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Abstract
Despite the widespread application of latent factor
analysis, existing methods suffer from the follow-
ing weaknesses: requiring the number of factors
to be known, lack of theoretical guarantees for
learning the model structure, and nonidentifiabil-
ity of the parameters due to rotation invariance
properties of the likelihood. We address these
concerns by proposing a fast correlation thresh-
olding (CT) algorithm that simultaneously learns
the number of latent factors and a rotationally
identifiable model structure. Our novel approach
translates this structure learning problem into the
search for so-called independent maximal cliques
in a thresholded correlation graph that can be eas-
ily constructed from the observed data. Our clique
analysis technique scales well up to thousands of
variables, while competing methods are not ap-
plicable in a reasonable amount of running time.
We establish a finite-sample error bound and high-
dimensional consistency for the structure learning
of our method. Through a series of simulation
studies and a real data example, we show that
the CT algorithm is an accurate method for learn-
ing the structure of factor analysis models and is
robust to violations of its assumptions.

1. Introduction
Factor analysis is a commonly used multivariate technique
which conceptualizes observed variables as a function of
unobserved latent factors. Methods and discussions have ap-
peared in a variety of fields, particularly the social sciences,
such as psychology (Reise et al., 2000), sociology (Werts
et al., 1973), education (Schreiber et al., 2006), and epi-
demiology (Martı́nez et al., 1998). It is generally assumed
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that the number of latent factors is less than the number of
observed variables, hence serving as a dimension reduction
procedure in this sense.

To learn the parameters of factor analysis models, three
problems must be addressed: (1) the number of latent factors
must be determined, (2) the support of the coefficients must
be found, and (3) a unique solution must be determined
from rotationally equivalent parameters. Prior work on
learning factor analysis models typically use a constraint-
based or a score-based approach. Constraint-based methods
involve analyzing permutations of correlations and partial
correlations among the observed variables for constraints
that would be implied by potential models (Scheines et al.,
1998; Silva et al., 2006). However, we note that the focus
of these algorithms is to construct equivalence classes of
possible models and can be computationally demanding. In
contrast, our goal is to develop efficient methods for learning
and estimating a single model output in this work.

Score-based methods are generally more amenable to single
model outputs. Traditional Exploratory Factor Analysis
(EFA) typically maximizes the likelihood, restricting the
latent factors to be orthogonal. An oblique factor solution
can be extracted by rotating the orthogonal solution, subject
to the model constraints. There are numerous procedures
for such rotations, which typically yield different solutions
(for a review of such methods see Browne, 2001). After
rotation, additional structure may be learned by setting small
elements of Λ to zero if they are below an ad-hoc threshold
(Ford et al., 1986; Howard, 2016). The major criticisms
of EFA are the subjective use of these rotation criteria and
thresholding steps, and requiring the number of latent factors
to be known a priori.

As a potential solution to these problems in EFA, penalized
methods also have been developed. Most relevant to oblique
factor analysis models are adding LASSO (Tibshirani, 1996)
and MCP (Zhang, 2010) penalties to the likelihood, which
were developed by Hirose and Yamamoto (2014b). Instead
of rotating factor coefficients after maximizing the likeli-
hood, penalized EFA can achieve sparse solutions by di-
rectly maximizing a penalized likelihood. This requires
the use of tuning parameters, followed by model selection
with the Bayesian Information Criterion (BIC) or cross-
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validation (CV; Scharf & Nestler, 2019). However, a search
over a large set of tuning parameters is often computation-
ally intense. Furthermore, the number of latent variables is
still required as an input, and theoretical guarantees for ro-
tational identifiability and structural estimation consistency
have yet to be established.

For choosing the number of latent factors, many ad-hoc
methods have been suggested, but suffer from poor perfor-
mance, poor theoretical motivation, or both. Most classi-
cal methods are related to the eigenvalues of the sample
correlation matrix among the observed variables. Famous
examples include the Kaiser-Guttman criterion (Guttman,
1954; Kaiser, 1960), the Scree Test (Cattell, 1966; Raı̂che
et al., 2013), and variants thereof (Horn, 1965; Glorfeld,
1995). On the other hand, modern methods use a model
selection approach (Preacher et al., 2013). However, none
of these methods are without controversy, and a great deal
of literature has been devoted to criticisms on both empirical
and theoretical grounds (Browne, 1968; Ford et al., 1986;
Zwick & Velicer, 1986; Velicer & Jackson, 1990; Howard,
2016; Auerswald & Moshagen, 2019).

In summary, all methods of learning factor analysis must
address three fundamental issues: (1) determine the num-
ber of factors, (2) learn the structure of the model, and (3)
resolve the rotational nonidentifiability issue. As we have
reviewed, an overabundance of literature has been dedicated
to addressing these issues separately, all with varying de-
grees of success. In contrast, we seek to address all three
aforementioned issues simultaneously under a unified frame-
work. We do this by making use of thresholded correlation
graphs of the observed correlation matrix, and exploiting
two common assumptions in factor analysis designs. First,
we assume that the correlation between variables that share
latent factor parents is higher than the correlation between
variables that do not. Second, we assume that each latent
variable has at least one observed variable of which it is
the sole parent. Under these conditions, there is a perfect
correspondence between latent factors and a specific type
of maximal clique from these graphs, which we call inde-
pendent maximal clique (defined in Section 3.1). Therefore,
the structure learning problem is converted to a search for
all independent maximal cliques in the graph. We leverage
this key relation to make the following contributions:

1. We propose a computationally efficient algorithm for
learning the number of latent factors and the support
of the coefficients simultaneously.

2. We establish high-dimensional consistency of our al-
gorithm for learning the structure of the model.

3. We demonstrate the efficacy and practical uses of our
algorithm on both real and simulated data, including
high-dimensional settings.

There is another recent study that has taken a clique analy-
sis approach to learning the structure of independent latent
factors (Markham & Grosse-Wentrup, 2020). This work
utilizes the maximal cliques of a conditional independence
graph for structure learning. In contrast, we allow for corre-
lated latent factors and our method is much more computa-
tionally efficient through the use of independent maximal
cliques. Further, we establish theoretical guarantees for our
method in high-dimensions.

Notation throughout this article will be as follows. Define
[n] := {1, . . . , n}. Let A ⊆ [n] and B ⊆ [p] be index
sets. The complement of A is denoted as Ac. For a matrix
M = (mij) ∈ Rn×p, we define MAB as the submatrix of
M consisting of the rows indexed by A and columns indexed
by B. Similarly for a vector V ∈ Rn, we define VA as the
subvector of V consisting of the entries indexed by A. We
denote the support of M as A(M) := {(i, j) : mij ̸= 0}.
We use 0 to represent a matrix or vector of zeroes, whose
dimension can be inferred from context and In denotes the
n× n identity matrix.

For graph theoretic notation, we define a graph G as an
ordered pair (V,E), explicitly denoted as G(V,E), where
V is a set of vertices and E ⊆ V × V is a set of edges. For
convenience, we will use V = X to mean that the elements
of the vertex set V represent the index set of the random
vector X . We also restrict our attention to undirected graphs.
A clique of G(V,E) is a subset of vertices C ⊆ V such that
all pairs of distinct vertices in C are connected by an edge.
Finally, a maximal clique is a clique that cannot be extended
by including more vertices from V .

2. The Factor Analysis Model
Let X = (X1, . . . , Xp) ∈ Rp be a vector of observed
variables. The factor analysis model specifies the joint dis-
tribution of X in the form of a structural equation model:

X = ΛL+ ϵ, (1)

where L = (L1, . . . , Ld) ∼ Nd(0,Φ) is a vector of la-
tent variables or factors, ϵ = (ϵ1, . . . , ϵp) ∼ Np(0,Ω)
is a vector of independent errors with a diagonal Ω, and
Λ = (λij) ∈ Rp×d is a matrix of coefficients, or factor
loadings. For convenience, an additive mean vector µ is
omitted from the model without loss of generality. We as-
sume that d < p, since factor analysis is generally used as a
dimension simplification technique. In the context of Λ, Xi

is a function of Lj if and only if λij ̸= 0, in which case we
may say that Lj is a parent of Xi and Xi a child of Lj . We
assume that every Xi has at least one parent, and every Lj

has at least one child, i.e., there are no rows or columns of
full zeroes in Λ. We are considering the more general case
of oblique factor analysis models in this study, where the L
variables may be correlated.
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The model stated in Equation (1) implies a covariance struc-
ture Σ for X as follows:

Σ(θ) := Var(X) = Var(ΛL+ ϵ) = ΛΦΛT +Ω, (2)

letting θ = {Λ,Φ,Ω}. We write Σ(θ) to make explicit that
we are referring to Σ as a function of the parameters Λ, Φ,
and Ω. At times, it will be easier to deal with observed vari-
ables which are unit variance scaled. Let Dσ = diag(Σ)1/2,
i.e. a diagonal matrix with entries Σ1/2

ii . Then we define a
unit variance scaled X as X̃ in the following manner:

X̃ := D−1
σ X = D−1

σ (ΛL+ ϵ) = Λ̃L+ ϵ̃, (3)

where Λ̃ = D−1
σ Λ and ϵ̃ = D−1

σ ϵ. Similarly, it follows that
a correlation matrix Σ̃ can be expressed as:

Σ̃(θ) := D−1
σ ΣD−1

σ = Λ̃ΦΛ̃T + Ω̃, (4)

where Ω̃ = D−1
σ ΩD−1

σ . Note that the factor analysis model
for Σ and Σ̃ are often used interchangeably, and the elements
of Σ̃(θ) may be referred to as ρij . Finally, notice that the
structure of a factor analysis model is entailed by the number
of factors d and the support of Λ, denoted A(Λ). Therefore
we will define the structure of a factor analysis model as the
pair (d,A(Λ)).

Given the structure of a factor analysis model (d,A(Λ)),
maximum likelihood is most widely used for estimating
the parameters, based on the Gaussian log-likelihood for
X ∼ Np(0,Σ(θ)). However, there is no closed-form so-
lution for the MLE (Jöreskog, 1967). Therefore, iterative
algorithms, such as Newton-Raphson (Jennrich & Robin-
son, 1969) or Expectation-Maximization (Rubin & Thayer,
1982), are employed, which can be computationally inten-
sive when the number of observed variables p is large. Fur-
thermore, the parameters Λ and Φ as in Equation (2) are in
general not identifiable, often referred to as rotational non-
identifiability in the literature (Anderson & Rubin, 1956).
This issue must be taken care of with additional criteria for
parameter estimation or restrictions on the model structure.

3. The Correlation Thresholding Algorithm
3.1. Preliminaries and Overview

The main idea behind our algorithm is that for several broad
classes of factor analysis models, the correlation between
observed variables that share parents is stronger than cor-
relations between variables that do not (these classes of
models are discussed in Section 4.4). Subsequently, the
correlation graph amongst the variables that share parents
yields much information about the structure of the model.
We leverage these two ideas into an efficient algorithm to
learn the structure.

Recall that ρij is the correlation between Xi and Xj given
by Σ̃(θ) in Equation (4). Our first step is to define a thresh-
olded correlation graph G(X,E(τ)) given some τ ∈ [0, 1],
where the edge set

E(τ) := {(i, j) : |ρij | > τ}. (5)

In practice, given a sample of X , we can define an estimate
of E(τ) as

Ê(τ) := {(i, j) : |rij | > τ}, (6)

where rij denotes the sample correlation.

Given a thresholded correlation graph, an implied structure
can be extracted by examining the cliques of the graph.
Specifically, there is a correspondence between the latent
variable structures and a particular kind of maximal clique,
which we term as independent maximal clique:

Definition 3.1 (Independent Maximal Clique). Let C =
{C1, . . . , Ck} be the set of all maximal cliques in a graph
G. Then, Ci is an independent maximal clique if

Ci ⊈
⋃
j ̸=i

Cj . (7)

Essentially, an independent maximal clique is a maximal
clique that contains a vertex that is not a member of any
other maximal clique. We call such a vertex a unique mem-
ber of the independent maximal clique. We use the word
“independent” as an analog to the notion of linear indepen-
dence in a vector space. That is, an independent maximal
clique cannot be covered by the union of any of the other
maximal cliques. In Section 4.1, we show that the each in-
dependent maximal clique corresponds to a latent variable,
whose children are the members of those cliques. This trans-
forms the result of the clique search into a factor analysis
structure.

3.2. The Algorithm

Putting these ideas together, the core task of our algorithm
is to search for a suitable τ0. This can be done by searching
over a set of candidate thresholds τk ∈ [0, 1] and analyzing
their respective thresholded correlation graphs G(X, Ê(τk))
for independent maximal cliques. We exploit the correspon-
dence between these cliques and the factor analysis structure
to learn the number of latent variables and the support of Λ.
When this is done over each candidate threshold, this yields
a set of candidate models for which we can utilize model
selection procedures (e.g., BIC) to select a final model. We
formally describe these steps in Algorithm 1.

To quickly find all independent maximal cliques in a graph,
we can employ the following Lemma.
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Algorithm 1 The Correlation Thresholding Algorithm
1: Input: Sample correlation matrix R and set of thresh-

olds τ = {τk : k ∈ [m]}.
2: Output: Parameter estimates θ̂.
3: for k ∈ [m] do
4: Calculate G(X, Ê(τk)) and extract the set of inde-

pendent maximal cliques: Ck = {C1, . . . C|Ck|};
5: Set d̂k = |Ck|;
6: Initialize Âk = ∅;
7: for (i, j) ∈ [p]× [d̂k] do
8: If i ∈ Cj , add (i, j) to Âk;
9: end for

10: Estimate θ̂k given (d̂k, Âk), i.e., subject to λij = 0

for all (i, j) /∈ Âk;
11: end for
12: Select one of the m estimates from {θ̂k : k ∈ [m]} via

a model selection procedure.

Lemma 3.2. Given a graph G(X,E), let ne(Xi) be the set
of vertices that contains Xi and every node that shares an
edge with Xi (the neighbors of Xi).

1. If ne(Xi) is a clique, then ne(Xi) is also an indepen-
dent maximal clique and Xi is a unique member of this
clique.

2. If C is an independent maximal clique, then C =
ne(Xi) for any unique member Xi ∈ C.

In the worst case scenario, all independent maximal cliques
can be found by checking whether ne(Xi) is a clique for
every node Xi. The computational cost for checking if
ne(Xi) is a clique has a brute force complexity of O(k2),
assuming a maximum neighbor size of k. Thus, the total
computational cost on all p nodes can be no greater than
and usually well below O(k2p), which is very efficient
even for large graphs, allowing our algorithm to be used
in high-dimensional settings. This is in sharp contrast to
the exponential complexity in listing all (non-independent)
maximal cliques in a graph (Eppstein et al., 2010).

After extracting these independent maximal cliques in
Step 4, we learn the structure of the model in Steps 5
through 9. The number of independent maximal cliques
is set as the estimate of d, which is also the number of
columns in Λ. Then, the nodes in each Cj determine if λij

is zero or non-zero for each i ∈ [p], allowing us to construct
a candidate support Âk.

In Step 10 we estimate each model given the learned struc-
ture, then in Step 12 we use a model selection procedure
to select one of the models. We note that these steps are
general in that any estimation and model selection method
can be utilized here. In our implementation, we will prefer
to use maximum likelihood estimation and BIC for model

selection. Since this pair of methods are statistically consis-
tent, this leads to the final output model having consistent
parameters and model structure, as we will show in Sec-
tion 4.2.

4. Theoretical Guarantees
In this section, we establish theoretical guarantees for the CT
algorithm. We assume throughout that the factor analysis
model in Equation (1) holds. Proofs of these results can be
found in Appendix A.

4.1. Assumptions

We first present the main assumptions under which the struc-
ture for Λ can be recovered from the thresholded correlation
graph. A discussion of these assumptions is provided in
Section 4.4.

Let the parent set of Xi be Πi := {j : λij ̸= 0, j ∈ [d]}.
Then we formalize the set of pairs that share parents as

E0 := {(i, j) ∈ [p]× [p] : Πi ∩Πj ̸= ∅}. (8)

Subsequently, we denote the set of pairs that do not share
parents (the complement of E0) as

Ec
0 = {(i, j) ∈ [p]× [p] : Πi ∩Πj = ∅}. (9)

Essentially, we would like to find some threshold τ0 that is
able to separate the E0 and Ec

0 sets by the magnitude of the
correlations. We will define this notion as thresholdable:

Definition 4.1 (Thresholdable). A set of parameters θ is
called thresholdable if there exists a threshold τ0 such that

max
(k,l)∈Ec

0

|ρkl| < τ0 < min
(i,j)∈E0

|ρij |. (10)

Recall the use of independent maximal cliques (Defini-
tion 3.1) in the CT algorithm. Perfect model structure recov-
ery can be achieved if there is a one-to-one correspondence
between the latent variable structures and the independent
maximal cliques. A simple sufficient condition for such a
correspondence to hold is the unique child condition:

Condition 4.2 (Unique Child Condition). Let the child set
of a latent variable be denoted ch(Lk) = {i ∈ [p] : λik ̸=
0}. If

Uk := ch(Lk)−
⋃
j ̸=k

ch(Lj) ̸= ∅, ∀ k ∈ [d], (11)

i.e., if each latent variable Lk has a non-empty set of unique
children Uk, then we say that the unique child condition
holds. It essentially means that all latent parents have at
least one unique child variable.
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Given this condition, we can obtain a bijection between
the latent variables and the independent maximal cliques in
G(X,E0). We state this in the following lemma.

Lemma 4.3. If the unique child condition holds in Λ (Con-
dition 4.2), then the set {ch(Lk) : k ∈ [d]} is identical to
the set of independent maximal cliques in G(X,E0).

Recall the key observation that the dimension of L and sup-
port of Λ, i.e. (d,A(Λ)), completely encodes the structure
of the model. The CT algorithm leverages Lemma 4.3 to
recover the structure of a factor analysis model (d,A(Λ))
by finding independent maximal cliques in an estimated
graph G(X, Ê(τk)).
Remark 4.4. We note our use of A(Λ) defines a model
structure up to a column permutation of Λ. That is, we
consider different ordering or labeling of the factors to be
equivalent, since they define the same Σ(θ) in Equation (2).

4.2. Error Bounds and Consistency

In this section, we establish the consistency of the CT algo-
rithm. We will call a structural estimate (d̂,A(Λ̂)) consis-
tent if

lim
n→∞

P
[
(d̂,A(Λ̂)) = (d,A(Λ))

]
= 1, (12)

given an i.i.d. sample of size n from the model in Equa-
tion (1). By Lemma 4.3, the model structure (A(Λ), d)
can be recovered exactly from the set of independent max-
imal cliques in G(X,E0) when the unique child condi-
tion holds. Therefore, structural consistency holds when
limn→∞ P(Ê(τ0) = E0) = 1 under the unique child con-
dition for a suitable τ0. In what follows, it will be useful to
define a gap of separation for a thresholdable θ as

γ :=
1

2

[
min

(i,j)∈E0

|ρij | − max
(i,j)∈Ec

0

|ρij |
]
. (13)

Theorem 4.5. Assume the model described in Equation (1)
holds for X and that the correlations between all pairs
(Xi, Xj) are bounded such that maxi ̸=j |ρij | ≤ M < 1. If
θ is thresholdable with a gap γ > 0, then

P(Ê(τ0) ̸= E0) ≤ Cp(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4

:= η,

(14)
where 0 < C < ∞ only depends on M . If additionally the
unique child condition holds (Condition 4.2), then we have

P((d̂,A(Λ̂)) = (d,A(Λ))) ≥ 1− η, (15)

where (d̂,A(Λ̂)) is the estimated model structure by the CT
algorithm with cutoff τ0.

Due to the exponential decay of the term [(4 − γ2)/(4 +
γ2)]n−4, consistency is trivially implied under a fixed p

regime. More generally speaking, for any joint distribution
of X under which the central limit theorem holds for the
sample correlations {rij}, structural consistency would also
follow. By the classical central limit theorem and the delta
method, this would include the class of distributions with
finite fourth-order moments (Ferguson, 1996). Furthermore,
we will use the bound described in Inequality 14 to develop
a consistency result with high-dimensional accommodations
where the dimension p = pn ≫ n.

Theorem 4.6. Assume the model described in Equation (1)
holds for X and that the correlations between all pairs
(Xi, Xj) are bounded such that maxi ̸=j |ρij | ≤ M < 1
for some universal constant M independent of n. If θ is
thresholdable with a gap γ = γn such that γ2

n ≥ c1/(n−4)b

for some c1 > 0 and b ∈ [0, 1) when n is large, and pn =
o(exp(c(n− 4)1−b)), where 0 < c < c1/8, then

lim
n→∞

P(Ê(τ0) = E0) = 1. (16)

If additionally the unique child condition holds (Condi-
tion 4.2), then the structural estimate is consistent, as in
Equation (12).

Note that any fixed value between maxEc
0
{|ρij |} and

minE0
{|ρij |} will be a valid choice for τ0 for structure

learning consistency. This result is straightforward to gener-
alize to non-Gaussian forms of X , which could result from
non-Gaussian combinations of L and ϵ. All that would be
required is to replace our use of Lemma A.3 (a Gaussian
sample correlation concentration bound) in the proofs of
Theorems 4.5 and 4.6 with a bound for any non-Gaussian X
of interest (see Appendices A.9 and A.10, respectively). So
long as this bound is sufficiently well-behaved, the proba-
bility bounds in Theorem 4.5 will hold as will Theorem 4.6
with different dependencies between p and n.

In the practical context of the CT algorithm, recall that a
suitable τ0 is actually unknown, and the algorithm estimates
and selects among a set of models based on a candidate
set {τk}. Assuming that a suitable τ0 is contained in {τk},
the unique child condition and consistency implies that the
correct model structure is among the set of candidate models,
asymptotically. From here, overall parameter consistency
follows by simply using a consistent parameter estimation
method (Step 10) and a consistent model selection procedure
(Step 12) in the algorithm. A straightforward choice would
be to use maximum likelihood estimation in conjunction
with BIC model selection. Then, asymptotically, the CT
algorithm will produce the correct model structure with
consistent parameter estimates.

4.3. Rotational Uniqueness

An important consideration with a factor analysis model is
the identifiability of the parameters θ = {Λ,Φ,Ω}. It is
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well known that factor analysis models lack of rotational
uniqueness, which implies that there may be many (Λ,Φ)
pairs that exist such that Σ(θ) = ΛΦΛT + Ω. However,
the solutions learned by the CT algorithm resolves this non-
identifiability issue given that the zero constraints implied
by A(Λ̂) are preserved. A formal definition of rotational
uniqueness can be found in Appendix A.6.
Corollary 4.7. If the unique child condition holds in Λ, then
θ is locally rotationally unique (i.e., unique up to a polarity
reversal on columns).
Corollary 4.8. Any θ̂k for k ∈ [m], produced by Step 10 of
the CT algorithm, is locally rotationally unique.

First we note that all matrix factorizations will have a
polarity reversal on columns or rows as a source of non-
uniqueness unless the signs of the main diagonal (or a per-
mutation thereof) are fixed and non-zero. Since the model
in Equation (1) makes no assumptions regarding the signs
in Λ, local rotational uniqueness is the best type of rota-
tional uniqueness that can be established. Second, note that
Corollary 4.8 holds regardless if Condition 4.2 is true in the
population structure. Thus the CT algorithm can be used as
a model approximation tool for finding locally rotationally
unique structures.

4.4. Discussion of Assumptions

We discuss the practicality of our thresholdability and
unique child assumptions and how they relate to common
factor analytic designs. Regarding the thresholdability of
θ, several widely used factor analysis designs either meet
the assumption outright, or under mild conditions. These
stem from a technical necessary and sufficient condition for
thresholdability presented in Lemma A.1 in the Appendix.
Relevant to our discussion are the following corollaries to
the lemma, which we discuss here.
Corollary 4.9. If Φ = Id, then θ is thresholdable.

That is, if we have the orthogonal factor analysis design,
then thresholdability is met. Another common scenario
is when Λ has exactly one non-zero entry per row. This
is called “independent cluster structure” (Harris & Kaiser,
1964) or “perfect simple structure” (Jennrich, 2006). Such
structures lead to a simplification of the thresholdability
condition:
Corollary 4.10. If Λ has exactly one non-zero entry per
row, then θ is thresholdable if

max
(k,l)∈Ec

0

|λ̃keλ̃lfϕef | < min
(i,j)∈E0

|λ̃icλ̃jc|, (17)

where Πi = Πj = {c}, Πk = {e}, and Πl = {f}.

Corollaries 4.9 and 4.10 involve desirable properties of fac-
tor analytic designs. It has been suggested that latent vari-
able models should be designed such that the latent factors

be distinguishable from one another, or that they are not
too highly correlated (Whitely, 1983). If the latent factors
are too highly correlated, then a factor solution with less
dimensions may be better suited.

As a common design in educational and psychological test
construction (Hattie, 1985; Anderson & Gerbing, 1988),
an independent cluster structure yields mutually exclusive
subsets of children for each latent variable. In other words,
each observed variable provides a “measurement” of a single
latent variable alone. In contrast, our unique child condi-
tion (Condition 4.2) is much more general, only requiring a
single observed variable to serve as the sole measurement.
Many other latent variable algorithms only focus on the in-
dependent cluster structure (Scheines et al., 1998; Jennrich,
2001; 2006; Silva et al., 2006), or require 3 to 4 observed
variables to serve as unique children (Shimizu et al., 2009;
Kummerfeld & Ramsey, 2016).

Additionally, we examine the unique child condition under a
random graph model for A(Λ), in which edges are indepen-
dently connected between any Xi and Lj with probability α.
Let m = dα be the expected number of parents for any Xi.
One can show that the unique child condition holds with
probability ≥ 1 − d exp[−αp(1 − α)d]. Consequently, if
log(log d) ≪ m ≪ min{log(mp/d), d}, then the unique
child condition holds with high probability.

The assumption of the unique child condition does have
a few limitations as it precludes certain structures from
being perfectly discovered. Examples of these structures are
illustrated in Appendix C (Figure 3). However, even under
such settings, we will show through simulation that the CT
algorithm will select a structure close to the true structure
despite the unique child condition not holding.

5. Simulation Studies
5.1. Low-Dimensional Settings

Our first set of simulations were conducted in low-
dimensional settings. Here, we compared the CT algorithm
against three other methods: (1) EFA, (2) EFA-LASSO, and
(3) EFA-MCP (all described in Section 1). Note that these
EFA methods all require d as an input, thus we use the CT
algorithm to give these EFA methods a set of d to work with.
This was to make the comparison as fair as possible, rather
than than using ad hoc choices. More specifically, we ran
the CT algorithm to Step 5, where d is estimated from the
number of independent maximal cliques. Thereafter, we
replaced the support learning portion (Steps 6 through 9)
of the algorithm with one of the EFA procedures. Then the
support of the model was saved from the EFA methods and
resumed the algorithm from Step 12, where the MLE was
estimated from the support and used for model selection.
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We generated data sets from a zero-mean Gaussian distribu-
tion, with a covariance matrix Σ parameterized by θ. The
structure of Λ followed an independent cluster structure
(one non-zero entry per row). We focused on this structure
since it is the most common factor analysis design and it was
the simulation design used in the studies proposing the pe-
nalized EFA methods (Hirose & Yamamoto, 2014a;b). The
number of latent variables (d) was set to 3 with the number
of children per latent variable set to 5 and n = 1000. The
non-zero entries of Λ were drawn from a uniform distribu-
tion, λij ∼ Uniform(0.6, 0.8). We varied the magnitude of
the off-diagonals in Φ, as it is a key factor in whether or not
θ is thresholdable for these structures, as shown by Corol-
lary 4.10. Their entries began with the range of [0.6, 0.8],
with a low-magnitude setting scaling these by 0.25 and a
high-magnitude setting scaling these by 0.75. The tuning
parameters of the penalized EFA methods were left at the
software package defaults, which were 30 tuning parame-
ters for EFA-LASSO and a set of 270 tuning parameters
for EFA-MCP. We conducted 100 replications per condition.
Further details of the software and data generating settings
can be found in Appendix B.

We examined three outcomes to assess the performance of
the methods: (1) The F1 score of A(Λ̂), (2) the learned
number of latent variables, and (3) the computational effi-
ciency of each method. A precise definition of the F1 score
of A(Λ̂) can be found in Appendix B.2. To measure compu-
tational efficiency we simply counted the number of models
each method estimated. This was to avoid idiosyncratic
differences between the software implementations of each
method. For the CT algorithm, this is simply the number
of unique structures obtained by the sequence of τk. For
EFA, this translates to the number of unique d obtained by
the sequence of τk. For EFA-LASSO and EFA-MCP, this is
the number of tuning parameter combinations to search over
(30 for LASSO, 270 for MCP), per unique d in the sequence
of τk.

The results of this simulation are displayed in Figure 1. CT
and EFA-MCP have the best F1 scores (very close to 1.0),
with EFA-LASSO at around 0.75 and EFA at 0.5 across
both conditions. All methods learned the number of latent
variables correctly in all data sets, and thus were omitted
from the figure. For computational efficiency, the CT al-
gorithm estimated a substantially less amount of models
compared to the penalized EFA methods. EFA showed the
best computational efficiency, but in contrast had the worst
F1 score. These results demonstrate that in low-dimensional
settings, that the CT algorithm performs with near perfect
accuracy along with EFA-MCP, however with substantial
computational savings.

Figure 1. Averages of the performance metrics for the low-
dimensional simulation. Error bars depict ±1 standard deviation.

5.2. High-Dimensional Settings

For the high-dimensional settings, we examined the sce-
nario where both p and d grow proportionally with n,
and n < p. We examined three (n, p, d) settings where
n ∈ {250, 500, 1000}, and set p = 1.5n and d = 0.1n. In
addition, we studied two conditions where the key assump-
tions of the CT algorithm would be violated: (1) thresh-
oldability, which we violated using high-magnitude off-
diagonals in Φ as in the previous simulation, and (2) the
unique child condition. We violated the unique child condi-
tion by starting with the independent cluster structure, then
randomly selecting 75% of the latent variables to have no
unique children, whose children were all given an extra
random parent. To isolate the effect of the unique child
condition from that of thresholdability, we ensured thresh-
oldability was always met in the latter set of simulations by
setting Φ = Id (Corollary 4.9). Further details regarding
the simulation settings can be found in Appendix B and
additional results using more varied assumption violations
can be found in Appendix C (Figure 4).

Under these high p settings, both the EFA and penalized
EFA methods are prohibitively slow, thus could not be used
as comparisons for this study. Further, MLE routines also do
not complete in a reasonable amount of running time, hence,
we omitted the estimation step of the CT algorithm (Step 10).
Rather, a final model structure was chosen as the one with
the minimum Hamming distance (HD) among the candidate

7
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thresholds {τk, k ∈ [m]} (a precise definition of HD can be
found in Appendix B.2). As before, we examined the F1

score, d̂, and computational efficiency as the outcomes for
this study.

The results are displayed in Figure 2. We first note that
in the thresholdability violation condition, thresholdability
was indeed violated in at least 99% of the data sets for each
of the n = 250, 500, and 1000 configurations. However, we
can see the F1 score become more accurate with n despite
these challenging conditions and the proportional growth
in p. The estimated number of latent variables (d̂) was also
fairly accurate on average across all conditions, confirming
the CT algorithm is capable of determining the number of
latent factors automatically even in such challenging high-
dimensional settings. Unsurprisingly, the computational
time increased with p, but remained reasonable even at
p = 1500.

6. Real Data Application
We examined a widely used factor analysis data set com-
prised of intelligence test scores of n = 301 middle school
students (Holzinger & Swineford, 1939), and compared the
performance of the CT algorithm with EFA and the penal-
ized EFA methods. The data consist of 9 variables designed
to measure 3 factors of intelligence. These were a spatial
factor, a verbal factor, and a speed factor. The hypothe-
sized structure of this design was an independent cluster
structure between these three factors. Again, for a fair com-
parison, we input the same set of d values produced in the
CT algorithm to each of the EFA methods as we did in the
simulation studies.

We display the results in Table 1. We first checked the HD
between the solution path of a method and the hypothe-
sized model structure. The minimum HD over the solution
path was zero only for the CT algorithm, indicating that the
hypothesized model was perfectly recovered within its solu-
tion path only, and not any other method. Moreover, the CT
algorithm identified the hypothesized structure with a much
smaller set of candidate models. We selected a structure via
BIC for each method and used 10-fold CV to calculate a test-
data log-likelihood and evaluate the structure. The results
for the test data log-likelihood are similar across all methods
except EFA, which was much worse. Despite the compara-
ble performance between the CT algorithm and the sparse
EFA methods, the CT algorithm obtained these results with
much improved computational efficiency, measured by the
number of candidate models evaluated.

As with most factor analytic designs, the hypothesized struc-
ture followed the unique child condition. An illustration of
the hypothesized structure and all the selected structures by
the four competing methods are displayed in Appendix C

Method HD(min.) d̂ Test LL Models
CT Algorithm 0 4 -3749.60 13

EFA 6 2 -3823.14 4
EFA-LASSO 6 3 -3751.82 120

EFA-MCP 3 4 -3751.37 1080

Table 1. Results of real data example. HD(min.) denotes the mini-
mum HD to the hypothesized structure across all solutions, Test
LL refers to the test-data log-likelihood, and Models denotes the
number of models evaluated per method.

(Figure 5). Both the EFA-LASSO and EFA-MCP methods
selected structures that followed the unique child condition,
despite the fact that these methods are not developed under
this assumption. These convergent results lend empirical
support for the unique child condition holding for factor
analysis structures within this data set, as designed.

7. Concluding Remarks
Overall, the CT algorithm is a promising method for learn-
ing factor analysis structures. In this article, we motivated
the algorithm using thresholded correlation graphs, and es-
tablished conditions for the clique mapping procedure, pa-
rameter uniqueness, and asymptotic consistency. In addition,
the CT algorithm yields a method of learning d, which the
EFA counterparts lack. In our simulation studies, the CT
algorithm performed nearly perfectly in low-dimensional
settings, and showed robust results in high-dimensional
settings. Further, the computational efficiency of the CT
algorithm is unrivaled relative to the EFA-LASSO and EFA-
MCP methods, as it checks substantially less models.

There are some limitations of the CT algorithm, mainly
the assumptions of thresholdability and the unique child
condition. While we demonstrated that the CT algorithm can
be robust to violations of these assumptions in practice, our
statistical consistency results depends on these assumptions
being true in the population. Future work can focus on the
relaxation of these assumptions.

We also note some computational limitations for the high-
dimensional (n < p) regime for parameter estimation. Both
penalized and traditional MLE estimation procedures have
fairly long computation routines. Since the CT algorithm
relies on external existing estimation method to provide pa-
rameter estimates, it is subsequently limited by the existing
technology in this area. Thus the estimation portion of our
algorithm will also benefit from computational advances on
this topic.
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Figure 2. Averages of the performance metrics for the high-dimensional simulation. Error bars depict ±1 standard deviation. “Thresh.”
refers to the high-magnitude Φ condition where thresholdability is violated, and “UCC” refers to the condition where the unique child
condition is violated.
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Werts, C. E., Jöreskog, K. G., and Linn, R. L. Identification
and estimation in path analysis with unmeasured vari-
ables. American Journal of Sociology, 78(6):1469–1484,
1973.

Whitely, S. E. Construct validity: Construct representation
versus nomothetic span. Psychological Bulletin, 93(1):
179–197, 1983.

Zhang, C. H. Nearly unbiased variable selection under
minimax concave penalty. Annals of Statistics, 38(2):
894–942, 2010.

Zwick, W. R. and Velicer, W. F. Comparison of five rules
for determining the number of components to retain. Psy-
chological Bulletin, 99:432–442, 1986.

11



Structure Learning of Latent Factors via Clique Search

A. Proofs and Additional Results
A.1. Proof of Lemma 3.2

First, we prove that ne(Xi) must be a maximal clique by contradiction. Suppose ne(Xi) is a clique, but not maximal. Then
ne(Xi) can be extended by another node Xj /∈ ne(Xi), such that the union Xj ∪ ne(Xi) is a clique. This implies that there
is an edge between Xi and Xj and thus Xj ∈ ne(Xi). This leads to a contradiction, and therefore, ne(Xi) must be maximal.
Second, we prove that Xi is not a part of any other maximal clique, once again by contradiction. Suppose that Xi ∈ A,
where A is a maximal clique and A ̸= ne(Xi). By the definition of ne(Xi), we must have A ⊂ ne(Xi), i.e., a proper subset
of ne(Xi), which contradicts the hypothesis that A is maximal. Therefore, Xi is not a part of any other maximal clique,
making ne(Xi) an independent maximal clique. This completes the proof of the first statement.

Now we prove the second statement. Let Xi be any unique member of an independent maximal clique C. Suppose ne(Xi)
is not a subset of C, which means there is a vertex Xj /∈ C but is a neighbor of Xi. Then {Xi, Xj} either is a maximal
clique or can be grown to a maximal clique C ′ ̸= C. This contradicts the fact that Xi is a unique member of C. Therefore,
ne(Xi) must be a subset of C and thus is a clique. By the first statement of this lemma, ne(Xi) is also an independent
maximal clique and thus we must have ne(Xi) = C.

A.2. Necessary and Sufficient Condition for Thresholdability

Lemma A.1. Recall the definitions of E0 and Ec
0 in Equations (8) and (9), respectively. A set of parameters θ is thresholdable

if and only if:

max
(k,l)∈Ec

0

|Λ̃kEΦEF Λ̃
T
lF | < min

(i,j)∈E0

|Λ̃iAΦABΛ̃
T
jB + Λ̃iCΦCBΛ̃

T
jB + Λ̃iAΦACΛ̃

T
jC + Λ̃iCΦCCΛ̃

T
jC |, (18)

where A = A(i, j) = Πi −Πj , B = B(i, j) = Πj −Πi, C = C(i, j) = Πi ∩Πj , E = Πk, and F = Πl.

Proof. First it will be convenient to partition the parent variables of any pair (Xi, Xj) as Πi ∪Πj = {LA, LB , LC}, where:

A = Πi −Πj

B = Πj −Πi

C = Πi ∩Πj .

(19)

Then we may re-cast Equation (1) for any pair (X̃i, X̃j) as follows:

[
X̃i

X̃j

]
=

[
Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC

]LA

LB

LC

+

[
ϵ̃i

ϵ̃j

]
. (20)

We then obtain the correlation of between Xi and Xj from this form as follows:

Var

([
X̃i

X̃j

])
=

[
Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC

]ΦAA ΦAB ΦAC

ΦBA ΦBB ΦBC

ΦCA ΦCB ΦCC



Λ̃T
iA 0

0 Λ̃T
jB

Λ̃T
iC Λ̃T

jC

+

[
ω̃i 0

0 ω̃j

]
, (21)

for which we multiply through and take the off-diagonal to be:

ρij = Λ̃iAΦABΛ̃
T
jB + Λ̃iCΦCBΛ̃

T
jB + Λ̃iAΦACΛ̃

T
jC + Λ̃iCΦCCΛ̃

T
jC . (22)

Writing ρij in this way yields a useful decomposition with respect to the structure of the factor analysis model. Specifically,
this can be thought of as the correlation between Xi and Xj due to their non-shared parents being correlated (ΦAB), their
non-shared parents being correlated with their shared parents (ΦAC ,ΦCB) and simply having shared parents (ΦCC). Thus,
if Xi and Xj have no shared parents, then the index set C is empty. This reduces Equation (22) to:

ρij = Λ̃iAΦABΛ̃
T
jB . (23)
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The result of Lemma A.1 follows by characterizing the definition of thresholdability (10) directly in terms of θ. That is, if
for all (Xi, Xj) that share parents and for all (Xk, Xl) that do not share parents, θ is thresholdable if and only if:

max
(k,l)∈Ec

0

|Λ̃kEΦEF Λ̃
T
lF | < min

(i,j)∈E0

|Λ̃iAΦABΛ̃
T
jB + Λ̃iCΦCBΛ̃

T
jB + Λ̃iAΦACΛ̃

T
jC + Λ̃iCΦCCΛ̃

T
jC |. (24)

A.3. Proof of Corollary 4.9

From Equation (18), we can see that if Φ = Id, then the ΦAB , ΦCB , ΦAC , and ΦEF matrices are all zero matrices, and
ΦCC is an identity matrix. Thus Equation (18) reduces to

0 < min
(i,j)∈E0

|Λ̃iCΛ̃
T
jC |, (25)

which trivially holds.

A.4. Proof of Corollary 4.10

The defining characteristic of the independent cluster structure is that Λ has exactly one non-zero entry. This implies that
each observed variable has only one latent variable parent. Thus, the relevant parent sets will reduce to Πi = Πj = {c},
Πk = {e}, and Πl = {f}. That is, each pair of observed variables will either have one shared parent, or no shared parents,
but not both. Hence for each pair of variables that share parents, the ΦAB , ΦCB , and ΦAC matrices will not exist and
ΦCC = 1. Corollary 4.10 follows by simplifying Equation (18) with these reductions.

A.5. Proof of Lemma 4.3

Recall the definition of E0, which we re-state for convenience:

E0 := {(i, j) : Πi ∩Πj ̸= ∅}.

Pick any k ∈ [d]. By definition, every Xj ∈ ch(Lk) shares a common parent Lk and thus ch(Lk) forms a clique in
G = G(X,E0). Let Uk be the set of unique children of Lk. Under the unique child condition, Uk ̸= ∅, so we can pick an
Xi ∈ Uk. Then Xi does not have an edge connected to any node other than ch(Lk) by the definition of E0. This implies
every clique that includes Xi must be a subset of ch(Lk). Thus, ch(Lk) is the only maximal clique that includes Xi, making
it an independent maximal clique. The above argument shows that each ch(Lk), k ∈ [d] is an independent maximal clique.
Since ∪kch(Lk) = X , any other maximal clique, if it exists, cannot be independent, and thus, {ch(Lk) : k ∈ [d]} is the set
of independent maximal cliques in G.

A.6. Formal Definition of Rotational Uniqueness

Definition A.2 (Rotational Uniqueness). For a set of parameters θ = {Λ,Φ,Ω}, denote a rotated set of parameters as
θM = {ΛM,M−1ΦM−T ,Ω}, where M is an invertible d× d matrix. Let us define a set of constraint preserving rotations
as

MCP = MCP (θ) := {M : Σ(θM ) = Σ(θ),A(ΛM) ⊆ A(Λ), diag(M−1ΦM−T ) = Id}. (26)

Then:

1. If MCP = {Id}, then θ is said to be globally rotationally unique.

2. If MCP is a set of signature matrices, then θ is said to be locally rotationally unique, where signature matrices are
diagonal matrices whose diagonal elements are ±1.

Note that the condition A(ΛM) ⊆ A(Λ) ensures that the zero constraints implied by A(Λ) are persevered. Two local
rotational uniqueness properties relevant to the CT algorithm are described in Corollaries 4.7 and 4.8.
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A.7. Proof of Corollary 4.7

Define an index set for the rows of Λ ∈ Rp×d which have zeroes in the jth column as

Zj := {i : λij = 0} ⊆ [p],

and define
Λ[j] := ΛZj ,−j ,

which is a submatrix of size |Zj | × (d− 1). Adapted from (Peeters, 2012), two sufficient conditions for Λ that yield local
rotational uniqueness for our model are:

Condition 1: Λ has at least d− 1 zeroes in each column.

Condition 2: rank(Λ[j]) = d− 1 for all j ∈ [d].

An example of Λ[j] is as follows:

Λ =



λ11 0 0
λ21 λ22 0
λ31 0 0
0 λ42 0
0 λ52 λ53

0 λ62 0
0 0 λ73

0 0 λ83

λ91 0 λ93


, Λ[1] =


λ42 0
λ52 λ53

λ62 0
0 λ73

0 λ83

 , Λ[2] =


λ11 0
λ31 0
0 λ73

0 λ83

λ91 λ93

 , Λ[3] =


λ11 0
λ21 λ22

λ31 0
0 λ42

0 λ62

 . (27)

These conditions can be seen to be satisfied by the unique child condition as follows. Let Uj be the set of unique children
for Lj as defined in Equation (11). For all j, k ∈ [d], and i ∈ [p] we can re-cast Uj as:

Uj = {i : λij ̸= 0, λik = 0, k ̸= j}, (28)

and let the index of non-unique variables be:

U = {i : i /∈ ∪d
j=1Uj}. (29)

Let us permute the rows of Λ according to an order that satisfies (U1, . . . , Ud, U). Denoting a permutation matrix that yields
such a row ordering as P , we have:

PΛ =


ΛU11

. . .
ΛUdd

ΛU1 · · · ΛUd

 . (30)

That is, we can permute the rows of Λ such that its upper part is block-diagonal with d blocks. Then there must be at least
d− 1 zeroes in each column, satisfying Condition 1. It is easily seen that PΛ also satisfies Condition 2, as any (PΛ)[j] will
also have its upper part be block-diagonal, and thus full rank (d− 1).

A.8. Proof of Corollary 4.8

Proof. As described in Section 3.2, Steps 6 through 9 of the CT algorithm construct the support Âk deterministically based
on a set of independent maximal cliques Ck (from Step 5). Since by Definition 3.1 independent maximal cliques always
have a unique node, the sparsity pattern in Âk is guaranteed to follow the unique child condition (Condition 4.2). By
Corollary 4.7, θ̂k will be locally rotationally unique due to this pattern.
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A.9. Proof of Theorem 4.5

To obtain our result, we will leverage existing estimation error bounds on the event |rij −ρij | ≥ ϵ for some ϵ > 0. To do this
it will be convenient to re-cast our event of interest to Ê(τ0) ̸= E0. For clarity, let us first consider the event Ê(τ0) = E0,
which by definition, holds if and only if:( ⋂

(i,j)∈E0

|rij | > τ0

)
∩
( ⋂

(i,j)∈Ec
0

|rij | < τ0

)
. (31)

Then by De Morgan’s laws, we can say Ê(τ0) ̸= E if and only if:( ⋃
(i,j)∈E0

|rij | ≤ τ0

)
∪
( ⋃

(i,j)∈Ec
0

|rij | ≥ τ0

)
, (32)

which is to say that Ê(τ0) ̸= E0 holds if and only if any rij is on the opposite side of τ0 as their population analog ρij .
From here, the strategy is to derive bounds for P(|rij | ≤ τ0) if (i, j) ∈ E0, and P(|rij | ≥ τ0) if (i, j) ∈ Ec

0, for all (i, j).
To determine these bounds, we make use of a concentration inequality for P(|rij − ρij | ≥ ϵ) from Lemma 1 of Kalisch &
Bühlmann (2007). We re-state this as follows:

Lemma A.3. Assuming Xi and Xj are Gaussian random variables with correlation |ρij | ≤ M < 1. Let rij be the sample
correlation calculated from an i.i.d. sample of size n. Then for any 0 < ϵ ≤ 2,

P(|rij − ρij | ≥ ϵ) ≤ C0(n− 2)

(
4− ϵ2

4 + ϵ2

)n−4

, (33)

where 0 < C0 < ∞ only depends on M .

For our purposes, we set ϵ = γ and select as τ0 the mid-point of minE0
(|ρij |) and maxEc

0
(|ρij |), which will be the best

choice to uniformly bound all P(|rij | ≤ τ0) if (i, j) ∈ E0 and P(|rij | ≥ τ0) if (i, j) ∈ Ec
0. The uniformity of the bound

follows by seeing that γ ≤
∣∣|ρij | − τ0

∣∣ for all (i, j). That is, there is no ρij that is closer to τ0 than the length of γ.

We begin with the scenario where (i, j) ∈ Ec
0. Given the left-hand side of Equation (33) and setting ϵ = γ, we have:

P(|rij − ρij | ≥ γ) ≥ P(|rij | − |ρij | ≥ γ)

≥ P(|rij | − |ρij | ≥ τ0 − |ρij |)
= P(|rij | ≥ τ0).

(34)

Hence, P(|rij | ≥ τ0) is bounded from above by the right-hand side of Equation (33) if (i, j) ∈ Ec
0. We can use the same

strategy to conclude that, for (i, j) ∈ E0,

P(|rij − ρij | ≥ γ) ≥ P(|rij | ≤ τ0). (35)

Since these two events have the same upper bound, let us combine them by defining:

Bij = B(rij , τ0) :=

{
|rij | ≤ τ0 if (i, j) ∈ E0

|rij | ≥ τ0 if (i, j) ∈ Ec
0

. (36)

Noting that Ê(τ0) ̸= E(τ0) holds if and only if
⋃

(i,j) Bij holds, what remains is to find a bound of the latter event. This
can be done with the union bound:

P(Ê(τ0) ̸= E(τ0)) = P
( ⋃

(i,j)

Bij

)
≤
∑
(i,j)

P (Bij)

≤ p(p− 1)

2
max
(i,j)

{P(Bij)}

≤ Cp(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4

,

(37)
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where 0 < C < ∞ only depends on M . This result follows by recognizing that all P(Bij) are uniformly bounded as in
Lemma A.3. Finally, this implies

P(Ê(τ0) = E0) ≥ 1− Cp(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4

(38)

and thus, (15) follows immediately under the unique child condition by Lemma 4.3.

A.10. Proof of Theorem 4.6

To begin, we will first examine the growth of a lower bound of P(Ê(τ0) = E0) as a function of n. Noting from Equation (14),
an upper bound on the decaying term with n can be derived as follows:(

4− γ2

4 + γ2

)n−4

≤
(
1− γ2

4

)n−4

≤
(
1− c1

4(n− 4)b

)n−4

=

(
1− c1

4(n− 4)b

)(n−4)b(n−4)1−b

=
(
exp

(
−c1

4

)
+ o(1)

)(n−4)1−b

≤ exp

(
−c2(n− 4)1−b

4

)
,

(39)

where we used the limit limx→∞(1 + a/x)x = exp(a) and another constant c2 ∈ (0, c1) such that the o(1) remainder can
be dropped. From here, we can form a looser bound on Equation (14) as

P(Ê(τ0) = E0) ≥ 1− Cp(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4

≥ 1− Cpn(pn − 1)(n− 2) exp

(
−c2(n− 4)1−b

4

)
= 1− p(n)f(n),

(40)

where p(n) = pn(pn − 1) and f(n) = (n − 2) exp(−c2(n − 4)1−b/4). Therefore, we have consistency if
limn→∞ p(n)f(b) = 0 or if p(n) = o(1/f(n)). Comparing the dominating terms of p(n) and 1/f(n), consistency
is achieved if

p2n = o

(
exp

[
c2(n− 4)1−b

4
− log n

])
or if pn = o

(
exp

[
c(n− 4)1−b

])
,

(41)

by choosing a positive constant c < c2/8.
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B. Supplementary Details for Simulation Studies and Real Data Application
B.1. Simulation settings

The simulations were done in the R language (4.0.2; R Core Team, 2020). The lavaan package (Rosseel, 2012) was
used in the estimation phases of the CT algorithm (Step 10), and was used to estimate the baseline MLE solution. For the
cutoffs τk, 40 equidistant points from 0 to 1 were input for the CT algorithm. For EFA, the psych package (Revelle, 2019)
was used to obtain MLE solutions for unconstrained Λ. We left the rotation option to the package default oblimin method
(Crawford, 1975), however we note that the rotation choice does not affect the results since we will only be examining the
likelihood of Σ(θ̂). And finally, the LASSO and MCP variants of EFA were estimated with the fanc package (Hirose &
Yamamoto, 2014a;b). The tuning parameters were left at the package defaults of 30 values for a single tuning parameter
in LASSO and 270 combinations of two tuning parameters in MCP. For estimating the number of latent factors in these
methods, the number of non-zero columns in Λ̂ was taken as d̂ as they would serve as the de facto number of latent variables
(Caner & Han, 2014).

To generate Φ, we began by setting its diagonals to one. Then for the off-diagonal elements, we drew a d× d matrix A with
entries from Uniform(0, 1) and rescaled it such that ATA had off-diagonals in the range of [0.6, 0.8], the range of λij . Then
the off-diagonals of Φ were set to the off-diagonals of this rescaled ATA, which ensured Φ would be positive definite. Then
depending on the condition for the magnitude of Φ, the off-diagonals were scaled by 0.25 for the low Φ condition and by
0.75 for the high Φ condition.

For the data sets that violate the unique child condition, we began with an independent cluster structure (one non-zero entry
per row), for which the unique child condition trivially holds for every latent variable. We will call these latent variables the
main parent of these observed variables. To isolate the effect of the unique child condition from that of thresholdability,
we ensured thresholdability was always met in the population by setting Φ = Id (Corollary 4.9). Then we chose 75% of
the latent variables at random to have no unique children. If a latent variable was deemed to have no unique children, we
generated an extra path between all the children of this latent variable to another random latent variable. We will call these
parents the extra parent.

For each Xj , we drew an R2 ∼ Uniform(0.36, 0.64) as the proportion of variance in Xj explained by L. The range of
(0.36, 0.64) is analogous to the range of path coefficients we were using in previous simulations which was (0.6, 0.8). If a
given Xj only had a main parent and no extra parent, then that Xj had a single path coefficient of

√
R2 from its main parent.

However, if a given Xj also had an extra parent, then the R2 was split using a 5:1 ratio between the main parent and the
extra parent, and the path coefficients were calculated to reflect this accordingly.

B.2. Evaluation Metrics

To compare the estimated and true supports (A(Λ̂) vs. A(Λ)) we computed the minimum HD over all column permutations
of Λ̂. That is, we define an HD as

HD := min
P

[
|A(Λ̂P )△A(Λ)|

]
, (42)

where △ is the symmetric difference or disjunctive union between two sets. The permutation matrix P reconciles the fact
that the column order of Λ̂ may not be the same as the column order of Λ, and that d̂ may not be the same as d. Put another
way, HD is the smallest number of element additions and deletions needed to make the sets A(Λ) and A(Λ̂) identical,
among all column permutations of Λ̂.

In addition to HD, we also report the F1 score, a normed measure of classification. This allows for comparability between
models with differing dimensions of Λ, that is differing p and d. Note that the F1 score is simply the harmonic mean between
precision and recall. Once again using a permutation matrices to reconcile different orderings of L, we have

F1(Λ̂) := max
P

[
2|A(Λ̂P ) ∩ A(Λ)|

2|A(Λ̂P ) ∩ A(Λ)|+ |A(Λ̂P )△A(Λ)|

]
∈ [0, 1], (43)

and the higher the F1 score, the more accurate the estimated support of Λ̂.
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C. Additional Figures

Figure 3. Example structures that may be precluded from the unique child condition. Figure (a) is a structure that meets the unique child
condition, Figure (b) shows a structure where the children sets of L2 and L3 are identical, and Figure (c) shows a structure where the
children set of L3 is a proper subset of L2. All three structures lead to the same thresholded correlation graph, and will contain two
independent maximal cliques.

Figure 4. Trends for F1 score when each of the assumptions are violated to varying degrees in the high-dimensional setting. Threshold-
ability was varied via the scaling factor α ∈ [0, 0.75] on the off-diagonals in Φ. The proportion of latent parents without unique children
is represented by β ∈ [0, 0.75].
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Figure 5. The hypothesized and estimated model structures by each method in the real data example. Variables X1, X2, and X3 were
visual perception tasks, variables X4, X5, and X6 were verbal/reading tasks, and variables X7, X8, and X9 were speed tests.
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