
Under review as a conference paper at ICLR 2022

TAG: TASK-BASED ACCUMULATED GRADIENTS FOR LIFE-
LONG LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When an agent encounters a continual stream of new tasks in the lifelong learning setting,
it leverages the knowledge it gained from the earlier tasks to help learn the new tasks
better. In such a scenario, identifying an efficient knowledge representation becomes a
challenging problem. Most research works propose to either store a subset of examples
from the past tasks in a replay buffer, dedicate a separate set of parameters to each task or
penalize excessive updates over parameters by introducing a regularization term. While
existing methods employ the general task-agnostic stochastic gradient descent update rule,
we propose a task-aware optimizer that adapts the learning rate based on the relatedness
among tasks. We utilize the directions taken by the parameters during the updates by
additively accumulating the gradients specific to each task. These task-based accumulated
gradients act as a knowledge base that is maintained and updated throughout the stream. We
empirically show that our proposed adaptive learning rate not only accounts for catastrophic
forgetting but also exhibits knowledge transfer. We also show that our method performs
better than several state-of-the-art methods in lifelong learning on complex datasets. More-
over, our method can also be combined with the existing methods and achieve substantial
improvement in performance.

1 INTRODUCTION

Lifelong learning (LLL), also known as continual learning, is a setting where an agent continuously learns
from data belonging to different tasks (Parisi et al., 2019). Here, the goal is to maximize performance on
all the tasks arriving in a stream without replaying the entire datasets from past tasks (Riemer et al., 2018).
Approaches proposed in this setting involve investigating the stability-plasticity dilemma (Mermillod et al.,
2013) in different ways where stability refers to preventing the forgetting of past knowledge and plasticity
refers to accumulating new knowledge by learning new tasks (Mermillod et al., 2013; De Lange et al., 2019).

Unlike human beings, who can efficiently assess the correctness and applicability of the past knowledge
(Chen & Liu, 2018), neural networks and other machine learning models often face various issues in this
setting. Whenever data from a new task arrives, these models often tend to forget the previously obtained
knowledge due to dependency on the input data distribution, limited capacity, diversity among tasks, etc.
This leads to a significant drop in performance on the previous tasks - also known as catastrophic forgetting
(McCloskey & J. Cohen, 1989; Robins, 1993).

Recently there has been an ample amount of research proposed in LLL (De Lange et al., 2019). Several
methods, categorized as Parameter Isolation methods, either freeze or add a set of parameters as their task
knowledge when a new task arrives. Another type of methods, known as Regularization-based methods,
involve an additional regularization term to tackle the stability-plasticity dilemma. There are approaches
based on approximate Bayesian inference, where parameters are sampled from a distribution, that suggest

1



Under review as a conference paper at ICLR 2022

controlling the updates based on parameter uncertainty (Blundell et al., 2015; Adel et al., 2019; Ahn et al.,
2019). But these approaches are computationally expensive and often depend on the choice of prior (Zenke
et al., 2017; Nguyen et al., 2018).

Another class of methods, namely Replay-based methods, store a subset of examples from each task in a
replay buffer. These methods apply gradient-based updates that facilitate a high-level transfer across different
tasks through the examples from the past tasks that are simultaneously available while training. As a result,
these methods tend to frame LLL as an i.i.d. setting. While replay-based methods are currently state-of-the-art
in several LLL tasks, it is important that we explore various ways to tackle the original non-i.i.d. problem
(Hadsell et al., 2020). Hence the focus of this paper is to design efficient replay-free methods for LLL.

While adaptive gradient descent based optimizers such as Adam (Kingma & Ba, 2014) have shown superior
performance in the classical machine learning setup, many existing works in LLL employ the conventional
stochastic gradient descent for parameter update (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019;
Farajtabar et al., 2020). Adaptive gradient descent based optimizers accumulate gradients to regulate the
magnitude and direction of updates but often struggle when the dataset arrives in a non-i.i.d. manner, from
different tasks, etc. These optimizers tend to ‘over-adapt’ on the most recent batch and hence suffer from
poor generalization performance (Keskar & Socher, 2017; Chen et al., 2018; Mirzadeh et al., 2020).

While exploiting the adaptive nature of the gradient descent based optimizers, we alleviate catastrophic
forgetting by introducing Task-based Accumulated Gradients (TAG) that is a wrapper around existing
optimizers. The key contributions of our work are as follows:

• We define a task-aware adaptive learning rate for the parameter update step that is also aware of
relatedness among tasks in LLL.

• As the knowledge base, we propose to additively accumulate the directions (or gradients) that the
network took while learning a specific task instead of storing past examples.

• We empirically show that our method prevents catastrophic forgetting and exhibits knowledge
transfer if the tasks are related without introducing more parameters.

Our proposed method, described in Section 3, achieves state-of-the-art results and outperforms several
Replay-free methods on complex datasets like Split-miniImageNet, Split-CUB, etc. For smaller episodic
memory, our method also outperforms the Replay-based methods as shown in Section 4. Note that we propose
a new approach to optimizing based on the past gradients and as such it could potentially be applied along
with the existing LLL methods including replay-based methods. We demonstrate the effectiveness of doing
the same in the experiments.

2 RELATED WORK

Methods proposed in LLL are broadly categorized into three classes: Regularization-based, Parameter
Isolation and Replay-based methods (De Lange et al., 2019; Masana et al., 2020). Regularization-based
methods prevent a drastic change in the network parameters as the new task arrives to mitigate forgetting.
These methods further are classified as data-focused (Li & Hoiem, 2017; Triki et al., 2017) and prior-focused
methods (Nguyen et al., 2018; Ebrahimi et al., 2019). In particular, Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2017), a prior-focused method, regularizes the loss function to minimize changes in the
parameters important for previous tasks. Yet, when the model needs to adapt to a large number of tasks, the
interference between task-based knowledge is inevitable with fixed model capacity. Parameter Isolation
methods (Rusu et al., 2016; Xu & Zhu, 2018; Serra et al., 2018) such as (Aljundi et al., 2017) assign a
model copy to every new task that arrives. These methods alleviate catastrophic forgetting in general, but
they rely on a strong base network and work on a small number of tasks. Another closely related methods,
called Expansion-based methods, handle the LLL problem by expanding the model capacity in order to

2



Under review as a conference paper at ICLR 2022

adapt to new tasks (Sodhani et al., 2018; Rao et al., 2019). Li et al. (2019) propose to learn task-specific
model structures explicitly while retaining model primitives sharing, decoupling from model parameter
estimation. Replay-based methods maintain an ‘episodic memory’, containing a few examples from past
tasks, that is revisited while learning a new task (Riemer et al., 2018; Jin et al., 2020). For instance, Averaged
Gradient Episodic Memory (A-GEM) (Chaudhry et al., 2018b), alleviating computational inefficiency of GEM
(Lopez-Paz & Ranzato, 2017), uses the episodic memory to project the gradients based on hard constraints
defined on the episodic memory and the current mini-batch. Experience Replay (ER) (Chaudhry et al., 2019)
uses both replay memory and input mini-batches in the optimization step by averaging their gradients to
mitigate forgetting.

Task-relatedness (Li & Hoiem, 2017; Jerfel et al., 2019; Shaker et al., 2020) or explicitly learning task
representations (Yoon et al., 2017) is also an alternative approach studied in LLL. Efficient Lifelong Learning
Algorithm (ELLA) (Ruvolo & Eaton, 2013) maintains sparsely shared basis vectors for all the tasks and
refines them whenever the model sees a new task. Rao et al. (2019) perform dynamic expansion of the
model while learning task-specific representation and task inference within the model. Orthogonal Gradient
Descent (OGD) (Farajtabar et al., 2020) maintains a space based on a subset of gradients from each task. As a
result, OGD often faces memory issues during run-time depending upon the size of the model and the subset
(Bennani & Sugiyama, 2020). Unlike OGD, we accumulate the gradients and hence alleviate the memory
requirements by orders for each task.

A recent work (Mirzadeh et al., 2020) argues that tuning the hyper-parameters gives a better result than
several state-of-the-art methods including A-GEM and ER. They introduce Stable SGD that involves an
adjustment in the hyper-parameters like initial learning rate, learning rate decay, dropout, and batch size.
They present this gain in performance on simplistic benchmarks like Permuted MNIST (Goodfellow et al.,
2013), Rotated MNIST and Split-CIFAR100 (Mirzadeh et al., 2020). Another related work (Gupta et al.,
2020) also employs an adaptive learning rate while requiring a small episodic memory. But it is based on a
meta-learning setting and hence beyond the scope of our paper.

3 METHOD

3.1 LIFELONG LEARNING SETUP

In this section, we introduce the notations and the LLL setup used in the paper. We focus on the standard
task-incremental learning scenario which is adopted in the numerous state-of-the-art LLL methods. It involves
solving new tasks using an artificial neural network with a multi-head output where each head is associated
with a unique task and the task identity is known beforehand (Lopez-Paz & Ranzato, 2017; van de Ven &
Tolias, 2019). We denote the current task as t and any of the previous tasks by τ . The model receives new
data of the form {X(t), D(t), Y (t)} where X(t) are the input features, D(t) is the task descriptor (that is a
natural number in this work) and Y (t) is the target vector specific to the task t.

We consider the ‘single-pass per task’ setting in this work following (Lopez-Paz & Ranzato, 2017; Riemer
et al., 2018; Chaudhry et al., 2019). It is more challenging than the multiple pass setting used in numerous
research works (Kirkpatrick et al., 2017; Rebuffi et al., 2017). The goal is to learn a classification model
f(X(t); θ), parameterized by θ ∈ RP to minimize the loss L(f(X(t); θ), Y (t)) for the current task t while
preventing the loss on the past tasks from increasing. We evaluate the model on a held-out set of examples of
all the tasks (≤ t) seen in the stream.

3.2 TASK-BASED ACCUMULATED GRADIENTS

The specific form of our proposed method depends on the underlying adaptive optimizer. For ease of
exposition, we describe it as a modification of RMSProp (Tieleman & Hinton, 2012) here and call it TAG-

3



Under review as a conference paper at ICLR 2022

RMSProp. The TAG versions of other methods such as the Adagrad (Duchi et al., 2011) and Adam are
available in Appendix A.1. A Naive RMSProp update, for a given learning rate η, looks like the following:

Vn = βVn−1 + (1− β)g2n; 1 ≤ n ≤ N

θn+1 = θn −
η√

Vn + ε
gn

(1)

where θn is the parameter vector at step n in the epoch, gn is the gradient of the loss, N is the total number of
steps in one epoch, Vn is the moving average of the square of gradients (or the second moment), and β is the
decay rate. We will use TAG-optimizers as a generic terminology for the rest of the paper.

We maintain the second moment V (t)
n for each task t in the stream and store it as the knowledge base. When

the model shifts from one task to another, the new loss surface may look significantly different. We argue
that by using the task-based second moment to regulate the new task updates, we can reduce the interference
with the previously optimized parameters in the model. We define the second moment V (t)

n for task t for
TAG-RMSProp as: V (t)

n = β2V
(t)
n−1 + (1− β2)g2n where β2 is constant throughout the stream. We use V(t)

n to
denote a matrix that stores the second moments from all previous tasks, i.e., V(t)

n = {V (1)
N , ..., V

(t−1)
N , V

(t)
n }

of size (t × P ). Hence, the memory required to store these task-specific accumulated gradients increases
linearly as the number of tasks in the setting. Note that each V (τ)

N (where τ < t) vector captures the gradient
information when the model receives data from a task τ and does not change after the task τ is learned. It
helps in regulating the magnitude of the update while learning the current task t. To alleviate the catastrophic
forgetting problem occurring in the Naive RMSProp, we replace Vn (in Eq. 1) to a weighted sum of V(t)

n . We
propose a way to regulate the weights corresponding to V(t)

n for each task in the next section.

3.3 ADAPTIVE LEARNING RATE

Next, we describe our proposed learning rate that adapts based on the relatedness among tasks. We discuss
how task-based accumulated gradients can help regulate the parameter updates to minimize catastrophic
forgetting and transfer knowledge.

We first define a representation for each task to enable computing correlation between different tasks. We
take inspiration from a recent work (Guiroy et al., 2019) which is based on a popular meta-learning approach
called Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017). Guiroy et al. (2019) suggest that with
reference to given parameters θs (where s denotes shared parameters), the similarity between the adaptation
trajectories (and also meta-test gradients) among the tasks can act as an indicator of good generalization. This
similarity is defined by computing the inner dot product between adaptation trajectories. In the experiments,
Guiroy et al. (2019) show an improvement in the overall target accuracy by adding a regularization term in
the outer loop update to enhance the similarity.

In case of LLL, instead of a fixed point of reference θs, the parameters continue to update as the model adapts
to a new task. Analogous to the adaptation trajectories, we essentially want to capture those task-specific
gradient directions in the LLL setting. Momentum serves as a less noisy estimate for the overall gradient
direction and hence approximating the adaptation trajectories. The role of momentum has been crucial in the
optimization literature for gradient descent updates (Ruder, 2016; Li et al., 2017). Therefore, we introduce
the task-based first moment M (t)

n in order to approximate the adaptation trajectories of each task t. It is
essentially the momentum maintained while learning each task t and would act as the task representation for
computing the correlation.

The M (t)
n is defined as: M (t)

n = β1M
(t)
n−1 + (1− β1)gn where β1 is the constant decay rate. Intuitively, if

the current task t is correlated with a previous task τ , the learning rate in the parameter update step should
be higher to encourage the transfer of knowledge between task t and τ . In other words, it should allow

4



Under review as a conference paper at ICLR 2022

knowledge transfer. Whereas if the current task t is uncorrelated or negatively correlated to a previous task τ ,
the new updates over parameters may cause catastrophic forgetting because these updates for task t may point
in the opposite direction of the previous task τ ’s updates. In such a case, the learning rate should adapt to
lessen the effects of the new updates. We introduce a scalar quantity αn(t, τ) to capture the correlation that is
computed using M (t)

n and M (τ)
N :

αn(t, τ) = exp(−b
M

(t)
n

T
M

(τ)
N

|M (t)
n ||M (τ)

N |
) (2)

where |.| is the Euclidean norm. Existing adaptive optimizers, such as Adam, tend to overfit on the most
recent dataset from a task, which results in catastrophic forgetting in LLL. By using the exponential term, the
resulting αn(t, τ) will attain a higher value for uncorrelated tasks and will minimize the new updates (hence
prevent forgetting). Here, b is a hyperparameter that tunes the magnitude of αn(t, τ). The higher the b is, the
greater is the focus on preventing catastrophic forgetting. Its value can vary for different datasets. For the
current task t at step n (with θ(t)1 = θ

(t−1)
N+1 ), we define the TAG-RMSProp update as:

θ
(t)
n+1 = θ(t)n −

η√
αn(t, t) V

(t)
n +

t−1∑
τ=1

αn(t, τ) V
(τ)
N + ε

gn (3)

Hence, the role of each αn(t, τ) is to regulate the influence of corresponding task-based accumulated gradient
V

(τ)
N of the previous task τ . Since we propose a new way of looking at the gradients, our update rule (Eq.

3) can be applied with any kind of task-incremental learning setup. In this way, the overall structure of the
algorithm for this setup remains the same.

4 EXPERIMENTS

We describe the experiments performed to evaluate our proposed method.1 In the first experiment, we show
the gain in performance by introducing TAG update instead of naive optimizers update. We analyse how our
proposed learning rate adapts and achieves a higher accuracy over the tasks in the stream. Next, we compare
our proposed replay-free method with other state-of-the-art baselines and also show that TAG update (in Eq.
3) can be used along with other state-of-the-art methods to improve their results.

The experiments are performed on four benchmark datasets: Split-CIFAR100, Split-miniImageNet, Split-
CUB and 5-dataset. Split-CIFAR100 and Split-miniImageNet splits the CIFAR-100 (Krizhevsky et al.,
2009; Mirzadeh et al., 2020) and Mini-imagenet (Vinyals et al., 2016; Chaudhry et al., 2019) datasets into
20 disjoint 5-way classification tasks. Split-CUB splits the CUB (Wah et al., 2011) dataset into 20 disjoint
tasks with 10 classes per task. 5-dataset is a sequence of five different datasets as five 10-way classification
tasks. These datasets are: CIFAR-10 (Krizhevsky et al., 2009), MNIST (LeCun, 1998), SVHN (Netzer
et al., 2011), notMNIST (Bulatov, 2011) and Fashion-MNIST (Xiao et al., 2017). More details about the
datasets are given in Appendix A.2. For experiments with Split-CIFAR100 and Split-miniImageNet, we
use a reduced ResNet18 architecture following (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019). We use
the same reduced ResNet18 architecture for 5-dataset. For Split-CUB, we use a ResNet18 model which is
pretrained on Imagenet dataset (Deng et al., 2009) as used in (Chaudhry et al., 2019).

We report the following metrics by evaluating the model on the held-out test set: (i) Accuracy (Lopez-Paz &
Ranzato, 2017) i.e., average test accuracy when the model has been trained sequentially up to the latest task,

1Code for the experiments is submitted as supplementary material and will be released publicly upon acceptance.

5



Under review as a conference paper at ICLR 2022

(ii) Forgetting (Chaudhry et al., 2018a) i.e., decrease in performance of each task from their peak accuracy
to their accuracy after training on the latest task and (iii) Learning Accuracy (LA) (Riemer et al., 2018) i.e.,
average accuracy for each task immediately after it is learned. The overall goal is to maximise the average
test Accuracy. Further, a LLL algorithm should also achieve high LA while maintaining a low value of
Forgetting because it should learn the new task better without compromising its performance on the previous
tasks (see Appendix A.2).

We report the above metrics on the best hyper-parameter combination obtained from a grid-search. The
overall implementation of the above setting is based on the code provided by (Mirzadeh et al., 2020). The
details of the grid-search and other implementation details corresponding to all experiments described in our
paper are given in Appendix A.2.1. For all the experiments described in this section, we train the model for a
single epoch per task. Results for multiple epochs per task are given in Appendix A.3.4. All the performance
results reported are averaged over five runs.

4.1 NAIVE OPTIMIZERS

We validate the improvement by our proposed setting over the gradient descent based methods and demonstrate
the impact of using correlation among tasks in the TAG-optimizers. Firstly, we train the model on a stream of
tasks using Naive SGD update without applying any specific LLL method. Similarly, we replace the SGD
update with Naive Adagrad, Naive RMSProp, Naive Adam and their respective TAG-optimizers to compare
their performances. We show the resulting Accuracy (%) (in Fig. 1a) and Forgetting (in Fig. 1b) when the
model is trained in with the above-mentioned optimizers.

(a) Accuracy (%) (b) Forgetting

Figure 1: Final average test Accuracy (%) (higher is better) and Forgetting (lower is better) obtained
after the stream is finished for all four datasets. The vertical bars with hatches are the performance by
TAG-optimizers while others are Naive optimizers. TAG-optimizers outperforms the naive optimizers in all
datasets in terms of accuracy and also results in a lower forgetting.

It is clear that TAG-optimizers outperform their naive counterparts as well as Naive SGD for all four datasets
by a significant amount. There is a notable decrease in Forgetting by TAG-optimizers (in Fig. 1b) in general
that eventually reflects on the gain in final test Accuracy as seen in Fig. 1a. In Split-CUB, TAG-Adam
(57%) shows a remarkable improvement in accuracy when compared to Naive Adam (45%) such that it even
surpasses Naive SGD (55%). Interestingly, TAG-Adam results in slightly lower accuracy as compared to
TAG-Adagrad except in Split-miniImageNet. Moreover, Naive Adagrad results in a better performance
than Naive RMSProp and Naive Adam for all the datasets. This observation aligns with the results by Hsu
et al. (2018). Naive SGD performs almost equivalent to Naive Adagrad except in 5-dataset where it is
outperformed.

Next, we analyse α(t, τ) which is the average of αn(t, τ) across all steps n for all t and τ when stream
is finished i.e., α(t, τ) = 1

N

∑N
n=1 αn(t, τ). We show how α(t, τ) values play role in the gain in TAG-

6



Under review as a conference paper at ICLR 2022

(a) τ = 2 (b) τ = 5 (c) τ = 6

Figure 2: Evolution of (a) α(t, 2) and test accuracy at,2 (left), (b) α(t, 5) and test accuracy at,5 (middle) and
(c) α(t, 6) and test accuracy at,6 (right) along the stream of 20 tasks in the Split-CUB dataset. The grey-
coloured lines are maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)] (middle, solid line) and minτ ′ α(t, τ ′)
(bottom, dashed line) that indicate the range of α(t, τ ′). Elliptical regions (black dashed) highlight subtle
gain in the accuracy by TAG-RMSProp that are maintained throughout the stream. Observing corresponding
α(t, τ) in those regions validates our hypothesis discussed from Section 3.3.

optimizers accuracies in case of Split-CUB dataset. Each plot in Fig. 2 corresponds to test accuracies
at,τ (with shaded areas indicating their standard deviations) for Naive RMSProp (blue) and TAG-RMSProp
(red) for a particular τ for all tasks t in the stream (x-axis). Along with that, the grey-coloured curves are
maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)] (middle, solid line) and minτ ′ α(t, τ ′) (bottom, dashed line)
respectively. These are shown along with the corresponding α(t, τ) to indicate the rank of α(t, τ) in the set
{α(t, τ ′); τ ′ ∈ [1, t]} computed the model encounters a task t in the stream.

The accuracies of TAG-RMSProp and Naive RMSProp appear to correlate for most of the stream. We mark
the regions (black dashed ellipse) of subtle improvements in the accuracy by TAG-RMSProp that is later
maintained throughout the stream. While observing α(t, τ) in those regions particularly, we note that the
rank of α(t, τ) affects the accuracy in TAG-RMSProp as following: (i) Lower (or decrease in) rank of α(t, τ)
means that there exists some correlation between the tasks t and τ . So, the model should take advantage of
the current task updates and seek (or even amplify) backward transfer. Such observations can be made for the
following (t, τ): (4, 2), (5, 2), (14, 2), (9, 5), (14, 6), (19, 6) etc. Our method also prevents drastic forgetting
as well in few cases. For example: (7, 2), (12, 2), (10, 6). (ii) Higher (or increase in) rank of α(t, τ) results
in prevention of forgetting as observed in Fig. 2. Such (t, τ) pairs are (11, 2), (7, 5), (12, 5), (12, 6), etc. It
also results in backward transfer as observed in (11, 5) and (15, 5). We report the same analysis for the other
three datasets and show the results in Appendix A.3.3.

4.2 COMPARED WITH OTHER BASELINES

In the next experiment, we show that the TAG-RMSProp results in a strong performance as compared to other
LLL algorithms. In Table 1, we report the performance of TAG-RMSProp and the following state-of-the-art
baselines: EWC (Kirkpatrick et al., 2017), A-GEM (Chaudhry et al., 2018b), ER (Aljundi et al., 2019)
with reservoir sampling and Stable SGD (Mirzadeh et al., 2020). Apart from these baselines, we report
the performance of Naive SGD and Naive RMSProp from the previous section. We also report results on
multi-task learning (MTL) settings on all four datasets where the dataset from all the tasks is always available
throughout the stream. Hence, the resulting accuracies of the MTL setting serve as the upper bounds for the
test accuracies in LLL.

Following Mirzadeh et al. (2020), the size of the episodic memory for both A-GEM and ER is set to store 1
example per class. Since we want to evaluate TAG with all other baselines on the original non-i.i.d. problem,
we keep the episodic memory size in the replay-based methods small for the comparison. We still report

7



Under review as a conference paper at ICLR 2022

Table 1: Comparing performance in terms of final average test Accuracy (%) (higher is better), Forgetting
(lower is better) and Learning Accuracy (LA (%)) (higher is better) of the existing baselines with TAG-
RMSProp on all four datasets. All metrics are averaged across 5 runs. Overall, TAG-RMSProp outperforms all
other methods in terms of Accuracy. *MTL assumes that the whole dataset from all tasks is always available
during training, hence it is a different setting and its accuracy acts as an upper bound.

Methods Split-CIFAR100 Split-miniImageNet
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

Naive SGD 51.36 (±3.21) 0.18 (±0.03) 68.46 (±1.93) 48.19 (±0.79) 0.13 (±0.01) 60.6 (±0.95)
Naive RMSProp 48.91 (±2.88) 0.2 (±0.03) 67.28 (±0.43) 45.06 (±0.6) 0.21 (±0.01) 64.39 (±1.02)

EWC 49.06 (±3.44) 0.19 (±0.04) 66.82 (±1.41) 47.87 (±2.08) 0.15 (±0.02) 61.66 (±1.06)
A-GEM 54.25 (±2.0) 0.16 (±0.03) 68.98 (±1.19) 50.32 (±1.29) 0.11 (±0.02) 61.02 (±0.64)

ER 59.14 (±1.77) 0.12 (±0.02) 70.36 (±1.23) 54.67 (±0.71) 0.1 (±0.01) 64.06 (±0.41)
Stable SGD 57.04 (±1.07) 0.09 (±0.0) 64.62 (±0.91) 51.81 (±1.66) 0.09 (±0.01) 59.99 (±0.94)

TAG-RMSProp (Ours) 62.79 (±0.29) 0.1 (±0.01) 72.06 (±1.01) 57.2 (±1.37) 0.06 (±0.02) 62.73 (±0.61)
MTL* 67.7 (±0.58) - - 66.14 (±1.0) - -

Methods Split-CUB 5-dataset
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

Naive SGD 54.88 (±1.83) 0.12 (±0.01) 65.97 (±0.59) 46.48 (±3.62) 0.48 (±0.05) 84.55 (±1.06)
Naive RMSProp 49.4 (±1.77) 0.24 (±0.01) 71.76 (±0.94) 45.49 (±1.89) 0.5 (±0.03) 85.58 (±1.21)

EWC 55.66 (±0.97) 0.12 (±0.01) 66.36 (±0.71) 48.58 (±1.47) 0.4 (±0.03) 79.56 (±3.18)
A-GEM 56.91 (±1.37) 0.1 (±0.01) 65.6 (±0.73) 55.9 (±2.58) 0.34 (±0.04) 82.61 (±2.13)

ER 59.25 (±0.82) 0.1 (±0.01) 66.17 (±0.42) 61.58 (±2.65) 0.28 (±0.04) 84.3 (±1.08)
Stable SGD 53.76 (±2.14) 0.11 (±0.01) 62.15 (±1.12) 46.51 (±2.75) 0.46 (±0.03) 83.3 (±1.44)

TAG-RMSProp (Ours) 61.58 (±1.24) 0.11 (±0.01) 71.56 (±0.74) 62.59 (±1.82) 0.29 (±0.02) 86.08 (±0.55)
MTL* 71.65 (±0.76) - - 70.0 (±4.44) - -

A-GEM and ER results with bigger memory sizes in Appendix A.3.5. The size of the mini-batch sampled
from the episodic memory is set equal to the batch-size to avoid data imbalance while training. Although we
utilize a similar amount of memory as (Rusu et al., 2016), an expansion-based method, we do not make any
changes to the size of the model and thus the number of parameters remains the same during the test time.
Hence, we do not compare our approach with the expansion-based method in our experiments.

From the results reported in Table 1, we observe that TAG-RMSProp achieves the best performance in terms
of test Accuracy as compared to other baselines for all datasets. The overall improvement is decent in
Split-CIFAR100, Split-miniImageNet and Split-CUB which are 3.65%, 2.5% and 2.3% with regard to the
next-best baseline. On the other hand, the improvement by TAG-RMSProp is relatively minor in 5-dataset
i.e., 1% as compared to ER with the similar amount of Forgetting (0.29 and 0.28) occurring in the stream.
In terms of LA, TAG-RMSProp achieves almost similar performance as Naive RMSProp in Split-CUB
and 5-dataset. We also note that the LA of TAG-RMSProp is higher in Split-CIFAR100, Split-CUB and
5-dataset than ER and A-GEM. The higher LA with similar Forgetting as compared to other baselines shows
that while TAG exploits the adaptive nature of existing optimizers, it also ensures minimal forgetting of the
gained knowledge. The existing optimizers tend to aggressively fit the model on the most recent task at an
immense cost of forgetting the earlier tasks. Hence, even if a similar (or lower) Forgetting occurs in TAG,
the higher test Accuracy (with high LA) shows that TAG is capable of retaining the gained knowledge from
each task. Although LA is lower in Split-miniImageNet, TAG-RMSProp manages to prevent catastrophic
forgetting better than these methods and hence results in a higher test Accuracy.

4.3 COMBINED WITH OTHER BASELINES

Lastly, we show that the existing baselines can also benefit from our proposed method TAG-RMSProp. We
replace the conventional SGD update from EWC, A-GEM and ER, and apply RMSProp update (Eq. 1) and

8



Under review as a conference paper at ICLR 2022

TAG-RMSProp update (Eq. 3) respectively. We use the same task-incremental learning setup as used in the
previous sections in terms of architecture and hyper-parameters. We compare the resulting accuracies of the
baselines with their RMSProp and TAGed versions in Fig. 3.

Figure 3: Comparing performance for different existing methods with their RMSProp and TAGed versions on
all four datasets in terms of final average test Accuracy (%) along with A-GEM and ER for different samples
per class (M) in the episodic memory. The vertical bars with hatches are the performance by TAGed versions
of the baselines. All results are averaged across 5 runs. All TAGed versions results in a similar gain in the
accuracy over baselines with both SGD and RMSProp update.

For a given dataset, we see that gain in the final accuracy in the TAGed versions is similar for the baselines
described in Section 4.2. That is, TAG improves these baselines with SGD update on Split-CIFAR100,
Split-miniImageNet, Split-CUB and 5-dataset by at least 8%, 4%, 4% and 9% respectively. On the other
hand, TAG improves the baselines with RMSProp update on the datasets by at least 12%, 12%, 7% and 9%
respectively. The improvement is also significant in A-GEM with bigger episodic memory (i.e., 10 samples
per class or M = 10) but we observe relatively smaller improvement (2%) by TAGed ER (M = 10) as
compared to ER (M = 10). These results show that apart from outperforming the baselines independently
(with smaller episodic memory in replay-based methods), TAG can also be used as an update rule in the
existing research works for improving their performances. While A-GEM and ER are strong baselines for
LLL, we would like to highlight that these replay-based methods are not applicable in settings where storing
examples is not an option due to privacy concerns. TAG-RMSProp would be a more appropriate solution in
such settings.

5 CONCLUSION

We propose a new task-aware optimizer for the LLL setting that adapts the learning rate based on the
relatedness among tasks. We introduce the task-based accumulated gradients that act as the representation for
individual tasks for the same. We conduct experiments on complex datasets to compare TAG-RMSProp with
several state-of-the-art methods. Results show that TAG-RMSProp outperforms the existing methods in terms
of final accuracy with a commendable margin without storing past examples or using dynamic architectures.
We also show that it results in a significant gain in performance when combined with other baselines. To
the best of our knowledge, ours is the first work in the LLL literature showing that we can use an adaptive
gradient method for LLL and prevent forgetting better than Naive SGD. For future work, as the memory
required to store the task-specific accumulated gradients increases linearly with the tasks, reducing memory
complexity without compromising the performance can be an interesting direction. This can be achieved by
(i) computing correlation using a smaller quantity than the task-based first moments, and (ii) clustering the
similar tasks together to reduce the number of task-based second moments (in settings with a soft margin
between the tasks). Another possible direction from here can be shifting to a class-incremental scenario where
the task identity is not known beforehand and is required to be inferred along the stream.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Tameem Adel, Han Zhao, and Richard E Turner. Continual learning with adaptive weights (claw). arXiv
preprint arXiv:1911.09514, 2019.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learning with
adaptive regularization. In Advances in Neural Information Processing Systems, pp. 4392–4402, 2019.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a network
of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3366–3375, 2017.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and
Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances in Neural
Information Processing Systems, pp. 11849–11860, 2019.

Mehdi Abbana Bennani and Masashi Sugiyama. Generalisation guarantees for continual learning with
orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

Yaroslav Bulatov. Notmnist dataset. Technical report, Google (Books/OCR), 2011. URL http://
yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv preprint
arXiv:1902.10486, 2019.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, and Quanquan Gu. Closing the generalization gap of
adaptive gradient methods in training deep neural networks. arXiv preprint arXiv:1806.06763, 2018.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 12(3):9–12, 2018.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. Continual learning: A comparative study on how to defy forgetting in classification
tasks. arXiv preprint arXiv:1909.08383, 2(6), 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided continual
learning with bayesian neural networks. arXiv preprint arXiv:1906.02425, 2019.

10

http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html


Under review as a conference paper at ICLR 2022

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773. PMLR,
2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. arXiv preprint arXiv:1703.03400, 2017.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Simon Guiroy, Vikas Verma, and Christopher Pal. Towards understanding generalization in gradient-based
meta-learning. arXiv preprint arXiv:1907.07287, 2019.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-maml: Look-ahead meta learning for continual learning.
arXiv preprint arXiv:2007.13904, 2020.

Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change: Continual learning
in deep neural networks. Trends in Cognitive Sciences, 24(12):1028 – 1040, 2020. ISSN 1364-6613. doi:
https://doi.org/10.1016/j.tics.2020.09.004. URL http://www.sciencedirect.com/science/
article/pii/S1364661320302199.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning scenarios:
A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning and continual
learning with online mixtures of tasks. In Advances in Neural Information Processing Systems, pp.
9122–9133, 2019.

Xisen Jin, Junyi Du, and Xiang Ren. Gradient based memory editing for task-free continual learning. arXiv
preprint arXiv:2006.15294, 2020.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from adam to
sgd. CoRR, abs/1712.07628, 2017. URL http://arxiv.org/abs/1712.07628.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun. The mnist database of handwritten digits, 1998. URL http://yann.lecun.com/exdb/
mnist/,.

Qunwei Li, Yi Zhou, Yingbin Liang, and Pramod K Varshney. Convergence analysis of proximal gradient
with momentum for nonconvex optimization. arXiv preprint arXiv:1705.04925, 2017.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual structure
learning framework for overcoming catastrophic forgetting. arXiv preprint arXiv:1904.00310, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

11

http://www.sciencedirect.com/science/article/pii/S1364661320302199
http://www.sciencedirect.com/science/article/pii/S1364661320302199
http://arxiv.org/abs/1712.07628
http://yann.lecun.com/exdb/mnist/,
http://yann.lecun.com/exdb/mnist/,


Under review as a conference paper at ICLR 2022

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances
in neural information processing systems, pp. 6467–6476, 2017.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost van de
Weijer. Class-incremental learning: survey and performance evaluation. arXiv preprint arXiv:2010.15277,
2020.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. volume 24 of Psychology of Learning and Motivation, pp. 109 – 165. Academic Press,
1989. doi: https://doi.org/10.1016/S0079-7421(08)60536-8. URL http://www.sciencedirect.
com/science/article/pii/S0079742108605368.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investigating the
continuum from catastrophic forgetting to age-limited learning effects. Frontiers in psychology, 4:504,
2013.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding the
role of training regimes in continual learning. arXiv preprint arXiv:2006.06958, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. 2011.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning. In
International Conference on Learning Representations, 2018.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. Continual
unsupervised representation learning. In Advances in Neural Information Processing Systems, pp. 7647–
7657, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

A. Robins. Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In Proceedings
1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and
Expert Systems, pp. 65–68, 1993. doi: 10.1109/ANNES.1993.323080.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In International Conference on
Machine Learning, pp. 507–515, 2013.

12

http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368


Under review as a conference paper at ICLR 2022

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting
with agemention to the task. arXiv preprint arXiv:1801.01423, 2018.

Ammar Shaker, Shujian Yu, and Francesco Alesiani. Modular-relatedness for continual learning. arXiv
preprint arXiv:2011.01272, 2020.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. On training recurrent neural networks for lifelong
learning. CoRR, abs/1811.07017, 2018.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Amal Rannen Triki, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. In ICCV, 2017.

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information Processing
Systems, pp. 899–908, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. Pro-
ceedings of machine learning research, 70:3987, 2017.

A APPENDIX

In this document, we provide the details and results excluded from the main paper. In A.1, we describe the
TAG versions of Adagrad and Adam. The implementation details are described in Section A.2. We also report
results obtained by performing additional experiments in Section A.3.

A.1 TAG-OPTIMIZERS

Similar to RMSProp (in Section 3), with the task-based first moments M (t)
n , let W (t)

n = {αn(t, τ); τ ∈ [1, t]}
(from Eq. 2) and,

W (t)
n V(t)

n =

V
(1)
n ; t = 1

αn(t, t) V
(t)
n +

t−1∑
τ=1

αn(t, τ) V
(τ)
N ; t > 1

(4)

We define the TAG versions of Adagrad and Adam as following:

13



Under review as a conference paper at ICLR 2022

• TAG-Adagrad:

V (t)
n = V

(t)
n−1 + g2n

θ
(t)
n+1 = θ(t)n −

η√
W

(t)
n Vn + ε

gn (5)

• TAG-Adam:

V (t)
n = β2V

(t)
n−1 + (1− β2)g2n

θ
(t)
n+1 = θ(t)n −

η
√
1− βn2

(1− βn1 )
√
W

(t)
n Vn + ε

M (t)
n

(6)

Both TAG-Adagrad (Eq. 5) and TAG-Adam (Eq. 6) result in a significant gain in Accuracy and prevent
Forgetting as observed in Fig. 1a and Fig. 1b respectively in Section 4.1.

A.2 IMPLEMENTATION DETAILS

The summary of the datasets used in the experiments is shown in Table 2 and Table 3.

Table 2: Dataset Statistics

Input size Training samples per task Test samples per task
Split-CIFAR100 3× 32× 32 2500 500

Split-miniImageNet 3× 84× 84 2400 600
Split-CUB 3× 224× 224 300 290

In 5-dataset, we convert all the monochromatic images to RGB format depending on the task dataset. All
images are then resized to 3× 32× 32. The overall training and test data statistics of 5-dataset are described
in Table 3.

Table 3: 5-dataset statistics.

Training samples Test samples
CIFAR-10 50000 10000

MNIST 60000 10000
SVHN 73257 26032

notMNIST 16853 1873
Fashion-MNIST 60000 10000

Details about the metrics used for evaluating the model:

• Accuracy (Lopez-Paz & Ranzato, 2017): If at,τ is the accuracy on the test set of task τ when the

current task is t, it is defined as, At = 1
t

t∑
τ=1

at,τ .

• Forgetting (Chaudhry et al., 2018a): It is the average forgetting that occurs after the model is trained

on all tasks. If the latest task is t and is defined as, Ft = 1
t−1

t−1∑
τ=1

maxt′∈{1,...,t−1}(at′,τ − at,τ ).

14



Under review as a conference paper at ICLR 2022

• Learning Accuracy (LA) (Riemer et al., 2018): It is the measure of learning capability when the

model sees a new task. For the current task t, it is defined as, Lt = 1
t

t∑
τ=1

aτ,τ .

We implement the following baselines to compare with our proposed method:

• EWC: Our implementation of EWC is based on the original paper (Kirkpatrick et al., 2017).

• A-GEM: We implemented A-GEM based on the the official implementation provided by (Chaudhry
et al., 2018b).

• ER (Chaudhry et al., 2019): Our implementation is based on the one provided by (Aljundi et al.,
2019) with reservoir sampling except that the sampled batch does not contain examples from the
current task.

• Stable SGD (Mirzadeh et al., 2020): We obtain the best hyper-parameter set by performing grid-
search over different combinations of the learning rate, learning rate decay, and dropout (see
Appendix A.2.1).

OGD Farajtabar et al. (2020) requires storing N (=200 in their experiments) number of gradients per task and
it is evaluated only on variants of the MNIST dataset by training a small feed-forward network. On the other
hand, TAG additively accumulates the gradients and hence requires memory equal to two copies of the model
as the knowledge base. This enabled us to train a reduced ResNet18 on complex datasets. Due to greater
memory requirements, OGD faced memory errors in our setting. We would also like to highlight that OGD
use Naive-SGD and our contribution being an adaptive learning rate based method is complementary to this
approach.

We provide our code as supplementary material that contains the scripts for reproducing the results from all
experiments described in this paper. In the CODE folder, we include README.MD file that contains the overall
code structure, procedure for installing the required packages, links to download the datasets and steps to
execute the scripts. All experiments were executed on an NVIDIA GTX 1080Ti machine with 11 GB GPU
memory.

A.2.1 HYPER-PARAMETER DETAILS

In this section, we report the grid search details for finding the best set of hyper-parameters for all datasets
and baselines. We train the model with 90% of the training set and choose the best hyper-parameters based
on the highest accuracy on the validation set which consists of remaining 10% for the training set. For
existing baselines, we perform the grid search either suggested by the original papers or by Farajtabar et al.
(2020). For all TAG-optimizers, β1 is set to 0.9. For TAG-RMSProp and TAG-Adagrad, β2 is set to 0.99 and
for TAG-Adam it is 0.999. In all the experiments, the mini-batch size is fixed to 10 for Split-CIFAR100,
Split-miniImageNet, Split-CUB similar to (Chaudhry et al., 2019; Mirzadeh et al., 2020). We set mini-batch
size to 64 for 5-dataset following (Serra et al., 2018). This is because we wanted to highlight the role of
learning rate and to show how TAG-RMSProp improves the performance while the other hyper-parameters
(including batch-size) were fixed.

• Naive SGD

– Learning rate: [0.1 (Split-CIFAR100, 5-dataset), 0.05 (Split-miniImageNet), 0.01(Split-
CUB), 0.001]

• Naive Adagrad

– Learning rate: [0.01, 0.005 (Split-CIFAR100, Split-miniImageNet, 5-dataset), 0.001, 0.0005
(Split-CUB), 0.0001]

15



Under review as a conference paper at ICLR 2022

• Naive RMSProp
– Learning rate: [0.01, 0.005 (Split-CIFAR100), 0.001 (Split-miniImageNet, 5-dataset),

0.0005, 0.0001 (Split-CUB), 0.00005, 0.00001]
• Naive Adam

– Learning rate: [0.01, 0.005 (Split-CIFAR100), 0.001 (Split-miniImageNet, 5-dataset),
0.0005, 0.0001 (Split-CUB)]

• TAG-Adagrad
– Learning rate: [0.005 (Split-CIFAR100, 5-dataset), 0.001 (Split-miniImageNet), 0.0005

(Split-CUB), 0.00025, 0.0001]
– b: [1, 3, 5 (Split-CIFAR100, Split-miniImageNet, Split-CUB), 7 (5-dataset)]

• TAG-RMSProp
– Learning rate: [0.005, 0.001, 0.0005 (5-dataset), 0.00025 (Split-CIFAR100), 0.0001 (Split-

miniImageNet), 0.00005, 0.000025 (Split-CUB), 0.00001]
– b: [1, 3, 5 (Split-CIFAR100, Split-miniImageNet, Split-CUB), 7 (5-dataset)]

• TAG-Adam
– Learning rate: [0.005, 0.001 (5-dataset), 0.0005 (Split-CIFAR100), 0.00025 (Split-

miniImageNet), 0.0001 (Split-CUB)]
– b: [1, 3, 5 (Split-CIFAR100, Split-miniImageNet, Split-CUB), 7 (5-dataset)]

• EWC
– Learning rate: [0.1 (Split-CIFAR100, 5-dataset), 0.05 (Split-miniImageNet), 0.01(Split-

CUB), 0.001]
– λ (regularization): [1 (Split-CIFAR100, Split-miniImageNet, Split-CUB), 10, 100 (5-

dataset)]
• A-GEM

– Learning rate: [0.1 (Split-CIFAR100, Split-miniImageNet, 5-dataset), 0.05, 0.01(Split-
CUB), 0.001]

• ER
– Learning rate: [0.1 (Split-CIFAR100, 5-dataset), 0.05 (Split-miniImageNet), 0.01(Split-

CUB), 0.001]
• Stable SGD

– Initial learning rate: [0.1 (Split-CIFAR100, Split-miniImageNet, 5-dataset), 0.05 (Split-
CUB), 0.01]

– Learning rate decay: [0.9 (Split-CIFAR100, Split-miniImageNet, Split-CUB), 0.8, 0.7 (5-
dataset)]

– Dropout: [0.0 (Split-miniImageNet, Split-CUB, 5-dataset), 0.1 (Split-CIFAR100), 0.25,
0.5]

In case of TAG-RMSProp, we empirically found that the best performance of the all three benchmarks with
20 tasks occurred when hyper-parameter b = 5 and for 5-dataset, b = 7. We also found that a lower value of
Learning rate in TAG-RMSProp results in a better performance. These empirical observations can reduce the
search space for hyperparameter setup by a huge amount when applying TAG-RMSProp on a LLL setup.

For the experiments in Section 4.3 that require a hybrid version of these methods, we use the same hyper-
parameters from above except for TAGed ER in Split-CIFAR100 (Learning rate = 0.0005) and Split-CUB
(Learning rate = 0.0001). We choose the learning rates of TAG-RMSProp and Naive-RMSProp over EWC,
A-GEM and ER.

16



Under review as a conference paper at ICLR 2022

A.3 ADDITIONAL EXPERIMENTS

In this section, we describe the additional experiments and analysis done in this work.

A.3.1 BACKWARD TRANSFER METRIC

While we show the occurrence of knowledge transfer in Fig. 2, we can quantify the Backward Transfer
(BWT) (Chaudhry et al., 2019) by computing the difference between the final Accuracy and LA. i.e.,
BWT = 1

t−1
∑t−1
τ=1 at,τ − aτ,τ . We report the BWT results for all datasets and baselines in Table 4.

While TAG-RMSProp outperforms the other baselines in terms of BWT for Split-miniImageNet, it is overall
the second-best method for Split-CIFAR100 and 5-dataset. In case of Split-CUB, even if TAG-RMSProp
achieves the highest Accuracy, it results in a lower BWT because of a significantly higher LA as compared
to the other baselines (see Table 1).

Table 4: Comparing performance in terms of final average test Accuracy (%) (higher is better) and BWT
(higher is better) with the standard deviation values for different existing methods with TAG-RMSProp for all
four datasets. All metrics are averaged across 5 runs.

Methods Split-CIFAR100 Split-miniImageNet
Accuracy (%) BWT (%) Accuracy (%) BWT (%)

Naive SGD 51.36 (±3.21) −17.1 (±2.64) 48.19 (±0.79) −13.83 (±1.97)
Naive RMSProp 48.91 (±2.88) −18.37 (±2.71) 45.06 (±0.6) −19.32 (±1.39)

EWC 49.06 (±3.44) −17.76 (±3.35) 47.87 (±2.08) −13.79 (±2.26)
A-GEM 54.25 (±2.0) −14.73 (±2.48) 50.32 (±1.29) −10.69 (±1.57)

ER 59.14 (±1.77) −11.22 (±2.19) 54.67 (±0.71) −9.39 (±0.64)
Stable SGD 57.04 (±1.07) −7.59 (±0.36) 51.81 (±1.66) −8.18 (±1.18)

TAG-RMSProp (Ours) 62.79 (±0.29) −9.27 (±1.16) 57.2 (±1.37) −5.52 (±1.71)

Methods Split-CUB 5-dataset
Accuracy (%) BWT (%) Accuracy (%) BWT (%)

Naive SGD 54.88 (±1.83) −11.09 (±1.43) 46.48 (±3.62) −38.06 (±3.69)
Naive RMSProp 49.4 (±1.77) −22.36 (±0.95) 45.49 (±1.89) −40.09 (±2.6)

EWC 55.66 (±0.97) −10.7 (±0.39) 48.58 (±1.47) −30.98 (±3.34)
A-GEM 56.91 (±1.37) −8.69 (±0.93) 55.9 (±2.58) −26.71 (±3.6)

ER 59.25 (±0.82) −6.93 (±0.92) 61.58 (±2.65) −22.72 (±3.08)
Stable SGD 53.76 (±2.14) −8.39 (±1.26) 46.51 (±2.75) −36.79 (±2.19)

TAG-RMSProp (Ours) 61.58 (±1.24) −9.99 (±1.62) 62.59 (±1.82) −23.49 (±1.73)

A.3.2 COMPARING TAG-RMSProp WITH OTHER BASELINES

Fig. 4 provides a detailed view of the test accuracies of individual baseline as the model encounters the new
tasks throughout the LLL stream in Split-CIFAR100, Split-miniImageNet and Split-CUB. At the starting
task t = 1, TAG-RMSProp beats other baselines because of lower initial learning rates (see Appendix A.2.1)
and reflects the performance gain by the RMSProp over SGD optimizer. In all three datasets, the performance
of TAG-RMSProp is very similar to ER specially from task t = 5 to task t = 15, but ultimately improves
as observed at t = 20. These results show a decent gain in the final test Accuracy by TAG-RMSProp as
compared to other baselines.

17



Under review as a conference paper at ICLR 2022

Although TAG-RMSProp is outperformed by ER from task t = 2 to t = 4, it results in the highest final
accuracy as compared to other methods on 5-dataset . TAG-RMSProp also outperforms other baselines
including Stable SGD and A-GEM by a large margin.

(a) Split-CIFAR100 (b) Split-miniImageNet

(c) Split-CUB (d) Split-CUB

Figure 4: Evolution of average test Accuracy (%) At for different existing methods and TAG-RMSProp
throughout the stream on all datasets. All results are averaged across 5 runs and the shaded area represent
standard deviation. Performing similar as ER for major part of the stream, TAG-RMSProp always results in
the highest final accuracy as compared to other methods with a low standard deviation.

A.3.3 EVOLUTION OF α(t, τ) AND TEST ACCURACY at,τ

Next, we continue the analysis done in Section ?? for Split-CIFAR100 (in Fig. 5), Split-miniImageNet
(in Fig. 6), Split-CUB (in Fig. 7) for the first 9 tasks and 5-dataset (in Fig. 8) for first 3 tasks. In Split-
CIFAR100 and Split-miniImageNet, the model with Naive RMSProp tends to forget the task t by significant
amount as soon as it receives the new tasks. On the other hand, TAG-RMSProp prevents catastrophic
forgetting and hence results in a higher accuracy throughout the stream. We can observe that for Split-
CIFAR100 and Split-miniImageNet, α(τ + 1, τ) (where τ ∈ [1, 9]) generally have a higher rank in the set

18



Under review as a conference paper at ICLR 2022

(a) τ = 1 (b) τ = 2 (c) τ = 3

(d) τ = 4 (e) τ = 5 (f) τ = 6

(g) τ = 7 (h) τ = 8 (i) τ = 9

Figure 5: Evolution of α(t, τ) and test accuracy at,τ where τ ∈ [1, 9] along the stream of 20 tasks in
the Split-CIFAR100 dataset. The grey-coloured lines are maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)]
(middle, solid line) and minτ ′ α(t, τ ′) (bottom, dashed line) that indicate the range of α(t, τ ′).

{α(t, τ ′); τ ′ ∈ [1, t]}. This is because TAG-RMSProp also recognizes an immediate change in the directions
when the model receives a new task (from M

(t−1)
N to M (t)

n ). A similar observation is made in case of
Split-CUB but the visible gain in the accuracy by TAG-RMSProp does not occur instantly. Apart from that,
we observe that the lower and higher rank of α(t, τ) results in backward transfer and prevents catastrophic
forgetting respectively in the stream. Overall, in all datasets, we arrive at the same conclusion obtained in
Section ??.

A.3.4 MULTIPLE-PASS PER TASK

In this section, we report the performance of TAG-RMSProp and all other baselines discussed in Section 4.2
for 5 epochs per task in Table 5. Hyper-parameters for this experiment are kept the same as the single-pass per
task setting. TAG-RMSProp results in high average Accuracy in all the datasets. We also observe less amount

19



Under review as a conference paper at ICLR 2022

(a) τ = 1 (b) τ = 2 (c) τ = 3

(d) τ = 4 (e) τ = 5 (f) τ = 6

(g) τ = 7 (h) τ = 8 (i) τ = 9

Figure 6: Evolution of α(t, τ) and test accuracy at,τ where τ ∈ [1, 9] along the stream of 20 tasks in the
Split-miniImageNet dataset. The grey-coloured lines are maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)]
(middle, solid line) and minτ ′ α(t, τ ′) (bottom, dashed line) that indicate the range of α(t, τ ′).

of Forgetting in TAG-RMSProp as compared to other baselines. In terms of Learning Accuracy, TAG-
RMSProp is outperformed by the other baselines in Split-CIFAR100, Split-miniImageNet and 5-dataset
but performs better in Split-CUB.

A.3.5 BIGGER MEMORY SIZE IN REPLAY-BASED METHODS

We also compare the performance of A-GEM and ER with a larger number of samples per class (M) in
the episodic memory for all four datasets in Table 6. With M = 10, total episodic memory size for Split-
CIFAR100, Split-miniImageNet, Split-CUB and 5-dataset becomes 1000, 1000, 2000 and 500 respectively.
We observe ER results in a significant gain in the performance as the episodic memory size increases. But
TAG-RMSProp is able to outperform A-GEM in Split-CIFAR100, Split-miniImageNet and Split-CUB with
a large margin even when M is set to 10.

20



Under review as a conference paper at ICLR 2022

(a) τ = 1 (b) τ = 3 (c) τ = 4

(d) τ = 7 (e) τ = 8 (f) τ = 9

Figure 7: Evolution of α(t, τ) and test accuracy at,τ where τ ∈ {1, 3, 4, 7, 8, 9} along the stream of 20
tasks in the Split-CUB dataset. The grey-coloured lines are maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)]
(middle, solid line) and minτ ′ α(t, τ ′) (bottom, dashed line) that indicate the range of α(t, τ ′).

(a) τ = 1 (b) τ = 2 (c) τ = 3

Figure 8: Evolution of α(t, τ) and test accuracy at,τ where τ ∈ {1, 2, 3} along the stream of 5 tasks in the
5-dataset dataset. The grey-coloured lines are maxτ ′ αn(t, τ

′) (top, dashed line), Eτ ′ [α(t, τ ′)] (middle, solid
line) and minτ ′ α(t, τ ′) (bottom, dashed line) that indicate the range of α(t, τ ′).

21



Under review as a conference paper at ICLR 2022

Table 5: Comparing performance in terms of Final average test Accuracy (%) (higher is better), Forgetting
(lower is better) and Learning Accuracy (LA (%)) (higher is better) with the standard deviation values
for different existing methods with TAG-RMSProp running for 5 epochs per task for all four datasets (see
Section 4). All metrics are averaged across 5 runs. *MTL assumes that the dataset from all tasks are always
available during training, hence it is a different setting and its accuracy acts as an upper bound.

Methods Split-CIFAR100 Split-miniImageNet
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

Naive SGD 52.26 (±0.65) 0.28 (±0.01) 78.45 (±0.41) 46.9 (±1.18) 0.25 (±0.02) 70.82 (±0.6)
Naive RMSProp 46.12 (±2.33) 0.32 (±0.02) 76.29 (±0.53) 41.07 (±0.66) 0.32 (±0.01) 71.43 (±0.42)

EWC 51.7 (±1.71) 0.27 (±0.02) 77.72 (±0.84) 48.17 (±0.81) 0.25 (±0.01) 71.87 (±0.26)
A-GEM 54.24 (±1.14) 0.25 (±0.01) 78.38 (±0.39) 49.08 (±0.52) 0.23 (±0.01) 70.49 (±0.4)

ER 60.03 (±0.96) 0.19 (±0.01) 78.15 (±0.7) 54.01 (±0.56) 0.19 (±0.01) 71.77 (±0.58)
Stable SGD 58.92 (±0.73) 0.19 (±0.01) 76.91 (±0.72) 51.23 (±0.88) 0.22 (±0.01) 71.77 (±0.56)

TAG-RMSProp (Ours) 60.64 (±1.38) 0.17 (±0.01) 77.12 (±0.76) 58.0 (±1.11) 0.11 (±0.02) 68.14 (±0.38)
MTL* 67.7 (±0.58) - - 66.14 (±1.0) - -

Methods Split-CUB 5-dataset
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

Naive SGD 59.87 (±1.48) 0.21 (±0.02) 79.77 (±0.44) 49.95 (±2.42) 0.51 (±0.04) 90.86 (±0.63)
Naive RMSProp 35.87 (±1.14) 0.46 (±0.01) 79.59 (±0.3) 50.47 (±0.99) 0.51 (±0.01) 90.89 (±0.44)

EWC 59.73 (±2.4) 0.21 (±0.02) 79.8 (±0.58) 52.51 (±7.34) 0.43 (±0.09) 86.8 (±2.52)
A-GEM 62.65 (±1.61) 0.17 (±0.02) 79.1 (±0.4) 62.48 (±3.16) 0.35 (±0.04) 90.53 (±0.73)

ER 66.06 (±1.28) 0.14 (±0.02) 78.79 (±0.55) 62.84 (±1.58) 0.35 (±0.02) 90.52 (±0.69)
Stable SGD 58.75 (±0.96) 0.19 (±0.01) 76.6 (±0.64) 51.95 (±3.83) 0.48 (±0.05) 90.41 (±0.29)

TAG-RMSProp (Ours) 68.0 (±1.01) 0.13 (±0.01) 80.15 (±0.22) 61.13 (±3.05) 0.36 (±0.04) 89.9 (±0.33)
MTL* 71.65 (±0.76) - - 70.0 (±4.44) - -

Table 6: Comparing performance in terms of Final average test Accuracy (%) (higher is better), Forgetting
(lower is better) and Learning Accuracy (LA (%)) (higher is better) with the standard deviation values for
A-GEM and ER for different number of samples per class (M) in the episodic memory with TAG-RMSProp
for all four datasets (see Section 4). All metrics are averaged across 5 runs. Overall, ER with bigger memory
outperforms all other methods in terms of Accuracy.

Methods Split-CIFAR100 Split-miniImageNet
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

A-GEM (M = 1) 54.25 (±2.0) 0.16 (±0.03) 68.98 (±1.19) 50.32 (±1.29) 0.11 (±0.02) 61.02 (±0.64)
A-GEM (M = 5) 55.74 (±1.14) 0.14 (±0.01) 68.97 (±0.56) 49.52 (±2.02) 0.12 (±0.02) 60.49 (±0.78)
A-GEM (M = 10) 56.68 (±1.92) 0.13 (±0.02) 68.72 (±0.96) 49.77 (±2.41) 0.12 (±0.02) 60.6 (±0.66)

ER (M = 1) 59.14 (±1.77) 0.12 (±0.02) 70.36 (±1.23) 52.76 (±1.53) 0.1 (±0.01) 61.7 (±0.74)
ER (M = 5) 65.74 (±1.47) 0.07 (±0.01) 70.91 (±1.13) 58.49 (±1.21) 0.05 (±0.01) 62.24 (±0.85)
ER (M = 10) 68.94 (±0.93) 0.05 (±0.01) 71.26 (±1.01) 60.06 (±0.63) 0.04 (±0.01) 62.21 (±1.24)

TAG-RMSProp (Ours) 62.79 (±0.29) 0.1 (±0.01) 72.06 (±1.01) 57.2 (±1.37) 0.06 (±0.02) 62.73 (±0.61)

Methods Split-CUB 5-dataset
Accuracy (%) Forgetting LA (%) Accuracy (%) Forgetting LA (%)

A-GEM (M = 1) 56.91 (±1.37) 0.1 (±0.01) 65.6 (±0.73) 55.9 (±2.58) 0.34 (±0.04) 82.61 (±2.13)
A-GEM (M = 5) 56.4 (±1.5) 0.1 (±0.01) 65.63 (±0.64) 61.39 (±1.0) 0.28 (±0.01) 83.48 (±1.05)

A-GEM (M = 10) 56.71 (±1.6) 0.1 (±0.01) 65.73 (±0.9) 62.43 (±1.38) 0.26 (±0.03) 83.38 (±1.79)
ER (M = 1) 59.25 (±0.82) 0.1 (±0.01) 66.17 (±0.42) 61.58 (±2.65) 0.28 (±0.04) 84.31 (±1.08)
ER (M = 5) 68.89 (±0.31) 0.04 (±0.0) 66.76 (±0.73) 71.56 (±1.54) 0.16 (±0.02) 84.34 (±1.46)
ER (M = 10) 70.73 (±0.23) 0.03 (±0.01) 66.83 (±0.86) 75.44 (±1.07) 0.12 (±0.02) 84.62 (±0.89)

TAG-RMSProp (Ours) 61.58 (±1.24) 0.11 (±0.01) 71.56 (±0.74) 62.59 (±1.82) 0.3 (±0.02) 86.08 (±0.55)

22


	Introduction
	Related Work
	Method
	Lifelong learning Setup
	Task-based accumulated gradients
	Adaptive Learning Rate

	Experiments
	Naive optimizers
	Compared with other baselines
	Combined with other baselines

	Conclusion
	Appendix
	TAG-optimizers
	Implementation details
	Hyper-parameter details

	Additional Experiments
	Backward Transfer Metric
	Comparing TAG-RMSProp with other baselines
	Evolution of (t,) and Test Accuracy at,
	Multiple-pass per Task
	Bigger Memory size in replay-based methods



