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Abstract
Anti-viral therapies are typically designed to tar-
get only the current strains of a virus, a my-
opic response. However, therapy-induced selec-
tive pressures drive the emergence of new viral
strains, against which the original myopic ther-
apies are no longer effective. This evolution-
ary response presents an opportunity: our ther-
apies could both defend against and actively influ-
ence viral evolution. This motivates our method
ADIOS: Antibody Development vIa Opponent
Shaping. ADIOS is a meta-learning framework
where the process of antibody therapy design, the
outer loop, accounts for the virus’s adaptive re-
sponse, the inner loop. With ADIOS, antibodies
are not only robust against potential future vari-
ants, they also influence, i.e., shape, which fu-
ture variants emerge. In line with the opponent
shaping literature, we refer to our optimised an-
tibodies as shapers. To demonstrate the value of
ADIOS, we build a viral evolution simulator us-
ing the Absolut! framework, in which shapers
successfully target both current and future viral
variants, outperforming myopic antibodies. Fur-
thermore, we show that shapers modify the dis-
tribution over viral evolutionary trajectories to
result in weaker variants. We believe that our
ADIOS paradigm will facilitate the discovery of
long-lived vaccines and antibody therapies while
also generalising to other domains. Specifically,
domains such as antimicrobial resistance, cancer
treatment, and others with evolutionarily adap-
tive opponents. Our code is available at https:
//github.com/olakalisz/adios.
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1. Introduction
Designing effective therapies to fight off viral pathogens is
crucial for limiting their devastating social and economic
costs (Nandi & Shet; Orenstein & Ahmed, 2017; Samsudin
et al., 2024; Faramarzi et al., 2024). However, traditional
design approaches only target the current variant of a virus.
Although this myopic design approach may yield therapies
with high initial efficacy, it fails to account for viral adapta-
tion, leaving treatments vulnerable to becoming ineffective
over time (Weisblum et al., 2020; Doud et al., 2018; Lee
et al., 2019; Dingens et al., 2019; Greaney et al., 2021).
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Figure 1. Myopic Therapies Become Ineffective Over Time. Ini-
tial virus (variant A) evolves in response to the evolutionary pres-
sures induced by therapies, resulting in new variants. In case of
traditional myopic therapies (top), the new emerging variants (vari-
ant B) are often therapy resistant. In contrast, ADIOS designs
shapers or shaper therapies (bottom) which remain effective and
steer the viral evolution towards less harmful variants (variant C).

The COVID-19 pandemic starkly illustrated the challenges
of adaptive viruses. While the rapid development of vac-
cines was a remarkable achievement, concerns quickly arose
about their long-term efficacy against new emerging COVID
variants (Carabelli et al., 2023; Hu et al., 2021). For exam-
ple, the B.1.351 variant demonstrated that the vaccine loses
its effectiveness against new strains (Madhi et al., 2021).
This underscores the need for approaches that consider both
the current and future efficacy of a designed therapy.

The virus inevitably adapts in response to selective pressures
imposed by our therapies, i.e., we influence the viral evolu-
tion (Chéron et al., 2016; Meijers et al., 2022). Our work
turns this influence in our favour, designing therapies that
steer the virus towards less dangerous variants, see Figure 1.
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Figure 2. Main Components of ADIOS. a The ADIOS framework. In the Antibody Optimisation Loop (i.e., outer loop), we optimise the
antibody to perform well against current and future virus variants; thus influencing the viral evolution. We approximate the future variants
through our Simulated Viral Escape via Evolution (i.e., inner loop) where the viruses evolve to escape from the current antibody over a
given horizon length. b The payoffs of the antibody and virus. Red arrows indicate binding interactions that players aim to minimise,
while green arrows represent those they aim to maximise. The antibody optimises for binding to the virus while avoiding its anti-target. In
this zero-sum game, the antibody’s optimisation indirectly counters the virus’s binding to its target, see Equation 1. c Binding simulator.
Our JAX (Bradbury et al., 2018) implementation of the binding calculation uses binding poses generated by Absolut! (Robert et al., 2022)
and the Miyazawa-Jernigan energy potential matrix (Miyazawa & Jernigan, 1999).

To achieve this we utilise principles from opponent shaping
(Foerster et al., 2018), a multi-agent reinforcement learning
framework that allows agents to both anticipate and influ-
ence the future policies of other agents in their environment.
This approach, exemplified by methods such as Learning
with Opponent-Learning Awareness (Foerster et al., 2018)
and Model-Free Opponent Shaping (Lu et al., 2022), allows
agents to consider not only their current performance but
also the consequences of their actions on their opponents’
future behaviour.

Building on these principles, we introduce ADIOS: Anti-
body Development vIa Opponent Shaping. Antibodies are
immune system proteins that bind to pathogens such as
viruses. While naturally produced by the body, it is also
possible to design and synthetically produce antibodies as
therapies. ADIOS frames the interaction between antibodies
and viruses as a two-player zero-sum game. In this game,

the antibody’s payoff is primarily determined by its bind-
ing strength to the virus, while the virus has the opposite
payoff (Figure 2b). Although our framework can use any
binding model in principle, in this work we build on the
Absolut! framework (Robert et al., 2022) to estimate the
binding strength of protein-protein interactions. To improve
computational efficiency, we reimplement parts of Absolut!
in JAX (Bradbury et al., 2018), allowing GPU acceleration
and a 10,000-fold speedup over the original implementation
(Figure 2c).

We use this game to model viral escape - the process through
which mutations allow a virus to evade a host’s immune
system (Lucas et al., 2001). Following a meta-learning ap-
proach, ADIOS implements two nested optimisation loops,
an inner loop and an outer loop (Figure 2a). In the inner
loop, we simulate viral escape via evolution, where the virus
adapts to the current antibody by repeatedly finding approx-
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imate best responses that decrease binding strength. The
outer loop uses a genetic algorithm to optimise the anti-
bodies to be effective across viral evolutionary trajectories,
resulting in antibodies we call shapers. This is in contrast to
only optimising for binding to the initial virus, which results
in myopic antibodies.

Importantly, our simulations show that shapers not only out-
perform myopic antibodies in long-term efficacy but also
demonstrate the ability to shape viral evolution. Moreover,
shapers guide viruses toward variants that are more suscep-
tible to binding to a broad spectrum of antibodies, not just
the shaper that induced the given viral evolution, providing
insights into the scalability and potential for practical de-
ployment of ADIOS. Our study also explores the trade-offs
between the effectiveness of shapers and the computational
resources required for their optimisation. Finally, we present
an explainability analysis of the key features that distinguish
shapers from myopic antibodies.

Our key contributions include:

• ADIOS: A framework that brings opponent shaping to
antibody design to address viral escape.

• A GPU-accelerated JAX implementation of the binding
simulator Absolut!, achieving a 10,000x speedup.

• An open-source instantiation of ADIOS applied to an-
tibody design for both the dengue virus and three other
viruses using our JAX implementation.

• Empirical results showing ADIOS-optimised shapers
both significantly outperform myopic antibodies by
limiting long-horizon viral escape and guide viral evo-
lution towards variants that can be more easily targeted.

• Analysis of computational trade-offs in shaping hori-
zons, providing practical guidance for deploying
ADIOS in compute-constrained settings, e.g. due to
more realistic binding simulators.

• Interpretability analysis into how antibody shapers in-
fluence viral escape, which could, in principle, provide
inspiration to antibody designers.

While our results provide a promising proof of concept,
they are based on simplified models of binding and viral
escape. However, we believe that as more sophisticated
simulators emerge, the ADIOS framework has the potential
to significantly impact future antiviral therapy design.

2. Related Work
Antibody Design: Antibodies are essential components of
the immune system that bind to unique identifiers (antigens)
present on pathogens, including viruses, to identify and neu-
tralise them. While natural antibodies emerge through an
immune response, it is also possible to design antibodies for
use as therapies. Recent work has made significant progress
in computational antibody design (Cutting et al., 2024; Zam-

baldi et al., 2024; Bennett et al., 2024). The common ap-
proaches to antibody design utilise energy-based antibody
optimisation methods (Li et al., 2014; Adolf-Bryfogle et al.,
2018; Pereira et al., 2024), sequence-based language mod-
els (Liu et al., 2020; Saka et al., 2021) or structure-based
approaches relying on GNNs (Jin et al., 2022) and diffusion
models (Martinkus et al., 2024).

In contrast to these works, we are not interested in gen-
erating better antibody design methods immediately, but
rather in how we should make new methods in the future to
account for our effect on evolving viruses.

Predicting Viral Escape: Recent machine learning meth-
ods have demonstrated success in predicting future viral
strains (Shanker et al., 2024; Wang et al., 2023; Nie et al.,
2025). EVEscape (Thadani et al., 2023) decomposes the
likelihood of a mutation into three parts: maintaining fit-
ness, accessibility to antibodies, and disrupting binding,
demonstrating success through retrospective identification
of COVID variants. Han et al. (2023) take a different ap-
proach by modelling viral evolution through simulated fit-
ness landscapes. Unlike these methods, ADIOS models
the antibody influence on viral evolution, enabling both the
simulation of viral escape trajectories and the optimisation
of antibodies to minimise viral escape.

3. Background
Antibody Binding Simulators: In our setting, the inter-
action between antibodies and viruses is characterised by
their binding strength B(·, ·) - a measure of how strongly
the two “attach” to each other through molecular forces.
Molecular dynamics simulations offer high accuracy but are
computationally intensive (Hollingsworth & Dror, 2018).
Sequence-based ML models (Mason et al., 2021; Lim et al.,
2022; Ruffolo et al., 2023; Yan Huang et al., 2022) provide
faster alternatives but struggle to generalise beyond their
training distribution, making them unsuitable for exploring
novel viral mutations. To evaluate B(·, ·) we use the Ab-
solut! framework (Robert et al., 2022). Absolut! offers
a balance between speed and generalisation by modelling
binding through discretised protein structures. It focuses on
the CDRH3 region of the antibody, the most variable por-
tion that primarily determines binding specificity (VanDyk
& Meek, 1992). For each antibody-antigen pair, Absolut!
enumerates possible binding poses and computes their en-
ergy using the Miyazawa-Jernigan potential (Miyazawa &
Jernigan, 1999). The binding strength B(·, ·) is then defined
as the negative of the lowest binding energy, see Figure 2c
and Appendix D for details.

Opponent Shaping: A multi-agent reinforcement learn-
ing framework which allows agents to anticipate and influ-
ence the future policies of other agents in their environment.
Learning with Opponent-Learning Awareness (LOLA) (Fo-
erster et al., 2018) introduced this concept by having LOLA
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Algorithm 1 Ev(v̂, a): Simulated Viral Escape (Inner Loop)
Input: virus v̂, antibody a, horizon H , population size P ,
inverse temperature β
Output: Sampled viral trajectory v̂ = [v̂0, v̂1, . . . , v̂H ]
v̂0 ← v̂
for i = 0 to H − 1 do

for k = 1 to P do
vik ← v̂i ⊕Mutation

end for
p(v)← P(v = vik) ∝ exp(βRv(v

i
k, a)) // See Eq. 1

v̂i+1 ∼ p(v)
end for
v̂ ← [v̂0, . . . , v̂H ]
return v̂

agents optimise against anticipated opponent updates rather
than static opponent policies. They achieved this through an
augmented value function that accounts for the opponent’s
learning step.

Meta-learning is a set of methods for optimising a learn-
ing process itself, “learning to learn”. In multi-agent sys-
tems, this concept extends to learning about and influencing
how other agents learn. Model-Free Opponent Shaping
(M-FOS) (Lu et al., 2022) showcases this idea by using
gradient-free optimisation to learn meta-policies that accom-
plish long-horizon opponent shaping. Our approach follows
a similar principle, using evolutionary optimisation to shape
viral escape trajectories.

4. Method
ADIOS frames antibody design as a two-player game be-
tween an antibody shaper agent and a naive virus agent,
building on principles from opponent shaping (Figure 2).
We present our method in three parts:

In Section 4.1, we introduce the virus-antibody game,
defining the action spaces and payoffs for both players. Sec-
tion 4.2 describes our simulated viral evolution process,
modelling how viruses evolve to escape a given antibody.
Finally, Section 4.3 presents our antibody optimisation ap-
proach, which optimises the antibody shapers in a way that
accounts for future viral mutations and learns to influence
viral evolution away from escape.

4.1. Virus-Antibody Game

We formalise the interaction between antibodies and viruses
as a two-player zero-sum game. In this game, two players –
the virus and the antibody – play a game where one player’s
gain is the other’s loss. The game is defined by the set of
actions available to each player and their respective payoffs.
The players’ actions are represented by their amino acid
sequences. The sequences are of an antigen protein for the
virus and a fragment of a hypervariable region of the heavy
chain for the antibody.

Algorithm 2 Antibody Optimisation (Outer Loop)
Input: antibody â,virus v̂, horizon H , population size Pa,
steps N
Output: Trajectory of antibodies â = [â0, â1, . . . , âN ]
â0 ← â
for i = 0 to N − 1 do

ai1 ← âi

for k = 2 to Pa do
aik ← âi ⊕ Point Mutation

end for
âi+1 ← argmaxk E

[
FH
v̂ (aik)

]
// See Eq. 2

end for
â← [â0, . . . , âN ]
return â

We define the set of 20 amino acids as A. Let Nv be the
virus sequence length and Na be the antibody sequence
length. So an action of the virus is v ∈ ANv , and an action
of the antibody is a ∈ ANa . Let B : ANv × ANa → R be
our binding function, which measures the strength of the
binding between the antibody and the virus with increasing
values corresponding to stronger binding1.

The payoff structure is designed to capture the biological in-
centives of both players: the antibody aims to bind strongly
to the virus while avoiding binding to human proteins (an
anti-target), whereas the virus seeks to evade antibody bind-
ing while maintaining its ability to bind to host cell receptors
(a binding target). Mathematically, we define the antibody’s
payoff Ra as:

Ra(v, a) = B(v, a)−B(t−a , a)−B(v, t+v ) (1)

where B(v, a) represents the binding strength between
the virus v and antibody a, t−a is the antibody’s anti-
target, and t+v is the virus’s binding target. The virus’s
payoff Rv is simply the negative of the antibody’s pay-
off: Rv(v, a) = −Ra(v, a), see Figure 2b. This formula-
tion also ensures that neither player can adopt an overly
simplistic strategy: the virus can’t become entirely inert
without losing its ability to infect host cells, and the an-
tibody can’t become universally “sticky” without binding
to the human protein, a “false positive”, potentially caus-
ing the immune system to attack the human body. We
give the full Markov Decision Process (MDP) definition
M =

〈
S, Av, Aa, P, R, µ

〉
in Appendix E.

4.2. Simulated Viral Escape via Evolution

We model the viral escape as a virus v̂ naively evolving for
H steps in response to some fixed antibody a. The simulated
viral escape via evolution, see Figure 2a and Algorithm 1,
is defined as follows. Given a starting virus v̂, the fixed
antibody a induces a distribution Ev(v̂, a) over sequences

1This is opposite to binding energies, which are smaller for
stronger binding.
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of viruses v̂ = [v̂0, v̂1, v̂2, . . . v̂H ], where v̂0 = v̂ and H is
the chosen horizon length. We write v̂ ∼ Ev(v̂, a) to denote
this relationship.

We define the process of generating the escape trajectories
inductively. In generation i, we have a virus v̂i. We gener-
ate a population of viruses vi1, v

i
2 . . . v

i
P by duplicating v̂i

P times, then randomly applying mutations such that on
average there is one amino acid mutation per viral sequence:

vik = v̂i ⊕Mutation

In our experiments P = 15. For every virus in the popu-
lation, we evaluate its fitness given by Rv(v

i
k, a). We then

sample a new virus v̂i+1 based on the fitness values, in
particular:

P(v̂i+1 = vik) ∝ exp(βRv(v
i
k, a))

With duplicates in the population being considered dis-
tinct, so that the likelihood of a particular variant increases
with the number of duplicates. Furthermore, β is a con-
stant which reflects how random the selection process is,
with β → ∞ reflecting deterministic max-fitness selec-
tion. After H generations, a full escape trajectory v̂ =
[v̂0, v̂1, v̂2, . . . , v̂H ] has been generated and the simulated
viral escape process ends.

4.3. Antibody Optimisation

We define the antibody fitness FH
v̂ (a) such that it represents

the true objective of the antibody, which accounts for the
viral escape. Given a horizon H and starting virus v̂, the
antibody fitness is:

FH
v̂ (a) = Ev̂∼Ev(v̂,a)

[
1

H + 1

H∑
i=0

Ra(v̂
i, a)

]
(2)

Note that if H = 0 this fitness defaults to a naive antibody
payoff that ignores viral escape, i.e., F 0

v̂ (a) = Ra(v̂, a). We
refer to this as the myopic objective.

To optimise both shapers and myopic antibodies, we employ
Monte Carlo simulations to estimate the antibody fitness,
combined with an evolutionary optimisation algorithm. We
refer to this process as the antibody optimisation loop, see
Figure 2a and Algorithm 2. In meta-learning terms, this
is the outer loop or the meta-loop, contrasting to the inner
loop, which is the simulated viral escape via evolution.

Given a starting antibody â, a starting virus v̂ and a viral
escape horizon H , the antibody optimisation process gen-
erates a trajectory of antibodies â = [â0, â1, â2, . . . , âN ],
where N is the number of antibody optimisation steps (i.e.,
meta-steps). In the trajectory, â0 = â is the starting antibody
and âN is the final optimised antibody. This optimisation

could, in principle, start from any antibody, but for simplic-
ity we opt to start from purely random antibodies, meaning
â is random. In most of our experiments N = 30.

At the start of antibody optimisation step i, we have an an-
tibody âi. We first generate a population of Pa antibodies
[ai1, a

i
2 . . . a

i
Pa
] by taking both the antibody âi and Pa − 1

copies of it, with each copy having exactly a single ran-
dom mutation in the amino acid sequence of âi. For our
experiments, Pa = 40.

We then sample their fitness values FH
v̂ (aij) with a fixed

number η of Monte Carlo roll-outs, i.e., we sample η inde-
pendent viral escape trajectories, each with horizon H viral
escape steps. We found η = 5 to be sufficient. Finally, we
select âi+1 to be the best-performing antibody:

âi+1 = argmax
k

E
[
FH
v̂ (aik)

]
Once the final optimised antibody âN is generated, a full op-
timisation trajectory is complete, â = [â0, â1, â2, . . . , âN ],
and the antibody optimisation process finishes.

5. Experimental Setup
5.1. Absolut! Speedup

To meet the computational demands of our opponent shap-
ing approach, which requires rapid evaluation of numer-
ous antibody-virus interactions, we reimplement the core
binding calculation of Absolut! (Robert et al., 2022) using
JAX (Bradbury et al., 2018), a framework that facilitates
GPU-accelerated computation (Figure 2c). Our efficient
JAX implementation and the GPU acceleration results in a
10,000-fold speedup compared to the original implementa-
tion, see Table 1.

Absolut! Absolut! + JAX

Hardware Apple M2 Max Nvidia A40
Time/Antigen (s) 1.8 2.1× 10−4

Table 1. Comparison of the time taken to compute a single binding
query between the original implementation of Absolut! (Robert
et al., 2022) and our reimplementation of Absolut! in JAX (Brad-
bury et al., 2018). The original Absolut! implementation runs on
CPU only, hence the difference in evaluation hardware.

5.2. Dengue Virus

We use the antigen protein from the Dengue Virus for our
main experiments, specifically, the structure with Protein
Data Bank (PDB) code 2R29 (Berman et al., 2000; Lok et al.,
2008). First, Absolut! processes this structure to generate
binding-relevant information, which is then used by our JAX
implementation (details given in Appendix D). In the viral
escape step, we mutate only the amino acid sequence of
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Figure 3. Shapers Outperform Myopic Antibodies. a Distribution of antibody shapers optimised with horizon H = 100 (orange)
vs. myopic antibodies distribution (blue). We highlight the top 10% shapers with respect to F 100

v (a) in red, and the top 10% myopic
antibodies with respect to Ra(v, a) in green. The x-axis is the myopic antibody fitness Ra(v, a) and the y-axis is the escape averaged
antibody fitness for H = 100, i.e., F 100

v̂ (a). Higher values on both axes indicate better performance. b Viral escape curves (inner loop
performance) for different steps of the antibody optimisation process (outer loop) for antibody shapers optimised with horizon 100 (solid
lines) and myopic antibodies (dashed lines). The lighter lines indicate early antibody optimisation steps, and the darker lines show the later
steps. The x-axis shows the evolutionary steps of viral escape. The y-axis represents the virus fitness/payoff Rv(v, a), where higher values
indicate better virus fitness (and lower values denote better antibody performance, so lower is better for us). c, d Antibody optimisation
learning curves (outer loop performance) for a varying horizon length. The x-axis shows the antibody optimisation steps, i.e., meta-steps
(c) or the number of samples from the binding simulator (d). The y-axis shows antibody fitness F 100

v (a). Error bars correspond to the
standard error. Higher values indicate better performance.

the dengue envelope antigen, which is composed of Nv =
97 amino acids, and do not consider other components of
Dengue Virus. Importantly, we assume that the structure of
the antigen does not significantly change over the course
of viral escape. All experiments but the ones we discuss in
Section 6.3 and Appendix A use the dengue virus.

5.3. Additional Viruses and Bacterium

To demonstrate robustness of the experimental results we
achieve with ADIOS on dengue virus we conduct addi-
tional experiments with three other viruses and one bac-
terium. The three viral antigens we use are: West Nile Virus,
PDB code 1ZTX (Nybakken et al., 2005); Influenza Neu-
raminidase Virus, PDB code 4QNP (Wan et al., 2015) and

MERS-CoV Virus with PDB code 5DO2 (Li et al., 2015).
Furthermore, we show that ADIOS can be easily applied to
other pathogens, such as bacteria, too. We perform an extra
experiment with the Clostridium Difficile Bacterium, PDB
code 4NP4 (Orth et al., 2014).

6. Results
6.1. Shapers vs. Myopic Antibodies

We validate the effectiveness of the antibody shapers in
optimising the escape-averaged antibody fitness function
FH
v (a) compared to myopic antibodies that only respond

to the current virus v. For our shaper antibodies, we se-
lect a long horizon of H = 100 to capture extended viral
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Figure 4. Shapers Outperform Myopic Antibodies on Other Viruses and a Bacterium. Antibody optimisation learning curves (outer
loop performance) for varying horizon lengths across three viruses - West Nile Virus, Influenza Virus, and MERS-CoV - as well as the
bacterium Clostridium Difficile. The x-axis shows the antibody optimisation steps, i.e., meta-steps and the y-axis shows the antibody
fitness F 100

v (a). Raw fitness values are dependent on Absolut! scores and are relative to the specific antigen, i.e., absolute values should
not be compared between different viruses or bacterium but rather the overall trends. Error bars correspond to the standard error. Higher
values indicate better performance. Full set of ADIOS results for these four pathogens is provided in Appendix A.

escape trajectories. Both shapers and myopic antibodies
are optimised for N = 30 steps. Figure 3a presents the
performance distributions of shapers and myopic antibodies
under both objective functions.

Our results demonstrate a clear advantage of shapers in
the escape-averaged objective F 100

v (a). The mean of the
shapers distribution significantly exceeds that of the my-
opic distribution, as evident from the marginal density plot
in Figure 3a. Notably, none of the myopic antibodies out-
perform any of the top 10% of shapers in this long-term
objective. However, there is a trade-off between short-term
and long-term optimisation. While shapers do better on
the escape-averaged objective, they underperform on the
myopic objective Ra(v, a).

We next examine the influence of antibody shapers on viral
escape trajectories, comparing H = 100 shapers with my-
opic antibodies, both optimised for N = 30 steps. Figure
3b illustrates the viral escape curves induced by both anti-
body types at different stages of their optimisation process.
We first complete the antibody optimisation process, saving
antibodies generated at steps 0, 10, 20, and 30. For each of
these optimisation steps, we then simulate viral escape over
H = 100 evolutionary steps using the corresponding saved
antibodies. The presented viral escape curves are averages
derived from multiple simulations.

At the outset of the antibody optimisation process (step 0),
both the shapers and the myopic antibodies induce similar
escape curves, an expected outcome given their initialisation
from random antibody sequences. However, as we exam-
ine antibodies from later optimisation steps, we observe
diverging trends. Myopic antibodies cause the viral fitness
to be lower in the initial escape steps, outperforming the
shapers. After about 10 escape steps, corresponding to≈ 10
viral mutations, the two antibody types perform similarly.
Beyond that, shapers demonstrate superior results in later
escape stages, more effectively preventing viral escape.

These results show that as the antibody optimisation process
progresses, shapers learn to influence viral trajectories in a
way that minimises long-term viral escape, albeit at the cost
of initial performance. While myopic antibodies may offer
better immediate control, shapers provide more sustained
effectiveness against evolving viral populations.

6.2. Antibody Shapers with Varying Horizons

Finally, we investigate the impact of varying horizons
H on the optimisation process of antibody shapers. We
optimise myopic antibodies and shapers using horizons
H = {5, 10, 20, 100} for N = 30 steps. To evaluate these
antibodies against a consistent “true” objective, we simu-
late viral escape over H = 100 steps for each antibody,
regardless of the horizon used during its optimisation. Fig-
ure 3c presents these results, demonstrating that shapers
optimised with longer horizons H consistently yield bet-
ter performance throughout all steps of the optimisation
process.

However, the number of antibody optimisation steps does
not accurately reflect the computational or experimental cost
of optimisation. Each simulation of viral escape requires a
number of binding samples that increases linearly with the
horizon length H . Yet, shorter horizon antibodies optimise
an objective that diverges further from our “true” antibody
objective F 100

v (a). Due to this trade-off, we observe that the
optimal training horizon varies depending on the available
computational budget.

To illustrate this trade-off, we conduct an additional ex-
periment shown in Figure 3d. Here, instead of fixing the
number of optimisation steps N , we constrain the total num-
ber of binding samples - queries to our binding strength
simulator used to evaluate all antibody and virus payoffs
throughout the optimisation process - to be constant across
different horizons. This approach provides a performance
comparison that accounts for the computational resources
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necessary across varying horizon lengths. Interestingly,
H = 20 shapers perform strongly, nearly matching the per-
formance of those optimised with horizon H = 100 for a
given number of antibody optimisation steps, and far exceed-
ing it when accounting for the differing computational cost.
This suggests that using a cheaper, shorter-horizon proxy
for the true antibody objective F 100

v (a) can yield substantial
benefits.

More generally, we find that the optimisation horizon sig-
nificantly influences the performance of antibody shapers.
While longer horizons lead to better long-term performance,
the optimal horizon length is dependent on the available
computational resources. Thus, it is important to consider
the balance between computational cost and the fidelity of
the optimisation objective when designing antibodies for
long-term effectiveness against evolving viral populations.

6.3. Antibody Shapers for Other Viruses and Bacterium

To test whether the shaping effects observed on dengue gen-
eralise, we evaluate ADIOS on three additional viruses:
West Nile, Influenza, and MERS-CoV; as well as the
Clostridium Difficile bacterium (Figure 4, Appendix A). In
all cases, we observe consistent trends: shapers outperform
myopic antibodies in escape-averaged fitness, confirming
that ADIOS can successfully achieve shaping across diverse
pathogens.

For West Nile virus and MERS-CoV, H = 100 shapers
appear to perform worse than shorter-horizon H = 20 an-
tibodies, see Figure 4. However, given that all antibodies
are only optimised for 30 meta-steps, and the compute-
normalised (bottom row) plots in Figure A.1 show clearly
that H = 100 shapers have not yet converged, we hypothe-
sise that H = 100 shapers would ultimately yield the best
performance if given more optimisation time.

Interestingly, the shaping effect is especially strong on the
Clostridium difficile bacterium, where H = 100 shapers
significantly outperform all other antibody types across all
reported metrics; see right-most row in Figure A.1. These
results suggests that different antigens can exhibit very dif-
ferent behaviour in a shaping setting. However, ADIOS is
able to produce antibodies with effective shaping behaviour
across them.

6.4. Attack is the Best Defence

Our previous results demonstrate that antibody shapers, par-
ticularly those optimised with longer horizons, manage to
effectively minimise viral escape. However, we hypothesise
they can achieve this through two distinct strategies: robust-
ness or shaping. A robustness strategy involves developing
antibodies that are inherently resistant to a wide range of
potential viral variants — a “good defence” approach. In
contrast, a shaping strategy aims to actively influence the

evolutionary trajectory of the virus itself, creating evolution-
ary pressures that guide viral mutations in a direction more
favourable to antibody binding — an “attack” approach.

Figure 5. Robustness vs. Shaping. We optimise 80 different
antibodies aH across multiple horizons (Myopic, H = 5, H =
10, H = 20, H = 100), these are represented by the y-axis. We
simulate the viral escape to each of these antibodies for 100 steps,
and we group the escape viruses vH by the horizon H of the anti-
body that induced them; these escape viruses are represented by the
x-axis. In colour, we show the mean antibody payoff Ra(vH , aH′)
for each group of optimised antibodies aH′ against the final es-
cape viral variant vH induced by other antibodies optimised with
horizon H . Darker colours correspond to better antibody payoff.

To disentangle these strategies, we separately evaluate the
antibodies and the viruses that evolve in response to them.
To do this, we compare the viruses against other antibodies
which did not influence the viral evolution. The intuition
is that an antibody which is good at shaping (good attack),
but less robust (poor defence), will induce viruses which
other antibodies will perform well against. Specifically, we
generate antibodies aH for each horizon H and simulate
viral escape against these antibodies for 100 steps, resulting
in viruses vH . For all pairs of horizons (H,H ′), we then
cross-evaluate the antibody payoff Ra(vH , aH′). Figure 5
presents the result of this analysis.

Interestingly, viruses v100 induced by H = 100 shapers
are consistently more exploitable by antibodies across all
optimisation horizons. This suggests that H = 100 shapers
actively shape the escape trajectories of the virus in a way
that makes the resulting variants more susceptible to an-
tibody binding in general. However, this shaping effect
comes at a cost. The H = 100 shapers (a100) show slightly
lower payoffs compared to the peak performance of shorter-
horizon antibodies (a5 and a10) against the viruses v100
induced by the H = 100 shapers (see rightmost column of
Figure 5). This trade-off indicates that to exert a stronger
shaping influence on viral evolution, H = 100 shapers sac-
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rifice some degree of immediate performance or robustness,
that is, their ability to perform well against a wide range of
viruses. Therefore, a potential strategy could involve using a
mixture of antibodies as therapy, where some are optimised
for shaping the virus’s evolutionary trajectory, and others
are designed for strong immediate binding.

Figure 6. Shaping with External Pressure. A similar experiment
to Figure 5, but with the additional external pressure of a separate
myopic antibody (see Equation 3).

To investigate whether shaping persists in more realistic
scenarios with multiple therapeutic pressures, we conduct
an additional experiment. Using the same groups of anti-
bodies aH , we simulate viral escape with external pressure
from a myopic antibody aExt (not included in the original
amyopic set). The viruses vH+Ext now evolve according to
a modified payoff:

RExt
v (v, a, aExt) =

1

2
Rv(v, a) +

1

2
Rv(v, aExt) (3)

which represents the scenario where multiple therapies are
present in the environment (for example, during COVID-19
when multiple vaccines were available). Figure 6 shows that
while the shaping effect is somewhat reduced compared to
our original results, it remains clearly visible. This demon-
strates that our shaping approach transfers to test regimes
where external pressures from other therapies are present.

6.5. Explainability Analysis

To understand what distinguishes shapers from myopic anti-
bodies, we conduct two complementary analyses of amino
acid distributions and binding poses (Appendices B and C).
Examining amino acid distributions, we find that long-
horizon shapers exhibit more uniform distributions, while
myopic antibodies tend to cluster around amino acids with
extreme binding energies. We hypothesise that by maintain-
ing diversity in their amino acid composition, shapers can

preserve robustness against viral mutation since the virus
cannot easily escape by avoiding specific, high-binding,
parts of the antibody.

Through analysis of binding using pose matrices, represent-
ing which parts of the antibody and virus bind with each
other, we observe these interaction patterns significantly
change as the virus adapts. However, the type of antibody
influences the nature of these changes: H = 100 shapers
actively constrain viral evolution by both preventing un-
favourable binding configurations and preserving favourable
ones. While these findings are specific to our Absolut! bind-
ing simulator, they hint at explainable strategies that shapers
use to influence viral evolution, which could inform future
antibody design approaches.

7. Conclusion & Future Work
In this work, we introduce ADIOS, a meta-learning frame-
work for designing therapeutic antibodies that not only de-
fend against current viral strains but instead actively shape
viral evolution. We provide a GPU-accelerated JAX imple-
mentation of Absolut!, enabling rapid simulation of viral
escape trajectories and outer-loop optimisation. Our results
demonstrate that shapers are not only more robust against
viral escape, but they also shape viral evolution toward more
targetable variants. Lastly, we provide an explainability
analysis of how shapers achieve this level of robustness and
influence, which we hope will inspire practitioners.

Although dengue virus served as our primary benchmark,
we evaluated ADIOS on three other viruses (West Nile, In-
fluenza and MERS-CoV) and on the bacterium Clostridium
Difficile. In all four cases ADIOS consistently achieves
shaping. These results confirm that ADIOS can gener-
alise across a diverse set of pathogens. More broadly,
the same opponent-shaping principle can be transferred to
monoclonal-antibody (mAb) therapy for cancer (Zahavi &
Weiner, 2020). In that setting, the outer loop would optimise
therapeutic mAbs, while the inner loop would simulate the
evolution of cancer-cell growth-factor receptors; the goal
would be to shape cancer cells into cells that do not pro-
liferate well. Exploring this direction, together with other
bacterial or antimicrobial-resistance scenarios, remains an
exciting avenue for future work.

While our current implementation uses simplified binding
and evolutionary escape models that prevent direct thera-
peutic application, ADIOS could be integrated with more
sophisticated models, like AlphaFold3 (Abramson et al.,
2024), to better capture evolving viral and antibody struc-
tures. As computational models of protein interactions and
evolutionary processes continue to improve, ADIOS has
the potential to transform how we develop therapies against
viruses, cancers, and other evolving adversaries.
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M., Snapkov, I., Slabodkin, A., Chernigovskaya, M.,
Scheffer, L., Smorodina, E., Rawat, P., Mehta, B. B.,
Vu, M. H., Mathisen, I. F., Prósz, A., Abram, K.,
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A. Experimental Results on Other Viruses and Bacterium

Figure A.1. Shapers Outperform Myopic Antibodies on Other Viruses and a Bacterium. The figure shows results across four different
pathogens: West Nile Virus, Influenza Virus, MERS-CoV Virus, and Clostridium Difficile Bacterium (left to right columns). First row
Distribution of antibody shapers optimised with horizon H = 100 (orange) vs. myopic antibodies distribution (blue). We highlight the
top 10% shapers with respect to F 100

v (a) in red, and the top 10% myopic antibodies with respect to Ra(v, a) in green. The x-axis is
the myopic antibody fitness Ra(v, a) and the y-axis is the escape averaged antibody fitness for H = 100, i.e., F 100

v (a). Higher values
on both axes indicate better performance. Second row Viral escape curves (inner loop performance) for different steps of the antibody
optimisation process (outer loop) for antibody shapers optimised with horizon H = 100 (solid lines) and myopic antibodies (dashed
lines). The lighter lines indicate early antibody optimisation steps, and the darker lines show the later steps. The x-axis shows the
evolutionary steps of viral escape. The y-axis represents the virus fitness/payoff Rv(v, a), where higher values indicate better virus fitness
(and lower values denote better antibody performance, so lower is better for us). Third row Antibody optimisation learning curves (outer
loop performance) for varying horizon lengths. The x-axis shows the antibody optimisation steps, i.e., meta-steps, and the y-axis shows
antibody fitness F 100

v (a). Forth row Antibody optimisation learning curves accounting for computational cost. The x-axis shows the
number of samples from the binding simulator, and the y-axis shows antibody fitness F 100

v (a). Higher values indicate better performance.
Error bars correspond to the standard error. In all these results, raw payoff/fitness values are dependent on Absolut! scores and are relative
to the specific antigen, i.e., absolute values should not be compared between different viruses or bacterium but rather the overall trends.
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B. Amino Acid Distribution in Shapers and Myopic Antibodies
To further understand the performance differences between myopic antibodies and shapers, we analyse how the amino
acid distributions of the antibodies change with the optimisation horizon H . Within our model, each amino acid is solely
characterised by its binding strength to other amino acids as defined by the Miyazawa-Jernigan energy potential matrix
(Miyazawa & Jernigan, 1999). However, despite this simplicity, we still see interesting patterns in the amino acid distribution.
Figure B.1 showcases the results of our experiment.

Antibodies optimised with longer horizons, especially the H = 100 shapers, exhibit a more uniform distribution of amino
acids, while those with shorter horizons show a tendency to cluster around amino acids associated with either high or low
binding energies. The flatter distribution of long-horizon shapers suggests a more diverse and balanced approach to viral
antigen binding. We hypothesise that this strategy helps to preserve robustness against viral mutations. By maintaining a
more even distribution across energy levels, these antibodies may be less susceptible to viral escape.

In contrast, the clustering behaviour we observe in shorter-horizon antibodies indicates a more specialised strategy. By
concentrating on amino acids at the extremes of the binding energy spectrum, these antibodies may achieve strong immediate
binding but potentially at the cost of long-term robustness. However, while this analysis hints at the robustness of long-term
shapers, it does not fully explain the shaping behaviour we observed in our previous results. In the next section, we
investigate the distribution of amino acids within specific binding poses.

Figure B.1. Distribution of amino acids in myopic antibodies and shapers. The antibodies are optimised for N = 30 steps using
different viral escape horizons H . Longer horizon shapers push the amino acid distribution closer to a uniform distribution.

C. Influence of Antibody Shapers on Binding Poses
In the Absolut! framework (Robert et al., 2022), binding poses are defined as sets of interacting residue pairs between the
antibody and the antigen. The binding energy of a pose is calculated by populating these residue locations with the amino
acid sequences of both the antibody and the virus and then summing the pairwise interaction energies defined by (Miyazawa
& Jernigan, 1999). Absolut! considers a vast number of possible poses (on the order of 106) and determines the overall
interaction energy as the energy of the minimum pose, refer to Appendix D for more details. Importantly, only a small part
of the viral sequence contributes to this minimum energy pose.

As both the virus and the antibody mutate during our optimisation process, the lowest energy pose can change. To capture
these dynamics, we introduced the concept of a pose matrix: a 20× 20 matrix with one entry for each possible pair of amino
acids. One dimension corresponds to the antibody amino acids, and the other to the viral amino acids. The entries in this
matrix represent the number of interactions between the specific amino acid pairs in the lowest energy pose for the binding
configuration between an antibody and an antigen.

Figure C.1a presents average pose matrices from multiple optimisation runs of both myopic antibodies and long-horizon
shapers. We observe two key trends. First, as viral escape steps increase (top row vs bottom row), the pose matrices become
more “diffused”. This is expected, as the virus explores more “pose possibilities” through mutations during escape. Second,
as the horizon of antibody optimisation increases, the poses also become more “diffused”. This is particularly interesting, as
all antibodies have the same number of mutations regardless of the horizon, suggesting that this diffusion might relate to the
increased robustness of shapers.
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a

b

c

Figure C.1. Influence of antibody shapers on binding poses. a Average pose matrices between antibodies optimised using different
horizons and the virus at various stages of its escape. The escape steps increase from left to right, and the horizon increases from top to
bottom. The full grid of matrices with more antibody horizons and virus escape steps is available in the Supplementary Information,
Figure C.2. b, c Aggregated sum of pose matrices w.r.t the antibody axis (b) and w.r.t the virus axis (c). The plots show a change in the
interaction counts in the poses from the viral escape step 0 to 100. Red indicates a decrease in the interaction count and green an increase.

To further understand these pose dynamics, we aggregate the pose matrices along the antibody axis (Figure C.1b) and
the virus axis (Figure C.1c). These figures show the change in interaction counts between viral escape steps 0 and 100.
Figure C.1b shows that as the virus escapes it includes more of the antibody’s lowest binding amino acids (particularly
K, Lysine) in the pose. Notably, long-horizon shapers, especially H = 100 shapers, are most effective at preventing this
increase in K (Lysine) interactions. Furthermore, Figure C.1c shows another viral escape strategy, where the virus removes
its high-binding amino acids I (Isoleucine) and M (Methionine) from the pose. Again, H = 100 shapers are most successful
in counteracting this trend, although they cannot completely prevent it.
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Figure C.2. Full grid of pose matrices. They represent the average pose interactions between myopic antibodies or antibody shapers
optimised with different horizons and viruses at different stages of their escape.

Based on these observations, we hypothesise that the shaping ability of H = 100 shapers relies on two main mechanisms.
Preventing the virus from including the antibody’s lowest binding amino acids in the pose, and inhibiting the virus from
removing its own high-binding amino acids from the pose. These strategies constrain the viral escape trajectories, making
the resulting viral variants more susceptible to antibody binding in general. While these results are specific to our Absolut!
binding simulator, they demonstrate that the behaviour of antibody shapers is both explainable and intuitive. This work
serves as a proof of concept, showing that opponent shaping techniques can optimise antibodies to more effectively prevent
viral escape.

D. Binding Function
In general, ADIOS is independent of the choice of the binding function B : ANv × ANa → R. In our work, we rely on the
Absolut! framework (Robert et al., 2022) to implement the binding function. In this section, we mathematically formalise
the binding energy calculation that Absolut! uses. For further explanation, readers are recommended to refer to the original
Absolut! paper (Robert et al., 2022).

For two given protein structures, there are many possible joint configurations. Each of these joint configurations yields an
energy. The configurations which are associated with lower energy will require more external energy to cause the system to
leave that state, meaning in turn that they are more stable. If the configuration is sufficiently stable, this may be referred to
as a binding pose.
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In Absolut, poses are represented as pairs of residues2 which are adjacent to each other in that pose. In particular, the pairs
may be from the antigen to the antibody, or from the antibody to itself. We define the space of possible poses Φ:

Φ = 2Nv×Na × 2Na×Na

Where Nv and Na are taken to be the set of integers up to Nv and Na, respectively.

The energy of a complex of a virus v ∈ ANv and an antibody a ∈ ANa , in a given pose (ϕv×a, ϕa×a) ∈ Φ is defined by
sum of the energies of each adjacent residues. The energy between a residue pair is determined by which two amino acids it
contains, given by a symmetric interaction matrix M : A × A → R, which is determined experimentally (Miyazawa &
Jernigan, 1999).

We then define the energy of a single pose to be:

Ê(a, b; (ϕv×a, ϕa×a),M) =
∑

(i,j)∈ϕv×a

M(vi, aj) +
∑

(i,j)∈ϕa×a

M(ai, aj)

Finally, given a set of poses S ⊆ Φ, the binding strength is:

B(v, a) = −E(v, a;S,M) = −min
ϕ∈S

Ê(v, a;ϕ,M) (4)

Absolut! generates S through a two-step process. First, Absolut! discretises a given structure of the virus v (or any antigen)
which is taken from the PDB (consortium, 2018). Second, Absolut! does a brute-force search over possible (discretised)
poses for an antibody a to join to the viral structure. The exact details are not necessary for this paper, we refer interested
readers to the original paper.

However, we find that Absolut! generates more poses than we require. Since the energy function, E is a minimum over
poses, certain poses contribute far more than others. In particular, if a pose ϕ tends to yield higher energies, so Ê(a, b;ϕ,M)
is relatively large, it will have little impact on the result of B.

To give a more concrete example, for this paper, we use the dengue virus antigen (Lok et al., 2008). Absolut! gives ≈ 1.5
million poses for this structure. Absolut! also comes with ≈ 20 million real-world antibody sequences. When using the
base dengue sequence as the antigen, across the 20 million binding calculations only 1027 binding poses are ever the
minimum. Furthermore, the relevance of each pose drops exponentially. The most relevant pose accounts for 20% of
binding configurations, and by using the top 100 poses one would get the exact same result for binding in 95% of antibodies.
This gives us a way to make the computation 1000 times faster3 for a negligible accuracy drop for this particular antigen
sequence.

However, this leads to more errors as soon as we change the viral antigen sequence. Looking at the particular poses which
lead to binding reveals another way to cut down on the total number of poses: all of the poses contain at least 18 pairs of
residues. As the interaction matrix M is strictly negative, having more pairs of residues always makes the binding energy of
a pose lower, meaning it is more likely to be where binding occurs. Out of the original 1.5 million poses, only approximately
37 thousand (1 in 40) contain 18 or more pairs of residues. When using only these residues, we see no differences across
any of the evolutionary simulations. It is possible that a pose with 17 or less pairs is the dominant one for some antigen v
with antibody a, but if so, then such pairs appear to be extremely rare.

Using these methods of pruning poses gives us two subsets of the original set of poses, a larger one which almost exactly
matches performance, and another which sometimes differs, but is much faster to compute. We refer to these as the
high-resolution and low-resolution binding simulators, respectively. Note that for the low-resolution binding simulator,
the more mutations the virus undergoes, the less accurate it becomes. Furthermore, we also do binding to the antibody
anti-target, t−a . To account for this, we compute the relevant poses for this anti-target too.

When running dengue virus experiments, we always train with the low-resolution binding simulator, then perform “verifi-
cation” with the high-resolution one, and these are the results we report throughout the paper. For the other viruses and
the bacterium we run “verification” in a differently initialised instantiation of the low-resolution simulator. The reason is

2A single amino acid position on a protein
3In practice, the difference is closer to 10, 000, likely due to the GPU having to move less data.
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twofold. Firstly this enables us to run many more evolution experiments. Secondly, this mimics the real-life process of
transferring out of simulation to the real world. By showing we transfer from the low-resolution binding simulation to the
slower, high-resolution binding simulation, we demonstrate that our results are not extremely specific to the exact simulation
we use and that any result will not disappear as soon as a more accurate simulation is used. We emphasise that Absolut!
does not represent an accurate model of antibody binding. It is instead a toy simulation to demonstrate our methodology.
For example, we do not expect our framework when used with this simulation model to yield highly effective, superior
antibodies for real-world applications.

E. MDP for the Virus–Antibody Game
We formalise a single interaction round between an antibody and a virus as the finite–horizon Markov Decision ProcessM:

M =
〈
S, Av, Aa, P, R, µ

〉
.

• State space: S = ANv × ANa , where a state s = (v, a) is the pair of viral (v) and antibody (a) amino-acid sequences.

• Action spaces (chosen simultaneously):

Av(s) = ANv , Aa(s) = ANa .

• Transition kernel (episode terminates after one step):

P
(
s′ | s, av, aa

)
= 1s′=s⋆ , s⋆ is terminal.

• Reward vector R = (Rv, Ra). Given joint action
(
av, aa

)
in state s,

Ra

(
s, av, aa

)
= B

(
av, aa

)
−B

(
t−a , a

a
)
−B

(
av, t+v

)
, Rv = −Ra.

• Initial-state distribution µ puts mass on the wild-type virus and the initial antibody candidate: µ
(
v0, a0

)
= 1.

Because this is a single-step MDP, the return equals the immediate reward R and the discount factor is irrelevant.
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