Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFINING ANSWER DISTRIBUTIONS FOR IMPROVED
LLARGE LANGUAGE MODEL REASONING

Soumyasundar Pal* Didier Chételat* Yingxue Zhang* Mark Coates’

ABSTRACT

Large Language Models (LLMs) have exhibited an impressive capability to per-
form reasoning tasks, especially if they are encouraged to generate a sequence of
intermediate steps. Reasoning performance can be improved by suitably combining
multiple LLM responses, generated either in parallel in a single query, or via sequen-
tial interactions with LLMs throughout the reasoning process. Existing strategies
for combination, such as self-consistency and progressive-hint-prompting, make
inefficient usage of the LLM responses. We present Refined Answer Distributions,
a novel and principled algorithmic framework to enhance the reasoning capabilities
of LLMs. Our approach can be viewed as an iterative sampling strategy for form-
ing a Monte Carlo approximation of an underlying distribution of answers, with
the goal of identifying the mode — the most likely answer. Empirical evaluation
on several reasoning benchmarks demonstrates the superiority of the proposed
approach.

1 INTRODUCTION

As Large Language Models (LLMs) have increased in size, they have demonstrated increasing rea-
soning abilities (Brown et al., [2020), despite not being explicitly trained to reason (Wei et al., 2022al).
In particular, Chain-of-Thought (CoT) prompting has become standard for eliciting these abilities,
either through few-shot examples (Wei et al.l 2022b)) or via a triggering sentence such as “Let’s think
step by step.” (Kojima et al., 2022). Nevertheless, although LL.Ms often produce correct reasoning
steps, they struggle with higher-level planning (Saparov and He, |2022)), motivating researchers to
explore strategies to remedy this deficiency. An effective solution is to sample several chains-of-
thoughts and take the most common answer as the final vote, an approach called Self-Consistency
(CoT+SC) (Wang et al.| 2023). However, despite its impressive empirical performance, the gains
quickly plateau on many benchmarks, often with no improvement after five samples (Aggarwal et al.|
2023)). Thus, a more complex reasoning strategy appears necessary.

One promising direction involves encouraging LLMs to iteratively refine their reasoning, like humans
often do (Shinn et al., |2023; |Li et al., [2023} |Gou et al.} 2023;|Madaan et al.,|2023)). However, Huang
et al.| (2024) demonstrate that the capability and effectiveness of LLMs’ self-correction is overstated
in the existing literature due to the use of oracle labels for determining stopping criteria (Shinn et al.|
2023)), unfair experimental protocols (Du et al.|[2023), and sub-optimal initial prompt design (Madaan
et al., 2023). Moreover, the review/feedback prompts employed in these approaches are often
long and complex, and include intricate, hand-crafted examples, tailored for specific domains or
benchmarks. In spite of such extensive prompt engineering, Huang et al.|(2024) observe that most of
these approaches perform worse than self-consistency in a fair evaluation setting.

In this paper, we propose a novel iterative strategy called Refined Answer Distributions (RAD) that
offers a more principled and practical way of reasoning with refinement. We consider a setting where
we can conduct LLM calls sequentially or in parallel. Our method does not make major changes to
the initial prompt in later calls, and we do not need extensive prompting effort to invoke an LLM’s
review of the previous answers. The process starts by constructing an initial distribution of answers
using CoT. In subsequent rounds, we incorporate the unique answers from the previous round in the
prompt. This leads to a new collection of answers, which we use to refine the answer distribution
via a marginalization process. Our approach is agnostic to the strategy for incorporating a previous
answer in the prompt, provided that it satisfies a ‘probability flow’ condition that we specify. In our
numerical experiments, we show that an existing hint-based prompting strategy (Zheng et al., [2023)

*Huawei Noah’s Ark Lab, Canada, McGill University, Mila, & ILLS

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

satisfies this condition for a broad spectrum of reasoning datasets. By maintaining a distribution, we
reduce sampling variance and make more efficient usage of the LLM calls.

We make the following contributions:

* We introduce a novel iterative refinement strategy for reasoning with LLMs, with the key differen-
tiator that the method maintains and updates a distribution over answers. Our work highlights that
an LLM can indeed derive benefit from self-reflecting on distributions of its past answers when
attempting reasoning tasks, without a need to resort to extensive prompt design or hand-crafted
examples.

* Via multiple experiments with GPT-3.5 Turbo (Brown et al., 2020), GPT-4 Turbo (OpenAl et al.,
2024), the cost efficient GPT-40-mini, and Llama models (Grattafiori et al., |2024), we show that
our proposed approach leads to consistently improved reasoning performance compared to state-
of-the-art baselines for the same number of LLM calls and comparable token cost. We conduct
experiments carefully to ensure there is no evaluation bias in favour of methods that employ
refinement. Notably, out of 36 experimental scenarios, we observe that the proposed RAD variants
have the highest accuracy in 30.

* We show in the experiments that our approach is flexible in that it can be combined successfully
with different strategies for obtaining an initial distribution of answers (e.g. Chain of Thoughts Wei
et al.[(2022b), Progressive Hint Prompting (PHP) |Zheng et al.|(2023)).

2 PROBLEM STATEMENT

Let = be a question or a task in natural language, described in one or more sentences. Its true answer
is denoted y, which can take different forms depending on the context, such as a number, a True/False
boolean variable, or an option (a)/(b)/(c) from a multiple-choice set. Potentially, we also assume to
have access to a (small) set of triplets Z={(z;, 2;, yj)}]K:l corresponding to semantically-similar
questions x;, answers ¥;, and rationales z;. Each rationale z; is a sequence of short sentences that
describe the step-by-step reasoning process leading to the answer ;.

We assume that we can query the LLM in series or in parallel. Our task is to design a strategy
for prompting the LLM and combining the responses to provide an answer y for the question z.
Performance is measured in terms of the average accuracy of the response, i.e., E[1(§ = y)] for the
indicator function 1.

3 METHODOLOGY

When presented with the question, an LLM produces a random answer g, drawn from an internal
distribution that is dependent on the prompt and the LLM’s parameters. To avoid notational clutter, we
suppress these dependencies and denote this distribution by p(g|x). This distribution is analytically
intractable but one can sample from it directly by prompting the LLM and subsequently collecting its
answer.

The reasoning ability of the LLM, i.e., the probability of producing the correct answer, is improved
by careful construction of the prompt. For example, an encouragement to produce an explana-
tion/rationale in the form of a sequence of short sentences to describe the step-by-step reasoning
process has been shown to ameliorate LLMs’ performance significantly compared to direct prompt-
ing (Wei et al., |2022b)). We denote the provided rationale as z, so the response of the LLM is a pair
(2, 7). If rationale-annotated in-context examples are available, then reasoning can be improved by

incorporating in the prompt a (small) set in the form of triplets Z={(z;, z;, y;) } szl.

Viewing the LLM response as a sample from the distribution, we can hypothesize that, if the LLM is
capable of effective reasoning for the presented question, the mode of the distribution is most likely
to be the correct answer. We would therefore like to extract the mode. One approach is to sample,
either in parallel or sequentially, multiple LLM responses (each containing a rationale and answer).
We can then select the answer corresponding to the Monte Carlo estimate of the mode by taking a
majority vote over the sampled responses (Wang et al.|[2023).

It has been observed that LLM output can be improved via a refinement or self-reflection pro-
cess (Zheng et al, 2023} |Wu et al., |2024; [Li et al., 2023} |Madaan et al., 2023} Park et al.,[2023). In
this process, the LLM is provided with its previous response and/or answer, and asked to take it into
account, or criticize it, before producing a refined response.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

This observation is the cornerstone of our proposed methodology. Rather than seeking the mode of
the original distribution p(g|z), we construct a sequence of distributions {p,(¢|z)}r~1, where each
successive distribution in the sequence is constructed via a refinement process using samples from
the previous distribution, as the number of interactions with the LLM, r, grows. This refinement
process involves marginalization over the LLM’s previous answers, which are refined in the current
iteration. We initialize p1 (¢|x) = p(§|z), i.e., we start with the distribution of answers obtained
from the first interaction with the LLM at » = 1. Our hypothesis is that the probability of the correct
answer, p,(y|z), increases with 7, so the mode of a distribution later in the sequence, i.e., r > 1, is
more likely to be correct than the mode of p(g|x).

3 . 1 INTUITION Marginalization i

. — of prev. answers ___
We now provide an example to N . 5
illustrate why marginalizing over i S /4 e 13212

. i 2
previous answers should make the L] LLM with prey, 115 m
. . . . 1516 17 1. . 16 1

mode of the inference distribution T'st round 1 D) 2nd round
more llkely to be the correct an- answer distribution 4 answer distribution
Swer. Sgppose ‘that we are pre- 6 — 16
sented with a binary question x /.7 LLM with prev.

with answer, say, y = 1, and ans. 17 7 o

let us say that the probability of
the correct answer is initially rel-
atively low, p(g=1|x) = 0.4. How-

. 18
ever, when we provide the cor- (18
1'st round
rect answer on the prompt and as.k aers '
the LLM to refine it, the LLM is LLM wnth1grev.
ans.

much more likely to answer cor-
rectly, p(§=1|z, Refine(y=1)) =
0.8. Refining the incorrect an-

. 2'nd round
swer 0 also strongly tilts the answers
LLM towards that answer, but cru- T'st round 2'nd round

cially, with slightly less probabil- . . .
ity, p(§=0|z, Refine(y=0)) = 0.6. Figure 1: Illustration of one iteration of our proposed method,

This is not unexpected or unusual, Refined Answer Distribution (RAD). At its initialization, a
because it is often easier to see the distribution of answers is obtained from the LLM via multiple
truth of a statement in hindsight (or queries. In each subsequent iteration, new answers are sampled
verify rather than solve unaided). by refining f?ach dlstlpct old answer. The rgs.ultlng sampleg are
With our proposed marginalization then accordingly weighted by the probability of the previous

procedure, the updated distribution ~answers for marginalization.
of the answer would be:

p2(y=1lz) = pr(g=1|z)p(§=1|z, Refine(y=1)) + p1(§=0|z)p(g=1|x, Refine(y=0)) ,
=04 x0.84 (1 —0.4) x (1 —0.6) = 0.56 > 0.4.

i Answer distribution at

12 2'nd round via
marginalization over
1'st round answers

Not only is the probability higher than before, but crucially, the mode of the distribution now aligns
with the right answer (y = 1).

More generally, this augmentation will be observed if and only if the flow of probabil-
ity mass into the correct answer exceeds the flow of probability mass out of the correct
answer. The flow out is pi(§=y|z)(1 — p(§=y|z, Refine(y))), whereas the flow in is
>y P1(I=Y'|2)p(§=yl|z, Refine(y’)). Since we expect p1(§=y|z, Refine(y)) to be close to
1, the flow out is likely to be small. By contrast, we might anticipate that when the LLM is
presented with an incorrect answer, it can often ignore it to a large extent. Let us assume that
p(y=y|z, Refine(y’)) > cp1(g=yl|x) for all ¢ for some positive constant ¢ < 1. Then the flow in
exceeds cpy (y=yl|z)(1 — p1(§=ylx)). Thus, if p(j=ylz, Refine(y)) > 1 — ¢(1 — p1(y=yl|x)), the
mass assigned to the correct answer will increase. For example, consider p; (§=y|z)) = 0.4 and
¢ = 0.3. Then we need p(g=y|x, Refine(y)) > 1-0.3x(1-0.4) = 0.82.

We also note that repeated application of this procedure is further advantageous, which motivates the
iterative version of our algorithm. We formalize this intuition into a general procedure and provide an
algorithm for approximating these distributions next.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.2 REFINED ANSWER DISTRIBUTIONS

Our approach updates the distribution of answers by marginalizing over the answers obtained at the
previous iteration. We denote the conditional probability of yielding ¢ as the answer for task = with
a previous answer y’ by p(7|z, Refine(y’)). We define a sequence of distributions {p, (g|x)}r>1,
where two successive distributions are related as follows:

praa(fl7) = / p(§l, Refine(y!))p, (4/|) dy’ .)

The integral is replaced by a sum when g is discrete, e.g., for multiple-choice questions.

Implementation: We now outline the steps for performing one iteration of RAD. As a concrete
example, Figure|l]illustrates the procedure of approximating po(g|2) from p; (j|z) in detail. Since
neither p(g|z, Refine(y’)) nor p,(g|z) can be computed analytically, we need to resort to a Monte
Carlo approach for estimating p,1(7|x).

Suppose, at the end of the r-th iteration, p,. (g]|x) is approximated as follows:

pr(fle) ~ Z WG —y™), ©)

m=1
where §(-) is the Kronecker delta function, {y™}}_, is the set of distinct answers, and w™ is the
estimated probability of obtaining the answer y™ under the distribution p,.(-|z). For example, in
Figure[l] at r = 1, we have M = 3 distinct answers y' = 16,42 = 17, and y> = 18 with estimated
probabilities w! = 1, w? = 1 and w® = 1. If the correct answer y = 18, then the LLM’s current

answer § = 17, based on the estimated mode of p; (F|x), is incorrect.

Assuming a sampling budget of B,;, which denotes the maximally allowed number of answers to
be sampled at the (r+1)-th iteration, we modify, foreachm = 1,..., M, the prompt by appending
y™ as the previous answer, and sample J’"Jlj answers subsequently. This forms the following
Monte Carlo approximation:

p(y|z, Refine(y = y™ Zwe (g my. 3)

Here, {y*™}L™ are the L,, distinct answers extracted from the | T“J answers and @®™ is the
estimated probability of having y“™ as the answer conditioned on the previous answer y. In
F1gure [} the total budget for r = 2, i.e. By = 9, the number of distinct answers for different
previous answers are L; = 2, Lo = 3, and L3 = 1. For the previous answer y! = 16, the estlmated

conditional probabilities of the answers y"! = 15 and y*! = 16 are @' = § and @' = 2
respectively.
Using equations [2]and 3] we can approximate equation [I]as follows:
M Ln N
pry1(Plx) = Z Zwmwe (g = ZGJ"&(@] —-7"). 4)
m=1¢=1 n=1

Here, N is the number of distinct answers among {y*™} zL:Tnf%:r The probability of having y" as

the answer is estimated as:

M Ly,
— Z WMo Kml _ zjn) 5)
m=1 ¢=1
From Flgure l we observe that at r = 2, we have N = 4, the distinct answers are y =15,9% =
16,9> = 17, and y* = 18. As shown in eq. l 5| the probability of obtaining 4* = 18 is w4 =

(2 x %) + (§ x 1) = 3. We observe that the probability of obtaining the correct answer is increased

in one round of RAD.

We can stop this procedure by applying a variety of stopping criteria. For example, we can stop (i)
after a fixed number of iterations (when r> R); or (ii) based on a predefined sampling budget B, 4.

R R+1 .
(when > R, for R such that Z 1Bp<Bmax<Z) B,,); or (iii) when the estimate of the mode
b= b=

of p,(y|z) remains the same for two successive iterations. Algorithm|[l]in Appendix [A]provides a
pseudocode description.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Discussion: Intuitively, refining some previous answers is more likely to lead to the correct answer
than others for a given reasoning task. Our framework naturally defines the usefulness of an answer
y’ at the end of the r-th iteration by the probability p,.(y’|x), and subsequently weights the answers
generated by refinement of 3’ at the (r+1)-th iteration by this value, while updating the distribution
of answers in eq.

We also note that the RAD framework is agnostic to the choice of prompts and is generally applicable
to any advanced prompting technique, as those methods combined with SC can be used to initialize
p1(g|z) for subsequent RAD iterations. Our contribution is thus orthogonal to prompt engineering
approaches. In our implementation of RAD in Section 4] we adopt the hint-based prompting
strategy of (Zheng et al.| 2023)) for the refinement of previous answers. Beyond the measurement of
reasoning accuracy, we conduct a detailed empirical analysis across multiple benchmarks and LL.Ms
(Figures[3] [and[5] Tables[6]and [7), which provides statistically significant evidence that the use of
this prompt satisfies the ‘probability flow” criterion specified in Section [3.1]

4 EXPERIMENTAL RESULTS

Benchmarks: We evaluate the proposed RAD algorithm on six arithmetic benchmarks:
AddSub (Hosseini et al., 2014), MultiArith (Roy and Roth, [2015), SingleEQ (Koncel-Kedziorski
et al.||2015), SVAMP (Patel et al.,2021), GSM8K (Cobbe et al., 2021), and AQuA (Ling et al., | 2017).
AddSub and SingleEq contain easier problems, whereas the tasks in MultiArith, SVAMP, GSM8K,
and AQuA are more challenging. In addition, we conduct experiments on the MATH (Hendrycks
et al.| [2021) dataset, which consists of a large collection of significantly more difficult mathematical
questions of seven subcategories. In order to demonstrate the general applicability of RAD beyond
mathematical reasoning, we also consider two BIG-Bench Hard |Suzgun et al.| (2023) tasks, namely
Date Understanding and Object Tracking. More details of the datasets are deferred to Appendix [B]

Models: We use five different language models: GPT-3.5 Turbo (Brown et al.,2020), which was
fine-tuned using RLHF from a previous version (GPT-3), its upgraded version GPT-4 Turbo (OpenAl
et al.| 2024)), the more recent cost-efficient GPT-40-mini, and two Llama-based models, Llama-3-8b-
instruct and Llama-3-70b-instruct (Grattafiori et al., 2024). All three GPT models are closed-source,
but can be publicly accessed using the OpenAl AP]H The Llama models are open-source, although in
practice, we used a commercial API servic

Baselines and Experimental Setting: We compare our approach to few-shot CoT (Wei et al.,
2022b)), its combination with SC (Wang et al.| 2023), PHP (Zheng et al., |2023), and PHP+SC.
We refer to the proposed algorithm as CoT+RAD, since the same few-shot prompt as CoT is
employed to initialize our approach. For relatively cheaper LLMs, GPT-3.5 Turbo and GPT-4o-
mini, we also consider another variant of our method called PHP+RAD, where the initial answer
distribution is obtained from several PHP provided answers (i.e., PHP+SC). We also include known
results of alternative iterative refinement methods on the same models and datasets, namely Self-
Refine (Madaan et al., 2023)), CRITIC (Gou et al.,|2023), repeated introspection (Self-Convinced
prompting (Zhang et al.|[2023a))), Multi-Agent Debate (Du et al.,|2023)), multi-agent multi-model
round table conference (ReConcile (Chih-Yao Chen et al., [2023)), and verification methods such
as Self-Verification (Weng et al., 2023) and Forward-Backward reasoning (FOBAR (Jiang et al.,
2024))). Computational budget limitations prevented us from running every possible combination
of model, benchmark and competitor, especially since none of these works include results on GPT-
4-Turbo and GPT-40-mini. However, Huang et al.| (2024) thoroughly investigated many of these
methods and found these approaches systematically inferior to a simple Self-Consistency baseline
(CoT+SC), which is corroborated by our experimental results. For the MATH dataset, we compare our
approach with a recently proposed multi-agent prompting technique MACM (Lei et al.||2024), which
progressively performs each intermediate computational step (akin to a thought in CoT), verifies its
correctness using code, and determines whether it can help in reaching the final answer via several
agent interactions. In order to avoid prohibitive token cost, we only use GPT-40-mini for the MATH
dataset. Additionally, we restrict the use of Llama models to the arithmetic benchmarks. We conduct
our experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz.

"nttps://openai.com/api
https://replicate.com/meta/meta—1lama-3-70b-instruct

https://openai.com/api
https://replicate.com/meta/meta-llama-3-70b-instruct

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

For a fair comparison with CoT+SC, which requires sampling of multiple CoTs, we ensure that the
proposed RAD uses a comparable number of CoTs. We use a total budget of B,,,,, =40 sampled
CoTs in two iterations of CoT+RAD, with B1=5, By=15, and B3=20. We allocate more CoTs to
the later iterations (r > 1), since we need to estimate p(|z, Refine(y’)) for multiple values of y'. As
we initialize p; (g|2) with CoT+SC, increasing the number of CoTs does not contribute substantially
to improved performance at r = 1 (Aggarwal et al., [2023)). For PHP+RAD, we perform one iteration
of marginalization with B;=20 and B>=20.

For the CoT+SC algorithm, we sample exactly 40 CoTs to report performance, as in [Wang et al.
(2023)). For PHP, generating one answer requires at least 2 interactions, but the exact number of
CoTs cannot be known beforehand. Therefore, in order to ensure a fair comparison, we collect PHP
answers in the PHP+SC algorithm until the total number of LLM calls matches that of CoT+RAD,
which ensures that PHP+SC has an inference time comparable to that of CoT+RAD. Except for CoT
and PHP, which use greedy decoding, a temperature of 0.7 is used for all sampling based approaches,
following the experimental settings of [Wang et al.[(2023)) and [Zheng et al.| (2023). The answer
extraction and cleansing is carried out by following the same steps laid out by Kojima et al.|(2022).
Additionally, for all datasets except AQuA (where the answers are multiple choice between A-E),
we use a 3’rd decimal rounding off of LLM answers and ‘ground truth’ before comparing them.
This fixes some questions in most of those five arithmetic datasets and the MATH dataset for all
competing algorithms, (e.g. the ‘true’ answer is 0.066666, but the LLM’s answer is 0.067), where the
LLM’s answer is essentially correct, but is declared incorrect due to a rounding error. A symbolic
evaluation using 1atex2sympy is carried out to determine the correctness of the final answer for the
MATH dataset (e.g. 2x+7 is equivalent to 7+2x). We measure the accuracy of the answer as the
performance metric. CoT employs the same 4-shot prompt for AQuA and the same 8-shot prompt for
other four arithmetic datasets, as designed by Wei et al.|(2022b). For the MATH dataset and the BBH
tasks, we use the same prompts as|Zheng et al.|(2023)) and|[Suzgun et al.|(2023) respectively. PHP
and PHP+SC also use the same base prompts to obtain the initial answer(s). Example prompts for all
algorithms can be found in Appendix [G|

Results on Arithmetic Benchmarks: We summarize the experimental results using the GPT
models in Table[I] Results using the weaker Llama models can be found as Table d]in Appendix [C]
For each dataset and LLM, we conduct a Wilcoxon signed rank test between the top two algorithms
and declare their difference statistically significant at the 5% level. As we use more recent versions
of the GPT models than in the original articles of CoT+SC (Wang et al.,[2023) and PHP (Zheng et al.|
2023)), the results are not directly comparable, but are broadly in line with their reported numbers. We
observe that for all LLMs, with or without SC, PHP achieves higher accuracy than CoT prompting in
most cases, demonstrating the advantage of using the LLMs’ answers as hints. The superior accuracy
of CoT+SC compared to the greedy decoding of CoT for the majority of datasets showcases the
strong empirical performance of SC, arising due to the consideration of diverse reasoning paths.
PHP+SC emerges as a close competitor to CoT+SC in most cases, although the relative accuracy gain
compared to PHP is much lower, since PHP in itself is a strong baseline. Since PHP+SC does not
consistently outperform CoT+SC, we can conclude that the incorporation of hints alone is insufficient
to achieve better reasoning accuracy.

Our approach, CoT+RAD, considerably outperforms CoT+SC in most cases. The PHP+RAD variant
performs comparably to CoT+RAD on GPT-3.5 Turbo but shows improved performance on GPT-4o-
mini. This shows that our RAD approach is generally applicable, as it can be combined with different
prompting methods for initialization, and it is not overly sensitive to the choice of hyperparameters.

One benchmark that deviates from this pattern is AQuA using GPT-4 Turbo, where the best performing
procedure is CoT+SC. This might be due to the fact that AQuA is the only multiple-choice question-
answering benchmark among the six, and the employed hinting prompt “The answer is close to A)”
makes less sense for these types of questions. Further research on how to better extend PHP’s hinting
prompt to these types of problems might be valuable. In addition, all methods perform only as well
as (or even worse than) a vanilla few-shot CoT and PHP on AddSub for both GPT-3.5 Turbo and
GPT-4 Turbo models, possibly indicating the fact that the gains to be had using advanced methods on
a dataset containing relatively simple questions are rather limited.

Shttps://pypi.org/project/latex2sympy2/

https://pypi.org/project/latex2sympy2/

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning. The highest
accuracy among all competing algorithms using the same LLM is marked in bold and is shown

in red, blue, and for GPT-3.5 Turbo, GPT-4 Turbo, and respectively. The
second-best accuracy in those cases is marked with an underline and is shown in , light blue,
and respectively. The highest accuracy is marked with an asterisk if the difference from

the second-best accuracy is statistically significant.

LLM Algorithm AddSub MultiArith SingleEQ SVAMP GSMSK AQuA
CoT 97.84+0.6 97.010.7 81.9+1.2 78.2+1.1 58.343.1
2 PHP 91.6+1.4" 99.24+0.4 97.61+0.7 83.441.2 83.2+1.0 59.14+3.1
5 CoT+SC 91.1+14 99.04+0.4 97.61+0.7 85.141.1 83.2+1.0 69.34+2.9
: PHP+SC 90.6+1.5 98.84+0.4 97.440.7 83.3+1.2 85.2+1.0 64.24+3.0
o Self-Refine - - - - 75.1 -
E CRITIC - - - 83.3 78.2 -
&} Self-Convinced 79.3 - - 84.9 81.5 62.0
Multi-Agent (Debate) - - - - 85.0+3.5 -
ReConcile - - - - 8531422
Self-Verification 90.4 97.4 92.9 83.1 74.9 60.6
FOBAR 89.4 94.5 88.9 85.1 62.6
CoT+RAD 91.6+1.4" 99.7+0.2* 70.54+2.9*
PHP+RAD 98.4+0.5* 85.9+1.1 88.61+0.9* 70.54+2.9*
2 CoT 96.5+0.9" 98.34+0.5 96.51+0.8 92.340.8 86.4+0.9 83.942.3
é PHP 96.5+0.9" 98.540.5 97.440.7 93.340.8 91.440.8 83.942.3
< CoT+SC 96.2+1.0 98.8+0.4 97.010.8 93.440.8 88.5+0.9 85.8+2.2*
E PHP+SC 95.94+1.0 98.8+0.4" 96.940.8 93.940.8 91.140.8 82.74+2.3
© CoT+RAD 96.54+0.9* 98.8+0.4 98.6+0.5* 94.6+0.7 94.6+0.6* 84.3+2.3
CoT 92.9+1.3 98.84+0.4 94.5+1.0 93.540.8 91.540.8 78.7+2.5
PHP 93.941.2 98.84+0.4 95.31+0.9 93.640.8 93.240.7 78.7+2.6
CoT+SC 92.9+1.3 98.84+0.4 95.1+1.0 94.040.8 82.7+£2.4
PHP+SC 92.9+1.3 98.84+0.4 95.1+1.0 93.440.8 93.440.7 84.342.3
CoT+RAD 98.84+0.4 *
PHP+RAD * 98.84+0.4 * * * *
5 0.750 CoT+SC PHP+SC CoT+RAD (r=1) CoT+RAD (r=2) CoT+RAD (r=3)
20.
§ 0.625
« 0.500
o
>0.375
0.250
‘,: 0.125
& 0.000

2346812 2346812 23463812 2346812 2346812

Figure 2: The estimated probabilities of different answers from CoT+SC, PHP+SC, and CoT+RAD
(using GPT-3.5 Turbo) for an example from GSMS8K dataset.

Question: The ice cream parlor was offering a deal, buy 2 scoops of ice cream, get 1 scoop free.
Each scoop cost $1.50. If Erin had $6.00, how many scoops of ice cream should she buy? Answer: 6.

Figure[2|shows the estimated probabilities of different answers of an example question from GSM8SK
for all sampling based algorithms using GPT-3.5 Turbo. We observe that, while both CoT+SC and
PHP+SC fail to reason correctly, the proposed CoT+RAD outputs the correct answer at both r=2
and 3, although its initial distribution (computed using CoT+SC with B; =5 samples) does not have
a mode at the correct answer. More interestingly, CoT+SC cannot fix the error even if the budget
increases to 40 from 5. On the contrary, the proposed CoT+RAD utilizes the additional inference
cost effectively to increase the probability of the correct answer at each iteration, demonstrating the
usefulness of performing RAD in multiple iterations.

While Figure 2| shows that CoT+RAD has a higher probability of the correct answer for a specific
example question, a dataset-level investigation is necessary to determine whether this phenomenon is
general. To that end, we restrict ourselves to only the ‘difficult’ questions in these benchmarks. If a
question is correctly solved by all algorithms in Table |1} we categorize it as ‘easy’. A question that
is not ‘easy’ is termed ‘difficult’. All easy questions are subsequently removed from the datasetﬂ
For all ‘difficult’ questions, we rank CoT+SC, PHP+SC, and CoT+RAD in terms of the probability
they assign to the correct answer. The stacked-histograms of these ranks for all six datasets using
GPT-40-mini are shown in Figure[3] We observe that the proposed CoT+RAD achieves the lowest

*Since in each of these datasets, the majority of the questions are ‘easy’, all of CoT+SC, PHP+SC, and
CoT+RAD methods assign a very high probability on the correct answers for them. In order to bring out the
differences among these algorithms, we only focus on the ‘difficult’ questions.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

N 60

2 ngo Rank 30 e 250 400
35 -1 wwm2 mm3 25

E260 20 40 200 300
£3

5%, 15 30 130 200
o T 10 20 100

Z 20 5 10 50 100

0 Cor PHP CoT O "CoT PHP CoT
+RAD +5C +5C +RAD +5C +5C

0 "CoT PHP CoT O "CoT PHP CoT O "CoT PHP CoT
+RAD +5C +5C +RAD +5C +5C +RAD +5C +5C

a) AddSub b) MultiArith ¢) SingleEQ d) SVAMP €) GSM8K f) AQUA

CoT PHP CoT
+RAD +SC +SC

Figure 3: Histogram of ranks of the algorithms (the highest probability of the correct answer
results in the lowest rank) for the ‘difficult’ questions from all six arithmetic datasets using GPT-4o-
mini.

rank based on the probability of correct answer across all ‘difficult’ questions for all datasets more
often, outperforming both CoT+SC and PHP+SC. This demonstrates that CoT+RAD has higher
probability of the correct answer compared to its competitors for most of these ‘difficult’ questions,

which supports our intuition, presented in Section[3.1] Similar results are obtained for the other two
LLMs (see Appendix [E).

Table 2: Mean and standard error of accuracy (in %) of reasoning on the MATH dataset using
GPT-40-mini. The highest accuracy among all competing algorithms is marked in bold and the
second-best accuracy in those cases is marked with an underline. The highest accuracy is marked
with an asterisk if the difference from the second-best accuracy is statistically significant.

. Counting and Intermediate Number
Algorithm Algebra Probability Geometry Algebra Theory Prealgebra Precalculus
CoT 88.5+0.9 73.4£2.0 55.1£23 51.5£1.6 76.3£1.8 86.9+1.1 49.1£2.1
PHP 90.2+0.9 75.3£2.0 559423 523+1.7 78.1£1.8 87.6+1.1 S51.1+£2.1
MACM 90.8+0.9 76.4+2.0 574423 55.5+1.7 81.9+1.7 87.8+1.0 51.3+42.1
CoT+SC 93.940.7 82.94+1.7F 64.7£2.2 58.1£1.7 83.5+£1.6 91.24+1.0" 51.3+2.1
PHP+RAD 94.8+0.6" 80.61+1.8 65.3+£2.2* 58.94+1.6" 85.4+1.5" 90.7£1.0 52.0+2.1

Results on the MATH Dataset: Table2]summarizes the experimental results for the MATH dataset,
which is a large collection of significantly challenging mathematical reasoning problems. For several
sub-disciplines (Geometry, Intermediate Algebra, Precalculus), the state-of-the-art performance
(without using extreme computation and a very long inference time) is in the range of 50-65 percent,
which suggests that LLMs still find these problems very difficult to solve. Since PHP outperforms
CoT for all subcategories, we only evaluate PHP+RAD on these datasets to reduce the token cost,
anticipating that PHP+SC would provide better initialization for RAD compared to CoT+SC. Using
GPT-40-mini, the API cost of proposed PHP+RAD is approximately 2.9 cents on average, which is a
modest increase from 2.5 cents of CoT+SC. On the contrary, MACM incurs a significantly increased
cost of approximately 6.4 cents, due to repeated LLM calls to perform and verify each step and
utilization of code-interpreter.

We observe that despite performing an extensive segmentation of the reasoning task and code-
based verification of each step, MACM has significantly lower accuracy compared to CoT+SC,
which demonstrates that sophisticated prompting approaches often fail to outperform much simpler
techniques in a fair experimental setting. The proposed PHP+RAD algorithm leads to a performance

improvement in 5 out of 7 settings. .
P g Table 3: Mean and standard error of accuracy (in

%) of reasoning for Date Understanding and Ob-
ject Tracking tasks using GPT-40-mini. The high-
est accuracy among all competing algorithms is
marked in bold and the second-best accuracy in
those cases is marked with an underline.

Big-Bench Hard Tasks: In Table[3] we pro-
vide results for Date Understanding and Object
Tracking, which are problems sets involving
quantitative (but not strictly mathematical or
arithmetic) reasoning. We observe that PHP still

outperforms CoT, demonstrating the utility of Algorithm Date Object

refinement via hinting beyond arithmetic tasks. Understanding _ Tracking
The proposed CoT+RAD offers an improvement CoT 91.9+1.4 96.420.7
. . PHP 93.5£1.3 97.7£0.5
in accuracy over the baselines for both of these CoT+SC 038413 967107
datasets.

CoT+RAD 94.6+1.2% 98.01+0.5

5 RELATED WORK

Our proposed method can be situated within a larger literature that aims to improve LLMs’ reasoning
ability through iterative refinement of chains-of-thought. These works primarily differ in the strategy
used to refine the reasoning.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

One strand of work involves attempting to iteratively improve single answers, rather than whole
distributions of answers like in our work. Progressive Hint Prompting (PHP) (Zheng et al.| [2023)
proposes to repeatedly generate chains-of-thought, each time encouraging new answers to look like
previous answers by providing them as ‘hints’ to the LLM. Similar works use the same process but
push answers away, rather than closer, to the previous answer. Progressive Rectification Prompting
(Wu et al., 2024) uses a prompt of the form ‘The answer is likely not <hint>’, whereas Deliberate-
then-Generate (Li et al., |2023)) assumes an error was committed and asks the LLM to identify and
correct the mistake. Hint-before-Solving Prompting (Fu et al., |2024) also utilizes hints, but in the
form of key ideas like a mathematical formula, rather than an answer value.

Instead of trying to improve answers through hints, several works have instead tried to do the
same using verbal criticism, at the cost of increased complexity. Self-Refine (Madaan et al., [2023)
incorporates a prompt where the LLM self-criticizes its answer, before being queried again with this
reflection. Generative Agents (Park et al.| |2023) use a similar procedure, albeit in the context of
an agent interacting with an environment. CRITIC (Gou et al., 2023) is a more general framework,
where the criticism prompt can make use of external tools like a web search engine to offer grounded
corrections. Self-Convinced Prompting (Zhang et al., [2023a) and Reflexion (Shinn et al., 2023)
expand on Self-Refine by adding extra modules such as a separate answer encoder, or separating
the evaluation and self-reflection dimensions of criticism into separate modules. Finally, other
related approaches include multi-round debate (Du et al.,[2023)) and consensus via weighted voting
mechanism (Chih-Yao Chen et al., [2023)).

Recent studies have, however, cast doubt on the ability of LLMs to self-criticize effectively (Huang
et al.l 2024} Tyen et al.l 2023), leading researchers to consider using a separately trained LLM
as the critic. In general, these methods generate a sequence of chains-of-thought, whereas we
propose to refine the distribution of answers. REFINER (Paul et al., |2023) fine-tunes a separate
critic by supervised learning on examples perturbed by hand-designed rules and GPT-3.5 Turbo.
Retroformer (Yao et al., 2023) and RLAF (Akytirek et al., [2023)) consider fine-tuning of the critic
using reinforcement learning instead, which allows for a more precise alignment with the task of
improving answers.

Finally, our work can be seen within the greater context of trying to improve chain-of-thought
reasoning within large language models. In existing work, several directions for improving CoTs are
considered, including construction of better prompts to aid the LLM in reasoning (Fu et al., 2023}
Zhang et al.l 2023b)), fine-tuning with CoTs (Zelikman et al.,2022) so that the LLMs learn to reason,
and effective exploration strategies for multi-hop reasoning (Besta et al., 2023} [Yao et al., [2023)).
A recent survey by (Chu et al.[(2023)) provides a comprehensive overview of these techniques. Our
contribution is orthogonal to these prompting techniques since we consider improving the distribution
of answers iteratively rather than focusing on individual CoTs. Novel variants of RAD can be
constructed by using these methods for initialization.

6 CONCLUSION

This work presents a novel algorithmic approach, Refined Answer Distributions, to enable an LLM
to solve a reasoning task by iteratively refining its inference distribution. The proposed algorithm
addresses the issue of the diminishing marginal utility of extra LLM calls for Self-Consistency. RAD
focuses on the distribution over the answers at each stage and assigns weights to the previous answers
accordingly, concentrating on promising candidates. The marginalization procedure improves sample
efficiency. The experimental results, over a range of quantitative reasoning benchmarks and several
LLM variants, provide strong evidence that the approach leads to improved reasoning for the same
budget of LLM calls, compared to Self-Consistency and other state-of-the-art refinement approaches.

The work could be extended in several directions. Our experiments focus on quantitative reasoning
tasks, but the method applies to other types of tasks as long as an appropriate answer refinement
strategy would be chosen. For example, in tasks that require a verbal response, the prompt could
incorporate ‘verbal criticism’, based on one of the approaches detailed in Section[5] In addition, in
the current version of the procedure, we assign the same number of LLM calls to each unique answer
from the previous round. Investigating more efficient strategies to allocate LLM calls non-uniformly
to different answers could be another worthwhile direction.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

P. Aggarwal, A. Madaan, Y. Yang, and Mausam. Let’s sample step by step: Adaptive-consistency for
efficient reasoning and coding with LLMs. In Proc. Conf. Empirical Methods in Natural Language
Process., 2023.

A. F. Akyiirek, E. Akyliirek, A. Madaan, A. Kalyan, P. Clark, D. Wijaya, and N. Tandon. RL4F:
Generating natural language feedback with reinforcement learning for repairing model outputs.
arXiv preprint arXiv:2305.08844, 2023.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann, M. Pod-
stawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate
problems with large language models. arXiv e-prints arXiv:2308.09687, 2023.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. In Proc. Adv. Neural Inf. Process. Syst., 2020.

J. Chih-Yao Chen, S. Saha, and M. Bansal. ReConcile: Round-table conference improves reasoning
via consensus among diverse LLMs. arXiv e-prints, arXiv:2309.13007, 2023.

Z. Chu, J. Chen, Q. Chen, W. Yu, T. He, H. Wang, W. Peng, M. Liu, B. Qin, and T. Liu. A survey
of chain of thought reasoning: Advances, frontiers and future. arXiv preprint arxiv:2309.15402,
2023.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch. Improving factuality and reasoning in
language models through multiagent debate. arXiv e-prints, arXiv:2305.14325, 2023.

J. Fu, S. Huangfu, H. Yan, S.-K. Ng, and X. Qiu. Hint-before-solving prompting: Guiding LLMs to
effectively utilize encoded knowledge. arXiv preprint arXiv:2402.14310, 2024.

Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot. Complexity-based prompting for multi-step
reasoning. In Proc. Int. Conf. Learn. Representations, 2023.

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and W. Chen. Critic: Large language models
can self-correct with tool-interactive critiquing. arXiv preprint arXiv:2305.11738, 2023.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell,
C. Keller, C. Touret, C. Wu, C. Wong, C. Canton Ferrer, C. Nikolaidis, D. Allonsius, D. Song,
D. Pintz, D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino,
D. Hupkes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic,
F. Guzman, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail, G. Mialon,
G. Pang, G. Cucurell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, 1. Arrieta Ibarra,
I. Kloumann, I. Misra, I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Ma-
hadeokar, J. Shah, J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu,
J. Wang, J. Yu, J. Bitton, J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. Vasuden
Alwala, K. Prasad, K. Upasani, K. Plawiak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer,
K. Malik, K. Chiu, K. Bhalla, K. Lakhotia, L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan,
L. Jenkins, L. Martin, L. Madaan, L. Malo, L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi,
M. Pasupuleti, M. Singh, M. Paluri, M. Kardas, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova,
M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov,
N. Bogoychev, N. Chatterji, N. Zhang, O. Duchenne, O. Celebi, P. Alrassy, P. Zhang, P. Li, P. Vasic,
P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. Singh Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan,

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

R. Ganapathy, R. Calderer, R. Silveira Cabral, R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar,
R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly, R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini,
S. Chennabasappa, S. Singh, S. Bell, S. S. Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy,
S. Shen, S. Wan, S. Bhosale, S. Zhang, S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot,
S. Gururangan, S. Borodinsky, T. Herman, T. Fowler, T. Sheasha, T. Georgiou, T. Scialom, and
T. Speckbacher. The Llama 3 herd of models. arXiv e-prints, arXiv:2407.21783, 2024.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset. In Proc. Adv. Neural Inf. Process.
Syst., 2021.

M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman. Learning to solve arithmetic word
problems with verb categorization. In Proc. Conf. Empirical Methods in Natural Language
Process., 2014.

J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language models
cannot self-correct reasoning yet. In Proc. Int. Conf. Learn. Representations, 2024.

W. Jiang, H. Shi, L. Yu, Z. Liu, Y. Zhang, Z. Li, and J. T. Kwok. Forward-backward reasoning in
large language models for mathematical verification. In Proc. Findings of Annual Meeting of the
Assoc. Comput. Linguist., 2024.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. In Proc. Adv. Neural Inf. Process. Syst., pages 22199-22213, 2022.

R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. D. Ang. Parsing algebraic
word problems into equations. Trans. Assoc. Comput. Linguist., pages 585-597, 2015.

B. Lei, Y. Zhang, S. Zuo, A. Payani, and C. Ding. MACM: Utilizing a multi-agent system for
condition mining in solving complex mathematical problems. In Proc. Adv. Neural Inf. Process.
Syst., 2024.

B. Li, R. Wang, J. Guo, K. Song, X. Tan, H. Hassan, A. Menezes, T. Xiao, J. Bian, and J. Zhu.
Deliberate then generate: Enhanced prompting framework for text generation. arXiv preprint
arXiv:2305.19835, 2023.

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Proc. Conf. Empirical Methods in
Natural Language Process., 2017.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. In Proc. Adv. Neural Inf. Process.
Syst., 2023.

OpenAl, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-
tenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu,
H. Bao, M. Bavarian, J. Belgum, 1. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-
donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button,
T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,
D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W. Chung, D. Cum-
mings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan,
S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P.
Fishman, J. Forte, 1. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh,
R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hal-
lacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele,
B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin,
D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Lukasz Kaiser, A. Kamali, I. Kanitscheider, N. S.
Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight,
D. Kokotajlo, Lukasz Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo,
M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,
T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski,
B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKinney, C. McLeavey, P. McMillan,

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco,
E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak,
A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo,
A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman,
F. de Avila Belbute Peres, M. Petrov, H. P. de Oliveira Pinto, Michael, Pokorny, M. Pokrass,
V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh,
C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli,
T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard,
T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama,
I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers, 1. Sutskever, J. Tang,
N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek,
J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang, A. Wang, B. Wang,
J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoft, D. Will-
ner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo,
K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng, J. Zhuang,
W. Zhuk, and B. Zoph. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2024.

J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior. In Proc. ACM Symp. User Interface Software and
Technology, 2023.

A. Patel, S. Bhattamishra, and N. Goyal. Are NLP models really able to solve simple math word
problems? In Proc. Conf. North Amer. Chapter of the Associ. Comput. Linguist.: Human Language
Technologies, 2021.

D. Paul, M. Ismayilzada, M. Peyrard, B. Borges, A. Bosselut, R. West, and B. Faltings. Refiner:
Reasoning feedback on intermediate representations. arXiv preprint arXiv:2304.01904, 2023.

S. Roy and D. Roth. Solving general arithmetic word problems. In Proc. Conf. Empirical Methods in
Natural Language Process., 2015.

A. Saparov and H. He. Language models are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with
verbal reinforcement learning. In Proc. Adv. Neural Inf. Process. Syst., 2023.

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. San-
toro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray,
A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain,
A. Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. J. Andreassen, A. Madotto, A. Santilli,
A. Stuhlmiiller, A. M. Dai, A. La, A. K. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta,
A. Gottardi, A. Norelli, A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubara-
jan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakag, B. R. Roberts,
B. S. Loe, B. Zoph, B. Bojanowski, B. Ozyurt, B. Hedayatnia, B. Neyshabur, B. Inden, B. Stein,
B. Ekmekci, B. Y. Lin, B. Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. Ferri,
C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-Burch, C. Waites, C. Voigt, C. D.
Manning, C. Potts, C. Ramirez, C. E. Rivera, C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo,
D. Garrette, D. Hendrycks, D. Kilman, D. Roth, C. D. Freeman, D. Khashabi, D. Levy, D. M.
Gonzilez, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito, D. Gilboa, D. Dohan, D. Drakard,
D. Jurgens, D. Datta, D. Ganguli, D. Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes,
D. Misra, D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova, E. D. Cubuk,
E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick, E. Rodola, E. Lam, E. Chu, E. Tang,
E. Erdem, E. Chang, E. A. Chi, E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii,
F. Xia, F. Siar, F. Martinez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra, G. I. Winata,
G. de Melo, G. Kruszewski, G. Parascandolo, G. Mariani, G. X. Wang, G. Jaimovitch-Lopez,
G. Betz, G. Gur-Ari, H. Galijasevic, H. Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar,
H. F. A. Shevlin, H. Schuetze, H. Yakura, H. Zhang, H. M. Wong, 1. Ng, I. Noble, J. Jumelet,
J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J. Koppel, J. Zheng, J. Zou,
J. Kocon, J. Thompson, J. Wingfield, J. Kaplan, J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei,
J. Yosinski, J. Novikova, J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song,

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant, J. Frohberg, J. Rozen,
J. Hernandez-Orallo, J. Boudeman, J. Guerr, J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua,
K. Kanclerz, K. Livescu, K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. Dhole,
K. Gimpel, K. Omondi, K. W. Mathewson, K. Chiafullo, K. Shkaruta, K. Shridhar, K. McDonell,
K. Richardson, L. Reynolds, L. Gao, L. Zhang, L. Dugan, L. Qin, L. Contreras-Ochando, L.-
P. Morency, L. Moschella, L. Lam, L. Noble, L. Schmidt, L. He, L. Oliveros-Colén, L. Metz,
L. K. Senel, M. Bosma, M. Sap, M. T. Hoeve, M. Farooqi, M. Faruqui, M. Mazeika, M. Bat-
uran, M. Marelli, M. Maru, M. J. Ramirez-Quintana, M. Tolkiehn, M. Giulianelli, M. Lewis,
M. Potthast, M. L. Leavitt, M. Hagen, M. Schubert, M. O. Baitemirova, M. Arnaud, M. McElrath,
M. A. Yee, M. Cohen, M. Gu, M. Ivanitskiy, M. Starritt, M. Strube, M. Swedrowski, M. Bevilac-
qua, M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun, M. Walker, M. Tiwari, M. Bansal,
M. Aminnaseri, M. Geva, M. Gheini, M. V. T, N. Peng, N. A. Chi, N. Lee, N. G.-A. Krakover,
N. Cameron, N. Roberts, N. Doiron, N. Martinez, N. Nangia, N. Deckers, N. Muennighoff, N. S.
Keskar, N. S. Iyer, N. Constant, N. Fiedel, N. Wen, O. Zhang, O. Agha, O. Elbaghdadi, O. Levy,
O. Evans, P. A. M. Casares, P. Doshi, P. Fung, P. P. Liang, P. Vicol, P. Alipoormolabashi, P. Liao,
P. Liang, P. W. Chang, P. Eckersley, P. M. Htut, P. Hwang, P. Mitkowski, P. Patil, P. Pezeshkpour,
P. Oli, Q. Mei, Q. Lyu, Q. Chen, R. Banjade, R. E. Rudolph, R. Gabriel, R. Habacker, R. Risco,
R. Milliere, R. Garg, R. Barnes, R. A. Saurous, R. Arakawa, R. Raymaekers, R. Frank, R. Sikand,
R. Novak, R. Sitelew, R. L. Bras, R. Liu, R. Jacobs, R. Zhang, R. Salakhutdinov, R. A. Chi,
S. R. Lee, R. Stovall, R. Teehan, R. Yang, S. Singh, S. M. Mohammad, S. Anand, S. Dillavou,
S. Shleifer, S. Wiseman, S. Gruetter, S. R. Bowman, S. S. Schoenholz, S. Han, S. Kwatra, S. A.
Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff, S. Gehrmann, S. Schuster, S. Sadeghi, S. Ham-
dan, S. Zhou, S. Srivastava, S. Shi, S. Singh, S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal,
S. Upadhyay, S. S. Debnath, S. Shakeri, S. Thormeyer, S. Melzi, S. Reddy, S. P. Makini, S.-H. Lee,
S. Torene, S. Hatwar, S. Dehaene, S. Divic, S. Ermon, S. Biderman, S. Lin, S. Prasad, S. Piantadosi,
S. Shieber, S. Misherghi, S. Kiritchenko, S. Mishra, T. Linzen, T. Schuster, T. Li, T. Yu, T. Ali,
T. Hashimoto, T.-L. Wu, T. Desbordes, T. Rothschild, T. Phan, T. Wang, T. Nkinyili, T. Schick,
T. Kornev, T. Tunduny, T. Gerstenberg, T. Chang, T. Neeraj, T. Khot, T. Shultz, U. Shaham,
V. Misra, V. Demberg, V. Nyamai, V. Raunak, V. V. Ramasesh, vinay uday prabhu, V. Padmakumar,
V. Srikumar, W. Fedus, W. Saunders, W. Zhang, W. Vossen, X. Ren, X. Tong, X. Zhao, X. Wu,
X. Shen, Y. Yaghoobzadeh, Y. Lakretz, Y. Song, Y. Bahri, Y. Choi, Y. Yang, S. Hao, Y. Chen,
Y. Belinkov, Y. Hou, Y. Hou, Y. Bai, Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang, and Z. Wu.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

M. Suzgun, N. Scales, N. Schirli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H.
Chi, D. Zhou, and J. Wei. Challenging big-bench tasks and whether chain-of-thought can solve
them. In Proc. ACL Findings, 2023.

G. Tyen, H. Mansoor, P. Chen, T. Mak, and V. Cirbune. LLMs cannot find reasoning errors, but can
correct them! arXiv preprint arXiv:2311.08516, 2023.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In Proc. Int. Conf.
Learn. Representations, 2023.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,
D. Metzler, et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,
2022a.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. In Proc. Adv. Neural Inf. Process. Syst.,
2022b.

Y. Weng, M. Zhu, F. Xia, B. Li, S. He, S. Liu, B. Sun, K. Liu, and J. Zhao. Large language models are
better reasoners with self-verification. In Conf. Empirical Methods in Natural Language Process.,
2023.

Z. Wu, M. Jiang, and C. Shen. Get an A in math: Progressive rectification prompting. In Proc. AAAI
Conf. Artif. Intell., 2024.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. arXiv e-prints, arXiv:2305.10601, 2023.

W. Yao, S. Heinecke, J. C. Niebles, Z. Liu, Y. Feng, L. Xue, R. Murthy, Z. Chen, J. Zhang, D. Arpit,
et al. Retroformer: Retrospective large language agents with policy gradient optimization. arXiv
preprint arXiv:2308.02151, 2023.

E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. STaR: Bootstrapping Reasoning With Reasoning.
arXiv e-prints, arXiv:2203.14465, 2022.

H. Zhang, M. Cai, X. Zhang, C. J. Zhang, R. Mao, and K. Wu. Self-convinced prompting: Few-shot
question answering with repeated introspection. arXiv preprint arXiv:2310.05035, 2023a.

Z.Zhang, A. Zhang, M. Li, and A. Smola. Automatic chain of thought prompting in large language
models. In Proc. Int. Conf. Learn. Representations, 2023b.

C. Zheng, Z. Liu, E. Xie, Z. Li, and Y. Li. Progressive-hint prompting improves reasoning in large
language models. arXiv preprint arXiv:2304.09797, 2023.

A PSEUDOCODE OF RAD

Algorithm 1 Refined Answer Distribution (RAD)
1: Input: task
2: Hyperparameters: sampling budget B, > 0, number of iterations R > 1 and { B, > 0}1* |
such that Zil B, = Bpaa
3: Output: answer 7, approximations of {p,(7|z)}£_,
4: forr=0: R—1do
5. if r =0 then

6: Sample B; answers from p1 (-|).
7: Approximate p; (g|z) using eq.
8: else
9: form=1:Mdo
10: Sample L%J answers from p(-|x, Refine(y™)) in order to form a Monte carlo approx-
imation, as shown in eq. E}
11: end for
12: Approximate p,1(§|z) using egs.[d]and [3]
13: endif
14: Find the mode of the approximated pr(¢|z) and assign it to §.
15: end for

B DESCRIPTION OF THE BENCHMARK DATASETS

We evaluate on the test sets of six arithmetic reasoning benchmarks. Two datasets include sim-
pler problems that can be solved mostly in a single step: AddSub (Hosseini et al., [2014) consists
of 395 math word problems that require addition and / or subtraction for the solution, while Sin-
gleEQ (Koncel-Kedziorski et al., |2015) contains 508 questions which can be solved using a single
equation. Four more challenging datasets require multi-step reasoning: MultiArith (Roy and Roth,
2015)) (600 math problems), SVAMP (Patel et al.,[2021)) (1000 varied math problems), GSM8K (Cobbe
et al.| 2021) (1319 grade-school level problems), and AQuA (Ling et al., 2017)) (254 algebraic word
problems). Although these arithmetic problems in the previous benchmarks are relatively simple for
humans, LLMs often struggle in solving these types of problems (Patel et al., 2021). In addition,
we also conduct experiments on considerably harder MATH (Hendrycks et al., 2021) dataset which
contains 5000 competition-level mathematics problems written in LaTeX and natural language. BIG-
Bench Hard (Suzgun et al.,[2023)) consists of 23 difficult tasks from the BIG-Bench suite (Srivastava
et al.| [2023), where previous large language models did not surpass the average human performance.
We focus on the “Date Understanding” and “Object Tracking” tasks, which require quantitative

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning. The highest
accuracy among all competing algorithms using the same LLM is marked in bold and is shown in red
and blue for Llama-3-8b-instruct and Llama-3-70b-instruct respectively. The second-best accuracy

in those cases is marked with an underline and is shown in and respectively.

LLM Algorithm AddSub MultiArith SingleEQ ~ SVAMP GSMSK AQuA
& CoT 88.9+1.6 967407 900413 835412 76.6+12 512431
$z PHP 90.4+1.5 947409 9L1+13 864+L1 768+12 571431
£5 CoT+SC 98.0+0.6° 945+1.0 90.4+0.9° 85.0+1.0° 59.4+3.1
- = CoT+RAD 929+13° 968407 82.3+1.1

PHP+RAD 92.9+13* 951£1.0° 90.4£0.9% 66.1£3.0°
2 CoT - - - 912409 932407 72.8+28
= PHP - - - 919409 933£07 732428
©®E Col+SC - - - 92.6+0.8 78.0£2.6

=

£5 corsrap - - - 93.1+0.8 79.942.5"
= PHP+RAD - - - 94.6£0.6

reasoning. Answering questions from the Date Understanding dataset involves inferring a date from
a given scenario. Object tracking task evaluates an algorithm’s ability to reason and determine the
final state of objects, after applying a sequence of shuffling, starting from their known initial states.
All of these benchmarks are available under open-source licenses

C EXPERIMENTAL RESULTS USING LLAMA MODELS

We have conducted experiments with two Llama-family LLMs: the weaker Llama-3-8b-instruct and
the very capable Llama-3-70b-instruct. In order to reduce the API cost of the experiments, we restrict
running the more expensive 70B model to only the three most difficult benchmarks.

From the results in Table |4} we observe that using Llama-3-8b-instruct, the relative advantage of
PHP over CoT is diminished in comparison to the GPT models. This suggests that weaker LLMs,
such as Llama-3-8b-instruct, which often have relatively poor instruction following capability, cannot
utilize the hint effectively for solving the reasoning task, highlighting the inadequacy of sophisticated
prompting for weaker LLMs. In this setting, the effect of the quality of approximation of the initial
distribution of RAD becomes important for obtaining a good reasoning accuracy and PHP+RAD
outperforms CoT+RAD in most cases. Except for GSM8K, PHP+RAD either outperforms CoT+SC
or obtains comparable performance on all other datasets. On the contrary, for a strongly capable
Llama-3-70b-instruct model, both CoT+RAD and PHP+RAD perform well.

D RESULTS FOR THE ‘DIFFICULT’ QUESTIONS

In order to demonstrate the advantage of CoT+RAD more clearly, we restrict ourselves to only
the ‘difficult’ questions in the six arithmetic benchmarks. If a question is solved correctly by all
algorithms in Table[5] we categorize it as ‘easy’. A question which is not ‘easy’ is termed ‘difficult’.
All easy questions are subsequently removed from the datasets to compute the accuracies only on the
difficult questions. From Table[5] we observe that the relative accuracy gains offered by the proposed
CoT+RAD algorithm are more substantial in most cases.

E ADDITIONAL RESULTS FOR COMPARING PROBABILITY OF CORRECT
ANSWER

Figure [3|in the main paper shows that in comparison to CoT+SC and PHP+SC using GPT-40-mini,
CoT+RAD assigns higher probability to the correct answers for most of the ‘difficult’ questions
across all datasets. Figures 4] and [5]demonstrate that the same trend holds for both GPT-3.5-Turbo
and GPT-4-Turbo LLMs.

SCC-BY-4.0 [AddSub; SingleEQ], Apache 2.0 [MultiArith; AQuA] and MIT [SVAMP; GSM8K; MATH;
BIG-Bench Hard].

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 5: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning for the ‘difficult’
questions. The highest accuracy among all competing algorithms using the same LLM is marked in
bold and is shown in red, blue, and orange for GPT-3.5 Turbo, GPT-4 Turbo, and GPT-40-mini
respectively. The second-best accuracy in those cases is marked with an underline and is shown in
light red, light blue, and respectively. The highest accuracy is marked with an asterisk
if the difference from the second-best accuracy is statistically significant.

LLM Algorithm AddSub MultiArith SingleEQ SVAMP GSMSK AQuA

2 CoT 46.0£6.3 51.949.6 73.74+5.8 36.54+2.9 37.1+£2.2 30.7£3.7
é PHP 47.6+6.2* 81.5+7.4 78.9+5.4 41.84+2.9 51.342.3 32.0+£3.7
" CoT+SC 44.446.3 77.8+7.9 78.94+5.4 47.74£3.0 51.34+2.3 49.044.0
’;,3 PHP+SC 41.34+6.3 74.14+8.4 77.245.6 41.442.9 57.242.3 40.54+4.0
25 CoT+RAD 47.6+6.3* 92.6+5.1* 82.5+5.1* 51.6+3.0" 63.84+2.2* 51.0+4.0*
2 CoT 77.84+5.3 63.04+9.3 68.4+6.2 73.04£2.6 60.742.3 73.243.6
E} PHP 77.84+5.3 66.7+9.2 77.245.5 76.542.5 75.242.0 73.243.6
: CoT+SC 762454 74.1+8.4* 73.7£5.8 76.842.5 66.74+2.2 76.5+3.5*
g': PHP+SC 74.6+5.4 74.1+8.5" 71.9+5.9 78.6+2.4 74.342.1 71.2+3.6
© CoT+RAD 77.84+5.3 74.14+-8.4" 87.7+4.4* 81.14+2.3* 84.4+1.7* 73.94+3.5
E CoT 55.64+6.2 74.148.5 50.9£6.6 77.242.5 75.442.0 64.74+3.9
E PHP 61.946.2 74.14+8.4 77.542.5 80.3+1.9 64.74+3.8
S CoT+SC 55.64+6.3 74.148.4 56.1£6.6 71.243.7
;'_—" PHP+SC 55.61+6.3 74.1£8.5 56.14+6.5 76.842.5 80.9+£1.9
© CoT+RAD 65.1+6.1* 74.1+8.4 61.4+6.4* 79.3+2.4* 83.6+1.7* 74.54+3.5*

. 30 60

sl b % 1

: : - i

53 15 30

° 340 1 20 100 200 o

= 20 5 10 50 100 20

0% CoT PHP CoT
+RAD +5C +5C

0 CoT PHP CoT
+RAD +5C +5C

0" CoT PHP CoT O "CoT PHP CoT O "CoT PHP Col O CoT PHP Cof
+RAD +5C +SC +RAD +5C +SC +RAD +5C +5C +RAD +SC +SC

a) AddSub b) MultiArith c) SingleEQ d) SVAMP e) GSM8K f) AQUA

Figure 4: Histogram of ranks of the algorithms (the highest probability of the correct answer
results in the lowest rank) for the ‘difficult’ questions from all six arithmetic datasets using GPT-3.5
Turbo.

In order to demonstrate the statistical significance of the increase in probability of the true answer,
we conduct a Wilcoxon signed rank test between p3(y|z) (i.e., the estimated probability of the true
answer obtained from the proposed CoT+RAD) and p; (y|z) (i.e., the probability of the true answer,
at the initialization of CoT+RAD, estimated from CoT+SC using 40 samples), and report the p-values
in Table We observe that except for 5 out of 36 cases (6 datasets, 3 LLMs, and 2 different partitions
of the datasets), the difference between p3(y|z) and p; (y|x) is statistically significant at the 5% level,
providing strong empirical support in favor of the capability of the RAD iterations in increasing the
probability of the true answers.

In addition, we also calculate the percentage of difficult questions for which ps(y|z) > p1(y|z)
is satisfied and report the results in Table[7} We observe that in each case, for the majority of the
questions, RAD iterations do not decrease the probability of the true answer.

s 30 60

= Rank 250 400 140
3280) = w25 50 00 120
2260 % 20 200 300 100
34, 15 30 200 &
s 10 20 100 o
= 20 5 10 50 100 0

07 CoT PHP CoT O "CoT PHP CoT
+RAD +5C +5C +RAD +5C +5C

0 Cor PHP CoT O CoT PHP Cor O CoT PHP CoT O CoT PHP CoT
+RAD +5C +5C +RAD +5C +SC +RAD +5C +5C +RAD +5C +5C

a) AddSub b) MultiArith c) SingleEQ d) SVAMP €) GSM8K f) AQUA
Figure 5: Histogram of ranks of the algorithms (the highest probability of the correct answer

results in the lowest rank) for the ‘difficult’ questions from all six arithmetic datasets using GPT-4
Turbo.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 6: p-value from Wilcoxon signed rank test between the probabilities of true answers from
distributions ps(y|x) and p; (y|z) for the ‘difficult’ questions (for the entire dataset)

LLM AddSub MultiArith SingleEQ SVAMP GSMSK AQuA
GPT-35Turbo 0.0291 (0.1172) 0.0006 (1.3x10~°) 0.0012 (8.6x 10~ ") 0.0132 (1.4x 10~ %) 9.2x10~ ¥ (4.3x 10~ 2%) 0.0001 (1.6x 10~ %)
GPT-4Turbo 0.2868(0.2258) 0.0104 (2.3x107%) 0.0002 (6.2x1077) 4.8x107% (1.7x107 %) 2.2x1073! (1.5x107%1) 0.0065 (0.0042)
GPT-40-mini 0.0038 (0.0024) 0.8413 (0.0243) 0.0317 (0.0255) 0.5898 (0.3028) 4.5x107'2 (5.2x107'?) 2.1x107° (8.5x107°)

Table 7: Percentage of ‘difficult’ questions (percentage of questions in the entire dataset), so that
p3(ylx) = p1(y|x) is satisfied (in other words, RAD does not decrease the probability of the true
answer)

LLM AddSub MultiArith SingleEQ SVAMP GSMSK AQuA

GPT-3.5 Turbo 79.4 (92.7) 85.2(97.3) 86.0(97.2) 63.5(83.8) 70.8(81.4) 64.7(74.8)
GPT-4 Turbo 76.2(95.7) 96.3 (99.7) 87.7(98.0) 89.5(96.9) 857(93.3) 79.1(86.6)
GPT-40-mini 85.7(97.2) 96.3 (99.7) 82.5(97.0) 81.1(93.9) 838(92.7) 75.8(83.9)

F REFINEMENT PROMPT USING HINTING (ZHENG ET AL.,(2023)

A typical arithmetic reasoning question is presented in Table|8] where the chain-of-thought yielded
the incorrect answer y = 21. In Table[9] the hinting-based refinement prompt of PHP is applied
to this same question with the hints iy’ = 4, 7, yielding a chain-of-thought with the correct answer
y = 6.

Table 8: Example problem from Zheng et al.[(2023)).

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?

A: There are 21 trees in the Grove today. Grove workers are done planting trees. So 21 trees were
planted in the Grove.

Table 9: Demonstration of the hinting prompt from Zheng et al.|(2023), as applied to the example
problem from Table (8| Additions are highlighted in blue.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 4, 7).

A: We know the Answer Hints: 4, 7. With the Answer Hints: 4, 7, we will answer the question.
There are 15 trees originally. Then there were 21 trees after the Grove workers planted some more.
So there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

G EXAMPLES OF FULL PROMPTS

We provide examples of full prompts for CoT in Table[I0] PHP in Table[IT]and our method CoT+RAD
in Table[T2] As CoT+SC and PHP+SC are simply sampled versions of CoT and PHP, the prompts are
identical as in those cases. The base examples are taken from Zheng et al.| (2023).

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 10: An example of a CoT prompt with 4 few-shot examples.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally.Then there were 21 trees after the Grove workers planted some
more. So there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?

A: There are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot.
The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total?

A: Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?

A: Jason had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?
A:

Table 11: An example of a PHP prompt with 4 few-shot examples. The few-shot questions are
provided true answer, while the test question is provided with the history so far, in this case ¢y’ =
7,11,8.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 6).

A: We know the Answer Hints: 6. With the Answer Hints: 6, we will answer the question. There
are 15 trees originally. Then there were 21 trees after the Grove workers planted some more. So
there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot? (Hint: The answer is near to 5).

A: We know the Answer Hints: 5. With the Answer Hints: 5, we will answer the question. There
are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot. The
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total? (Hint: The answer is near to 39).

A: We know the Answer Hints: 39. With the Answer Hints: 39, we will answer the question.
Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny? (Hint: The answer is near to 8).

A: We know the Answer Hints: 8. With the Answer Hints: 8, we will answer the question. Jason
had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12
= 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now? (Hint: The answer is near to 7, 11, 8).
A:

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 12: An example of a CoT+RAD prompt with 4 few-shot examples. The few-shot questions
are provided with true answers as hints, while the test question is provided with one of the distinct
answers obtained during the interaction with the LLM in the previous iteration. In this case, y’ = 8.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 0).

A: We know the Answer Hints: 6. With the Answer Hints: 6, we will answer the question. There
are 15 trees originally. Then there were 21 trees after the Grove workers planted some more. So
there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot? (Hint: The answer is near to 5).

A: We know the Answer Hints: 5. With the Answer Hints: 5, we will answer the question. There
are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot. The
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total? (Hint: The answer is near to 39).

A: We know the Answer Hints: 39. With the Answer Hints: 39, we will answer the question.
Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny? (Hint: The answer is near to 8).

A: We know the Answer Hints: 8. With the Answer Hints: 8, we will answer the question. Jason
had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12
= 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now? (Hint: The answer is near to 8).
A:

19

	Introduction
	Problem Statement
	Methodology
	Intuition
	Refined Answer Distributions

	Experimental Results
	Related Work
	Conclusion
	Pseudocode of RAD
	Description of the Benchmark Datasets
	Experimental Results using Llama Models
	Results for the `Difficult' Questions
	Additional Results for Comparing Probability of Correct Answer
	Refinement Prompt using Hinting zheng2023progressive
	Examples of Full Prompts

