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Abstract
We present flow Q-learning (FQL), a simple
and performant offline reinforcement learning
(RL) method that leverages an expressive flow-
matching policy to model arbitrarily complex ac-
tion distributions in data. Training a flow policy
with RL is a tricky problem, due to the iterative
nature of the action generation process. We ad-
dress this challenge by training an expressive one-
step policy with RL, rather than directly guiding
an iterative flow policy to maximize values. This
way, we can completely avoid unstable recursive
backpropagation, eliminate costly iterative action
generation at test time, yet still mostly maintain
expressivity. We experimentally show that FQL
leads to strong performance across 73 challeng-
ing state- and pixel-based OGBench and D4RL
tasks in offline RL and offline-to-online RL.

https://seohong.me/projects/fql/

1. Introduction
Offline reinforcement learning (RL) enables training an ef-
fective decision-making policy from a previously collected
dataset without costly environment interactions (Lange et al.,
2012; Levine et al., 2020). The essence of offline RL
is constrained optimization: the agent must maximize re-
turns while staying within the dataset’s state-action distribu-
tion (Levine et al., 2020). As datasets have grown larger and
more diverse (Collaboration et al., 2024), their behavioral
distributions have become more complex and multimodal,
and this often necessitates an expressive policy class (Man-
dlekar et al., 2021) capable of capturing these complex dis-
tributions and implementing a more precise behavioral con-
straint. In this work, we aim to develop a scalable offline RL
method by leveraging flow matching (Lipman et al., 2023;
Liu et al., 2023; Albergo & Vanden-Eijnden, 2023), a sim-
ple yet powerful generative modeling technique alternative
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Figure 1. Flow Q-learning. Flow-matching policies can model
complex action distributions, but training an iterative flow policy
with RL is challenging. To address this, we train an expressive
one-step policy : µω(s, z) : S × Rd → A to maximize Q values,
while regularizing it with distillation from a BC flow policy.

to denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020). By employing an expressive flow policy, we can ef-
fectively model the arbitrarily complex action distribution
of the dataset and thus enforce an accurate behavioral con-
straint, which is central to many offline RL algorithms (Nair
et al., 2020; Fujimoto & Gu, 2021; Tarasov et al., 2023a).

However, leveraging flow or diffusion models to parameter-
ize policies for offline RL is not a trivial problem. Unlike
with simpler policy classes, such as Gaussian policies, there
is no straightforward way to train the flow or diffusion poli-
cies to maximize a learned value function, due to the itera-
tive nature of these generative models. This is an example
of a policy extraction problem, which is known to be a key
challenge in offline RL in general (Park et al., 2024a). Pre-
vious works have devised diverse ways to extract an itera-
tive generative policy from a learned value function, based
on weighted regression, reparameterized policy gradient, re-
jection sampling, and other techniques. While they have
shown promising initial results, these extraction schemes
are often limited or not necessarily scalable to more com-
plex problems, due to their inherent drawbacks (e.g., unsta-
ble backpropagation through time, limited use of samples,
and high computational cost; Section 4.1).

In this work, we propose a simple and effective way to
leverage an expressive flow policy for offline RL. Our main
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idea is to train an iterative flow policy only with behav-
ioral cloning (BC). Instead, we train a separate, expressive
one-step policy that maximizes values while distilling from
the flow model (Figure 1). By lifting the burden of value
maximization from the flow model, we completely avoid
the problems associated with steering the iterative process,
while fully leveraging the expressivity of the flow model.
Moreover, this procedure yields an expressive one-step pol-
icy as the output, which eliminates costly iterative flow steps
at evaluation time. We call this method flow Q-learning
(FQL), which constitutes our main contribution.

FQL is simple: thanks to the simplicity of flow matching
(especially compared to denoising diffusion), it can be im-
plemented within a few lines on top of the standard actor-
critic framework (Algorithm 1). Yet, FQL is highly effective
and efficient. Especially on complex tasks involving highly
multimodal action distributions, FQL often leads to signifi-
cantly better performance than both Gaussian and diffusion
policy-based offline RL methods, without requiring itera-
tive flow steps at test time. Moreover, FQL can be directly
fine-tuned with online rollouts, often outperforming exist-
ing offline-to-online RL methods. We empirically show the
effectiveness of FQL on 73 diverse state- and pixel-based
tasks across the recently proposed OGBench (Park et al.,
2025) and standard D4RL (Fu et al., 2020) benchmarks.

2. Preliminaries
Offline RL. In this work, we assume a Markov deci-
sion process M (Sutton & Barto, 2005) defined by a tu-
ple (S,A, r, ρ, p), where S is the state space, A = Rd

is the d-dimensional action space, r(s, a) : S × A → R
is the reward function, ρ(s) ∈ ∆(S) is the initial state
distribution, and p(s′ | s, a) : S × A → ∆(S) is the
transition dynamics distribution, where we denote the set
of probability distributions over a space X as ∆(X ) and
use gray to denote placeholder variables. The goal of of-
fline RL is to find the parameter θ of a policy πθ(a | s) :
S → ∆(A) that maximizes the average discounted return
R(πθ) = Eτ∼pπθ (τ)[

∑H
h=0 γ

hr(sh, ah)] from a dataset
D = {τ (n)}n∈{1,2,...,N} without environment interac-
tions, where τ denotes a trajectory (s0, a0, . . . , sH , aH),
γ denotes a discount factor, and pπθ (τ) is defined as
ρ(s0)πθ(a0 | s0)p(s1 | s0, a0) · · ·πθ(aH | sH). In this
work, we also consider offline-to-online RL, whose goal is
to further fine-tune the offline pre-trained policy with a mod-
est amount of online environment interactions.

Behavior-regularized actor-critic.1 Behavior-regularized
actor-critic (Wu et al., 2019; Fujimoto & Gu, 2021; Tarasov

1Here, we use the term “behavior-regularized actor-critic” to
refer to a general framework encompassing a family of approaches,
not solely the specific BRAC method (Wu et al., 2019).

et al., 2023a) is one of the simplest (yet effective) offline
RL frameworks. In its most basic form, it minimizes the
following actor-critic losses:

LQ(ϕ) = Es,a,r,s′∼D,
a′∼πθ

[(Qϕ(s, a)− r − γQϕ̄(s
′, a′))2],(1)

Lπ(θ) = Es,a∼D,aπ∼πθ
[−Qϕ(s, a

π)︸ ︷︷ ︸
Q loss

−α log π(a | s)︸ ︷︷ ︸
BC loss

],(2)

whereQϕ(s, a) : S×A → R is a state-action value function
with parameter ϕ, Qϕ̄(s, a) is a target network (Mnih et al.,
2013), α is a hyperparameter that controls the strength of
the behavioral cloning (BC) regularizer, and s, a, r, s′ ∼ D
denotes uniform sampling over the dataset’s transition tuples.
Intuitively, the critic loss LQ(ϕ) minimizes the standard
Bellman error, while the actor loss Lπ(θ) maximizes values
with reparameterized gradients through aπ, For the actor,
the BC loss is additionally applied to prevent the policy from
deviating too much from the behavioral policy’s distribution.
The policy is typically modeled by a Gaussian distribution
to enable effective reparameterization. Perhaps surprisingly,
despite its simplicity, behavior-regularized actor-critic is
one of the most performant frameworks on standard D4RL
tasks (Tarasov et al., 2023a). In this work, we build our
flow-based offline RL method on a variant of the behavior-
regularized actor-critic framework.

Flow matching. Flow matching (Lipman et al., 2023; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023) is a sim-
pler alternative to denoising diffusion (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021) for training itera-
tive generative models. Unlike denoising diffusion models,
which are based on stochastic differential equations (SDEs),
flow models are rooted in deterministic ordinary differen-
tial equations (ODEs), which enable significantly simpler
training and faster inference, while often achieving better
quality (Esser et al., 2024; Lipman et al., 2024).

Given a data distribution p(x) ∈ ∆(Rd) on a d-dimensional
Euclidean space, flow matching aims to fit the parameter θ
of a time-dependent velocity field vθ(t, x) : [0, 1]× Rd →
Rd such that its corresponding flow (Lee, 2012) ψθ(t, x) :
[0, 1]×Rd → Rd, defined by the unique solution to the ODE

d

dt
ψθ(t, x) = vθ(ψθ(t, x)), (3)

transforms a simple distribution (e.g., unit Gaussian) at
t = 0 into the target data distribution p(x) at t = 1.

In this work, we consider the simplest variant of flow match-
ing based on linear paths and uniform time sampling (Lip-
man et al., 2024). The objective is as follows:

min
θ

Ex0∼N (0,Id),

x1∼p(x),
t∼Unif([0,1])

[
∥vθ(t, xt)− (x1 − x0)∥22

]
, (4)
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where N (0, Id) is the d-dimensional standard normal dis-
tribution, Unif([0, 1]) denotes the uniform distribution over
the unit interval, and xt = (1− t)x0 + tx1 is the linear in-
terpolation between x0 and x1. Intuitively, the velocity field
vθ is trained to match the average direction from randomly
sampled x0 and x1. At optimum, this objective produces a
vector field that generates the data distribution p(x). At in-
ference time, we generate samples by numerically solving
the ODE defined by vθ. In this work, we use the simplest
Euler method, which we find to be sufficient. See Lipman
et al. (2024) for further details about flow matching.

Flow policies. In this work, we use flow matching to train
policies. The most basic flow-matching objective for behav-
ioral cloning is as follows:

LFlow(θ) = E s,a=x1∼D,
x0∼N (0,Id),
t∼Unif([0,1])

[
∥vθ(t, s, xt)− (x1 − x0)∥22

]
,

(5)

where vθ(t, s, x) : [0, 1] × S × Rd → Rd is a state- and
time-dependent vector field with parameter θ. Recall that A
is defined as Rd, and flow matching happens in the action
space. The state-dependent vector field generates a state-
dependent flow ψθ(t, s, x) : [0, 1]× S × Rd → Rd, which
serves as a policy. For s ∈ S and z ∈ Rd, we simply denote
the ODE’s output ψθ(1, s, z) by µθ(s, z). Intuitively, µθ

maps the noise z = x0 (sampled from the standard normal
distribution) to the action a = µθ(s, z) by the ODE.

Notational warning: Note that µθ(s, z) is a deterministic
function from S ×Rd toA, but serves as a stochastic policy
from S to A due to the stochasticity of z ∼ N (0, Id). We
denote the corresponding induced stochastic policy as πθ(a |
s), and loosely refer to both µθ and πθ as “policies.”

3. Flow Q-Learning
We now introduce our method for effective data-driven
decision-making, flow Q-learning (FQL). Our desider-
ata are twofold: we want to leverage an expressive flow-
matching policy to deal with complex behavioral action dis-
tributions; we also want to keep the method as simple as pos-
sible so that practitioners can easily implement and use it.

Naı̈ve approach. Perhaps the simplest way to train a flow
policy for offline RL is to replace the BC loss with a flow-
matching loss (Equation (5)) in the behavior-regularized
actor-critic framework (Equation (2)). Formally, this naı̈ve
approach minimizes the actor loss Lπ(θ) defined by

Lπ(θ) = Es∼D,aπ∼πθ
[−Qϕ(s, a

π)]︸ ︷︷ ︸
Q loss

+αLFlow(θ)︸ ︷︷ ︸
BC loss

. (6)

Intuitively, the corresponding flow policy πθ is “steered”
to maximize the value function while minimizing the BC
loss. This is analogous to Diffusion-QL (Wang et al., 2023)

BC 
loss

Q
lossπθ

Flow

BPTT

BC 
loss

Q
lossπθ

BC flow
πω

One-step

(a) Naïve approach.

(b) Our solution.

Figure 2. The idea. Offline RL is essentially a tug-of-war between
behavioral regularization and value maximization. (a) Naı̈vely do-
ing this with a flow policy involves costly and unstable backpropa-
gation through time (BPTT). (b) We resolve this by training a sepa-
rate one-step policy, which maximizes values without BPTT while
being regularized by a distillation loss from a BC flow policy.

for diffusion policies. However, unlike the Gaussian case,
the flow or diffusion objective requires backpropagation
through time in the Q loss (Equation (6)) due to the recur-
sion in numerical ODE solvers (e.g., the Euler method) (Fig-
ure 2a). Unfortunately, this is often unstable and costly in
practice, potentially leading to suboptimal performance, as
we will show in our experiments.

Solution. Our main idea is to not steer the original flow
policy at all. Instead, we will train the flow policy only with
the BC loss, and train a separate expressive one-step policy
to maximize the value function while regularizing it by a
distillation loss from the full BC flow policy. Since the one-
step policy does not involve any iterative procedures, we
can completely avoid backpropagation through time in the
Q loss (Equation (6)). We call this idea one-step guidance.

z a

µθ(s, z)
Flow policy (ODE)

µω(s, z)
One-step policy

Figure 3. One-step policy. The one-step policy µω learns the di-
rect mapping from z to a of the flow policy µθ , while simultane-
ously maximizing values (this part is omitted in the figure).

More formally, we train a flow policy µθ(s, z) only with
the BC flow-matching loss (Equation (5)). Alongside, we
train a one-step prediction model µω(s, z) : S × Rd → A
with parameter ω, whose main role is to learn the direct
mapping from noise z to the output action of the full ODE
flow policy a = µθ(s, z), while simultaneously maximizing
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Algorithm 1 Flow Q-Learning (FQL)

function µθ(s, z) ▷ BC flow policy
for t = 0, 1, . . . ,M − 1 do

z ← z + vθ(t/M, s, z)/M ▷ Euler method
return z

while not converged do
Sample batch {(s, a, r, s′)} ∼ D
▷ Train critic Qϕ

z ∼ N (0, Id)
a′ ← µω(s

′, z)
Update ϕ to minimize E[(Qϕ(s, a)− r − γQϕ̄(s

′, a′))2]

▷ Train vector field vθ in BC flow policy πθ

x0 ∼ N (0, Id)
x1 ← a
t ∼ Unif([0, 1])
xt ← (1− t)x0 + tx1

Update θ to minimize E[∥vθ(t, s, xt)− (x1 − x0)∥22]

▷ Train one-step policy πω

z ∼ N (0, Id)
aπ ← µω(s, z)
Update ω to minimize E[−Qϕ(s, a

π)+α∥aπ−µθ(s, z)∥22]
return One-step policy πω

values (Figure 3). The distillation loss is defined as follows:

LDistill(ω) = E s∼D,
z∼N (0,Id)

[
∥µω(s, z)− µθ(s, z)∥22

]
. (7)

Recall that µθ(s, z) denotes the output of the ODE defined
by the vector field vθ (Section 2). Importantly, we note
that it is possible to train an expressive one-step model that
generates high-quality samples with distillation losses (Liu
et al., 2023; 2024; Li et al., 2024a; Ding et al., 2024b; Frans
et al., 2025).

We are now ready to describe the complete objective of our
method, flow Q-learning (FQL). FQL has three compo-
nents: critic Qϕ(s, a), BC flow policy µθ(s, z), and one-
step policy µω(s, z). First, as discussed above, the BC flow
policy is trained only with the BC flow-matching loss (Equa-
tion (5)). The critic is trained with the original critic loss of
behavior-regularized actor-critic (Equation (1)), except that
we use the one-step policy πω in place of πθ. Finally, the
one-step policy is trained with the following actor loss:

Lπ(ω) = Es∼D,aπ∼πω
[−Qϕ(s, a

π)]︸ ︷︷ ︸
Q loss

+αLDistill(ω)︸ ︷︷ ︸
"BC" loss

. (9)

Similar to the naı̈ve flow actor loss above (Equation (6)), this
objective maximizes both the Q and BC losses with a hyper-
parameter α. However, it does not involve backpropagation
over time as πω is a one-step policy. Note also that the distil-
lation loss now serves as a behavioral regularizer based on
the BC flow policy (Figure 2b). The output of this algorithm
is the one-step policy πω, which is what is deployed at test
time. We provide a pseudocode for FQL in Algorithm 1, in

Remark: Connection to Wasserstein Regularization

Our distillation loss in Equation (7) has an intriguing con-
nection to Wasserstein behavioral regularization. Let ξ
be a random variable following the d-dimensional stan-
dard normal distribution, N (0, Id). For s ∈ S, let
πθ(s), πω(s) ∈ ∆(A) be the push-forward distributions
of ξ by µθ(s, ·) and µω(s, ·), respectively. Then, the
distillation loss in Equation (7) is an upper bound on
the squared 2-Wasserstein distance between πω(s) and
πθ(s):

LDistill(ω) = E s∼D,
z∼N (0,Id)

[
∥µω(s, z)− µθ(s, z)∥22

]
≥ Es∼D

[
inf

λ∈Λ(πω,πθ)
Ex,y∼λ[∥x− y∥22]

]
= Es∼D

[
W2(πω, πθ)

2
]
, (8)

where Λ(πω, πθ) denotes the set of coupling distributions
of πω and πθ, andW2 denotes the 2-Wasserstein distance
with the Euclidean metric in the action space.

Table 1. Behavioral regularizers in offline RL.

Offline RL Method Behavioral Regularizer Metric-Aware?

TD3+BC DKL

AWAC DKL

CQL χ2

FQL (ours) W 2
2

Hence, the BC term in the FQL actor loss (Equation (9))
can be interpreted as an upper bound on the squared
2-Wasserstein distance between the current policy πω
and the data-collecting policy approximated by πθ. This
Wasserstein regularizer is analogous to the KL behav-
ioral regularizer in TD3+BC (Fujimoto & Gu, 2021) and
AWAC (Nair et al., 2020), and the χ2 behavioral regu-
larizer in CQL (Kumar et al., 2020; Garg et al., 2023).
However, unlike the KL and χ2 divergences, which are
(in principle) invariant and agnostic to any metric struc-
tures,a our 2-Wasserstein distance is aware of the metric
structure over actions (which we impose as the Euclidean
distance) (Table 1). This metric-aware property poten-
tially incorporates a better inductive bias about the simi-
larity between actions, akin to how Wasserstein distances
improve upon metric-agnostic divergences in other con-
texts in machine learning (Arjovsky et al., 2017; Park
et al., 2024b).

aWhile the original KL and χ2 divergences are entirely
metric-agnostic, this property may be lost in practice with vari-
ational approximation (e.g., with a Gaussian parameterization).
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which M denotes the number of steps for the Euler method,
and describe the full implementation details in Appendix B.

Why is it a good idea? FQL has three benefits. First, it
leverages reparameterized policy gradient (i.e., directly max-
imizing the Q function with gradients through aπ), which
is known to be one of the most effective policy extraction
methods (Park et al., 2024a), while entirely avoiding unsta-
ble and costly backpropagation through time. We will re-
visit this point in more detail in Section 4.1, and empirically
show its effectiveness through our experiments (Section 5).
Second, FQL yields an efficient one-step policy as the out-
put, which eliminates iterative flow generation processes at
inference time, while maintaining most of the expressivity
of the full flow model (Liu et al., 2023; Frans et al., 2025).
Third, FQL is easy-to-implement and easy-to-tune: thanks
to the simplicity of flow-matching, it can be implemented
in a few lines on top of the standard behavior-regularized
actor-critic framework, and has only one major hyperparam-
eter α, without requiring tuning a noise schedule.

4. Prior Work
Offline RL and offline-to-online RL. The goal of offline
RL is to train a policy using only previously collected data.
Hundreds of offline RL methods and techniques have been
proposed so far, and many of them are based on a single
central idea: maximizing the return while minimizing a
discrepancy measure between the state-action distribution of
the dataset and that of the learned policy (Levine et al., 2020;
Sikchi et al., 2024). Previous works have implemented
this high-level objective in diverse ways through behavioral
regularization (Nair et al., 2020; Fujimoto & Gu, 2021;
Tarasov et al., 2023a), conservatism (Kumar et al., 2020), in-
sample maximization (Kostrikov et al., 2022; Xu et al., 2023;
Garg et al., 2023), out-of-distribution detection (Yu et al.,
2020; Kidambi et al., 2020; An et al., 2021; Nikulin et al.,
2023), dual RL (Lee et al., 2021a; Sikchi et al., 2024), and
generative modeling (Chen et al., 2021; Janner et al., 2021;
2022). After finishing offline RL training, we can further
fine-tune the policy with additional online rollouts. This
setting is often referred to as offline-to-online RL, for which
several techniques have been proposed (Lee et al., 2021b;
Song et al., 2023; Nakamoto et al., 2023; Ball et al., 2023;
Yu & Zhang, 2023). Our method, FQL, is mainly designed
for offline RL, but we show that it can also be directly fine-
tuned with online rollouts without any algorithmic changes.

RL with diffusion and flow models. Motivated by the re-
cent successes of iterative generative modeling techniques,
such as denoising diffusion (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Dhariwal & Nichol, 2021) and flow match-
ing (Lipman et al., 2023; Esser et al., 2024), researchers
have developed diverse ways to integrate them into RL. Pre-
vious works have applied iterative generative models to

planning and hierarchical learning (Janner et al., 2022; Ajay
et al., 2023; Zheng et al., 2023; Liang et al., 2023; Li et al.,
2023; Suh et al., 2023; Venkatraman et al., 2024; Chen et al.,
2024a), world modeling and data augmentation (Lu et al.,
2023a; Ding et al., 2024c; Jackson et al., 2024; Alonso et al.,
2024), exploration (Mazoure et al., 2019; Ren et al., 2025),
and policy modeling (Section 4.1). Our method belongs to
the third category, where we model a policy with an expres-
sive flow network to capture the arbitrarily complex distri-
bution of the behavioral policy.

4.1. How Have Previous Works Trained Diffusion and
Flow Policies with RL?

Various approaches have been proposed for training diffu-
sion or flow policies with RL. In this section, we provide an
in-depth review of these methods, discuss their advantages
and limitations, and explain how FQL relates to prior work.
Prior methods can be categorized into several groups based
on their policy extraction strategies (Park et al., 2024a).

(1) Weighted behavioral cloning. One straightforward ap-
proach to modulating a diffusion or flow policy is to as-
sign weights to transition samples based on the correspond-
ing learned values. The most basic form uses advantage-
weighted regression (AWR) (Peters & Schaal, 2007; Peng
et al., 2019; Nair et al., 2020) with the following objective:

max
θ

Es,a∼D

[
eα(Q(s,a)−V (s))LFlow(θ)

]
, (10)

where α is an inverse temperature hyperparameter, and
Q(s, a) : S × A → R and V (s) : S → R are state-action
and state value functions, respectively (Sutton & Barto,
2005). For diffusion policies, LFlow(θ) is replaced with a
diffusion loss. Intuitively, this objective makes the policy
selectively clone transitions with high advantages. Among
previous works, QGPO (Lu et al., 2023b), EDP (Kang et al.,
2023), QVPO (Ding et al., 2024a), and QIPO (Zhang et al.,
2025) are mainly based on weighted behavioral cloning.

Weighted behavioral cloning is simple and easy to imple-
ment. However, it is known to be one of the least effec-
tive policy extraction methods (Fu et al., 2022; Park et al.,
2024a), due to the small number of effective samples and
limited expressivity.2 In our experiments, we empirically
show that weighted behavioral cloning generally leads to
subpar performance, especially on complex tasks.

(2) Reparameterized policy gradient. Another popular
approach to guide an iterative generative model is to di-
rectly maximize the value function Q(s, a) with reparame-
terized gradients, while regularizing it with a flow or diffu-
sion loss, as in Equation (6). Among previous approaches,
Diffusion-QL (Wang et al., 2023), DiffCPS (He et al., 2023),
Consistency-AC (Ding & Jin, 2024), SRDP (Ada et al.,

2See Park et al. (2024a) for further discussions.
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2024), and EQL (Zhang et al., 2024) implement this scheme
with backpropagation through time.

Reparameterized policy gradient is known to be one of
the most effective policy extraction methods for Gaussian
policies (Park et al., 2024a). However, when naı̈vely applied
to iterative generative models, it requires backpropagation
through time (Equation (9)), which often incurs stability
issues and leads to suboptimal performance (Section 5).

(3) Rejection sampling. The third category is rejection sam-
pling. Instead of adjusting the parameter of the generative
model, we can sample N actions from a fixed BC policy,
and select the action that has the highest value. In other
words, we treat the following formula as a policy:

argmax
a1,...,aN : ai∼πβ

Q(s, ai), (11)

where πβ is a BC policy trained by a flow or diffusion
objective. Among previous works, SfBC (Chen et al., 2023),
IDQL (Hansen-Estruch et al., 2023), and AlignIQL (He
et al., 2024) are based on (variants of) rejection sampling.

Rejection sampling is simple and stable. However, it re-
quires querying the policy and value function N times at ev-
ery environment step during inference (and possibly during
training as well, depending on the method). This can be pro-
hibitive with larger models or a larger number of samples.

(4) Others. Besides these three major categories, other
techniques have also been proposed to guide a diffusion
policy to maximize the learned value function, based on
some combination of the above strategies (Mao et al., 2024),
action gradients (Yang et al., 2023; Psenka et al., 2024;
Li et al., 2024b; Mark et al., 2024; Fang et al., 2025), bi-
level MDPs (Ren et al., 2025), value alignment (Chen et al.,
2024c), and implicit Q-learning (Chen et al., 2024b;d).

Contextualizing FQL in prior work. Our approach, FQL,
falls into the second category, reparameterized policy gra-
dient, which is known to be one of the most effective pol-
icy extraction schemes (Park et al., 2024a). However, un-
like the previous methods discussed above in the same cate-
gory, which use backpropagation through time, we entirely
bypass recursive backpropagation by only steering the one-
step policy to maximize values (Equation (9)), while train-
ing the flow policy solely with the BC loss. Among previous
works, Consistency-AC (Ding & Jin, 2024), SRPO (Chen
et al., 2024b), and DTQL (Chen et al., 2024d) also employ
distillation, and in particular, Consistency-AC (Ding & Jin,
2024) shares a conceptually similar high-level objective to
our method (but with consistency models instead of direct
one-step distillation). However, they either still use back-
propagation through time (Ding & Jin, 2024) or are based on
implicit Q-learning (Kostrikov et al., 2022), which is known
to be less effective than actor-critic learning (Tarasov et al.,
2023a). In contrast, we train a one-step policy within a more

Figure 4. OGBench tasks.

effective actor-critic framework, with no backpropagation
through time. In our experiments, we empirically show that
our approach leads to significantly better performance than
previous distillation-based methods (Consistency-AC and
SRPO) as well as other policy extraction schemes.

5. Experiments
In this section, we empirically evaluate the performance
of FQL, comparing it to previous offline RL and offline-
to-online RL approaches on a variety of challenging tasks.
We also provide extensive analyses and ablations on policy
extraction strategies and FQL’s design choices.

5.1. Experimental Setup

Benchmarks. We use the recently proposed OGBench
task suite (Park et al., 2025) as the main benchmark (Fig-
ure 4). OGBench provides a number of diverse, challeng-
ing tasks across robotic locomotion and manipulation, with
both state and pixel observations, where these tasks are gen-
erally more challenging than standard D4RL tasks (Fu et al.,
2020), which have been saturated as of 2025 (Tarasov et al.,
2023a; Rafailov et al., 2024; Park et al., 2024a). While OG-
Bench was originally designed for benchmarking offline
goal-conditioned RL, we use its reward-based single-task
variants (“-singletask”) to make it compatible with stan-
dard reward-maximizing offline RL algorithms. We employ
5 locomotion and 5 manipulation environments where each
environment provides 5 separate tasks, bringing the total to
50 state-based OGBench tasks. In addition, we consider 5
diverse OGBench visual manipulation tasks to challenge
the agent’s ability to handle 64 × 64 × 3-sized image ob-
servations. Finally, we also employ relatively challenging 6
antmaze and 12 adroit tasks from the D4RL benchmark.

Methods. For our offline RL experiments, we use the fol-
lowing 9 recent methods as representative examples of a va-
riety of algorithm types and policy extraction strategies.

(1) Gaussian policies. For standard offline RL methods
that use Gaussian policies, we consider BC, IQL (Kostrikov
et al., 2022), and ReBRAC (Tarasov et al., 2023a). In par-
ticular, ReBRAC is known to achieve state-of-the-art perfor-
mance on many D4RL tasks (Tarasov et al., 2023b), and is
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Table 2. Offline RL results. FQL achieves the best or near-best performance on most of the 73 diverse, challenging benchmark tasks.
The performances are averaged over 8 seeds (4 seeds for pixel-based tasks), but the cells without the “±” sign indicate that the numbers
are taken from prior works (Tarasov et al., 2023b; Hansen-Estruch et al., 2023; Chen et al., 2024b). See Table 3 for the full results.

Gaussian Policies Diffusion Policies Flow Policies

Task Category BC IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL

OGBench antmaze-large-singletask (5 tasks) 11 ±1 53 ±3 81 ±5 21 ±5 11 ±4 33 ±4 6 ±1 60 ±6 28 ±5 79 ±3

OGBench antmaze-giant-singletask (5 tasks) 0 ±0 4 ±1 26 ±8 0 ±0 0 ±0 0 ±0 0 ±0 4 ±4 3 ±2 9 ±6

OGBench humanoidmaze-medium-singletask (5 tasks) 2 ±1 33 ±2 22 ±8 1 ±0 1 ±1 53 ±8 19 ±1 38 ±5 60 ±14 58 ±5

OGBench humanoidmaze-large-singletask (5 tasks) 1 ±0 2 ±1 2 ±1 1 ±0 0 ±0 0 ±0 0 ±0 2 ±0 11 ±2 4 ±2

OGBench antsoccer-arena-singletask (5 tasks) 1 ±0 8 ±2 0 ±0 12 ±4 1 ±0 2 ±4 12 ±0 16 ±1 33 ±6 60 ±2

OGBench cube-single-singletask (5 tasks) 5 ±1 83 ±3 91 ±2 95 ±2 80 ±5 85 ±9 81 ±4 79 ±7 79 ±2 96 ±1

OGBench cube-double-singletask (5 tasks) 2 ±1 7 ±1 12 ±1 15 ±6 2 ±1 6 ±2 5 ±2 15 ±3 14 ±3 29 ±2

OGBench scene-singletask (5 tasks) 5 ±1 28 ±1 41 ±3 46 ±3 20 ±1 40 ±7 30 ±3 45 ±5 30 ±3 56 ±2

OGBench puzzle-3x3-singletask (5 tasks) 2 ±0 9 ±1 21 ±1 10 ±2 18 ±1 19 ±0 6 ±2 14 ±4 19 ±1 30 ±1

OGBench puzzle-4x4-singletask (5 tasks) 0 ±0 7 ±1 14 ±1 29 ±3 10 ±3 15 ±3 1 ±0 13 ±1 25 ±5 17 ±2

D4RL antmaze (6 tasks) 17 57 78 79 74 30 ±3 44 ±3 64 ±7 65 ±7 84 ±3

D4RL adroit (12 tasks) 48 53 59 52 ±1 51 ±1 43 ±2 48 ±1 50 ±2 52 ±1 52 ±1

Visual manipulation (5 tasks) - 42 ±4 60 ±2 - - - - 22 ±2 50 ±5 65 ±2

1 Due to the high computational cost of pixel-based tasks, we selectively benchmark 5 methods that achieve strong performance on state-based OGBench tasks.

the closest Gaussian baseline to FQL in that both are based
on behavior-regularized actor-critic (Section 2).

(2) Diffusion policies. For diffusion policy-based offline
RL methods, we consider IDQL (Hansen-Estruch et al.,
2023), SRPO (Chen et al., 2024b), and Consistency-AC
(CAC) (Ding & Jin, 2024). IDQL is based on rejection
sampling, and SRPO and CAC are based on policy distilla-
tion, as in FQL. In particular, CAC is the closest diffusion
baseline to FQL, in that they both train distillation policies
within the behavior-regularized actor-critic framework, al-
though CAC still employs backpropagation through time
(but with fewer steps) and is based on consistency models
rather than direct one-step distillation.

(3) Flow policies. Since there are currently only a few
prior methods that explicitly employ flow policies (Zhang
et al., 2025), we consider flow variants of previous meth-
ods to cover the three main policy extraction schemes dis-
cussed in Section 4.1. Flow advantage-weighted actor-critic
(FAWAC) is a flow variant of AWAC (Nair et al., 2020),
which uses AWR (Equation (10)) as the policy learning ob-
jective, conceptually similar to QIPO (Zhang et al., 2025).
Flow behavior-regularized actor-critic (FBRAC) is the flow
counterpart of Diffusion-QL (DQL) (Wang et al., 2023)
based on the naı̈ve Q loss with backpropagation through
time (Equation (6)). Implicit flow Q-learning (IFQL) is
the flow counterpart of IDQL based on rejection sampling
(Equation (11)). Notably, FAWAC and FBRAC are differ-
ent from our method (FQL) only by their policy extraction
strategies while sharing the exact same architectures and
implementations, and thus can provide controlled ablation
results on our distillation-based policy extraction scheme.

For offline-to-online RL experiments, we consider three
prior offline RL methods (IQL, ReBRAC, and IFQL) that
support fine-tuning and achieve strong performance. Addi-

tionally, we consider two performant methods specifically
designed for data-driven online RL, Cal-QL (Nakamoto
et al., 2023) and RLPD (Ball et al., 2023).

Evaluation. For offline RL, we evaluate the performance
of methods after a fixed number of gradient steps; in par-
ticular, we do not report the best performance across differ-
ent evaluation epochs as it may bias results (Tarasov et al.,
2023b). To ensure fair comparisons, we individually tune
hyperparameters of the baselines with similar amounts of
training budget (Appendix E.2), and use the same network
size and discount factor, unless otherwise stated. We use 8
seeds for state-based tasks and 4 seeds for pixel-based tasks,
and present standard deviations after “±” in tables and 95%
bootstrap confidence intervals as shaded areas in plots, un-
less otherwise mentioned. In tables, we denote values at or
above 95% of the best performance in bold, following OG-
Bench (Park et al., 2025). We refer to Appendix E for the
full training and evaluation details.

5.2. Results and Q&As

We present our results via the following Q&As.

Q: How good is FQL for offline RL?

A: FQL achieves the best or near-best performance on most
tasks, especially in complex manipulation environments.

Table 2 summarizes the aggregated benchmarking result on
a total of 73 state- or pixel-based offline RL tasks across
robotic locomotion and manipulation. We find that FQL gen-
erally achieves better performance than previous methods,
including ones based on Gaussian and diffusion policies.
In particular, FQL leads to consistently better performance
than its closest diffusion baseline (CAC), and often signifi-
cantly outperforms its closest Gaussian baseline (ReBRAC)
especially on manipulation tasks, which feature highly mul-
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timodal distributions. We also highlight that FQL achieves
the best performance of 84% on one of the hardest tasks in
the D4RL benchmark, antmaze-large-play (Table 3).

Q: Can’t I just use existing policy extraction schemes?

FAWAC
weighted

regression

FBRAC
reparam.

with BPTT

IFQL
rejection

sampling

FQL
one-step

guidance

16

29 30

44

Figure 5. Policy extraction is important. The bars above compare
the performances of different policy extraction methods averaged
over the 50 state-based OGBench tasks in Table 2.

A: You can, but previous policy extraction schemes gener-
ally lead to (often much) worse performance.

This can be seen by comparing the performances of FQL
and {FAWAC, FBRAC, IFQL}, which are the closest flow-
based baselines to FQL, but with different policy extraction
mechanisms. In particular, FBRAC is exactly the same as
FQL except that it uses backpropagation through time. We
emphasize again that these baselines are implemented on
the same codebase, use the same architecture, and are in-
dividually tuned for each environment (Table 6). Figure 5
compares their offline RL performances aggregated over the
50 state-based OGBench tasks in Table 2. The results show
that policy extraction alone can significantly affect perfor-
mance, consistent with findings in Gaussian policies (Park
et al., 2024a). The results also indicate that our one-step
guidance is the most effective, significantly outperforming
the other previous extraction strategies (Section 4.1).

Q: Can FQL be fine-tuned with online rollouts?
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Figure 6. Offline-to-online RL results (8 seeds). Fine-tuning
starts at 1M. The D4RL results of Cal-QL, ReBRAC, and IQL are
taken from Tarasov et al. (2023b). See Figure 12 for the full plots.

A: Yes, FQL can be directly fine-tuned without any modifica-
tions, and often significantly outperforms previous methods.

Specifically, we can fine-tune FQL simply by adding new on-
line transitions to the datasetD, while continuing to train all
networks using the same objective as in offline training. To
show how effective FQL is for fine-tuning, we evaluate it on
5 representative OGBench tasks across different categories

(Table 4) as well as the 10 D4RL antmaze and adroit

tasks used by Tarasov et al. (2023b). Figure 6 shows the
training curves of FQL and previous approaches on these 15
tasks, where online fine-tuning starts at 1M gradient steps
(see Figure 12 and Table 4 for the full results). The results
show that FQL achieves the best fine-tuning performance
compared to both previous offline RL approaches (includ-
ing IFQL, the strongest flow-based baseline) and methods
specifically designed for online fine-tuning (Cal-QL and
RLPD).

Q: What are the important hyperparameters of FQL?
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Figure 7. The BC coefficient α needs to be tuned. The plots show
how different values of α affect offline RL performance.

A: The most important hyperparameter is the BC coefficient.

Figure 7 shows the ablation results of the BC coefficient
α on three tasks. This hyperparameter needs to be tuned
for each environment based on the suboptimality of the
dataset, as is typical for most offline RL methods (Tarasov
et al., 2023b; Park et al., 2024a). Other than α, the default
hyperparameters of FQL work well, although tuning some
additional hyperparameters (e.g., target value aggregation
described in Appendix B) can slightly boost performance
on some tasks. We provide an extensive ablation study on a
total of 4 factors of FQL in Appendix C.

Q: Do I need to tune flow-related hyperparameters?
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Figure 8. You can just use the uniform time distribution. FQL’s
performance is generally robust to flow-related hyperparameters.

A: No, in general.

For example, Figure 8 shows how the time sampling dis-
tribution for flow matching affects performance, where we
consider the uniform distribution, Unif([0, 1]) (default), the
beta distribution used by Black et al. (2024), and the logit
normal distribution used by Esser et al. (2024). The re-
sults suggest that time distributions matter only marginally,
and the simplest uniform distribution is often sufficient to
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achieve the best performance. Similarly, we find that the per-
formance is generally robust to the number of flow steps (the
default is 10), as long as it is not too small (see Appendix C).

Q: How fast is FQL?
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Figure 9. Run time comparison on cube-double.

A: FQL is one of the fastest flow-based offline RL methods.

Figure 9 shows that, in terms of both training and inference
costs, FQL is only slightly slower than Gaussian policy-
based offline RL methods, while being faster than most flow-
based baselines. See Figure 11 for the detailed comparison
results.

Q: Are flow policies better than diffusion policies?

A: Maybe, but we do not make such a claim in this paper.

The main contribution of this paper is our policy extraction
scheme (one-step guidance), not just the use of flow match-
ing itself. Although we show that one-step guidance com-
bined with flow matching (i.e., FQL) achieves better perfor-
mance than previous policy extraction schemes for diffusion
and flow policies (Table 2), we believe it is possible to ap-
ply our one-step guidance to diffusion policies with appro-
priate modifications to convert SDEs to ODEs (Song et al.,
2021) to achieve similar performance, given the equivalence
between the two frameworks (Gao et al., 2024). Neverthe-
less, flow matching has one arguably clear advantage over
denoising diffusion: it is much simpler to implement!

6. Closing Remarks
We presented flow Q-learning (FQL), a simple and perfor-
mant offline RL method that leverages an expressive flow
policy and reparameterized policy gradient, without suffer-
ing from backpropagation through time. We showed that
FQL generally leads to the best performance on challeng-
ing tasks across robotic locomotion and manipulation, of-
fline RL and offline-to-online RL, as well as state- and
pixel-based settings. FQL, however, is not perfect; see Ap-
pendix A for the limitations of FQL.

As a closing remark, we would like to reiterate one particu-
larly appealing property of FQL — simplicity: one small
algorithm box (Algorithm 1) essentially captures the entire
training objectives of FQL (modulo minor details), includ-
ing all of flow matching, iterative sampling, and value learn-

ing. Given that offline RL is notoriously sensitive to imple-
mentation details in general (Tarasov et al., 2023b), we be-
lieve proposing a simple yet performant method is a particu-
larly important contribution to the community. We hope that
FQL, with our clean, open-source implementation, spurs fu-
ture research in scalable offline RL algorithms.
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A. Limitations
One potential limitation of FQL is that it requires numerically solving ODEs during training to minimize the distillation
loss (Equation (7)). While this is not necessarily a significant speed bottleneck on both state- and pixel-based tasks in our
experiments (as shown in Figure 11) since flow matching happens in the relatively low-dimensional action space (as opposed
to image generation), we believe this may further be improved by incorporating a more advanced one-step distillation
method, such as shortcut models (Frans et al., 2025). Another limitation is that it does not have a “built-in” exploration
mechanism for online fine-tuning. For example, FQL does not achieve the best online fine-tuning on the puzzle-4x4 task
(Table 4), in which exploration can help avoid local optima. While we find that FQL without any additional exploration
bonuses is enough to achieve strong performance on many challenging tasks (Figure 6), we believe it can be further improved
by combining FQL with a more principled exploration strategy or additional specialized fine-tuning techniques, leaving them
for future work. Finally, while we have demonstrated the performance of FQL on various simulated robotics tasks, we have
not evaluated FQL on real-world tasks. We believe applying FQL’s distillation-based policy extraction scheme to real-world
robotic tasks, potentially with a pre-trained flow BC policy (Black et al., 2024), is another exciting future research direction.

B. Implementation Details
In this section, we describe the full implementation details of FQL.

Flow matching. As mentioned in Section 2, we use the simplest flow-matching objective (Equation (5)) based on linear
paths and uniform time sampling. We use a step count of 10 for the Euler method across all tasks, and for simplicity, we do
not use sinusoidal embeddings for the time variable. See Figures 10c and 10d for ablation studies on these flow-related
hyperparameters.

Value learning. Following standard practice in RL, we train two Q functions to improve stability. We take the mean of
the two Q values for the Q loss term in the actor objective (Equation (9)). We also use the mean for the target value in the
critic objective (Equation (1)) by default, but we use the minimum of the two Q values (which is often referred to as clipped
double Q-learning (Fujimoto et al., 2018)) for the adroit and OGBench antmaze-{large, giant} tasks, as we find it to
be slightly better. See Figure 10b for an ablation study on this choice.

Online fine-tuning. For offline-to-online RL, we simply add online transitions to the dataset, without distinguishing them
from the offline transitions (i.e., we do not use balanced sampling, unlike Lee et al. (2021b); Nakamoto et al. (2023); Ball
et al. (2023)). We continue to train the components of FQL with the same objective as in offline training (Algorithm 1).

Network architectures. For FQL, we use [512, 512, 512, 512]-sized multi-layer perceptions (MLPs) for all neural networks.
We apply layer normalization (Ba et al., 2016) to value networks to further stabilize training. We find that using a large
enough network is especially important in navigation environments (e.g., antmaze).

Image processing. For pixel-based environments, we use a smaller variant of the IMPALA encoder (Espeholt et al., 2018)
and apply a random-shift augmentation with a probability of 0.5, following the official implementation of Park et al. (2025).
In addition, we use frame stacking with three images, which we find to be important on some pixel-based tasks, such as
cube and puzzle.

Training and evaluation. We train FQL with 1M gradient steps for state-based OGBench tasks and 500K steps for D4RL
and pixel-based OGBench tasks, and evaluate the agent every 100K steps using 50 episodes. For OGBench, following the
official evaluation scheme (Park et al., 2025), we report the average success rates across the last three evaluation epochs
(800K, 900K, and 1M for state-based tasks and 300K, 400K, and 500K for pixel-based tasks). For D4RL, following
Tarasov et al. (2023b), we report the performance at the last epoch. For offline-to-online RL results (Table 4), we report the
performances at 1M and 2M steps.

BC coefficient α. The most important hyperparameter of FQL is the BC coefficient α in Equation (9). We perform a
hyperparameter search over {1000, 3000, 10000, 30000} for adroit tasks and {3, 10, 30, 100, 300, 1000} for the other
tasks, and use the best one for each environment. We use larger values for adroit tasks simply because their return scale is
significantly larger than that of the other tasks. We believe normalizing the Q loss as in Fujimoto & Gu (2021) would lead
to more similar α values across different tasks. While we do not apply this normalization technique in our experiments,
we recommend enabling Q normalization for new tasks (which is available in our official implementation) and tuning α
starting from {0.03, 0.1, 0.3, 1, 3, 10}. See Figure 10a for an ablation study on the BC coefficient.
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Figure 10. Ablation studies. We ablate several components of FQL and study how they affect performance. The results are averaged over
8 seeds.

Hyperparameters. We refer to Tables 5 to 7 for the complete list of hyperparameters.

C. Ablation Study
In this section, we ablate several components of FQL and study how they affect performance. Figure 10 shows our ablation
results, where we present training curves of FQL with different hyperparameters on a representative selection of tasks.

BC coefficient α. As discussed in the main paper, the BC coefficient α is the most important hyperparameter of FQL.
Figure 10a demonstrates that α needs to be tuned for each task based on the suboptimality of the dataset, as is typical for
most offline RL methods (Park et al., 2024a).

Target value aggregation methods. As discussed in Appendix B, we train two Q functions (Q1 and Q2) and use their
mean, (Q1 +Q2)/2, for target values in the critic loss by default, but we use their minimum, min(Q1, Q2), for some tasks,
such as adroit. We present the ablation results in Figure 10b with the BC coefficient α individually tuned for each ablation
setting. The results show that not using clipped double Q-learning often leads to better performance, which is aligned with
recent findings in online RL (Ball et al., 2023; Nauman et al., 2024; Lee et al., 2025).

Flow steps. To numerically solve ODEs, we use the Euler method, which requires a pre-specified number of steps. In this
work, we use 10 steps for all experiments. Figure 10c shows the ablation results, which suggest that the performance is
generally robust to the number of flow steps, as long as it is not too small.

Time distributions for flow matching. In this work, we use the uniform distribution, Unif([0, 1]), to sample time steps for
flow matching. Prior works have considered other time distributions as well. For example, Esser et al. (2024) use the logit
normal distribution to emphasize intermediate steps (i.e., first sample t̃ from the standard normal distribution, t̃ ∼ N (0, I),
and then map it via the sigmoid function, t← 1/(1+ e−t̃)), and Black et al. (2024) employ a beta distribution, Beta(1, 1.5),
to make the flow model focus more on the initial steps. We evaluate these three strategies and report the results in Figure 10d.
The results suggest that the performance is generally robust to the choice of the time distribution, and the simplest uniform
distribution is often enough to achieve the best performance.
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D. Additional Results
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Figure 11. Run time comparison. FQL is only slightly slower than Gaussian policy-based offline RL methods, while being faster than
most other flow-based methods in terms of both training and inference speeds. The run times are measured on the same machine using a
single A5000 GPU, and are averaged over 8 seeds.

Run time comparison. Figure 11 compares the training and inference speeds of different methods on cube-double and
visual-cube-double, where we consider methods implemented in the same codebase as FQL for a fair comparison.
The results show that FQL achieves the best or near-best speed in terms of both training and inference among flow-based
approaches. Notably, FQL is faster than FBRAC during training as it does not use potentially costly backpropagation
through time, and is faster than IFQL during inference as it does not use rejection sampling.

Full results. We present the full per-task offline RL results in Table 3 and the full offline-to-online RL results in Table 4 and
Figure 12. The results are averaged over 8 seeds (4 seeds for pixel-based tasks), and we report standard deviations after “±”
in tables and 95% bootstrap confidence intervals as shaded areas in plots. In tables, we denote values at or above 95% of
the best performance in bold, following OGBench (Park et al., 2025). Results without standard deviations or confidence
intervals indicate that they are taken from prior work; the D4RL results of BC, IQL, ReBRAC, and Cal-QL are taken from
Tarasov et al. (2023b), and the antmaze results of IDQL and SRPO are from Hansen-Estruch et al. (2023) and Chen et al.
(2024b), respectively.
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Table 3. Full offline RL results. We present the full results on the 73 OGBench and D4RL tasks. (*) indicates the default task in each
environment. The results are averaged over 8 seeds (4 seeds for pixel-based tasks) unless otherwise mentioned.

Gaussian Policies Diffusion Policies Flow Policies

Task BC IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL

antmaze-large-navigate-singletask-task1-v0 (*) 0 ±0 48 ±9 91 ±10 0 ±0 0 ±0 42 ±7 1 ±1 70 ±20 24 ±17 80 ±8

antmaze-large-navigate-singletask-task2-v0 6 ±3 42 ±6 88 ±4 14 ±8 4 ±4 1 ±1 0 ±1 35 ±12 8 ±3 57 ±10

antmaze-large-navigate-singletask-task3-v0 29 ±5 72 ±7 51 ±18 26 ±8 3 ±2 49 ±10 12 ±4 83 ±15 52 ±17 93 ±3

antmaze-large-navigate-singletask-task4-v0 8 ±3 51 ±9 84 ±7 62 ±25 45 ±19 17 ±6 10 ±3 37 ±18 18 ±8 80 ±4

antmaze-large-navigate-singletask-task5-v0 10 ±3 54 ±22 90 ±2 2 ±2 1 ±1 55 ±6 9 ±5 76 ±8 38 ±18 83 ±4

antmaze-giant-navigate-singletask-task1-v0 (*) 0 ±0 0 ±0 27 ±22 0 ±0 0 ±0 0 ±0 0 ±0 0 ±1 0 ±0 4 ±5

antmaze-giant-navigate-singletask-task2-v0 0 ±0 1 ±1 16 ±17 0 ±0 0 ±0 0 ±0 0 ±0 4 ±7 0 ±0 9 ±7

antmaze-giant-navigate-singletask-task3-v0 0 ±0 0 ±0 34 ±22 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±1

antmaze-giant-navigate-singletask-task4-v0 0 ±0 0 ±0 5 ±12 0 ±0 0 ±0 0 ±0 0 ±0 9 ±4 0 ±0 14 ±23

antmaze-giant-navigate-singletask-task5-v0 1 ±1 19 ±7 49 ±22 0 ±1 0 ±0 0 ±0 0 ±0 6 ±10 13 ±9 16 ±28

humanoidmaze-medium-navigate-singletask-task1-v0 (*) 1 ±0 32 ±7 16 ±9 1 ±1 0 ±0 38 ±19 6 ±2 25 ±8 69 ±19 19 ±12

humanoidmaze-medium-navigate-singletask-task2-v0 1 ±0 41 ±9 18 ±16 1 ±1 1 ±1 47 ±35 40 ±2 76 ±10 85 ±11 94 ±3

humanoidmaze-medium-navigate-singletask-task3-v0 6 ±2 25 ±5 36 ±13 0 ±1 2 ±1 83 ±18 19 ±2 27 ±11 49 ±49 74 ±18

humanoidmaze-medium-navigate-singletask-task4-v0 0 ±0 0 ±1 15 ±16 1 ±1 1 ±1 5 ±4 1 ±1 1 ±2 1 ±1 3 ±4

humanoidmaze-medium-navigate-singletask-task5-v0 2 ±1 66 ±4 24 ±20 1 ±1 3 ±3 91 ±5 31 ±7 63 ±9 98 ±2 97 ±2

humanoidmaze-large-navigate-singletask-task1-v0 (*) 0 ±0 3 ±1 2 ±1 0 ±0 0 ±0 1 ±1 0 ±0 0 ±1 6 ±2 7 ±6

humanoidmaze-large-navigate-singletask-task2-v0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

humanoidmaze-large-navigate-singletask-task3-v0 1 ±1 7 ±3 8 ±4 3 ±1 1 ±1 2 ±3 1 ±1 10 ±2 48 ±10 11 ±7

humanoidmaze-large-navigate-singletask-task4-v0 1 ±0 1 ±0 1 ±1 0 ±0 0 ±0 0 ±1 0 ±0 0 ±0 1 ±1 2 ±3

humanoidmaze-large-navigate-singletask-task5-v0 0 ±1 1 ±1 2 ±2 0 ±0 0 ±0 0 ±0 0 ±0 1 ±1 0 ±0 1 ±3

antsoccer-arena-navigate-singletask-task1-v0 2 ±1 14 ±5 0 ±0 44 ±12 2 ±1 1 ±3 22 ±2 17 ±3 61 ±25 77 ±4

antsoccer-arena-navigate-singletask-task2-v0 2 ±2 17 ±7 0 ±1 15 ±12 3 ±1 0 ±0 8 ±1 8 ±2 75 ±3 88 ±3

antsoccer-arena-navigate-singletask-task3-v0 0 ±0 6 ±4 0 ±0 0 ±0 0 ±0 8 ±19 11 ±5 16 ±3 14 ±22 61 ±6

antsoccer-arena-navigate-singletask-task4-v0 (*) 1 ±0 3 ±2 0 ±0 0 ±1 0 ±0 0 ±0 12 ±3 24 ±4 16 ±9 39 ±6

antsoccer-arena-navigate-singletask-task5-v0 0 ±0 2 ±2 0 ±0 0 ±0 0 ±0 0 ±0 9 ±2 15 ±4 0 ±1 36 ±9

cube-single-play-singletask-task1-v0 10 ±5 88 ±3 89 ±5 95 ±2 89 ±7 77 ±28 81 ±9 73 ±33 79 ±4 97 ±2

cube-single-play-singletask-task2-v0 (*) 3 ±1 85 ±8 92 ±4 96 ±2 82 ±16 80 ±30 81 ±9 83 ±13 73 ±3 97 ±2

cube-single-play-singletask-task3-v0 9 ±3 91 ±5 93 ±3 99 ±1 96 ±2 98 ±1 87 ±4 82 ±12 88 ±4 98 ±2

cube-single-play-singletask-task4-v0 2 ±1 73 ±6 92 ±3 93 ±4 70 ±18 91 ±2 79 ±6 79 ±20 79 ±6 94 ±3

cube-single-play-singletask-task5-v0 3 ±3 78 ±9 87 ±8 90 ±6 61 ±12 80 ±20 78 ±10 76 ±33 77 ±7 93 ±3

cube-double-play-singletask-task1-v0 8 ±3 27 ±5 45 ±6 39 ±19 7 ±6 21 ±8 21 ±7 47 ±11 35 ±9 61 ±9

cube-double-play-singletask-task2-v0 (*) 0 ±0 1 ±1 7 ±3 16 ±10 0 ±0 2 ±2 2 ±1 22 ±12 9 ±5 36 ±6

cube-double-play-singletask-task3-v0 0 ±0 0 ±0 4 ±1 17 ±8 0 ±1 3 ±1 1 ±1 4 ±2 8 ±5 22 ±5

cube-double-play-singletask-task4-v0 0 ±0 0 ±0 1 ±1 0 ±1 0 ±0 0 ±1 0 ±0 0 ±1 1 ±1 5 ±2

cube-double-play-singletask-task5-v0 0 ±0 4 ±3 4 ±2 1 ±1 0 ±0 3 ±2 2 ±1 2 ±2 17 ±6 19 ±10

scene-play-singletask-task1-v0 19 ±6 94 ±3 95 ±2 100 ±0 94 ±4 100 ±1 87 ±8 96 ±8 98 ±3 100 ±0

scene-play-singletask-task2-v0 (*) 1 ±1 12 ±3 50 ±13 33 ±14 2 ±2 50 ±40 18 ±8 46 ±10 0 ±0 76 ±9

scene-play-singletask-task3-v0 1 ±1 32 ±7 55 ±16 94 ±4 4 ±4 49 ±16 38 ±9 78 ±14 54 ±19 98 ±1

scene-play-singletask-task4-v0 2 ±2 0 ±1 3 ±3 4 ±3 0 ±0 0 ±0 6 ±1 4 ±4 0 ±0 5 ±1

scene-play-singletask-task5-v0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

puzzle-3x3-play-singletask-task1-v0 5 ±2 33 ±6 97 ±4 52 ±12 89 ±5 97 ±2 25 ±9 63 ±19 94 ±3 90 ±4

puzzle-3x3-play-singletask-task2-v0 1 ±1 4 ±3 1 ±1 0 ±1 0 ±1 0 ±0 4 ±2 2 ±2 1 ±2 16 ±5

puzzle-3x3-play-singletask-task3-v0 1 ±1 3 ±2 3 ±1 0 ±0 0 ±0 0 ±0 1 ±0 1 ±1 0 ±0 10 ±3

puzzle-3x3-play-singletask-task4-v0 (*) 1 ±1 2 ±1 2 ±1 0 ±0 0 ±0 0 ±0 1 ±1 2 ±2 0 ±0 16 ±5

puzzle-3x3-play-singletask-task5-v0 1 ±0 3 ±2 5 ±3 0 ±0 0 ±0 0 ±0 1 ±1 2 ±2 0 ±0 16 ±3

puzzle-4x4-play-singletask-task1-v0 1 ±1 12 ±2 26 ±4 48 ±5 24 ±9 44 ±10 1 ±2 32 ±9 49 ±9 34 ±8

puzzle-4x4-play-singletask-task2-v0 0 ±0 7 ±4 12 ±4 14 ±5 0 ±1 0 ±0 0 ±1 5 ±3 4 ±4 16 ±5

puzzle-4x4-play-singletask-task3-v0 0 ±0 9 ±3 15 ±3 34 ±5 21 ±10 29 ±12 1 ±1 20 ±10 50 ±14 18 ±5

puzzle-4x4-play-singletask-task4-v0 (*) 0 ±0 5 ±2 10 ±3 26 ±6 7 ±4 1 ±1 0 ±0 5 ±1 21 ±11 11 ±3

puzzle-4x4-play-singletask-task5-v0 0 ±0 4 ±1 7 ±3 24 ±11 1 ±1 0 ±0 0 ±1 4 ±3 2 ±2 7 ±3

antmaze-umaze-v2 55 77 98 94 97 66 ±5 90 ±6 94 ±3 92 ±6 96 ±2

antmaze-umaze-diverse-v2 47 54 84 80 82 66 ±11 55 ±7 82 ±9 62 ±12 89 ±5

antmaze-medium-play-v2 0 66 90 84 81 49 ±24 52 ±12 77 ±7 56 ±15 78 ±7

antmaze-medium-diverse-v2 1 74 84 85 75 0 ±1 44 ±15 77 ±6 60 ±25 71 ±13

antmaze-large-play-v2 0 42 52 64 54 0 ±0 10 ±6 32 ±21 55 ±9 84 ±7

antmaze-large-diverse-v2 0 30 64 68 54 0 ±0 16 ±10 20 ±17 64 ±8 83 ±4

pen-human-v1 71 78 103 76 ±10 69 ±7 64 ±8 67 ±5 77 ±7 71 ±12 53 ±6

pen-cloned-v1 52 83 103 64 ±7 61 ±7 56 ±10 62 ±10 67 ±9 80 ±11 74 ±11

pen-expert-v1 110 128 152 140 ±6 134 ±4 103 ±9 118 ±6 119 ±7 139 ±5 142 ±6

door-human-v1 2 3 −0 6 ±2 3 ±3 5 ±2 2 ±1 4 ±2 7 ±2 0 ±0

door-cloned-v1 −0 3 0 0 ±0 0 ±0 1 ±0 0 ±1 0 ±0 2 ±2 2 ±1

door-expert-v1 105 107 106 105 ±1 105 ±0 98 ±3 103 ±1 104 ±1 104 ±2 104 ±1

hammer-human-v1 3 2 0 2 ±1 1 ±1 2 ±0 2 ±1 2 ±1 3 ±1 1 ±1

hammer-cloned-v1 1 2 5 2 ±1 2 ±1 1 ±1 1 ±0 2 ±1 2 ±1 11 ±9

hammer-expert-v1 127 129 134 125 ±4 127 ±0 92 ±11 118 ±3 119 ±9 117 ±9 125 ±3

relocate-human-v1 0 0 0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

relocate-cloned-v1 −0 0 2 −0 ±0 −0 ±0 −0 ±0 −0 ±0 1 ±1 −0 ±0 −0 ±0

relocate-expert-v1 108 106 108 107 ±1 106 ±2 93 ±6 105 ±3 105 ±2 104 ±3 107 ±1

visual-cube-single-play-singletask-task1-v01 - 70 ±12 83 ±6 - - - - 55 ±8 49 ±7 81 ±12

visual-cube-double-play-singletask-task1-v01 - 34 ±23 4 ±4 - - - - 6 ±2 8 ±6 21 ±11

visual-scene-play-singletask-task1-v01 - 97 ±2 98 ±4 - - - - 46 ±4 86 ±10 98 ±3

visual-puzzle-3x3-play-singletask-task1-v01 - 7 ±15 88 ±4 - - - - 7 ±2 100 ±0 94 ±1

visual-puzzle-4x4-play-singletask-task1-v01 - 0 ±0 26 ±6 - - - - 0 ±0 8 ±15 33 ±6

1 Due to the high computational cost of pixel-based tasks, we selectively benchmark 5 methods that achieve strong performance on state-based OGBench tasks.
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Figure 12. Offline-to-online RL results. Online fine-tuning starts at 1M steps. The results are averaged over 8 seeds unless otherwise
mentioned.

Table 4. Offline-to-online RL results. The results are averaged over 8 seeds unless otherwise mentioned.

Task IQL ReBRAC Cal-QL RLPD IFQL FQL

humanoidmaze-medium-navigate-singletask-v0 21 ±13→ 16 ±8 16 ±20→ 1 ±1 0 ±0→ 0 ±0 0 ±0→ 8 ±10 56 ±35→ 82 ±20 12 ±7→ 22 ±12

antsoccer-arena-navigate-singletask-v0 2 ±1→ 0 ±0 0 ±0→ 0 ±0 0 ±0→ 0 ±0 0 ±0→ 0 ±0 26 ±15→ 39 ±10 28 ±8→ 86 ±5

cube-double-play-singletask-v0 0 ±1→ 0 ±0 6 ±5→ 28 ±28 0 ±0→ 0 ±0 0 ±0→ 0 ±0 12 ±9→ 40 ±5 40 ±11→ 92 ±3

scene-play-singletask-v0 14 ±11→ 10 ±9 55 ±10→ 100 ±0 1 ±2→ 50 ±53 0 ±0→ 100 ±0 0 ±1→ 60 ±39 82 ±11→ 100 ±1

puzzle-4x4-play-singletask-v0 5 ±2→ 1 ±1 8 ±4→ 14 ±35 0 ±0→ 0 ±0 0 ±0→ 100 ±1 23 ±6→ 19 ±33 8 ±3→ 38 ±52

antmaze-umaze-v2 77→ 96 98→ 75 77→ 100 0 ±0→ 98 ±3 94 ±5→ 96 ±2 97 ±2→ 99 ±1

antmaze-umaze-diverse-v2 60→ 64 74→ 98 32→ 98 0 ±0→ 94 ±5 69 ±20→ 93 ±5 79 ±16→ 100 ±1

antmaze-medium-play-v2 72→ 90 88→ 98 72→ 99 0 ±0→ 98 ±2 52 ±19→ 93 ±2 77 ±7→ 97 ±2

antmaze-medium-diverse-v2 64→ 92 85→ 99 62→ 98 0 ±0→ 97 ±2 44 ±26→ 89 ±4 55 ±19→ 97 ±3

antmaze-large-play-v2 38→ 64 68→ 32 32→ 97 0 ±0→ 93 ±5 64 ±14→ 80 ±5 66 ±40→ 84 ±30

antmaze-large-diverse-v2 27→ 64 67→ 72 44→ 92 0 ±0→ 94 ±3 69 ±6→ 86 ±5 75 ±24→ 94 ±3

pen-cloned-v1 84→ 102 74→ 138 −3→−3 3 ±2→ 120 ±10 77 ±7→ 107 ±10 53 ±14→ 149 ±6

door-cloned-v1 1→ 20 0→ 102 −0→−0 0 ±0→ 102 ±7 3 ±2→ 50 ±15 0 ±0→ 102 ±5

hammer-cloned-v1 1→ 57 7→ 125 0→ 0 0 ±0→ 128 ±29 4 ±2→ 60 ±14 0 ±0→ 127 ±17

relocate-cloned-v1 0→ 0 1→ 7 −0→−0 0 ±0→ 2 ±2 −0 ±0→ 5 ±3 0 ±1→ 62 ±8

E. Experimental Details
We implement FQL and many of the baselines in JAX (Bradbury et al., 2018) on top of OGBench’s reference implementa-
tions (Park et al., 2025). We provide our full implementation and exact commands to reproduce the main results of FQL at
https://github.com/seohongpark/fql.

E.1. Environments, Tasks, and Datasets

OGBench (Park et al., 2025). OGBench is our main benchmark, and we use 10 environments, 50 state-based tasks, and 5
pixel-based tasks from OGBench. Since OGBench was originally designed for offline goal-conditioned RL, we use the
single-task variants (“-singletask”) of OGBench tasks to benchmark standard reward-maximizing offline RL methods.
Each OGBench environment provides five evaluation goals, each of which defines a different task (-singletask-task1 to
-singletask-task5), and one of them is set to be a default task (-singletask without a suffix). Given an evaluation
goal, the corresponding singletask variant labels the transitions in the dataset with a semi-sparse reward function. The
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semi-sparse reward function (for the fixed task) is defined as the negative of the number of remaining subtasks at a given
state. Locomotion tasks have only one subtask (“reach the goal”), and rewards are always −1 or 0. Manipulation tasks
usually involve more than one subtasks (e.g., “open the drawer”, “turn the first button’s color blue”, etc.), and rewards are
bounded by −ntask and 0, where ntask is the number of subtasks, up to 16 in the set of environments we use. The episode
ends when the agent achieves the goal.

In our experiments, we use the following 10 state-based and 5 pixel-based datasets (each dataset provides 5 different tasks).

• State-based datasets
• antmaze-large-navigate-v0

• antmaze-giant-navigate-v0

• humanoidmaze-medium-navigate-v0

• humanoidmaze-large-navigate-v0

• antsoccer-arena-navigate-v0

• cube-single-play-v0

• cube-double-play-v0

• scene-play-v0

• puzzle-3x3-play-v0

• puzzle-4x4-play-v0

• Pixel-based datasets
• visual-cube-single-play-v0

• visual-cube-double-play-v0

• visual-scene-play-v0

• visual-puzzle-3x3-play-v0

• visual-puzzle-4x4-play-v0

We choose these environments to cover diverse types of challenges. antmaze and humanoidmaze require controlling either
a quadrupedal agent (with 8 degrees of freedom) or a humanoid agent (with 21 degrees of freedom) to reach a goal position
in a given maze. antsoccer requires controlling a quadrupedal agent to dribble a ball to a desired location. cube, scene,
and puzzle require manipulating diverse objects with a robot arm, where scene involves long-horizon control of multiple
objects (up to 8 subtasks) and puzzle requires combinatorial generalization. The tasks with the visual- prefix require
pixel-based control solely from 64 × 64 × 3-sized images. For dataset types, we employ the standard ones (navigate
for locomotion and play for manipulation). These datasets feature high suboptimality since they consist of trajectories
performing random tasks (e.g., reaching random goals or manipulating random objects in the scene), and thus require a high
degree of “stitching” capabilities. We use all of the five tasks for each state-based environment, but we use only the first task
(the one labeled as singletask-task1) for each pixel-based environment due to high computational cost. For evaluation,
we consider binary task success rates (in percentage), following the original evaluation criterion.

D4RL (Fu et al., 2020). To enable direct comparisons with previously reported results, we additionally employ 18 relatively
hard D4RL tasks in our experiments. We use the following 6 antmaze and 12 adroit tasks.

• antmaze-umaze-v2

• antmaze-umaze-diverse-v2

• antmaze-medium-play-v2

• antmaze-medium-diverse-v2

• antmaze-large-play-v2

• antmaze-large-diverse-v2

• pen-human-v1

• pen-cloned-v1

• pen-expert-v1

• door-human-v1

• door-cloned-v1

• door-expert-v1

• hammer-human-v1

• hammer-cloned-v1

• hammer-expert-v1
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• relocate-human-v1

• relocate-cloned-v1

• relocate-expert-v1

D4RL antmaze has the same high-level objective as OGBench antmaze, but with different (relatively less challenging) maze
layouts, datasets, and evaluation goals. adroit tasks (pen, door, hammer, and relocate) require dexterous manipulation
with a high-dimensional (24-D) action space. We measure binary task success rates (in percentage) for antmaze and
normalized returns for adroit, following the original evaluation scheme (Fu et al., 2020).

E.2. Methods and Hyperparameters

In this work, we consider a total of 11 previous offline RL and offline-to-online RL approaches. We use the same default
hyperparameters, architecture, and codebase for previous methods, unless otherwise mentioned. Also, we individually tune
the method-specific hyperparameters of prior approaches for each environment, as described in detail below. For OGBench
tasks, we tune each method on the default task of each environment (i.e., the task corresponding to the “-singletask”
without a task ID), and use the best hyperparameters for the other four tasks from the same environment.

BC. For behavioral cloning, we train a Gaussian policy with a unit standard deviation. We consider [256, 256, 256, 256]-
and [512, 512, 512, 512]-sized MLPs and use the latter (which is also our default network size) for all environments.

IQL (Kostrikov et al., 2022). We re-implement IQL on top of the same codebase as FQL. We perform a hyperparameter
search over expectile values in {0.7, 0.9} and AWR inverse temperatures in {0.3, 1, 3, 10}. We use a fixed expectile value of
0.9 for all environments, while the AWR inverse temperature α is individually tuned for each environment (Tables 6 and 7).
We find that IQL tends to overfit on state-based OGBench manipulation tasks, and thus use smaller [256, 256, 256, 256]-
sized MLPs for these state-based tasks (but not for pixel-based tasks), which we find perform better.

ReBRAC (Tarasov et al., 2023a). We re-implement ReBRAC on the same codebase as FQL. ReBRAC has two major
hyperparameters: the actor and critic BC coefficients. We consider {0.003, 0.01, 0.03, 0.1, 0.3, 1} for the actor BC coefficient
α1 and {0, 0.001, 0.01, 0.1} for the critic BC coefficient α2. Since actor regularization is generally (far) more important than
critic regularization (Tarasov et al., 2023a), we first perform a sweep over actor BC coefficients without critic regularization,
and perform a second sweep over critic BC coefficients with the best actor BC coefficient. We report the individually tuned
hyperparameters in Tables 6 and 7. We use the default values for the other hyperparameters (e.g., noise standard deviation,
noise clipping threshold, etc.), and normalize Q values only in the actor loss, following the official implementation (Tarasov
et al., 2023b).

IDQL (Hansen-Estruch et al., 2023). We use the official open-source implementation of IDQL. For network architectures,
we use the default residual multilayer perception (MLP) (three blocks of [256, 1024, 256]-sized residual layers) for the
behavioral diffusion policy and consider {[256, 256], [256, 256, 256, 256], [512, 512], [512, 512, 512, 512]} for the size of
the value network. We find that using 4-layer value networks in this codebase leads to unstable training, and thus choose
[512, 512] for OGBench locomotion tasks and [256, 256] for OGBench manipulation tasks. We consider {0.7, 0.9} for the
IQL expectile value, and {32, 64, 128} for the number of test-time action samples. We individually tune the number of
action samples (N ) for each task (Table 6), and use an IQL expectile of 0.7 for OGBench locomotion and adroit tasks
and 0.9 for OGBench manipulation tasks. We use the default values for the other hyperparameters. Following the original
training scheme, we train the agent for 3M steps (1.5M for value functions), three times longer than FQL’s training epochs.
For compatibility with our evaluation scheme, we report the average performance over 2.5M, 2.75M, and 3M steps for
OGBench tasks, and the final performance for D4RL tasks.

SRPO (Chen et al., 2024b). For SRPO, we first used its official implementation to obtain OGBench results but were unable
to achieve reasonable performance, despite initial hyperparameter sweeps. Hence, we re-implement SRPO on top of the
codebase of IDQL (the closest method to SRPO), which we find to lead to better performance. We use the same tuned
hyperparameters as IDQL for value learning and behavioral policy learning. For the Q coefficient (β in Chen et al. (2024b)),
we perform a hyperparameter search over {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3} and use the best one for each environment
(Table 6).

Consistency-AC (CAC) (Ding & Jin, 2024). We use the official open-source implementation of Consistency-AC. We
consider {0.003, 0.01, 0.03, 0.1, 0.3, 1} for the Q loss coefficient (η in Ding & Jin (2024)) and use the best one for each
environment (Table 6). For other hyperparameters for OGBench tasks, we mostly follow the default ones for D4RL antmaze

tasks, as these are closest to OGBench tasks in that they both use sparse rewards and involve goal-reaching. Namely, we do
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not normalize Q values, scale the consistency loss, and apply maximum Q backup. For D4RL antmaze, we re-evaluate
its performances on the -v2 tasks (the original paper uses -v0 tasks) with the hyperparameters provided in the official
implementation. For D4RL adroit tasks, we mainly use the default hyperparameters tuned for adroit but perform an
additional hyperparameter sweep over Q loss coefficients in {0.003, 0.01, 0.03} for the other tasks not used in the original
paper (Table 6). For all tasks, we apply gradient clipping with a threshold of 5 and do not use online model selection to
ensure a fair comparison.

FAWR, FBRAC, and IFQL. FAWR, FBRAC, and IFQL are implemented on top of the same codebase as FQL, shar-
ing the same flow-matching implementation. To enable apples-to-apples comparisons, we use the same default hyper-
parameters as IQL for FIQL, and the same default ones as FQL for FAWR and FBRAC. However, we individually tune
the policy extraction-related hyperparameters for each environment. For the inverse temperature α in FAWR (Equa-
tion (10)), we consider {0.3, 1, 3, 10}. For the number of test-time action samples N in IFQL (Equation (11)), we consider
{32, 64, 128}. For the BC coefficient α in FBRAC (Equation (6)), we consider {1000, 3000, 10000, 30000} for adroit
tasks and {1, 3, 10, 30, 100, 300} for the other tasks. We present the task-specific hyperparameters in Tables 6 and 7.

Cal-QL (Nakamoto et al., 2023). We use the official implementation of Cal-QL. For the CQL regularizer coefficient α, we
consider {0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10} as well as its Lagrange dual variant with target action gaps β of {0.2, 0.5, 0.8}.
We use individually tuned values of these hyperparameters for different tasks (Table 7). For the network size, we consider
both [256, 256, 256, 256]- and [512, 512, 512, 512]-sized MLPs, and use [512, 512, 512, 512] for OGBench locomotion tasks
and [256, 256, 256, 256] for OGBench manipulation tasks. We also consider scaling rewards by {1, 3, 10}, and use a value
of 10 to scale rewards for all tasks. We use the default values for the other hyperparameters (e.g., using a mixing ratio of 0.5,
taking the maximum over 10 actions when computing target values, using importance sampling for the CQL regularizer, etc.).

RLPD (Ball et al., 2023). We re-implement RLPD on top of the same codebase as FQL. To ensure a fair comparison with
other methods, we use an update-to-data ratio of 1 and employ two Q functions. Clipped double Q-learning is only applied
to D4RL adroit tasks, as in FQL. We do not use entropy backups, as we find it to be better.

FQL. See Appendix B.

We provide the complete list of hyperparameters in Table 5 and task-specific hyperparameters in Tables 6 and 7.
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Table 5. Hyperparameters for FQL.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000 (default), 500000 (D4RL, pixel-based OGBench)
Minibatch size 256
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Target network smoothing coefficient 0.005
Discount factor γ 0.99 (default), 0.995 (antmaze-giant, humanoidmaze, antsoccer)
Image augmentation probability 0.5
Flow steps 10
Flow time sampling distribution Unif([0, 1])
Clipped double Q-learning False (default), True (adroit, antmaze-{large, giant}-navigate)
BC coefficient α Tables 6 and 7
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Table 6. Task-specific hyperparameters for offline RL. We refer to Appendix E.2 for the description for each hyperparameter variable.
We individually tune these hyperparameters for each task, but in OGBench, we tune them on the default task (denoted by (*)) and use the
best hyperparameters for the other four tasks. “-” indicates that the corresponding result is taken from the prior work (or does not exist).

IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL

Task α (α1, α2) N β η α α N α

antmaze-large-navigate-singletask-task1-v0 (*) 10 (0.003, 0.01) 32 0.3 1 3 3 32 10
antmaze-large-navigate-singletask-task2-v0 10 (0.003, 0.01) 32 0.3 1 3 3 32 10
antmaze-large-navigate-singletask-task3-v0 10 (0.003, 0.01) 32 0.3 1 3 3 32 10
antmaze-large-navigate-singletask-task4-v0 10 (0.003, 0.01) 32 0.3 1 3 3 32 10
antmaze-large-navigate-singletask-task5-v0 10 (0.003, 0.01) 32 0.3 1 3 3 32 10

antmaze-giant-navigate-singletask-task1-v0 (*) 10 (0.003, 0.01) 32 0.3 1 3 10 32 10
antmaze-giant-navigate-singletask-task2-v0 10 (0.003, 0.01) 32 0.3 1 3 10 32 10
antmaze-giant-navigate-singletask-task3-v0 10 (0.003, 0.01) 32 0.3 1 3 10 32 10
antmaze-giant-navigate-singletask-task4-v0 10 (0.003, 0.01) 32 0.3 1 3 10 32 10
antmaze-giant-navigate-singletask-task5-v0 10 (0.003, 0.01) 32 0.3 1 3 10 32 10

humanoidmaze-medium-navigate-singletask-task1-v0 (*) 10 (0.01, 0.01) 32 0.3 0.03 3 30 32 30
humanoidmaze-medium-navigate-singletask-task2-v0 10 (0.01, 0.01) 32 0.3 0.03 3 30 32 30
humanoidmaze-medium-navigate-singletask-task3-v0 10 (0.01, 0.01) 32 0.3 0.03 3 30 32 30
humanoidmaze-medium-navigate-singletask-task4-v0 10 (0.01, 0.01) 32 0.3 0.03 3 30 32 30
humanoidmaze-medium-navigate-singletask-task5-v0 10 (0.01, 0.01) 32 0.3 0.03 3 30 32 30

humanoidmaze-large-navigate-singletask-task1-v0 (*) 10 (0.01, 0.01) 32 0.3 1 3 30 32 30
humanoidmaze-large-navigate-singletask-task2-v0 10 (0.01, 0.01) 32 0.3 1 3 30 32 30
humanoidmaze-large-navigate-singletask-task3-v0 10 (0.01, 0.01) 32 0.3 1 3 30 32 30
humanoidmaze-large-navigate-singletask-task4-v0 10 (0.01, 0.01) 32 0.3 1 3 30 32 30
humanoidmaze-large-navigate-singletask-task5-v0 10 (0.01, 0.01) 32 0.3 1 3 30 32 30

antsoccer-arena-navigate-singletask-task1-v0 1 (0.01, 0.01) 32 0.03 1 10 30 64 10
antsoccer-arena-navigate-singletask-task2-v0 1 (0.01, 0.01) 32 0.03 1 10 30 64 10
antsoccer-arena-navigate-singletask-task3-v0 1 (0.01, 0.01) 32 0.03 1 10 30 64 10
antsoccer-arena-navigate-singletask-task4-v0 (*) 1 (0.01, 0.01) 32 0.03 1 10 30 64 10
antsoccer-arena-navigate-singletask-task5-v0 1 (0.01, 0.01) 32 0.03 1 10 30 64 10

cube-single-play-singletask-task1-v0 1 (1, 0) 32 0.03 0.003 1 100 32 300
cube-single-play-singletask-task2-v0 (*) 1 (1, 0) 32 0.03 0.003 1 100 32 300
cube-single-play-singletask-task3-v0 1 (1, 0) 32 0.03 0.003 1 100 32 300
cube-single-play-singletask-task4-v0 1 (1, 0) 32 0.03 0.003 1 100 32 300
cube-single-play-singletask-task5-v0 1 (1, 0) 32 0.03 0.003 1 100 32 300

cube-double-play-singletask-task1-v0 0.3 (0.1, 0) 32 0.1 0.3 0.3 100 32 300
cube-double-play-singletask-task2-v0 (*) 0.3 (0.1, 0) 32 0.1 0.3 0.3 100 32 300
cube-double-play-singletask-task3-v0 0.3 (0.1, 0) 32 0.1 0.3 0.3 100 32 300
cube-double-play-singletask-task4-v0 0.3 (0.1, 0) 32 0.1 0.3 0.3 100 32 300
cube-double-play-singletask-task5-v0 0.3 (0.1, 0) 32 0.1 0.3 0.3 100 32 300

scene-play-singletask-task1-v0 10 (0.1, 0.01) 32 0.1 0.3 0.3 100 32 300
scene-play-singletask-task2-v0 (*) 10 (0.1, 0.01) 32 0.1 0.3 0.3 100 32 300
scene-play-singletask-task3-v0 10 (0.1, 0.01) 32 0.1 0.3 0.3 100 32 300
scene-play-singletask-task4-v0 10 (0.1, 0.01) 32 0.1 0.3 0.3 100 32 300
scene-play-singletask-task5-v0 10 (0.1, 0.01) 32 0.1 0.3 0.3 100 32 300

puzzle-3x3-play-singletask-task1-v0 10 (0.3, 0.01) 32 0.1 0.01 0.3 100 32 1000
puzzle-3x3-play-singletask-task2-v0 10 (0.3, 0.01) 32 0.1 0.01 0.3 100 32 1000
puzzle-3x3-play-singletask-task3-v0 10 (0.3, 0.01) 32 0.1 0.01 0.3 100 32 1000
puzzle-3x3-play-singletask-task4-v0 (*) 10 (0.3, 0.01) 32 0.1 0.01 0.3 100 32 1000
puzzle-3x3-play-singletask-task5-v0 10 (0.3, 0.01) 32 0.1 0.01 0.3 100 32 1000

puzzle-4x4-play-singletask-task1-v0 3 (0.3, 0.01) 32 0.1 0.01 0.3 300 32 1000
puzzle-4x4-play-singletask-task2-v0 3 (0.3, 0.01) 32 0.1 0.01 0.3 300 32 1000
puzzle-4x4-play-singletask-task3-v0 3 (0.3, 0.01) 32 0.1 0.01 0.3 300 32 1000
puzzle-4x4-play-singletask-task4-v0 (*) 3 (0.3, 0.01) 32 0.1 0.01 0.3 300 32 1000
puzzle-4x4-play-singletask-task5-v0 3 (0.3, 0.01) 32 0.1 0.01 0.3 300 32 1000

antmaze-umaze-v2 - - - - 0.01 3 10 32 10
antmaze-umaze-diverse-v2 - - - - 0.01 3 10 32 10
antmaze-medium-play-v2 - - - - 0.01 3 10 32 10
antmaze-medium-diverse-v2 - - - - 0.01 3 10 32 10
antmaze-large-play-v2 - - - - 4.5 3 1 32 3
antmaze-large-diverse-v2 - - - - 3.5 3 1 32 3

pen-human-v1 - - 32 0.03 0.003 0.03 30000 32 10000
pen-cloned-v1 - - 32 0.1 0.003 0.3 10000 32 10000
pen-expert-v1 - - 32 0.1 0.03 0.1 30000 32 3000
door-human-v1 - - 32 0.01 0.03 1 30000 32 30000
door-cloned-v1 - - 32 0.03 0.03 1 10000 128 30000
door-expert-v1 - - 32 0.01 0.03 3 30000 32 30000
hammer-human-v1 - - 128 0.1 0.03 3 30000 32 30000
hammer-cloned-v1 - - 32 0.1 0.003 0.03 10000 32 10000
hammer-expert-v1 - - 32 0.03 0.03 3 30000 32 30000
relocate-human-v1 - - 32 0.03 0.01 0.3 30000 128 10000
relocate-cloned-v1 - - 64 0.03 0.01 0.1 3000 32 30000
relocate-expert-v1 - - 32 0.01 0.003 1 30000 32 30000

visual-cube-single-play-singletask-task1-v0 1 (1, 0) - - - - 100 32 300
visual-cube-double-play-singletask-task1-v0 0.3 (0.1, 0) - - - - 100 32 100
visual-scene-play-singletask-task1-v0 10 (0.1, 0.01) - - - - 100 32 100
visual-puzzle-3x3-play-singletask-task1-v0 10 (0.3, 0.01) - - - - 100 32 300
visual-puzzle-4x4-play-singletask-task1-v0 3 (0.3, 0.01) - - - - 300 32 300
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Table 7. Task-specific hyperparameters for offline-to-online RL. We refer to Appendix E.2 for the description for each hyperparameter
variable. We individually tune these hyperparameters for each task, and “-” indicates that the corresponding result is taken from the prior
work.

IQL ReBRAC Cal-QL IFQL FQL

Task α (α1, α2) (α, β) N α

humanoidmaze-medium-navigate-singletask-v0 10 (0.01, 0.01) (−, 0.8) 32 100
antsoccer-arena-navigate-singletask-v0 1 (0.01, 0.01) (−, 0.2) 64 30
cube-double-play-singletask-v0 0.3 (0.1, 0) (0.01,−) 32 300
scene-play-singletask-v0 10 (0.1, 0.01) (0.01,−) 32 300
puzzle-4x4-play-singletask-v0 3 (0.3, 0.01) (0.003,−) 32 1000

antmaze-umaze-v2 - - - 32 10
antmaze-umaze-diverse-v2 - - - 32 10
antmaze-medium-play-v2 - - - 32 10
antmaze-medium-diverse-v2 - - - 32 10
antmaze-large-play-v2 - - - 32 3
antmaze-large-diverse-v2 - - - 32 3

pen-cloned-v1 - - - 128 1000
door-cloned-v1 - - - 128 1000
hammer-cloned-v1 - - - 128 1000
relocate-cloned-v1 - - - 128 10000
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