR-10 (Krizhevsky et al., 2009),
scene recognition on SUN (Xiao et al., 2010), object detection on PASCAL VOC (Everingham et al.,
2010), and face attribute classification on CelebA (Liu et al., 2015b). They include both classifica-
tion and spatial localization, as well as both face-centric and face-agnostic recognition. In all of
the 4 tasks, models pretrained on face-obfuscated images perform closely with models pretrained
on original images. We do not see a statistically significant difference between them, suggesting
that visual features learned from face-obfuscated pretraining are equally transferable. Again, this
encourages us to adopt face obfuscation as an additional protection on visual recognition datasets
without worrying about detrimental effects on the dataset’s utility.

Contributions. Our contributions are twofold. First, we obtain accurate face annotations in
ILSVRC, facilitating subsequent research on privacy protection. We will release the code and the
annotations. Second, to the best of our knowledge, we are the first to investigate the effects of
privacy-aware face obfuscation on large-scale visual recognition. Through extensive experiments,
we demonstrate that training on face-obfuscated images does not significantly compromise accu-
racy on both image classification and downstream tasks, while providing some privacy protection.
Therefore, we advocate for face obfuscation to be included in ImageNet and to become a standard
step in future dataset creation efforts.

2 RELATED WORK

Privacy-preserving machine learning (PPML). Machine learning frequently uses private
datasets (Chen et al., 2019b). Research in PPML is concerned with an adversary trying to infer
the private data. The privacy breach can happen to the trained model. For example, model inver-
sion attack recovers sensitive attributes (e.g., gender, genotype) of an individual given the model’s
output (Fredrikson et al., 2014; 2015; Hamm, 2017; Li et al., 2019; Wu et al., 2019). Membership
inference attack infers whether an individual was included in training (Shokri et al., 2017; Nasr
et al., 2019; Hisamoto et al., 2020). Training data extraction attack extracts verbatim training data
from the model (Carlini et al., 2019; 2020). For defending against these attacks, differential privacy
is a general framework (Abadi et al., 2016; Chaudhuri & Monteleoni, 2008; McMahan et al., 2018;
Jayaraman & Evans, 2019; Jagielski et al., 2020). It requires the model to behave similarly whether
or not an individual is in the training data.
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Privacy breaches can also happen in training/inference. To address hardware/software vulnerabili-
ties, researchers have used enclaves—a hardware mechanism for protecting a memory region from
unauthorized access—to execute machine learning workloads (Ohrimenko et al., 2016; Tramer &
Boneh, 2018). Machine learning service providers can run their models on users’ private data en-
crypted using homomorphic encryption (Gilad-Bachrach et al., 2016; Brutzkus et al., 2019; Juvekar
et al., 2018; Bian et al., 2020; Yonetani et al., 2017). It is also possible for multiple data owners
to train a model collectively without sharing their private data using federated learning (McMahan
et al., 2017; Bonawitz et al., 2017; Li et al., 2020) or secure multi-party computation (Shokri &
Shmatikov, 2015; Melis et al., 2019; Hamm et al., 2016; Pathak et al., 2010; Hamm et al., 2016).

There is a fundamental difference between our work and PPML. PPML focuses on private datasets,
whereas we focus on public datasets with private information. ImageNet, like other academic
datasets, is publicly available to researchers. There is no point preventing an adversary from in-
ferring the data. However, public datasets can also expose private information about individuals,
who may not even be aware of their presence in the data. It is their privacy we are protecting.

Privacy in visual data. To mitigate privacy issues with public visual datasets, researchers have
attempted to obfuscate private information before publishing the data. Frome et al. (2009) and Uit-
tenbogaard et al. (2019) use blurring and inpainting to obfuscate faces and license plates in Google
Street View. nuScenes (Caesar et al., 2020) is an autonomous driving dataset where faces and license
plates are detected and then blurred. Similar method is also used for the action dataset AViD (Pier-
giovanni & Ryoo, 2020).

We follow this line of work to obfuscate faces in ImageNet but differ in two critical ways. First, to
the best of our knowledge, we are the first to thoroughly analyze the effects of face obfuscation on
visual recognition. Second, prior works use only automatic methods such as face detectors, whereas
we additionally employ crowdsourcing. Human annotations are more accurate and thus more useful
for following research on privacy preservation in ImageNet. Most importantly though, automated
face recognition methods are known to contain racial and gender biases (Buolamwini & Gebru,
2018); thus using these methods alone is likely to result in more privacy protection to members of
majority groups. Including a manual verification step helps partially mitigate these issues.

Finally, we note that face obfuscation alone is not sufficient for privacy protection. Orekondy et al.
(2018) constructed Visual Redactions, annotating images with 42 privacy attributes, including faces,
names, and addresses. Ideally, we should obfuscate all such information; however, this may not be
immediately feasible. Obfuscating faces (omnipresent in visual datasets) is an important first step.

Privacy guarantees of face obfuscation. Unfortunately, face obfuscation does not provide any
formal guarantee of privacy. Both humans and machines may be able to infer an individual’s iden-
tity from face-obfuscated images, presumably relying on cues outside faces such as height and
clothing (Chang et al., 2006; Oh et al., 2016). Researchers have tried to protect sensitive image
regions against attacks, e.g., by perturbing the image adversarially to reduce the performance of a
recognizer (Oh et al., 2017; Ren et al., 2018; Sun et al., 2018; Wu et al., 2018; Xiao et al., 2020).
However, these methods are tuned for a particular model and provide no privacy guarantee either.

Further, guarantees in privacy may reduce dataset utility as shown for example by Cheng et al.
(2021). Therefore, we choose two simple local methods—blurring and overlaying—instead of more
sophisticated alternatives. Overlaying removes all information in a face bounding box, whereas blur-
ring removes only partial information. Their effectiveness for privacy protection can be ascertained
only empirically, which has been the focus of prior work (Oh et al., 2016; Li et al., 2017; Hasan
et al., 2018) but is beyond the scope of this paper.

Visual recognition from degraded data. Researchers have studied visual recognition in the pres-
ence of various image degradation, including blurring (Vasiljevic et al., 2016), lens distortions (Pei
et al., 2018), and low resolution (Ryoo et al., 2016). These undesirable artifacts are due to imperfect
sensors rather than privacy concerns. In contrast, we intentionally obfuscate faces for privacy’s sake.

Ethical issues with datasets. Datasets are important in machine learning and computer vision.
But recently they have been called out for scrutiny (Paullada et al., 2020), especially regarding
the presence of people. A prominent issue is imbalanced representation, e.g., underrepresentation
of certain demographic groups in data for face recognition (Buolamwini & Gebru, 2018), activity
recognition (Zhao et al., 2017), and image captioning (Hendricks et al., 2018).
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For ImageNet, researchers have examined and attempted to mitigate issues such as geographic diver-
sity, the category vocabulary, and imbalanced representation (Shankar et al., 2017; Stock & Cisse,
2018; Dulhanty & Wong, 2019; Yang et al., 2020). We focus on an orthogonal issue: the privacy
of people in the images. Prabhu & Birhane (2021) also discussed ImageNet’s privacy issues and
suggested face obfuscation as one potential solution. Our face annotations enable face obfuscation
to be implemented, and our experiments support its effectiveness. Concurrent work (Asano et al.,
2021) addresses the privacy issue by collecting a dataset of unlabeled images without people.

Potential negative impacts. The main concern we see is giving the impression of privacy guar-
antees when in fact face obfuscation is an imperfect technique for privacy protection. We hope that
the above detailed discussion and this clarification will help mitigate this issue. Another important
concern is disparate impact on people of different demographics as a result of using automated face
detection methods; as mentioned above, we hope that incorporating a manual annotation step will
help partially alleviate this issue so that similar privacy preservation is afforded to all.

3 ANNOTATING FACES IN ILSVRC

We annotate faces in ILSVRC (Russakovsky et al., 2015). The annotations localize an important
type of sensitive information in ImageNet, making it possible to obfuscate the sensitive areas for
privacy protection.

It is challenging to annotate faces accurately, at ImageNet’s scale while under a reasonable budget.
Automatic face detectors are fast and cheap but not accurate enough, whereas crowdsourcing is
accurate but more expensive. Inspired by prior work (Kuznetsova et al., 2018; Yu et al., 2015),
we devise a two-stage semi-automatic pipeline that brings the best of both worlds. First, we run
the face detector by Amazon Rekognition on all images in ILSVRC. The results contain both false
positives and false negatives, so we refine them through crowdsourcing on Amazon Mechanical
Turk. Workers are given images with detected bounding boxes, and they adjust existing boxes or
create new ones to cover all faces. Please see Appendix A for detail.

Annotation quality. To analyze the quality of the face annotations, we select 20 categories on
which the face detector is likely to perform poorly. Then we manually check validation images from
these categories; the results characterize an upper bound of the overall annotation accuracy.

Concretely, first, we randomly sample 10 categories under the mammal subtree in the ImageNet
hierarchy (the left 10 categories in Table 1). Images in these categories contain many false positives
(animal faces detected as humans). Second, we take the 10 categories with the greatest number of
detected faces (the right 10 categories in Table 1). Images in those categories contain many people
and thus are likely to have more false negatives. Each of the selected categories has 50 validation
images, and two graduate students manually inspected all face annotations on them, including the
face detection results and the final crowdsourcing results.

Table 1: The number of false positives (FPs) and false negatives (FNs) on validation images from
20 categories challenging for the face detector. Each category has 50 images. The A columns are
after automatic face detection, whereas the H columns are human results after crowdsourcing.

Category #FPs #FNs Category #FPs #FNs

A H A H A H A H

irish setter 12 3 0 0 maypole 0 0 7 5
gorilla 32 7 0 0 basketball 0 0 7 2
cheetah 3 1 0 0 volleyball 0 0 10 5
basset 10 0 0 0 balance beam 0 0 9 5
lynx 9 1 0 0 unicycle 0 1 6 1
rottweiler 11 4 0 0 stage 0 0 0 0
sorrel 2 1 0 0 torch 2 1 1 1
impala 1 0 0 0 baseball player 0 0 0 0
bernese mt. dog 20 3 0 0 military uniform 3 2 2 0
silky terrier 4 0 0 0 steel drum 1 1 1 0

Average 10.4 2.0 0.0 0.0 Average 0.6 0.5 4.3 1.9
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Table 2: Some categories grouped into supercategories in WordNet (Miller, 1998). For each super-
category, we show the fraction of images with faces. These supercategories have fractions signifi-
cantly deviating from the average of the entire ILSVRC (17%).

Supercategory #Categories #Images With faces (%)

clothing 49 62,471 58.90
wheeled vehicle 44 57,055 35.30
musical instrument 26 33,779 47.64
bird 59 76,536 1.69
insect 27 35,097 1.81
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Figure 2: Left: The fraction of images with faces for the 1000 ILSVRC categories. 106 categories
have more than half images with faces. 216 categories have more than 25%. Right: A histogram of
the number of faces per image, excluding the 1,187,895 images with no face.

The errors are shown in Table 1. As expected, the left 10 categories (mammals) have some false
positives but no false negatives. In contrast, the right 10 categories have very few false positives but
some false negatives. Crowdsourcing significantly reduces both error types. This demonstrate that
we can obtain high-quality face annotations using the two-stage pipeline, but face detection alone
is less accurate. Among the 20 categories, we have on average 1.25 false positives and 0.95 false
negatives per 50 images. However, our overall accuracy on the entire ILSVRC is much higher as
these categories are selected deliberately to be error-prone.

Distribution of faces in ILSVRC. Using our two-stage pipeline, we annotated all 1,431,093 im-
ages in ILSVRC. Among them, 243,198 images (17%) contain at least one face. And the total
number of faces adds up to 562,626.

Fig. 2 Left shows the fraction of images with faces for different categories, ranging from 97.5%
(bridegroom) to 0.1% (rock beauty, a type of saltwater fish). 106 categories have more than
half images with faces. 216 categories have more than 25%. Among the 243K images with faces,
Fig. 2 Right shows the number of faces per image. 90.1% images contain less than 5. But some of
them contain as many as 100 (a cap due to Amazon Rekognition). Most of those images capture
sports scenes with a crowd of spectators, e.g., images from baseball player or volleyball.

Since ILSVRC categories are in the WordNet (Miller, 1998) hierarchy, we can group them into su-
percategories in WordNet. Table 2 lists a few common ones that collectively cover 215 categories.
For each supercategory, we calculate the fraction of images with faces. Results suggests that su-
percategories such as clothing and musical instrument frequently co-occur with people,
whereas bird and insect seldom do.

4 EFFECTS OF FACE OBFUSCATION ON CLASSIFICATION ACCURACY

Having annotated faces in ILSVRC, we now investigate how face obfuscation—a widely used tech-
nique for privacy preservation (Fan, 2019; Frome et al., 2009)—impacts image classification.

Face obfuscation method. We experiment with two simple obfuscation methods—blurring and
overlaying. For overlaying, we cover faces with the average color in the ILSVRC training data:
a gray shade with RGB value (0.485, 0.456, 0.406). For blurring, we use a variant of Gaussian
blurring. It achieves better visual quality by removing the sharp boundaries between blurred and
unblurred regions (Fig. 1). Let I be an image and M be the mask of face bounding boxes. Applying
Gaussian blurring to them gives us Iblurred and Mblurred. Then we use Mblurred as the mask to
composite I and Iblurred: Inew = Mblurred ·Iblurred+(1−Mblurred)·I . Due to the use of Mblurred

instead of M , we avoid sharp boundaries in Inew. Please see Appendix B for detail.
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Table 3: Validation accuracies on ILSVRC using original images, face-blurred images, and face-
overlaid images. The accuracy drops slightly but consistently when blurred (the ∆b columns) or
overlaid (the ∆o columns), though overlaying leads to larger drop than blurring. Each experiment is
repeated 3 times; we report the mean accuracy and its standard error (SEM).

Model Top-1 accuracy (%) Top-5 accuracy (%)

Original Blurred ∆b overlaid ∆o Original Blurred ∆b overlaid ∆o

AlexNet 56.0 ± 0.3 55.8 ± 0.1 0.2 55.5 ± 0.2 0.6 78.8 ± 0.1 78.6 ± 0.1 0.3 78.2 ± 0.2 0.7
SqueezeNet 56.0 ± 0.2 55.3 ± 0.0 0.7 55.0 ± 0.2 1.0 78.6 ± 0.2 78.1 ± 0.0 0.5 77.6 ± 0.1 1.0
ShuffleNet 64.7 ± 0.2 64.0 ± 0.1 0.6 63.7 ± 0.0 1.0 85.9 ± 0.0 85.5 ± 0.1 0.5 85.2 ± 0.2 0.8
VGG11 68.9 ± 0.0 68.2 ± 0.1 0.7 67.8 ± 0.2 1.1 88.7 ± 0.0 88.3 ± 0.1 0.4 87.9 ± 0.0 0.8
VGG13 69.9 ± 0.1 69.3 ± 0.1 0.7 68.8 ± 0.0 1.2 89.3 ± 0.1 88.9 ± 0.0 0.4 88.5 ± 0.1 0.8
VGG16 71.7 ± 0.1 70.8 ± 0.1 0.8 70.6 ± 0.1 1.1 90.5 ± 0.1 89.9 ± 0.1 0.6 89.6 ± 0.0 0.9
VGG19 72.4 ± 0.0 71.5 ± 0.0 0.8 71.2 ± 0.2 1.2 90.9 ± 0.1 90.3 ± 0.0 0.6 90.1 ± 0.1 0.8
MobileNet 65.4 ± 0.2 64.4 ± 0.2 1.0 64.3 ± 0.2 1.0 86.7 ± 0.1 86.0 ± 0.1 0.7 85.7 ± 0.1 0.9
DenseNet121 75.0 ± 0.1 74.2 ± 0.1 0.8 74.1 ± 0.1 1.0 92.4 ± 0.0 92.0 ± 0.1 0.4 91.7 ± 0.0 0.7
DenseNet201 77.0 ± 0.0 76.6 ± 0.0 0.4 76.1 ± 0.1 0.9 93.5 ± 0.0 93.2 ± 0.1 0.2 92.9 ± 0.1 0.6
ResNet18 69.8 ± 0.2 69.0 ± 0.2 0.7 68.9 ± 0.1 0.8 89.2 ± 0.0 88.7 ± 0.0 0.5 88.7 ± 0.1 0.6
ResNet34 73.1 ± 0.1 72.3 ± 0.4 0.8 72.4 ± 0.1 0.7 91.3 ± 0.0 90.8 ± 0.1 0.5 90.7 ± 0.0 0.6
ResNet50 75.5 ± 0.2 75.0 ± 0.1 0.4 74.9 ± 0.0 0.6 92.5 ± 0.0 92.4 ± 0.1 0.1 92.2 ± 0.0 0.3
ResNet101 77.3 ± 0.1 76.7 ± 0.1 0.5 76.7 ± 0.1 0.6 93.6 ± 0.1 93.3 ± 0.1 0.3 93.1 ± 0.1 0.5
ResNet152 77.9 ± 0.1 77.3 ± 0.1 0.6 77.0 ± 0.3 0.9 93.9 ± 0.0 93.7 ± 0.0 0.4 93.3 ± 0.3 0.6

Average 70.0 69.4 0.7 69.1 0.9 89.1 88.6 0.4 88.4 0.7
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Figure 3: The average drop in category-wise accuracies vs. the fraction of blurred area in images.
Left: Top-1 accuracies. Right: Top-5 accuracies. The accuracies are averaged across all different
model architectures and random seeds.

Experiment setup and training details. To study the effects of face obfuscation on classification,
we benchmark various deep neural networks including AlexNet (Krizhevsky et al., 2017), VGG (Si-
monyan & Zisserman, 2015), SqueezeNet (Iandola et al., 2016), ShuffleNet (Zhang et al., 2018),
MobileNet (Howard et al., 2017), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017).
Each model is studied in three settings: (1) original images for both training and evaluation; (2)
face-blurred images for both; (3) face-overlaid images for both.

Different models share a uniform implementation of the training/evaluation pipeline. During train-
ing, we randomly sample a 224 × 224 image crop and apply random horizontal flipping. During
evaluation, we always take the central crop and do not flip. All models are trained with a batch size
of 256, a momentum of 0.9, and a weight decay of 10−4. We train with SGD for 90 epochs, drop-
ping the learning rate by a factor of 10 every 30 epochs. The initial learning rate is 0.01 for AlexNet,
SqueezeNet, and VGG; 0.1 for other models. Each experiment takes 1–7 days on machines with 2
CPUs, 16GB memory, and 1–6 Nvidia GTX GPUs.

Overall accuracy. Table 3 shows the validation accuracies. Each training instance is replicated 3
times with different random seeds, and we report the mean accuracy and its standard error (SEM).
The ∆ columns are the accuracy drop when using face-obfuscated images (original minus blurred).
For both blurring and overlaying, we see a small but consistent drop in top-1 and top-5 accura-
cies. For example, with blurring, top-5 accuracies drop 0.1%–0.7% with an average of only 0.4%.
Overlaying leads to slightly larger drops averaged at 0.7% since it removes more information.

It is expected to incur a small but consistent drop. On the one hand, face obfuscation removes
information that might be useful for classifying the image. On the other hand, it should leave
intact most ILSVRC categories since they are non-human. Though not surprising, our results are
encouraging. They assure us that we can train privacy-aware visual classifiers on ImageNet with
less than 1% accuracy drop.
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Figure 4: The average drop in category-wise accuracies caused by blurring vs. the fraction of object
area covered by faces. Left: Top-1 accuracies. Right: Top-5 accuracies. The accuracies are averaged
across all different model architectures and random seeds.

Category-wise accuracies and the fraction of blur. To gain insights into the effects on individual
categories, we break down the accuracy into the 1000 ILSVRC categories. We hypothesize that if a
category has a large fraction of obfuscated area, it will likely incur a large accuracy drop.

To support the hypothesis, we focus on blurring and first average the accuracies for each category
across different models. Then, we calculate the correlation between the accuracy drop and the frac-
tion of blurred area: r = 0.28 for top-1 accuracy and r = 0.44 for top-5 accuracy. The correlation is
not strong but is statistically significant, with p-values of 6.31×10−20 and 2.69×10−49 respectively.

The positive correlation is also evident in Fig. 3. On the x-axis, we divide the blurred fraction into 5
groups from small to large. On the y-axis, we show the average accuracy drop for categories in each
group. Using top-5 accuracy (Fig. 3 Right), the drop increases monotonically from 0.30% to 4.04%
when moving from a small blurred fraction (0%–1%) to a larger fraction (≥ 8%).

The pattern becomes less clear in top-1 accuracy (Fig. 3 Left). The drop stays around 0.5% and
begins to increase only when the fraction goes beyond 4%. However, top-1 accuracy is a worse
metric than top-5 accuracy (ILSVRC’s official metric), because top-1 accuracy is ill-defined for im-
ages with multiple objects. In contrast, top-5 accuracy allows the model to predict 5 categories for
each image and succeed as long as one of them matches the ground truth. In addition, top-1 accu-
racy suffers from confusion between near-identical categorie (like eskimo dog and siberian
husky), an artifact we discuss further below.

In summary, our analysis of category-wise accuracies aligns with a simple intuition—if too much
area is obfuscated, models will have difficulty classifying the image.

Most impacted categories. Besides the size of the obfuscated area, another factor is whether it
overlaps with the object of interest. Most categories in ILSVRC are non-human and should have
very little overlap with faces. However, there are exceptions. Mask, for example, is indeed non-
human. But masks are worn on the face; therefore, obfuscating faces will make masks harder to
recognize. Similar categories include sunglasses, harmonica, etc. Due to their close spatial
proximity to faces, the accuracy is likely to drop significantly in the presence of face obfuscation.

To quantify this intuition, we calculate the overlap between objects and faces. Object bounding
boxes are available from the localization task of ILSVRC. Given an object bounding box, we cal-
culate the fraction of area covered by face bounding boxes. The fractions are then averaged across
different images in a category.

Results in Fig. 4 show that blurring leads to larger accuracy drop for categories with larger fractions
covered by faces. Some noteable examples include mask (24.84% covered by faces, 8.71% drop
in top-5 accuracy), harmonica (29.09% covered by faces, 8.93% drop in top-5 accuracy), and
snorkel (30.51% covered, 6.00% drop). The correlation between the fraction and the drop is
r = 0.32 for top-1 accuracy and r = 0.46 for top-5 accuracy.

Fig. 5a showcases images from harmonica and mask and their blurred versions. We use Grad-
CAM (Selvaraju et al., 2017) to visualize where the model is looking at when classifying the image.
For original images, the model can effectively localize and classify the object of interest. For blurred
images, however, the model fails to classify the object; neither does it attend to the correct region.

In summary, the categories most impacted by face obfuscation are those overlapping with faces, such
as mask and harmonica. These categories have much lower accuracies when using obfuscated
images, as obfuscation removes visual cues necessary for recognizing them.
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HarmonicaMask

(a) Images from mask and harmonica with
Grad-CAM (Selvaraju et al., 2017) visualiza-
tions of where a ResNet152 (He et al., 2016)
model looks at. Original images on the left;
face-blurred images on the right.

Siberian husky

Eskimo dog

(b) Images from eskimo dog and siberian husky
are very similar. However, eskimo dog has a large
accuracy drop when using face-blurred images, whereas
siberian husky has a large accuracy increase.

Disparate changes for visually similar categories. Our last observation focuses on categories
whose top-1 accuracies change drastically. Intriguingly, they come in pairs, consisting of one cate-
gory with decreasing accuracy and another visually similar category with increasing accuracy. For
example, eskimo dog and siberian husky are visually similar (Fig. 5b). When using face-
blurred images, eskimo dog’s top-1 accuracy drops by 12.8%, whereas siberian husky’s
increases by 16.9%. It is strange since most images in these two categories do not even contain
human faces. More examples are in Table 4.

Eskimo dog and siberian husky images are so similar that the model faces a seemingly ar-
bitrary choice. We examine the predictions and find that models trained on original images prefer
eskimo dog, whereas models trained on blurred images prefer siberian husky. It is the
different preferences over these two competing categories that drive the top-1 accuracies to change
in different directions. To further investigate, we include two metrics that are less sensitive to com-
peting categories: top-5 accuracy and average precision. In Table 4, the pairwise pattern evaporates
when these metrics. A pair of categories no longer have drastic changes, and the changes do not
necessarily go in different directions. The results show that models trained on blurred images are
still good at recognizing eskimo dog, though siberian husky has an even higher score.

5 EFFECTS ON FEATURE TRANSFERABILITY

Visual features learned on ImageNet are effective for a wide range of tasks (Girshick, 2015; Liu
et al., 2015a). We now investigate the effects of face obfuscation on feature transferability to down-
stream tasks. Specifically, we compare models without pretraining and models pretrained on orig-
inal/blurred/overlaid images by finetuning on 4 tasks: object recognition, scene recognition, object
detection, and face attribute classification. They include both classification and spatial localization,
as well as both face-centric and face-agnostic recognition. Details are in Appendix E.

Object and scene recognition on CIFAR-10 and SUN. CIFAR-10 (Krizhevsky et al., 2009) con-
tains images from 10 object categories such as horse and truck. SUN (Xiao et al., 2010) contains
images from 397 scenes such as bedroom and restaurant. Like ImageNet, they are not people-
centered but may contain people.

We finetune models to classify images in these two datasets and show the results in Table 5. For both
datasets, pretraining helps significantly; models pretrained on blurred or overlaid images perform
closely with those pretrained on original images. The results show that visual features learned on
face-obfsucated images have no problem transferring to face-agnostic downstream tasks.

Object detection on PASCAL VOC. Next, we finetune models for object detection on PASCAL
VOC (Everingham et al., 2010). We choose it instead of COCO (Lin et al., 2014) because it is small
enough to benefit from pretraining. We finetune a FasterRCNN (Ren et al., 2015) object detector
with a ResNet50 backbone pretrained on original/blurred/overlaid images. The results do not show
a significant difference between them (79.40 ± 0.31, 79.29 ± 0.22, and 79.39 ± 0.02 in mAP).

PASCAL VOC includes person as one of its 20 object categories. And one could hypothesize that
the model detects people relying on face cues. However, we do not observe a performance drop
in face-obfuscated pretraining, even considering the AP of the person category (84.40 ± 0.14
original, 84.80 ± 0.50 blurred, and 84.47 ± 0.05 overlaid).
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Table 4: Visually similar categories whose top-1 accuracy varies significantly—but in opposite di-
rections. However, the pattern evaporates when using top-5 accuracy or average precision.

Category Top-1 accuracy (%) Top-5 accuracy (%) Average precision (%)

Original Blurred ∆ Original Blurred ∆ Original Blurred ∆

eskimo dog 50.8 ± 1.1 38.0 ± 0.4 12.8 95.5 ± 0.4 95.1 ± 0.2 0.4 19.4 ± 0.8 19.9 ± 0.5 − 0.5
siberian husky 46.3 ± 1.8 63.2 ± 0.8 − 16.9 97.0 ± 0.4 97.2 ± 0.3 -0.2 29.2 ± 0.3 29.6 ± 0.5 − 0.4

projectile 35.6 ± 0.9 21.7 ± 1.0 13.9 86.2 ± 0.4 85.5 ± 0.4 0.7 23.1 ± 0.4 22.5 ± 0.5 0.6
missile 31.6 ± 0.7 45.8 ± 0.8 − 14.2 81.5 ± 0.7 81.8 ± 0.4 − 0.3 20.4 ± 0.3 21.1 ± 0.6 − 0.7

tub 35.5 ± 1.5 27.9 ± 0.6 7.6 79.4 ± 0.6 75.6 ± 0.5 3.8 19.9 ± 0.4 18.8 ± 0.2 1.1
bathtub 35.4 ± 1.0 42.5 ± 0.4 − 7.1 78.9 ± 0.3 80.8 ± 1.2 − 1.9 27.4 ± 0.8 25.1 ± 0.6 2.3

american chameleon 63.0 ± 0.4 54.7 ± 1.2 8.3 97.0 ± 0.5 96.6 ± 0.5 0.4 40.0 ± 0.2 39.3 ± 0.5 0.7
green lizard 42.0 ± 0.6 45.6 ± 1.2 − 3.6 91.3 ± 0.3 89.7 ± 0.2 1.6 22.6 ± 0.8 22.4 ± 0.1 0.2

Table 5: Top-1 accuracy on CIFAR-10 (Krizhevsky et al., 2009) and SUN (Xiao et al., 2010) of
models without pretraining, pretrained on original images, and pretrained on blurred images.

Model CIFAR-10 SUN

No pretrain Original Blurred Overlaid No pretrain Original Blurred Overlaid

AlexNet 83.3 ± 0.2 90.6 ± 0.0 90.9 ± 0.0 91.1 ± 0.0 26.2 ± 0.6 46.3 ± 0.1 46.5 ± 0.1 46.2 ± 0.0
ShuffleNet 92.3 ± 0.3 95.7 ± 0.0 95.4 ± 0.1 95.2 ± 0.1 33.8 ± 0.7 51.2 ± 0.1 50.4 ± 0.3 49.3 ± 0.3
ResNet18 92.8 ± 0.1 96.1 ± 0.1 96.1 ± 0.1 96.1 ± 0.1 36.9 ± 4.8 55.0 ± 0.2 55.0 ± 0.1 55.1 ± 0.1
ResNet34 90.6 ± 0.9 96.9 ± 0.1 97.0 ± 0.0 97.1 ± 0.2 40.3 ± 0.4 57.8 ± 0.0 57.9 ± 0.1 57.8 ± 0.1

Face attribute classification on CelebA. But what if the downstream task is entirely about un-
derstanding faces? Will face-obfuscated pretraining fail? We explore this question by classifying
face attributes on CelebA (Liu et al., 2015b). Given a headshot, the model predicts multiple face
attributes such as smiling and eyeglasses.

CelebA is too large to benefit from pretraining, so we finetune on a subset of 5K images. Table 6
shows the results in mAP. There is a discrepancy between different models, so we add a few more
models. But overall, blurred/overlaid pretraining performs competitively. This is remarkable given
that the task relies heavily on faces. A possible reason is that the model only learns low-level face-
agnostic features during pretraining and learns face features in finetuning.

In all of the 4 tasks, pretraining on face-obfuscated images does not hurt the transferability of the
learned feature. It suggests that one could use face-obfuscated ILSVRC for pretraining without
degrading the downstream task, even when the downstream task requires an understanding of faces.

Table 6: mAP of face attribute classification on CelebA (Liu et al., 2015b), using subset of 5K
training images.

Model No pretrain Original Blurred Overlaid

AlexNet 41.8 ± 0.5 55.5 ± 0.7 50.7 ± 0.8 52.5 ± 0.4
ShuffleNet 36.5 ± 0.7 55.6 ± 1.2 52.5 ± 1.0 53.5 ± 1.4
ResNet18 45.1 ± 1.0 51.7 ± 1.9 51.8 ± 1.0 52.0 ± 0.6
ResNet34 49.4 ± 2.4 55.6 ± 2.4 56.5 ± 1.9 56.4 ± 2.3
ResNet50 48.7 ± 1.3 42.8 ± 0.9 50.9 ± 2.7 50.4 ± 0.5
VGG11 48.7 ± 0.3 56.0 ± 0.7 57.4 ± 0.6 58.1 ± 0.9
VGG13 47.2 ± 0.8 58.4 ± 0.6 59.0 ± 0.5 58.2 ± 0.4
MobileNet 43.8 ± 0.2 49.4 ± 0.8 49.9 ± 1.3 49.6 ± 1.3

6 CONCLUSION

We explored how face obfuscation affects recognition accuracy on ILSVRC. We annotated faces in
the dataset and benchmarked deep neural networks on images with faces blurred or overlaid. Exper-
imental results demonstrate face obfuscation enhances privacy with minimal impact on accuracy.
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A SEMI-AUTOMATIC FACE ANNOTATION

We describe our face annotation method in detail. It consists of two stages: face detection followed
by crowdsourcing.

Figure 6: Face detection results on ILSVRC by Amazon Rekognition. The first row shows correct
examples. The second row shows false positives, most of which are animal faces. The third row
shows false negatives.

Stage 1: Automatic face detection. First, we run the face detection API provided by Amazon
Rekognition3 on all images in ILSVRC, which can be done within one day and $1500. We also
explored services from other vendors but found Rekognition to work the best, especially for small
faces and multiple faces in one image (Fig. 6 Top).

However, face detectors are not perfect. There are false positives and false negatives. Most false
positives, as Fig. 6 Middle shows, are animal faces incorrectly detected as humans. Meanwhile,
false negatives are rare; some of them occur under poor lighting or heavy occlusion. For privacy
preservation, a small number of false positives are acceptable, but false negatives are undesirable.
In that respect, Rekognition hits a suitable trade-off for our purpose.

Stage 2: Refining faces through crowdsourcing. After running the face detector, we refine the
results through crowdsourcing on Amazon Mechanical Turk (MTurk). In each task, the worker is
given an image with bounding boxes detected by the face detector (Fig. 7 Left). They adjust existing
bounding boxes or create new ones to cover all faces and not-safe-for-work (NSFW) areas. NSFW
areas may not necessarily contain private information, but just like faces, they are good candidates
for image obfuscation (Prabhu & Birhane, 2021).

For faces, we specifically require the worker to cover the mouth, nose, eyes, forehead, and cheeks.
For NSFW areas, we define them to include nudity, sexuality, profanity, etc. However, we do not dic-
tate what constitutes, e.g., nudity, which is deemed to be subjective and culture-dependent. Instead,
we encourage workers to follow their best judgment.

The worker has to go over 50 images in each HIT (Human Intelligence Task) to get rewarded.
However, most images do not require the worker’s action since the face detections are already fairly
accurate. The 50 images include 3 gold standard images for quality control. These images have
verified ground truth faces, but we intentionally show incorrect annotations for the workers to fix.
The entire HIT resembles an action game. Starting with 2 lives, the worker will lose a life when
making a mistake on gold standard images. In that case, they will see the ground truth faces (Fig. 7

3https://aws.amazon.com/rekognition
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Figure 7: The UI for face annotation on Amazon Mechanical Turk. Left: The worker is given
an image with inaccurate face detections. They correct the results by adjusting existing bounding
boxes or creating new ones. Each HIT (Human Intelligence Task) have 50 images, including 3 gold
standard images for which we know the ground truth answers. Right: The worker loses a life when
making a mistake on gold standard images. They will have to start from scratch after losing both 2
lives.

Right) and the remaining lives. If they lose both 2 lives, the game is over, and they have to start
from scratch at the first image. We found this strategy to improve annotation quality. We spent
about $2500 on worker compensation. At this point, it is impossible to estimate the hourly wage
accurately, since we have only the submit time of HITs but not the start time.

We did not distinguish NSFW areas from faces during crowdsourcing. Still, we conduct a study
demonstrating that the final data contains only a tiny number of NSFW annotations compared to
faces. The number of NSFW areas varies significantly across different ILSVRC categories. Bikini
is likely to contain much more NSFW areas than the average. We examined all 1,300 training
images and 50 validation images in bikini. We found only 25 images annotated with NSFW
areas (1.85%). The average number for the entire ILSVRC is expected to be much smaller. For
example, we found 0 NSFW images among the validation images from the categories in Table 1.

B FACE BLURRING METHOD

As illustrated in Fig. 8, we blur human faces using a variant of Gaussian blurring to avoid sharp
boundaries between blurred and unblurred regions.

Let D = [0, 1] be the range of pixel values; I ∈ Dh×w×3 is an RGB image with height h and width
w (Fig. 8 Middle). We have m face bounding boxes annotated on I:
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where di is the length of the diagonal. Out-of-range coordinates are truncated to 0, h− 1, or w− 1.

Next, we represent the union of the enlarged bounding boxes as a mask M ∈ Dh×w×1 with value
1 inside bounding boxes and value 0 outside them (Fig. 8 Bottom). We apply Gaussian blurring to

4We follow the convention for coordinate system in PIL.
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Gaussian blurring
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Figure 8: The method for face blurring. It avoids sharp boundaries between blurred and unblurred
regions. I: the original image; M : the mask of enlarged face bounding boxes; Inew: the final
face-blurred image.

both M and I:

Mblurred = Gaussian

(
M,

dmax

10

)
(3)

Iblurred = Gaussian

(
I,

dmax

10

)
, (4)

where dmax is the maximum diagonal length across all bounding boxes on image I . Here dmax

10
serves as the radius parameter of Gaussian blurring; it depends on dmax so that the largest bounding
box can be sufficiently blurred.

Finally, we use Mblurred as the mask to composite I and Iblurred:

Inew = Mblurred · Iblurred + (1−Mblurred) · I. (5)

Inew is the final face-blurred image. Due to the use of Mblurred instead of M , we avoid sharp
boundaries in Inew.

C ORIGINAL IMAGES FOR TRAINING AND OBFUSCATED IMAGES FOR
EVALUATION

We use obfuscated images to evaluate PyTorch models (Paszke et al., 2019)5 trained on original im-
ages. We experiment with 5 different methods for face obfuscation: (1) blurring; (2) overlaying with
the average color in the ILSVRC training data: a gray shade with RGB value (0.485, 0.456, 0.406);
(3–5) overlaying with red/green/blue patches.

Results in top-5 accuracy are in Table 7. Not surprisingly, face obfuscation lowers the accuracy,
which is due to not only the loss of information but also the mismatch between data distributions in
training and evaluation. Nevertheless, all obfuscation methods lead to only a small accuracy drop
(0.7%–1.5% on average), and blurring leads to the smallest drop. The reason could be that blurring
does not conceal all information in a bounding box compared to overlaying.

5https://pytorch.org/docs/stable/torchvision/models.html
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Table 7: Top-5 accuracies of models trained on original images but evaluated on images obfuscated
using different methods. Original: original images for validation; Mean: validation images overlaid
with the average color in the ILSVRC training data; Red/Green/Blue: images overlaid with different
colors; Blurred: face-blurred images; ∆b: Original minus blurred.

Model Original Red Green Blue Mean Blurred ∆b

AlexNet (Krizhevsky et al., 2017) 79.1 76.7 77.1 76.7 77.8 78.2 0.8
GoogLeNet (Szegedy et al., 2015) 89.5 87.9 88.2 87.9 88.3 88.7 0.9
Inception v3 (Szegedy et al., 2016) 88.7 86.7 87.0 86.6 87.2 87.7 0.9
SqueezeNet (Iandola et al., 2016) 80.6 78.6 79.0 78.5 79.4 79.7 0.9
ShuffleNet (Zhang et al., 2018) 88.3 86.6 86.8 86.6 87.0 87.4 1.0
VGG11 (Simonyan & Zisserman, 2015) 88.6 87.1 87.4 87.0 87.6 87.8 0.8
VGG13 89.3 87.9 88.1 87.9 88.2 88.5 0.8
VGG16 90.4 89.1 89.1 88.9 89.3 89.7 0.7
VGG19 90.9 89.4 89.5 89.2 89.7 90.1 0.8
MobileNet (Howard et al., 2017) 90.3 88.9 89.1 88.9 89.2 89.5 0.8
MNASNet (Tan et al., 2019) 91.5 90.0 90.2 90.2 90.4 90.8 0.7
DenseNet121 (Huang et al., 2017) 92.0 90.7 90.8 90.7 91.0 91.3 0.7
DenseNet161 93.6 92.5 92.5 92.3 92.8 93.0 0.6
DenseNet169 92.8 91.6 91.7 91.6 91.9 92.2 0.6
DenseNet201 93.4 92.2 92.3 92.0 92.3 92.7 0.7
ResNet18 (He et al., 2016) 89.1 87.5 87.6 87.5 87.8 88.3 0.8
ResNet34 91.4 89.8 90.0 89.8 90.2 90.7 0.8
ResNet50 92.9 91.7 91.8 91.5 91.8 92.2 0.7
ResNet101 93.6 92.3 92.4 92.3 92.5 92.9 0.7
ResNet152 94.1 92.9 93.0 92.9 93.1 93.4 0.6
ResNeXt50 (Xie et al., 2017) 93.7 92.5 92.6 92.4 92.8 93.0 0.7
ResNeXt101 94.5 93.5 93.5 93.3 93.5 93.9 0.6
Wide ResNet50 (Zagoruyko & Komodakis, 2016) 94.1 92.9 93.0 92.9 93.1 93.4 0.7
Wide ResNet101 94.3 93.2 93.3 93.1 93.4 93.7 0.6

Average 90.7 89.3 89.4 89.2 89.6 89.9 0.7

D OBFUSCATED IMAGES FOR TRAINING AND ORIGINAL IMAGES FOR
EVALUATION

Vice versa, we also experiment with training on blurred images while evaluating on original images.
This setting is practically relevant because models used in real-world products may be trained on
privacy-preserved data but deployed in the wild without any obfuscation. Results are shown in
Table 8. Similarly, training on blurred images lowers the accuracy by only a small amount (0.25%–
1.04% in top-5 accuracy, with an average of 0.67%).

E DETAILS OF TRANSFER LEARNING EXPERIMENTS

Image classification on CIFAR-10, SUN, and CelebA. Object recognition on CIFAR-
10 (Krizhevsky et al., 2009), scene recognition on SUN (Xiao et al., 2010), and face attribute clas-
sification on CelebA (Liu et al., 2015b) are all image classification tasks. For any model, we simply
replace the output layer and finetune for 90 epochs. Hyperparameters are almost identical to those
in Sec. 4, except that the learning rate is tuned individually for each model on validation data. Note
that face attribute classification on CelebA is a multi-label classification task, so we apply binary
cross-entropy loss to each label independently.

Object detection on PASCAL VOC. We adopt a FasterRCNN (Ren et al., 2015) object detector
with a ResNet50 backbone pretrained on original or face-obfuscated ILSVRC. The detector is fine-
tuned for 10 epochs on the trainval set of PASCAL VOC 2007 and 2012 (Everingham et al., 2010).
It is then evaluated on the test set of 2007.

The system is implemented in MMDetection (Chen et al., 2019a). We finetune using SGD with a
momentum of 0.9, a weight decay of 10−4, a batch size of 2, and a learning rate of 1.25 × 10−3.
The learning rate decreases by a factor of 10 in the last epoch.
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Table 8: Validation accuracies on original ILSVRC images of models trained on original/blurred
images. Training on blurred images lead to a small but consistent accuracy drop.

Model Top-1 accuracy (%) Top-5 accuracy (%)

Original training Blurred training ∆ Original training Blurred training ∆

AlexNet 56.0 ± 0.3 55.3 ± 0.0 0.7 78.8 ± 0.1 78.0 ± 0.1 0.9
SqueezeNet 56.0 ± 0.2 54.9 ± 0.1 1.1 78.6 ± 0.2 77.6 ± 0.1 1.0
ShuffleNet 64.7 ± 0.2 63.7 ± 0.0 1.0 85.9 ± 0.0 85.1 ± 0.0 0.9
VGG11 68.9 ± 0.0 67.9 ± 0.2 1.0 88.7 ± 0.0 87.9 ± 0.1 0.8
VGG13 69.9 ± 0.1 69.0 ± 0.2 1.0 89.3 ± 0.1 88.6 ± 0.1 0.7
VGG16 71.7 ± 0.1 70.6 ± 0.1 1.1 90.5 ± 0.1 89.8 ± 0.1 0.7
VGG19 72.4 ± 0.0 71.2 ± 0.1 1.2 90.9 ± 0.1 90.1 ± 0.0 0.8
MobileNet 65.4 ± 0.2 64.0 ± 0.2 1.4 86.7 ± 0.1 85.6 ± 0.1 1.0
DenseNet121 75.0 ± 0.1 74.1 ± 0.0 0.9 92.4 ± 0.0 91.8 ± 0.0 0.6
DenseNet201 77.0 ± 0.0 76.5 ± 0.1 0.5 93.5 ± 0.0 93.2 ± 0.0 0.3
ResNet18 69.8 ± 0.2 68.6 ± 0.2 1.1 89.2 ± 0.0 88.5 ± 0.1 0.7
ResNet34 73.1 ± 0.1 72.0 ± 0.4 1.1 91.3 ± 0.0 90.6 ± 0.2 0.7
ResNet50 75.5 ± 0.2 74.9 ± 0.1 0.6 92.5 ± 0.0 92.2 ± 0.1 0.3
ResNet101 77.3 ± 0.1 76.6 ± 0.0 0.7 93.6 ± 0.1 93.2 ± 0.0 0.4
ResNet152 77.9 ± 0.1 77.2 ± 0.2 0.7 93.9 ± 0.0 93.6 ± 0.0 0.4

Average 70.0 69.1 0.9 89.1 88.4 0.7
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