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ABSTRACT
Transformer-based large language models are memory hungry and incur significant inference latencies even
on cutting edge AI-accelerators, such as GPUs. Specifically, the time and memory complexity of the attention
operation is quadratic in terms of the total context length, i.e., prompt and output tokens.

To that end, we propose LeanAttention, a scalable, hardware-efficient, “exact” attention acceleration mechanism
for the decode-phase of transformer-based models. LeanAttention enables scaling the attention mechanism for the
challenging case of long context lengths by re-designing the attention execution flow for the decode-phase. As a
result, we achieve an average of 1.73x speedup in attention execution compared to FlashDecoding, with up to
2.18x speedup for 256k context length.

1 INTRODUCTION

Transformer-based (Vaswani et al., 2017) language mod-
els (Achiam et al., 2023; Touvron et al., 2023; Zhang et al.,
2022; Li et al., 2023; Chowdhery et al., 2023) have revolu-
tionized the field of natural language processing (NLP) and
found applications across diverse domains (Spataro & Inc.;
Inc.). These powerful models, fueled by massive amounts
of data and sophisticated architectures, have become indis-
pensable tools for tasks such as machine translation (Kenton
& Toutanova, 2019), question answering (OpenAI), text
generation (OpenAI), and sentiment analysis.

The core of the transformer architecture is the powerful
component of self-attention. However, execution of the
self-attention mechanism is slow and suffers from a large
memory footprint, especially when dealing with long con-
texts. A standard implementation of self-attention has
quadratic time and memory complexity with respect to to-
tal sequence length, which leads to scalability challenges
as model sizes (Brown et al., 2020) and supported context
lengths increase (Anthropic; Zhang et al., 2024; Liu et al.,
2023). Despite these scalability challenges, we see a trend
of state-of-the-art models supporting greater and greater
context lengths, with some production models supporting
contexts as long as hundreds of thousands of tokens. Support
for long contexts can improve a model’s utility by enabling
an increasingly rich context, which is particularly beneficial
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in a range of applications (e.g. RAG involving numerous
long documents) that improve relevance, coherence, and
user experience.

To mitigate LLM scalability challenges, mechanisms like
FlashAttention (Dao et al., 2022) and FlashAttention-
2/3 (Dao, 2023; Shah et al., 2024) have been developed.
FlashAttention brings IO-awareness to attention computa-
tion by reducing slow reads and writes to and from the
GPU’s global memory (Ivanov et al., 2021). Instead, it com-
putes attention in the faster shared memory using a tiling
strategy. It allows for parallelization over batch size and
number of heads. FlashAttention-2 builds on FlashAtten-
tion to further optimize attention computation by enabling
parallelization over input sequence length (or query length).

While these optimizations provide significant improvements,
these mechanisms only give performance benefits for a sub-
set of problem sizes (i.e. query length, context length, batch
size, and number of heads). Their utilization of underlying
hardware resources is mostly optimized for problem sizes
encountered in the prefill-phase of transformer-based mod-
els, and often results in critically low hardware utilization for
problem sizes found in the decode-phase (see Figure 1). By
overlooking the distinct behavior of attention during the de-
code phase versus the prefill phase, these mechanisms miss
out on potential performance gains that could be achieved
by efficiently exploiting the parallelization capabilities of
the underlying hardware.

In decoder-only transformer models, the inference pro-
cess for a single request involves multiple forward passes
through the model where output tokens are generated se-
quentially (Kim et al., 2023). This inference procedure
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inherently comprises of two distinct computational phases
due to the practice of reusing (caching) the key-value ten-
sors of the previously computed tokens (Pope et al., 2023).
The first phase is the prefill-phase (also known as prompt-
computation phase) where attention is computed of the
entire input prompt against itself to generate the first out-
put token. It’s followed by the decode-phase, also known
as the token-generation phase, which executes in an auto-
regressive manner (Vaswani et al., 2017). The current token
computes attention against itself and the entire cached con-
text (kv-cache) of previous tokens in the sequence to produce
the next token. With the push towards longer contexts, this
cached context length can get extremely long, exceeding
more than hundreds of thousands of tokens in length (Li
et al., 2024; Zhang et al., 2024; Fu et al., 2024; Liu et al.,
2023). Despite state-of-the-art batching techniques (Yu
et al., 2022b) and attention partitioning mechanisms (Dao
et al., 2022; Dao, 2023; Dao et al.; Ye et al., 2024), the lack
of a smart parallelized execution of attention along this long
context makes the decode-phase slow, bound by memory
bandwidth (Williams et al., 2009) and capacity (Kim et al.,
2023).

Efficient parallelization of attention over the context di-
mension is highly necessary. Although mechanisms like
FlashDecoding (Dao et al.) and FlashInfer (Ye et al., 2024)
enable parallelization over context length, they do it via the
fixed-split partitioning strategy which provides the hardware
with imbalanced loads and as a consequence suffers from
hardware resource under-utilization that slows down atten-
tion computation. Further, attention optimizations (Agrawal
et al., 2024) are increasingly relying on batching requests
of unequal context lengths to improve overall throughput,
but suffer from similar inefficiencies due of the partitioning
strategies adopted by FlashAttention and FlashDecoding.

To address these limitations, we introduce LeanAttention,
a generalized exact-attention mechanism that enables effi-
cient parallelization across all problem size dimensions and
provides the hardware with equalized loads by virtue of its
streaming nature. It ensures perfect quantization efficiency,
i.e., 100% GPU occupancy for all problem sizes, delivers
a runtime speedup during attention for long contexts, and
scales efficiently in multi-GPU scenarios with tensor paral-
lelism.

Overall, our contributions are as follows:

• Identify the limitations of state-of-the-art attention exe-
cution optimizations on GPUs during the decode-phase
of transformer-based models. (subsection 3.2)

• Identify the associative nature of the softmax re-
scaling operator that enables it to function as a reduc-
tive operator.

• Leverage this crucial associativity property to employ
a stream-K style (Osama et al., 2023) partitioning in

Figure 1. Attention execution schedule of FlashAttention-2 (Dao,
2023), FlashDecoding (Dao et al.) (fixed-split), and LeanAttention
across a hypothetical 5 SM GPU for 2 heads. LeanAttention splits
the context into optimal LeanTiles (shown with 5 tiles per head).

LeanAttention that always provides equal compute
loads to every compute unit in the hardware system (as
shown in Figure 1) for any problem size, thus giving
near 100% hardware occupancy and delivering speedup
irrespective of problem size and hardware architecture
(subsection 4.3).

• Expatiate LeanAttention’s versatility and generalizabil-
ity, where FlashAttention-2 and FlashDecoding can be
recovered as special cases of it. (subsection 4.3)

LeanAttention results in an average of 1.73x latency
speedup over FlashDecoding for the decode phase of
transformer-based models and up to 2.18x speedup for 256k
context length, while maintaining a near 100% GPU occu-
pancy irrespective of problem size.

2 BACKGROUND

In this section, we provide the required background on Stan-
dard Attention (Vaswani et al., 2017) and FlashAttention-2
(Dao, 2023).
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2.1 Standard Attention

For a given input tensor with dimensions of batch size B,
query length Nq, key/value sequence length (also known
as context length) Nk, and hidden dimension D, multi-
head attention typically splits attention computation into
h number of heads along the hidden dimension, with each
head responsible for computing attention independently for
a head dimension of size d = D/h.

The query and context lengths may not always be
equal (Pope et al., 2023). For instance, the prefill-phase
of generative decoder-only transformers such as GPT-
4 (Achiam et al., 2023) or Phi-2 (Li et al., 2023) has se-
quence lengths Nq = Nk = N , but in their decode-phase
the context length increments by 1 after every autoregres-
sive step of decode generation, while the query length (for
a given batch instance) is the singular token that was gen-
erated in the previous n-th time step, i.e., Nq = 1 and
Nk = N + n.

The query matrix Q ∈ RNq×d and key K and value V ma-
trices ∈ RNk×d are inputs to the following equation which
is computed independently by different batch instances
and heads. The output matrix O ∈ RNq×d is obtained
in essentially three steps as shown in Equation 1. Table 1
summarises the three operations involved in self-attention
along with their corresponding dimensions in both prefill
and decode-phase at time step n = 0.

S = QKT , P = softmax(
S√
d
), O = PV (1)

Standard attention implementation involves computing the
large intermediate matrices, namely the attention score ma-
trix S ∈ RNq×Nk and the softmax matrix P ∈ RNq×Nk

and storing them in global memory. These intermediate
matrices need to be stored in the global memory because
the computation of the softmax matrix P requires a priori
knowledge of all tokens in a given row. Specifically, the
row-wise maximum and exponential sum of tokens in a row
need to be computed beforehand to calculate the softmax-ed
value of each element in the row.

The computational complexity of standard attention is on
the order of O(NqNkd), with the two matrix multiplications
(MatMul’s) contributing to the majority of it. Due to slow
global memory access speeds, storing and retrieving these
intermediate matrices (Ivanov et al., 2021) results in long
latencies and incurs a large memory footprint, both in the
order of O(NqNk).

2.2 Flash Attention-2

To mitigate the memory footprint and access over-
heads (Ivanov et al., 2021) associated with storing the S and

Operation Type Operation Dimension
Prefill Decode

query × key MatMul N × d×N 1× d×N
softmax EleWise N ×N 1×N

attn score× value MatMul N ×N × d 1×N × d

Table 1. Operations in self-attention. Matrix multiplications are
described in the M ×N ×K format.

P matrices, FlashAttention employs kernel fusion of the
three operations shown in Equation 1: query × key Mat-
Mul, softmax and attn score× value MatMul, effectively
avoiding intermediate global memory reads and writes. To
this end, it employs the tiling strategy.

By utilizing the online softmax algorithm (Milakov &
Gimelshein, 2018), FlashAttention only requires a single
pass over an entire row of tokens to compute their softmax,
bypassing the issue of a priori knowledge in standard atten-
tion. This helps leverage the tiling strategy which partitions
the attention output matrix O into independent output tiles
(i.e. the computation of an output tile is independent of the
computation of other output tiles). A grid of cooperative
thread arrays (CTAs)1 is launched, each computing a given
output tile of the output matrix O. The input matrices Q, K
and V are partitioned into smaller tiles too. While comput-
ing the output tile corresponding to a given query tile, the
necessary key/value tiles are brought into shared memory in
a sequential manner and the output tile is iteratively updated
and corrected by the right scaling factors. This on-chip
updation avoids the need of storing the intermediate S and
P matrices in global memory. In addition to parallelizing
computation over batches and heads like FlashAttention,
FlashAttention-2 further parallelizes over the query length
dimension, as the attention computation of output tiles along
this length is also independent. This results in a 2x speedup
over FlashAttention.

Thus, the tiling strategy ensures that the extra global mem-
ory space required by FlashAttention-2 is O(Nq) (needed to
store the scaling factors for the backward pass), an impres-
sive improvement in memory footprint over the O(Nq×Nk)
in traditional attention. The additional parallelism over
query length helps it reach 50-70% of peak theoretical
FLOPS/s and increases hardware occupancy in the prefill
phase. FlashAttention-2 was augmented to FlashAttention-
3 (Shah et al., 2024), which is specifically fine-tuned for
execution on Hopper GPU’s (Luo et al., 2024) to exploit
its low-precision and asynchronous hardware capabilities.
Its optimizations are orthogonal to this work. Other related
techniques such as Ring Attention (Liu et al., 2023) and
Striped Attention (Brandon et al., 2023), optimize inter-

1Blocks of GPU threads are coscheduled in CTAs, which virtu-
alize the hardware’s streaming multiprocessor cores (SMs)
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GPU occupancy and are also orthogonal to the technique
presented in this work.

3 CHALLENGES IN THE DECODE PHASE

Prior to outlining our methodology for LeanAttention, to set
the stage for our approach, we delve into some of the chal-
lenges encountered in the decode phase of LLM inference,
as well as the limitations of FlashAttention-2 optimizations
in the decode phase.

3.1 Time Spent in Decode Phase

As we’ve discussed, modern generative LLM inference com-
prises of two computationally distinct phases: the prefill
phase followed by the decode phase. In the prefill phase,
self-attention is computed for the entire input prompt. The
query length Nq in this phase is the same as the context
length Nk, i.e., (Nq = Nk = N ). Whereas, the decode
phase begins generating each subsequent output token in
auto-regressive iterations. For each decode iteration, the
query length is a single token Nq = 1, and the context
length Nk could be very long, in the order of more than
thousands of tokens depending on the auto-regressive step
and input query length.

Figure 2 depicts the processing time breakdown of prefill
and decode, with their further breakdown into time spent in
the attention layer and the rest of the layers in a transformer
block (i.e., Q/K/V activation layers, feed-forward linear
layers etc).

While the large matrix multiplications found in the linear
layers of the prefill phase are heavily optimized (the entire
prefill phase taking up only 10% of the timeshare even for
a high prompt:output ratio), the decode phase presents a
different challenge. During the decode phase, where the
query length is only 1 token long, linear layers perform
matrix multiplications on very narrow matrices which do
not provide enough work to occupy the GPU. MatMul par-
titioning strategies like Stream-K (Osama et al., 2023) can
be leveraged to efficiently partition these narrow matrices
and accelerate their computation, preventing the linear lay-
ers from becoming a bottleneck during decode. However,
the attention layer, with the existing attention partitioning
techniques (Dao et al., 2022; Dao, 2023; Dao et al.; Ye et al.,
2024) experiences longer latencies along with significant
under-utilization of hardware resources during this phase.
This makes leveraging efficient parallelism along context
length (Nk) during attention a crucial aspect in increasing
SM occupancy and reducing decode phase processing time.

As the number of output tokens generated increases, the con-
text length becomes longer and thus the proportion of time
spent in decode relative to prefill becomes larger. Figure 2
depicts this imbalance in processing time spent in prefill

Figure 2. Timeshare of decode attention compared to other stages
for different prompt sizes with 8:1 token ratio for Phi-3 Medium
model with single batch size.

Figure 3. Utilization of various resources on a single Nvidia-A100-
80GB GPU in LeanAttention compared to FlashDecoding at
Heads=56 and BS=1 measured using Nsight Compute.

and decode during attention. Even with a prompt input to
output token ratio of 8:1, more than 50% of the processing
time is consumed by the decode phase, taking up to nearly
80% of the timeshare for longer prompt sizes. Additionally,
other layers of the decode phase such as QKV and FFN
layers can be optimized using state-of-the-art MatMul par-
titioning techniques like Stream-K. These operations are
also typically quantized to lower data formats such as INT8
to further enhance their efficiency. As a result, the decode
attention operation can constitute up to 50-60% of the total
duration of inference as shown.

3.2 Limitations of FlashAttention-2 for Decode

In both the prefill and decode phase, FlashAttention-2 tra-
verses the context length dimension (Nk) sequentially, i.e.,
it updates the attention output for a given query tile by bring-
ing in the key/value tiles into shared memory in a sequential
manner. While FlashAttention-2 does parallelize over query
length (Nq) to increase SM occupancy, this additional mode
of parallelism has limited parallelization capacity in the
decode phase where the query is a single token (Nq = 1).
Not parallelizing attention computation along context length
makes FlashAttention-2 (Dao, 2023) suffer from extremely
low SM occupancy during decode as depicted in Figure 1.
This means that at any given point in time, the number of
CTAs in flight on the GPU is directly proportional to the
number of query tiles, and, therefore, to the query length-
regardless of the context length.

More explicitly, for a single batch instance, the maximum
number of heads for state-of-the-art LLMs barely occupy the
compute resources of modern hardware architecture systems
during the decode phase where query length Nq = 1. For ex-
ample, for a model with 128 heads, its decode phase would
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suffer from severe under-utilization of an 8 GPU A100 sys-
tem that has 864 compute cores at its disposal. Unlike the
prefill phase, decode phase can offer parallelization only
across batch size and number of heads for FlashAttention-2.

Processor occupancy in FlashAttention-2 could be improved
by increasing the batch size or number of heads, the other
two modes of parallelization it addresses. Intuitively, having
larger batch sizes in the decode phase could provide enough
work to every compute resource to fully occupy the GPU,
but this introduces other challenges and limitations. Due to
increasingly large model sizes, the need to independently
cache KV context for every batch instance would likely
exceed the memory capacity of the hardware system. More-
over, scheduling overheads (Yu et al., 2022a) for efficiently
batching queries along with the challenges of batching low
SLA queries would increase inference latency and challenge
utilization.

Without having to resort to larger batch sizes as the sole
solution to resolving the GPU occupancy issue (which is
limited by available memory capacity), the large context
length in the decode phase would benefit from partitioning
its workload across different SMs efficiently. This motivates
the need for smarter attention decomposition techniques
which can efficiently distribute the workload across the
cores without resorting to larger batch sizes.

3.3 Limitations of Related Work

FlashDecoding, which is FlashAttention-2 with fixed-split
partitioning, has recently been proposed (Dao et al.; Hong
et al., 2024; git), where attention computation is also parti-
tioned along context length Nk. FlashInfer (Ye et al., 2024)
implements an identical fixed-split partitioning of attention
for single-requests in the decode phase. For the case of
batched-requests in decode, FlashInfer implements an op-
timized version of PagedAttention for efficient KV cache
storing and fetching.

Fixed-split is a general matrix multiplication decomposition
scheme that we briefly describe here. Given a MatMul com-
putation problem with matrices A (M ×K) and B (N ×K)
to obtain a matrix C (M × N) where C = ABT , to op-
timize concurrent computation, the fixed-split mechanism
partitions the K-mode of the A and B matrices into s batches
based on a fixed splitting factor s provided dynamically at
run time. This launches s times the CTAs as launched with-
out fixed-split, which are computing partial products of the
output tiles of the C matrix concurrently. Fixed-split uti-
lizes the associativity of addition in the inner product of a
MatMul to later reduce or “fix-up” the partially computed
C matrices and produce the final C matrix. The concur-
rency from fixed-split reduces latency and simultaneously
increases hardware occupancy at the cost of an additional
reduction at the end.

FlashDecoding++ (Hong et al., 2024) achieves speedup over
FlashDecoding by approximating the softmax operation to
remove the sequential dependencies it creates in attention.
Notably, this approach compromises on accuracy and its
implementation is limited to certain model architectures.
FlashDecoding++, as well as other techniques that focus
on softmax approximations to achieve speedup (like ConS-
max (Liu et al., 2024) and Softermax (Stevens et al., 2021)),
can be seamlessly integrated into LeanAttention.

Despite these improvements, fixed-split used in these mech-
anisms (Dao et al.; Ye et al., 2024; Hong et al., 2024) is a
non-optimal load balancing strategy. While this method of
partitioning would improve speedup and occupy the GPU
well for some attention workloads, it’s an inefficient strategy
to adopt for the entire problem space because often results
in partially full waves of attention computation that suffer
from quantization inefficiencies, i.e. low GPU occupancy
due to imbalanced loads, and loses out on performance gains
it could get from the idle resources otherwise (depicted in
Figure 1). While increasing the number of splits could help
occupy the GPU better, it would result in reduction over-
heads that scale with the split factor and would allocate
minimal work to each SM making it an inefficient use of
register space.

While fixed-split partitioning along the context length in
FlashDecoding does occupy a larger number of compute
resources on the GPU compared to vanilla FlashAttention-
2, its GPU occupancy varies greatly with problem size,
split factor and the number of compute units in the hard-
ware system as shown in Figure 3, making it unlikely for
FlashDecoding and its variants to reach perfect quantization
efficiency for all problem sizes and hardware systems. More-
over, the problem of quantization inefficiencies with these
mechanisms would be particularly exacerbated in the com-
mon cases of processing a batch of requests of heterogenous
context lengths (Agrawal et al., 2024). In contrast, LeanAt-
tention, with its stream-K-style decomposition (discussed
in section 4), will always provide well-balanced loads to
every compute unit in the hardware system to reach near
100% GPU occupancy for all problem sizes and hardware
architectures, making it perfectly adept at handling batched
requests of unequally sized contexts.

4 LEANATTENTION

LeanAttention is an optimized scalable attention execution
mechanism. It provides extensive parallelism across all
modes of the attention tensor, with well-balanced compu-
tation workloads to each CTA ensuring close to 100% SM
occupancy while delivering a runtime speedup in attention
execution.

First, we identify that the associative property of softmax re-
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Figure 4. Illustrative diagram showing LeanAttention’s partition-
ing strategy with two differently sized work volumes of a head
assigned to different CTAs. The un-scaled outputs are indepen-
dently computed and re-scaled later in a reduction operation. Note
that this can be generalized to any arbitrary-sized work volume
split.

scaling enables us to treat it as a reduction operator along the
context length dimension and allows us to split the workload
(i.e. KV tensors) of a single head into unequally sized blocks
if and when needed (described in subsection 4.1), while
maintaining the lossless exactness of attention.

Second, we identify the smallest optimal granularity of de-
composition in attention computation, termed as LeanTile
(subsection 4.2), which can be linearly mapped on the hard-
ware resources in a flexible style akin to stream-k decom-
position of matrix multiplications subsection 4.3). Multiple
such LeanTiles belonging to either single or multiple atten-
tion outputs will constitute a workload assigned to a CTA.

4.1 Softmax Re-scaling as Reduction

LeanAttention’s decomposition results in splits of work for
a given SM that are not always equal in size, i.e., the K/V
tensors of a given query tile are not dispatched in same-sized
blocks to different SMs (unlike FlashDecoding (Dao et al.),
FlashInfer (Ye et al., 2024)).

To reduce these partial attention outputs that result from dif-
ferently sized blocks, we use a softmax re-scaling operator.
This requires us to identify softmax re-scaling’s associativity
property that allows it to correctly reduce blocks of unequal
sizes, i.e., application of softmax re-scaling as a reduction
operator will give the same exact attention output with no
loss in accuracy, regardless of the way the work might be
split, whether in same-sized blocks or arbitrary differently
sized blocks.

Without loss of generality, we describe this process of re-

duction to obtain one row vector of the attention score ma-
trix S, of the form

[
S(x) S(y)

]
consisting of some un-

equal length vectors S(x),S(y) where S(x) ∈ R1×B(x)
c and

S(y) ∈ R1×B(y)
c , where 1 is the query length and B

(x)
c and

B
(y)
c are the unequal context lengths. The vectors S(x) and

S(y) were computed from Q× (K(x))T and Q× (K(y))T

(illustrated in Figure 4). Note that to generalize this proce-
dure for blocks of any size, the context length of K(x) and
K(y) are B

(x)
c and B

(y)
c and are not necessarily equal.

The attention computation is split into two key parts. The
first part involves calculation of an “un-scaled” version of
O(i) (where i is either x or y) along with statistics m(i) and
ℓ(i):

S(i) = Q(K(i))T ∈ R1×B(i)
c

m(i) = rowmax(S(i)) ∈ R1×1

ℓ(i) = rowsum(eS
(i)−m(i)

) ∈ R1×1

A(i) = exp(S(i) −m(i)) ∈ R1×B(i)
c

Õ(i) = A(i)V(i) ∈ R1×d

Softmax Re-scaling Operation. The second part involves
re-scaling the “un-scaled” outputs O(i) using the previously
computed statistics m(i) and ℓ(i).
We define the softmax re-scaling operation f(x, y) for two
intermediate outputs O(x) and O(y) as follows:

m(x,y) = max(m(x),m(y))

ℓ(x,y) = em
(x)−m(x,y)

ℓ(x) + em
(y)−m(x,y)

ℓ(y)

f(x, y) = diag(em
(x)−m(x,y)

)Õ(x) + diag(em
(y)−m(x,y)

)Õ(y)

f(x, y) = Õ(x,y)

O(x,y) = diag(ℓ(x,y))−1f(x, y)

Proof of Associativity The associative nature of softmax
re-scaling f(x, y) allows us to reduce intermediate outputs
produced from key/value vectors of different lengths in
LeanAttention. We shall briefly prove that f(f(x, y), z) =
f(x, f(y, z)) = f(x, y, z), where: f(x, y) = Õ(x,y),
f(y, z) = Õ(y,z) and f(x, y, z) = Õ(x,y,z).

Proving that f(f(x, y), z) = f(x, y, z):
f(x, y) = Õ(x,y)

f(f(x, y), z) = diag(em
(x,y)−m((x,y),z)

)Õ(x,y)

+ diag(em
(z)−m((x,y),z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)Õ(x,y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)

× (diag(em
(x)−m(x,y)

)Õ(x)

+ diag(em
(y)−m(x,y)

)Õ(y))

+ diag(em
(z)−m(x,y,z)

)Õ(z)
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= diag(em
(x)−m(x,y,z)

)Õ(x)

+ diag(em
(y)−m(x,y,z)

)Õ(y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= Õ(x,y,z) = f(x, y, z)

Therefore, f(f(x, y), z) = f(x, y, z) and similarly
ℓ((x,y),z) = ℓ(x,y,z). For brevity, we omit the proof of
f(x, f(y, z)) = f(x, y, z), but it can be deduced in a simi-
lar manner.

This associativity of softmax re-scaling is leveraged in
LeanAttention to concurrently calculate the “partial” out-
puts produced from unequally sized KV blocks and then
“reduce” them to obtain exact attention.

4.2 LeanTile

To enable us to efficiently distribute the work of computing
the attention output tiles, we define the smallest granularity
of a KV block as a LeanTile. A single LeanTile iteration
computes “local attention” across a subset of tokens along
the Nk dimension to generate an un-scaled attention output
as shown in the grey box in Figure 5. Algorithm 2 (in
Appendix B) depicts the detailed subroutine for computing
the partial attention outputs for a sequence of LeanTiles.
This LeanTile() subroutine is called when computing each
partial output tile in a CTA launched in LeanAttention, as
will be discussed later (Algorithm 1).

To efficiently split attention into smaller tiles, it is necessary
to identify the smallest tile size capable of achieving the
highest compute efficiency. LeanTile size depends on the
computational power and memory access costs and, thus,
are fixed for a particular hardware architecture. After an
extensive empirical sweep through various sizes for a Lean-
Tile, we found a tile size granularity of 256 and 128 tokens
along the Nk dimension to be the most optimal for a head
size of 64 and 128 respectively for FP16→32 problems
while experimenting on an A100 GPU (Choquette et al.,
2021; Jia & Van Sandt, 2021). This optimal size can simi-
larly be identified for other head dimensions and hardware
architectures.

4.3 Decomposition and Mapping of LeanTiles

Finally, LeanAttention uses a stream-K (Osama et al., 2023)
style decomposition and mapping of these LeanTiles to
deliver efficient execution of attention.

Stream-K Decomposition. Stream-K is a parallel decompo-
sition technique for dense matrix-matrix multiplication on
GPUs. Stream-K partitioning addresses the inefficiencies in
fixed-split by dividing the total workload (MAC operations)

equally among all CTAs using a pre-determined optimal tile
size. It does this by rolling out the inner mode iterations of
all output tiles and appending them to form a linear map-
ping. With the given grid size, it divides this total work into
buckets demarcated appropriately such that each CTA has
equal amount of MAC operations to perform. The grid size
is fixed for a given tile size as LeanAttention provides equal
work to all SMs. For example, for a tile of 256 tokens, two
CTAs can be co-executed in a single wave with the available
shared memory of A100 GPU. This would result in a total
grid size of 108(NumSMs) × 2 = 216. Number of tiles
to be computed by each CTA can be calculated as follows:

TilesPerCTA =
BatchSize × NumHeads × ContextLen

TileSize × NumSMs × MaxCTAsPerSM
(2)

LeanAttention extends Stream-K style of linear mapping of
iterations by rolling out LeanTile iterations in a similar fash-
ion, assigning equal number of LeanTiles to every CTA as
shown in Figure 1. Each CTA’s range of LeanTile iterations
is mapped contiguously into a batch size →heads →context
length linearization, crossing the head and query boundary
as it may. Should a given CTA’s starting and/or ending
LeanTile not coincide with the head’s boundary, it must con-
solidate its partial output with those of the other CTA(s) also
covering that head’s output tile. In our implementation of
LeanAttention, each attention output tile is consolidated by
the CTA that performed that output’s first LeanTile (called
as a host block). Before it can do so, it must accumulate
the un-scaled output tensors from the other CTA(s) (shown
in Figure 1) in temporary global storage. The negligible
synchronization overhead of the original stream-K imple-
mentation also extends to LeanAttention, thus leading to
near 100% occupancy of SMs (not tensor core utilization)
during the execution of a single CTA. Note that the tem-
porary global storage overhead is minimal in the case of
decode-phase where the output tensors are of dimensions
1×head dim, where head dim is typically in the range of
64 to 256.

Since we distribute the overall attention problem into opti-
mal LeanTiles, we achieve a near 100% quantization effi-
ciency irrespective of problem size (context length). This
cohesive implementation of parallel computation and re-
duction happens in a single kernel launch in LeanAtten-
tion, avoiding the reduction kernel launch overheads that
FlashDecoding suffers from. A difference in Stream-K de-
composition in LeanAttention is in the reduction or “fix-up”
phase. While Stream-K for MatMuls has addition as its
reductive operator, LeanAttention has softmax re-scaling as
its reductive operator.

Naturally, some CTAs will be computing LeanTile iterations
of more than one independent output tile. In such cases,
Stream-K’s equalized partitioning makes LeanAttention
more adept for problem sizes which would not occupy
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Figure 5. Control and dataflow of a single CTA in LeanAttention utilizing various hardware resources. The tensors are loaded to shared
memory in a tiled manner. At the end of a head’s computation, a reduction is performed if it is a host CTA, else the partial un-scaled
results are written to memory before moving on to the next head.

the hardware well if executed using its counterparts,
FlashAttention-2 and FlashDecoding. To enable such a
smooth transition between tiles, the input tensor view is also
different in LeanAttention compared to FlashAttention-2.
This requires a constant stride moving between different
heads as we transition from the LeanTile of one head
to another requiring Q/K/V tensors be of the shape
(batch size, heads, query/ctx length, head dim)
compared to FlashAttention-2’s requirement of
(batch size, query/ctx length, heads, head dim).

With this execution design, we must point out that LeanAt-
tention behaves as a versatile attention partitioning mecha-
nism which generalizes to FlashAttention-2 when the num-
ber of output tiles is equal to grid size, and generalizes to
FlashDecoding when grid size is an even multiple of number
of output tiles. Finally, for all other cases (most common)
LeanAttention efficiently distributes the work across the
compute resources available in the system. Thus, LeanAt-
tention will either always perform better or the same as
FlashAttention-2 and FlashDecoding.

Lean Ragged Batching. For the special case of
dealing with unequal context lengths within a batch
of requests, the number of LeanTiles per request be-
comes unique, resulting in a total workload that is
smaller than the non-ragged case. To account for
this difference, ragged KV tensor inputs to LeanAtten-
tion are first prepared with unpadded dimensions of
(NumHeads, TotalContextLength,HeadDim), where
TotalContextLength is the sum of all distinct context
lengths within the batch. The batch dimension is elimi-
nated, and both batch indices and the true context lengths
of requests are tracked through pointers to a cumulative
sequence length array for each input tensor. These point-
ers have size (BatchSize+ 1) each, introducing minimal
memory overhead.

With the total workload of LeanTiles correctly determined,
Lean ragged batching functions identically to the non-
ragged case as shown in Figure 6. The workload is dis-

Figure 6. Illustrative diagram of LeanAttention’s optimal distribu-
tion of work in the ragged batching case. Each SM receives equal
amount of LeanTiles.

tributed evenly across the grid, ensuring each CTA receives
the same number of LeanTiles to process. The range of
LeanTile iterations assigned to each CTA is mapped con-
tiguously in a Heads → TotalContextLength linearization
and partial outputs for each head are consolidated in the
same manner as in the non-ragged case.

4.4 Execution Flow

Algorithm 1 details LeanAttention’s execution. For a fixed
grid size G, CTAs are launched and given equal amount
of LeanTile iterations to work with (Line 7). Each CTA
computes the LeanTile() subroutine for every distinct output
tile that comes under its boundaries (Line 16). Figure 5
shows the execution flow of a single CTA computing partial
and final attention outputs for the assigned heads.

The unique reduction phase of LeanAttention, which is char-
acterized by its softmax re-scaling operator, is performed by
the host CTA block (Lines 24-40). A host CTA (Line 17) is
the CTA responsible for computing the first ever LeanTile
for a given output tile, and it behaves as the reducing CTA
during parallel reduction of partial un-scaled outputs.

All non-host CTAs will share their partials through a store
to global memory and signal their arrival (Lines 20-23). On
the other hand, a host block which is also a non-finishing
block (Lines 24-25), needs to wait for other contributing
peer CTA blocks to signal their completion (Line 28) and
then proceed to carry out the reduction (Lines 29-35).

A CTA that’s computing the attention for a head exclusively
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completes all the LeanTile iterations for its output tile in a
single CTA and can directly store its results from the register
file to global memory (Line 38-39) without any need for
further reduction.

Algorithm 1 Lean Attention
1: shared O[Tm, d]
2: shared m[Tm, 1]
3: shared l[Tm, 1]
4: Number of output tiles: Cm = ⌈Nq/Tm⌉
5: Number of iterations for each output tile: Cn =

⌈Nk/Tn⌉
6: Total number of iterations: I = CmCn

7: Number of iterations per CTA: IG = I/G
8: fork CTAg in G do
9: cta start = g IG and cta end = cta start + IG

10: for iter = cta start to cta end do
11: Index of current output tile: tile idx = iter / Cn

12: tile iter = tile idx ×Cn

13: tile iter end = tile iter + Cn

14: local iter = iter - tile iter
15: local iter end = min(tile iter end, cta end) - tile iter
16: O, m, l = LeanTile(tile idx, local iter, local iter end)
17: host-block if: iter == tile iter
18: finishing-block if: cta end >= tile iter end
19: if !(host-block) then
20: StorePartials(Op[g], O)
21: StorePartials(mp[g], m)
22: StorePartials(lp[g], l)
23: Signal(flags[g])
24: else
25: if !(finishing-block) then
26: last cta = tile iter end / Cn

27: for cta = (g + 1) to last cta do
28: Wait(flags[cta])
29: mcta = LoadPartials(mp[cta])
30: lcta = LoadPartials(lp[cta])
31: Octa = LoadPartials(Op[cta])
32: mnew = max(mcta,m)
33: lnew = emcta−mnew

lcta + em−mnew

l
34: Onew = emcta−mnew

i Octa + em−mnew
i O

35: Update m = mnew
i , l = lnewi

36: end for
37: end if
38: Write O = diag(l)−1O to GMEM.
39: Write L = m+ log(l) to GMEM.
40: end if
41: iter = tile iter end
42: end for
43: join

5 EVALUATION METHODOLOGY

Implementation. We implement LeanAttention using the
CUTE abstractions (CuTe, a;c;b) provided by Nvidia’s CUT-
LASS library (Thakkar et al., 2023). For comparative
measurements we utilize FlashAttention-2’s implementa-
tion of FlashDecoding as it is available on their Github
repository (git)2 and FlashInfer’s implementation from their
Github repository (Ye et al., 2024)3. For the end-to-end
inference results we use Llama, Mistral and Phi-3 models as
available in the HuggingFace Transfomers repository (Wolf
et al., 2019) and modify them to allow execution via LeanAt-
tention wherever necessary. Note that optimizations such
as FlashAttention-3 (Shah et al., 2024) are orthogonal to
this work and targeted specifically for H100s. The core
computation of LeanAttention can adopt FlashAttention-3’s
optimizations for further benefits on Hopper GPUs (Luo
et al., 2024).

System. We benchmark the attention mechanisms on a
Nvidia-A100-80GB-GPU (Choquette et al., 2021) system
with up to 8 GPUs. We measure runtime using a single GPU
as well as 8xGPUs for larger models and context lengths. A
single A100 GPU consists of 108 SMs with an 80GB HBM
global memory. To demonstrate LeanAttention’s versatility
across hardware architectures we benchmark it similarly on
a single Nvidia-H100-SXM-80GB-GPU (Luo et al., 2024)
which has 132 streaming multiprocessors and an 80GB
HBM global memory.

Batching. The evaluations assume the same context length
for all queries in a batch working in tandem with batch-
ing techniques such as Orca (Yu et al., 2022a). However,
LeanAttention supports varied context length execution in-
cluding heterogeneous batching such as prefill queries with
decode.

Attention Mechanisms. In addition to FlashDecoding
(FD) (Dao et al.), we also benchmark FlashInfer (FI) (Ye
et al., 2024) for comparison against LeanAttention (LA).

6 EVALUATION RESULTS

In this section, we evaluate the impact of LeanAttention at
the attention operation-level as well as end-to-end inference
performance-level.

6.1 Benchmarking Attention - Decode-Phase

We benchmark the runtime of just the attention operation
at varying context lengths, number of attention heads, head
dimensions (64: default and 128), and inference batch sizes

2Version 2.5.6
3Version 0.1.6 - Note that we increase the number of heads in

the single batch decoding API to simulate batch size as the batch
API performance is too low
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Figure 7. Speedup of LA over state-of-the-art attention execution mechanisms at different context lengths, batch sizes and attention heads
with head dimension = 64 on a single Nvidia-A100-80GB GPU.

Figure 8. Speedup of LA compared to state-of-the-art Attention
execution mechanisms at varying context lengths, at a fixed batch
size and attention heads with head dimension = 64 on a single
Nvidia-H100-SXM-80GB GPU.

on a single Nvidia A100-80GB GPU and a single Nvidia
H100-SXM-80GB GPU.

Increasing Context Length. Figure 7(a) shows the speedup
of different attention mechanisms for a model with 32 heads
with batch size = 4 on a single A100 GPU. LA delivers
close to 2x speedup compared to FD even at smaller context
lengths, reaching up to 2.18x speedup as the context lengths
grows to 256k tokens. When context lengths exceed 16k,
we observe more than 1.46x speedup over FI. Note that
while FI implements the fixed split mechanism like FD,
it shows better performance over it due to efficient data
movement and optimized tile size selection. Repeating a
similar exercise on an H100 GPU, we observe the speedups
of LA at batch size = 6 and 48 heads as shown in Figure 8.
LA delivers over 2x speedup even at a 4k context length,
reaching upto a maximum of 2.52x speedup at a 64k context
length which more or less plateaus at the context lengths
increase.

Increasing Attention Heads. Figure 7(b) shows the
speedup delivered by LA over FD and FI for models with
an increasing number of heads. LA delivers comparable
speedups to FD and FI at smaller model sizes. With fewer
heads, FD and FI’s fixed-split mechanism can distribute the
workload as evenly as LA. However, as the number of heads
increases, FD/FI resorts to fewer splits per head, resulting
in partially filled waves of attention on the SMs. In contrast,
LA maintains even workload distribution at both small and

large model sizes, delivering more than 2x speedup over FD
when there’s more than 24 heads in the model for a long
256k context at batch size = 4. This shows that LA is able
to scale well for both small and large model sizes.

Effect of Batching. Figure 7(c) shows the performance
improvement of LA at varying batch sizes. As expected, we
observe that LA gives comparable speedup to FD and FI.
This is because both FD and FI are able to employ a higher
number of splits at smaller batch sizes to occupy all the SMs
in the GPU. However, as batch size increases, FD selects
fewer splits per head. For instance, FD doesn’t split at
batch sizes over 4 in Figure 7(c) because the total number of
heads in the batch exceed the number of SMs available in the
system. As a result, it behaves like vanilla FlashAttention-2,
missing out on potential performance gains by leaving some
SMs idle in its final partially full wave. Consequently, LA
achieves more than 1.5x speedup compared to FD through
its stream-K-ed decomposition. A comprehensive analysis
on ragged batching is also detailed in Appendix A.

Overall, we benchmarked the system on more than 1,000
samples of varying batch sizes, context lengths and attention
heads. On an A100 GPU, we observed an average speedup
of 1.73x over FD (Max: 2.18x for 56 heads, batch size 2,
256k context). On an H100 GPU, we recorded an average
speedup of 1.52x over FD (Max: 2.53x for 48 heads, batch
size 6, 64k context).

Multi-GPU Execution. Repeating a similar benchmarking
process on an 8xA100 GPU system, we vary the context
lengths from 1k to 1M, with 256 heads at a batch size of 4
as shown in Figure 9(a). LeanAttention reaches a speedup
of more than 2x even at smaller contexts. This is because
parallelizing only over the batch and heads (total heads
= 256×4 = 1024) does not provide sufficient work for each
SM (total SMs = 8×108 = 864) as 864− (1024−864) =
704 SMs remain idle in the last wave. Furthermore, FD
behaves identically to vanilla FlashAttention-2, opting for
a split factor of 1. In contrast, LeanAttention computes
attention in fully quantized waves for all problem sizes.

To observe this effect in greater detail, we evaluate across
a varying number of heads in Figure 9(b) with a context
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Figure 9. Speedup of LA over state-of-the-art attention execution mechanisms at different context lengths, batch sizes, attention heads
with head dimension = 64 on an 8x Nvidia-A100-80GB system.

Figure 10. Speedup offered by LA for decode attention across
models, batch sizes, context lengths integrated with ONNXRT
(Note that ONNXRT has an older version of FlashDecode)

Figure 11. End-to-End Speedup of LA compared to FD in ON-
NXRT running Phi-3 Medium model at different context lengths,
batch size = 1, prompt size : output tokens = 8 : 1

length of 256k and batch size = 4. We observe comparable
speedups to FD/FI at a smaller number of heads (64, 160).
This is because at these dimensions, fixed-split is able to
produce enough splits to occupy most of the SMs. We can
also clearly see that FD resorts to vanilla execution when
we increase the number of heads from 160 to 512. LA, on
the other hand scales well as we increase the number of
heads, showcasing its hardware-aware scalable execution
algorithm. In Figure 9(c), as we increase the batch size from
1 to 32, we can see that LA starts to outperform FD/FI as
batch size increases.

Effect of Head Dimension. Figure 10 shows the speedup
offered by LA for models with a LLAMA-3, Mistral and
Phi-3-like config with a head dimension of 128. We utilize
a 128-token wide LeanTile for decomposition instead of
256. We observe a similar trend in performance, where LA

delivers a speedup of 3.5x compared to FD at 128k context
length. Even at smaller context lengths of 8k tokens, we
observed an improved performance of 1.34x over FD.

6.2 End-to-End Inference Performance

We measure the end-to-end inference runtime using Phi-3
Medium model (with 40 heads) as shown in Figure 11 at
different prompt sizes with a prompt to output token ratio
of 8:1. This includes the prefill stage latency as well as the
total runtime of decode phase. LeanAttention offers a 1.12x
speedup with Phi-3 Medium as compared to FlashDecod-
ing for first 1k output tokens. However, LA offers higher
speedups as the output tokens increase beyond 16k deliver-
ing an average of 1.73x speedup compared to FD. As we
note, the inference-level runtime improvement delivered
by LA will depend heavily on the number of heads, total
context length, batch size etc.

7 CONCLUSION

The attention mechanism in transformer-based language
models is a slow and memory hungry process. State-of-the-
art optimization kernels (Dao et al.; Ye et al., 2024; Dao,
2023) have cleverly addressed this challenge but fail to adapt
to the computationally distinct phases of inference at long
context lengths. To address this, we propose LeanAttention,
a generalized exact attention execution mechanism that en-
sures lower runtimes and almost 100% hardware occupancy
during attention irrespective of problem size. By leveraging
the associative property of softmax re-scaling, we employ a
“Stream-K”-style partitioning of attention that provides the
hardware with well-balanced loads.

Our measurements indicate that LeanAttention delivers an
average speedup of 1.73x over FlashDecoding, with up to
2.18x speedup for a 256k context size.
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A RAGGED BATCHING IN DECODE.
Ragged Batching in Decode. For the purpose of our evaluations, we quantify the heterogeneity of a ragged batch as the
ratio of average context length to the maximum context length present in the batch. Figure 12 shows the speedup of LA over
FD. We observe that as the heterogeneity of batch increases, LA delivers a higher speedup because of better distribution of
work across SMs.

Figure 12. Speedup offered by LA over FD at different batch sizes with heterogeneous context lengths. Batch context ratio(%) shows the
ratio of average context length over maximum context length
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B LEANTILE ALGORITHM

Algorithm 2 LeanTile() for a sequence of lean tile iterations.
1: function LeanTile(tile idx, iter begin, iter end)
2: shared Oacc[Tm, d]
3: shared Qf [Tm, d]
4: shared Kf [Tn, d]
5: shared Vf [Tn, d]
6: shared m[Tm, 1]
7: shared l[Tm, 1]
8: Initialize Oacc to (0)Tm×d ∈ RTm×d in SMEM.
9: Initialize m to (−∞)Tm×1 and l to (0)Tm×1 ∈ RTm×1 in SMEM.

10: mm = Tm× (tile idx / 1)
11: nn = d× (tile idx % 1)
12: Perform lean tile iterations for this output tile.
13: for iter = iter begin to iter end do
14: kk = iter × Tn

15: load fragments from GMEM to SMEM
16: Qf = LoadFragment(Q,mm,nn)
17: Kf = LoadFragment(K,nn, kk)
18: Vf = LoadFragment(V, nn, kk)
19: Compute on chip:
20: Sf = QfKf where Sf ∈ RTm×Tn

21: mnew = max(m, rowmax(Sf ))
22: Pf = exp(Sf −mnew) where Pf ∈ RTm×Tn

23: lnew = em−mnew

l + rowsum(Pf )
24: Oacc = PfVf + diag(em−mnew

)Oacc

25: l = lnew,m = mnew

26: end for
27: return Oacc, l, m
28: end function
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C ENERGY CONSUMPTION EVALUATION

Fixed-split partitioning results in imbalanced workloads across the SMs, leaving many of them idle during the final stages
of computation. This inefficiency makes fixed-split attention mechanisms energy-inefficient. As shown in Figure 13, the
disparity in energy consumption between FlashDecoding, FlashInfer, and LeanAttention increases as context lengths grow
over 128k. LeanAttention, with its well-balanced load partitioning strategy, ensures more consistent utilization of SMs,
making it significantly more energy-efficient.

Figure 13. Ratio of Energy consumed by attention kernel to energy consumed by FlashDecoding kernel of different attention mechanisms
for batch size = 1, number of heads = 56, head dimension = 64 on a single Nvidia-A100-80GB GPU as measured using NVML APIs.
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D REDUCTION OVERHEAD ANALYSIS

We have noticed negligible reduction overheads in our experiments (when reducing 8 or less partial outputs per host CTA)
as detailed in Table 2, with the total latency being dominated by the LeanTile computation within attention.

Reduction overheads might be more conspicuous in cases with very few heads (around 3-4 heads) or very short contexts
(<1k), where more splits per head would be required to fully occupy the processor. To mitigate this, LeanAttention
strategically optimizes grid size (i.e., the number of CTAs launched) to ensure that each CTA processes at least two
LeanTiles. As grid size increases, so does the number of splits per head which consequently increases overheads from
reduction. Thus, for shorter contexts where total number of LeanTiles are not enough to cover the entire processor width,
LeanAttention chooses a smaller, more efficient grid size to maintain performance. This prevents an unnecessary increase in
splits, effectively reducing reduction overheads while still leveraging parallelism across context length for speedups.

Since most open-sourced model configurations have greater than 12 heads, we rarely ever exceed 8 splits per head with
LeanAttention in our experiments.

Number of Splits Reduction Overhead %
4 0.41
8 2.85

16 6.84
32 16.47

Table 2. Reduction overhead as a percentage of timeshare for different number of splits per head.


