
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with
Architecture-Routed Mixture-of-Experts

Anonymous ACL submission

Abstract

Weight-sharing supernets are crucial for perfor-001
mance estimation in cutting-edge neural archi-002
tecture search (NAS) frameworks. Despite their003
ability to generate diverse subnetworks without004
retraining, the quality of these subnetworks is005
not guaranteed due to weight sharing. In NLP006
tasks like machine translation and pre-trained007
language modeling, there is a significant per-008
formance gap between supernet and training009
from scratch for the same model architecture,010
necessitating retraining post optimal architec-011
ture identification.012

This study introduces a solution called mixture-013
of-supernets, a generalized supernet formula-014
tion leveraging mixture-of-experts (MoE) to en-015
hance supernet model expressiveness with min-016
imal training overhead. Unlike conventional017
supernets, this method employs an architecture-018
based routing mechanism, enabling indirect019
sharing of model weights among subnetworks.020
This customization of weights for specific ar-021
chitectures, learned through gradient descent,022
minimizes retraining time, significantly enhanc-023
ing training efficiency in NLP. The proposed024
method attains state-of-the-art (SoTA) perfor-025
mance in NAS for fast machine translation mod-026
els, exhibiting a superior latency-BLEU trade-027
off compared to HAT, the SoTA NAS frame-028
work for machine translation. Furthermore, it029
excels in NAS for building memory-efficient030
task-agnostic BERT models, surpassing NAS-031
BERT and AutoDistil across various model032
sizes.033

1 Introduction034

Neural architecture search (NAS) automates the035

design of high-quality architectures for natural lan-036

guage processing (NLP) tasks while meeting speci-037

fied efficiency constraints (Wang et al., 2020a; Xu038

et al., 2021, 2022a). NAS is commonly treated039

as a black-box optimization (Zoph et al., 2018;040

Pham et al., 2018), but obtaining the best accuracy041

requires repetitive training and evaluation, which 042

is impractical for large datasets. To address this, 043

weight sharing is applied via a supernet, where 044

subnetworks represent different model architec- 045

tures (Pham et al., 2018). 046

Recent studies demonstrate successful direct use 047

of subnetworks for image classification with per- 048

formance comparable to training from scratch (Cai 049

et al., 2020; Yu et al., 2020). However, applying 050

this supernet approach to NLP tasks is more chal- 051

lenging, revealing a significant performance gap 052

when using subnetworks directly. This aligns with 053

recent NAS works in NLP (Wang et al., 2020a; Xu 054

et al., 2021), which address the gap by retraining 055

or finetuning the identified architecture candidates. 056

This situation introduces uncertainties about the 057

optimality of selected architectures and requires re- 058

peated training for obtaining final accuracy on the 059

Pareto front, i.e., the best models for different effi- 060

ciency (e.g., model size or inference latency) bud- 061

gets. This work aims to enhance the weight-sharing 062

mechanism among subnetworks to minimize the 063

observed performance gap in NLP tasks. 064

The weight-sharing supernet is trained by itera- 065

tively sampling architectures from the search space 066

and training their specific weights from the super- 067

net. Standard weight-sharing (Yu et al., 2020; Cai 068

et al., 2020) involves directly extracting the first 069

few output neurons to create a smaller subnetwork 070

(see Figure 1 (a)), posing two challenges due to 071

limited model capacity. First, the supernet im- 072

poses strict weight sharing among architectures, 073

causing co-adaptation (Bender et al., 2018; Zhao 074

et al., 2021a) and gradient conflicts (Gong et al., 075

2021). For example, in standard weight-sharing, if 076

a 5M-parameters model is a subnetwork of a 90M- 077

parameters model, 5M weights are directly shared. 078

However, the optimal shared weights for the 5M 079

model may not be optimal for the 90M model, lead- 080

ing to significant gradient conflicts during optimiza- 081

tion (Gong et al., 2021). Second, the supernet’s 082

1

(a) Standard (b) Layer-wise Mixture-of-Supernet (c) Neuron-wise Mixture-of-Supernet

Figure 1: Choices of linear layers for supernet training. The length and the height of the ‘Linear’ blocks correspond
to the number of input and output features of the supernet respectively. The highlighted portions in blue color
correspond to the architecture-specific weights extracted from the supernet. Different intensities of blue color in the
‘Linear’ blocks of the mixture-of-supernet correspond to different alignment scores generated by the router.

Supernet Weight sharing Capacity Overall Time (↓) Average BLEU (↑)

HAT (Wang et al., 2020a) Strict Single Set 508 hours 25.93
Layer-wise MoS Flexible Multiple Set 407 hours (20%) 27.21 (4.9%)

Neuron-wise MoS Flexible Multiple Set 394 hours (22%) 27.25 (5.1%)

Table 1: Overall time savings and average BLEU improvements of MoS supernets vs. HAT for computing pareto
front (latency constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De task. Overall time (single NVIDIA
V100 hours) includes supernet training time, search time, and additional training time for the optimal architectures.
Average BLEU is the average of BLEU scores of architectures in the pareto front (see Table 5 for individual scores).
MoS supernets yield architectures that enjoy better latency-BLEU trade-offs than HAT and have an overall GPU
hours (see A.5.10 for breakdown) savings of at least 20% w.r.t. HAT.

overall capacity is constrained by the parameters083

of a single deep neural network (DNN), i.e., the084

largest subnetwork in the search space. However,085

when dealing with a potentially vast number of086

subnetworks (e.g., billions), relying on a single set087

of weights to parameterize all of them could be088

insufficient (Zhao et al., 2021a).089

To address these challenges, we propose a090

Mixture-of-Supernets (MoS) framework. MoS en-091

ables architecture-specific weight extraction, allow-092

ing smaller architectures to avoid sharing some093

output neurons with larger ones. Additionally,094

it allocates large capacity without being con-095

strained by the number of parameters in a sin-096

gle DNN. MoS includes two variants: layer-wise097

MoS, where architecture-specific weight matrices098

are constructed based on weighted combinations of099

expert weight matrices at the level of sets of neu-100

rons, and neuron-wise MoS, which operates at the101

level of individual neurons in each expert weight102

matrix. Our proposed NAS method proves effective103

in constructing efficient task-agnostic BERT mod-104

els (Devlin et al., 2019) and machine translation105

(MT) models. For efficient BERT, our best super-106

net outperforms SuperShaper (Ganesan et al., 2021)107

by 0.85 GLUE points, surpasses NAS-BERT (Xu108

et al., 2021) and AutoDistil (Xu et al., 2022a) in 109

various model sizes (≤ 50M parameters). Com- 110

pared to HAT (Wang et al., 2020a), our top supernet 111

reduces the supernet vs. standalone model gap by 112

26.5%, provides a superior pareto front for latency- 113

BLEU tradeoff (100 to 200 ms), and decreases the 114

steps needed to close the gap by 39.8%. A sum- 115

mary in the Table 1 illustrates the time savings 116

and BLEU improvements of MoS supernets for the 117

WMT’14 En-De task. 118

Main contributions: (1) We propose a formula- 119

tion that generalizes weight-sharing methods, en- 120

compassing direct weight sharing (e.g., once-for- 121

all network (Cai et al., 2020), BigNAS (Yu et al., 122

2020)) and flexible weight sharing (e.g., few-shot 123

NAS (Zhao et al., 2021b)). This formulation en- 124

hances the expressive power of the supernet. (2) 125

We apply the MoE concept to enhance model capa- 126

bility. The model’s weights are dynamically gen- 127

erated based on the activated subnetwork architec- 128

ture. Post-training, the MoE can be converted into 129

equivalent static models as our supernets solely 130

depend on the fixed subnetwork architecture after 131

training. (3) Our experiments show that our super- 132

nets achieve SoTA NAS results in building efficient 133

task-agnostic BERT and MT models. 134

2

2 Supernet - Fundamentals135

A supernet, utilizing weight sharing, parameterizes136

weights for millions of architectures, offering rapid137

performance predictions and significantly reducing138

NAS search costs. The training objective can be for-139

malized as follows. LetXtr denote the training data140

distribution. Let x, y denote the training sample141

and label respectively, i.e., x, y ∼ Xtr. Let arand142

denote an architecture uniformly sampled from the143

search spaceA. Let fa denote the subnetwork with144

architecture a, and f be parameterized by the super-145

net model weights W . Then, the training objective146

of the supernet can be given by,147

min
W

Ex,y∼XtrEarand∼A[L(farand
(x;W), y)]. (1)148

The mentioned formulation is termed single path149

one-shot (SPOS) optimization (Guo et al., 2020)150

for supernet training. Another popular technique151

is sandwich training (Yu et al., 2020), where the152

largest (abig), smallest (asmall), and uniformly sam-153

pled architectures (arand) from the search space are154

jointly optimized.155

3 Mixture-of-Supernets156

Existing supernets typically have limited model ca-157

pacity to extract architecture-specific weights. For158

simplicity, assume the model function fa(x;W)159

is a fully connected layer (output o = Wx, omit-160

ting bias term for brevity), where x ∈ nin × 1,161

W ∈ nout × nin, and o ∈ nout × 1. nin162

and nout correspond to the number of input and163

output features respectively. Then, the weights164

(Wa ∈ nouta × nin) specific to architecture a with165

nouta output features are typically extracted by tak-166

ing the first nouta rows1 (as shown in Figure 1 (a))167

from the supernet weight W . Assume one sam-168

ples two architectures (a and b) from the search169

space with the number of output features nouta and170

noutb respectively. Then, the weights correspond-171

ing to the architecture with the smallest number172

of output features will be a subset of those of the173

other architecture, sharing the first |nouta − noutb |174

output features exactly. This weight extraction175

technique enforces strict weight sharing between176

architectures, irrespective of their global architec-177

ture information (e.g., different features in other178

layers). For example, architectures a and b may179

have vastly different capacities (e.g., 5M vs 90M180

1We assume the number of input features remains constant.
If it changes, only the initial columns of Wa are extracted.

parameters). The smaller architecture (e.g., 5M) 181

must share all weights with the larger one (e.g., 182

90M), and the supernet (modeled by fa(x;W)) 183

cannot allocate weights specific to the smaller ar- 184

chitecture. Another issue with fa(x;W) is that the 185

supernet’s overall capacity is constrained by the 186

parameters in the largest subnetwork (W) in the 187

search space. Yet, these supernet weights W must 188

parameterize numerous diverse subnetworks. This 189

represents a fundamental limitation of the standard 190

weight-sharing mechanism. Section 3.1 proposes 191

a reformulation to overcome this limitation, im- 192

plemented through two methods (Layer-wise MoS, 193

Section 3.2, Neuron-wise MoS, Section 3.3), suit- 194

able for integration into Transformers (see Sec- 195

tion 3.4). 196

3.1 Generalized Model Function 197

We can reformulate the function fa(x;W) to a 198

generalized form g(x, a;E), which takes 2 inputs: 199

the input data x, and the activated architecture a. 200

E includes the learnable parameters of g. Then, 201

the training objective of the proposed supernet be- 202

comes, 203

min
E

Ex,y∼XtrEarand∼A[L(g(x, arand;E), y)].

(2) 204

For the standard weight sharing mechanism men- 205

tioned above, E = W and function g just uses a 206

to perform the “trimming” operation on the weight 207

matrix W , and forwards the subnetwork. To fur- 208

ther minimize objective equation 2, enhancing the 209

capacity of the model function g is a potential 210

approach. However, conventional methods like 211

adding hidden layers or neurons are impractical 212

here since the final subnetwork architecture of 213

mapping x to fa(x;W) cannot be altered. This 214

work introduces the concept of Mixture-of-Experts 215

(MoE) (Fedus et al., 2022) to enhance the capacity 216

of g. Specifically, we dynamically generate weights 217

Wa for a specific architecture a by routing to cer- 218

tain weight matrices from a set of expert weights. 219

We term this architecture-routed MoE-based super- 220

net as Mixture-of-Supernets (MoS) and design two 221

routing mechanisms for function g(x, a;E). Due 222

to lack of space, the detailed algorithm for supernet 223

training and search is shown in A.2. 224

3.2 Layer-wise MoS 225

Assume there are m (number of experts) unique 226

weight matrices ({Ei ∈ Rnoutbig
×ninbig }mi=1, or ex- 227

pert weights), which are learnable parameters. For 228

3

simplicity, we only use a single linear layer as the229

example. For an architecture a with nouta output230

features, we propose the layer-wise MoS that com-231

putes the weights specific to the architecture a (i.e.232

Wa ∈ Rnouta×nin) by performing a weighted com-233

bination of expert weights, Wa =
∑

i α
i
aE

i
a. Here,234

Ei
a ∈ Rnouta×nin corresponds to the standard235

top rows extraction from the ith expert weights.236

The alignment vector (αa ∈ [0, 1]m,
∑

i α
i
a = 1)237

captures the alignment scores of the architecture238

a with respect to each expert (weights matrix).239

We encode the architecture a as a numeric vec-240

tor Enc(a) ∈ Rnenc×1 (e.g., a list of the number241

of output features for different layers), and apply a242

learnable router r(·) (an MLP with softmax) to pro-243

duce such scores, i.e. αa = r(Enc(a)). Thus, the244

generalized model function for the linear layer (as245

shown in Figure 1 (b)) can be defined as (omitting246

bias for brevity):247

g(x, a;E) = Wax =
∑
i

r(Enc(a))iEi
ax. (3)248

The router r(·) governs the degree of weight shar-249

ing between two architectures through modulation250

of alignment scores (αa). For instance, if m = 2251

and a is a subnetwork of architecture b, the supernet252

can allocate weights specific to the smaller archi-253

tecture a by setting αa = (1, 0) and αb = (0, 1).254

In this scenario, g(x, a;E) exclusively utilizes255

weights from E1, and g(x, b;E) uses weights from256

E2, enabling updates to E1 and E2 towards the257

loss from architectures a and b without conflicts.258

It’s worth noting that few-shot NAS (Zhao et al.,259

2021a) is a special case of our framework when260

the router r is rule-based. Moreover, g(·) func-261

tions as an MoE, enhancing expressive power and262

reducing the objective equation 2. Once supernet263

training is done, for a given architecture a, the score264

αa = r(Enc(a)) can be generated offline. Expert265

weights collapse, reducing the number of parame-266

ters for architecture a to nouta × nina . Layer-wise267

MoS results in a lower degree of weight sharing be-268

tween differently sized architectures, as evidenced269

by a higher Jensen-Shannon distance between their270

alignment probability vectors compared to simi-271

larly sized architectures. Refer to A.1.1 for more272

details.273

3.3 Neuron-wise MoS274

Layer-wise MoS employs a standard MoE setup,275

where each expert is a linear layer/module. The276

router determines the combination of experts to use277

for forwarding the input x based on a. In this setup, 278

the degree of freedom for weight generation is m, 279

and the parameter count grows by m× |W |, with 280

|W | being the parameters in the standard supernet. 281

Therefore, a sufficiently large m is needed for flex- 282

ibility in subnetwork weight generation, but it also 283

introduces too many parameters into the supernet, 284

making layer-wise MoS challenging to train. To 285

address this, we opt for a smaller granularity of 286

weights to represent each expert, using neurons in 287

DNN as experts. In terms of the weight matrix, 288

neuron-wise MoS represents an individual expert 289

with one row, whereas layer-wise MoS uses an 290

entire weight matrix. For neuron-wise MoS, the 291

router output βa = r(·) ∈ [0, 1]noutbig
×m for each 292

layer, and the sum of each row in βa is 1. Similar 293

to layer-wise MoS, we use an MLP to produce the 294

noutbig ×m matrix and apply softmax on each row. 295

We formulate the function g(x, a;E) for neuron- 296

wise MoS as 297

Wa =
∑
i

diag(βi
a)E

i
a, (4) 298

where diag(β) constructs a noutbig × noutbig diago- 299

nal matrix by putting β on the diagonal, and βi
a is 300

the i-th column of βa. Ei is still an noutbig × nin 301

matrix as in layer-wise MoS. Compared to layer- 302

wise MoS, neuron-wise MoS offers increased flexi- 303

bility (m×nouta instead of only m) to manage the 304

degree of weight sharing between different archi- 305

tectures, with the number of parameters remaining 306

proportional to m. Neuron-wise MoS provides 307

finer control over weight sharing between subnet- 308

works. Gradient conflict, computed using cosine 309

similarity between the supernet and smallest subnet 310

gradients following NASVIT (Gong et al., 2021), 311

is lowest for neuron-wise MoS compared to layer- 312

wise MoS and HAT, as shown by the highest cosine 313

similarity (see A.1.2). 314

3.4 Adding g(x, a;E) to Transformer 315

MoS is adaptable to a single linear layer, multiple 316

linear layers, and other parameterized layers (e.g., 317

layer-norm). Given that the linear layer dominates 318

the number of parameters, we adopt the approach 319

used in most MoE work (Fedus et al., 2022). We 320

apply MoS to the standard weight-sharing-based 321

Transformer (fa(x;W)) by replacing the two linear 322

layers in every feed-forward network block with 323

g(x, a;E). 324

4

Supernet MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE (↑)

Standalone 82.61 59.03 86.54 91.52 89.47 90.68 71.53 81.63
Supernet (Sandwich) 82.34 57.58 86.54 91.74 88.67 90.39 73.26 81.50 (-0.13)

Layer-wise MoS (ours) 82.40 57.62 87.26 92.08 89.57 90.68 77.08 82.38 (+0.75)
Neuron-wise MoS (ours) 82.68 58.71 87.74 92.16 89.22 90.49 76.39 82.48 (+0.85)

Table 2: GLUE validation performance of different supernets (0 additional pretraining steps) compared to standalone
(1x pretraining budget). The BERT architecture (67M parameters) is the top model from the pareto front of Supernet
(Sandwich) on SuperShaper’s search space. Improvement (%) in GLUE average over standalone is enclosed in
parentheses in the last column. Layer-wise and neuron-wise MoS perform significantly better than standalone.

Supernet #Params #Steps CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 19.8 79.6 87.3 84.9 85.8 66.7 70.7
AutoDistil (proxy) 6.88M 0 24.8 78.5 85.9 86.4 89.1 64.3 71.5
Neuron-wise MoS 5M 0 28.3 82.7 86.9 84.1 88.5 68.1 73.1

NAS-BERT 10M 125K 34.0 79.1 88.6 86.3 88.5 66.7 73.9
Neuron-wise MoS 10M 0 34.7 81.0 88.1 85.1 89.1 66.7 74.1

AutoDistil (proxy) 26.1M 0 48.3 88.3 90.1 90.0 90.6 69.4 79.5
AutoDistil (agnostic) 26.8M 0 47.1 87.3 90.6 89.9 90.8 69.0 79.1

Neuron-wise MoS 26.8M 0 52.7 88.0 90.0 87.7 89.9 78.1 81.1

NAS-BERT 30M 125K 48.7 84.6 90.5 88.4 90.2 71.8 79.0
Neuron-wise MoS 30M 0 51.0 87.3 91.1 87.9 90.2 72.2 80.0

AutoDistil (proxy) 50.1M 0 55.0 88.8 91.1 90.8 91.1 71.9 81.4
Neuron-wise MoS 50M 0 55.0 88.0 91.9 89.0 90.6 75.4 81.6

Table 3: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil for different model sizes (≤ 50M
parameters) based on GLUE validation performance. Neuron-wise MoS use a search space of 550 architectures,
which is on par with AutoDistil. The third column corresponds to the number of additional training steps required
to obtain the weights for the final architecture after supernet training. Performance numbers for the baseline models
are taken from the corresponding papers. See A.4.3 for the hyperparameters of the best architectures. On average
GLUE, neuron-wise MoS can perform similarly or improves over NAS-BERT for different model sizes without any
additional training. Neuron-wise MoS can improve over AutoDistil for most model sizes in average GLUE.

4 Experiments - Efficient BERT325

4.1 Experiment Setup326

We explore the application of our proposed327

supernet in constructing efficient task-agnostic328

BERT (Devlin et al., 2019) models, focusing on the329

BERT pretraining task. This involves pretraining a330

language model from scratch to learn task-agnostic331

text representations using a masked language mod-332

eling objective. The pretrained BERT model is333

then finetuned on various downstream NLP tasks.334

Emphasis is on building highly accurate yet small335

BERT models (e.g., 5M − 50M parameters). Both336

BERT supernet and standalone models are pre-337

trained from scratch on Wikipedia and Books Cor-338

pus (Zhu et al., 2015). Performance evaluation is339

conducted by finetuning on seven tasks from the340

GLUE benchmark (Wang et al., 2018), chosen by341

AutoDistil (Xu et al., 2022a). The architecture342

encoding, data preprocessing, pretraining settings,343

and finetuning settings are detailed in A.4.1. Base-344

line models include standalone and standard su-345

pernet models proposed in SuperShaper (Ganesan346

et al., 2021). Our proposed models are layer-wise 347

and neuron-wise MoS. All supernets undergo sand- 348

wich training 2. Parameters m and router’s hidden 349

dimension are set to 2 and 128, respectively, for 350

MoS supernets. 351

4.2 Supernet vs. standalone gap 352

For investigating the supernet vs. standalone 353

gap, the search space is derived from Super- 354

Shaper (Ganesan et al., 2021), encompassing BERT 355

architectures differing only in hidden size at each 356

layer (120, 240, 360, 480, 540, 600, 768) with fixed 357

numbers of layers (12) and attention heads (12). 358

This search space includes around 14 billion archi- 359

tectures. We examine the supernet vs. standalone 360

model gap for the top model architecture from the 361

pareto front of Supernet (Sandwich) (Ganesan et al., 362

2021). Table 2 illustrates the GLUE benchmark 363

performance of standalone training for the archi- 364

tecture (1x pretraining budget, equivalent to 2048 365

2SuperShaper notes that SPOS performs poorly compared
to sandwich training; hence, we do not study SPOS for build-
ing BERT models. The learning curve is shown in A.4.2.

5

batch size * 125,000 steps) as well as architecture-366

specific weights from different supernets (0 addi-367

tional pretraining steps; i.e., only supernet pretrain-368

ing). MoS (layer-wise or neuron-wise) bridges369

the gap between task-specific supernet and stan-370

dalone performance for 6 out of 7 tasks, includ-371

ing MNLI, a widely used task for evaluating pre-372

trained language models (Liu et al., 2019; Xu et al.,373

2022b). The average GLUE gap between the stan-374

dalone model and standard supernet is 0.13 points.375

Remarkably, with customization and expressivity376

properties, layer-wise and neuron-wise MoS sig-377

nificantly improve standalone training by 0.75 and378

0.85 average GLUE points, respectively 3.379

4.3 Comparison with SoTA NAS380

The SoTA NAS frameworks for constructing a task-381

agnostic BERT model are NAS-BERT (Xu et al.,382

2021) and AutoDistil (Xu et al., 2022a).4 The NAS-383

BERT pipeline comprises: (1) supernet training384

(with a Transformer stack containing multi-head385

attention, feed-forward network [FFN], and con-386

volutional layers at arbitrary positions), (2) search387

based on the distillation (task-agnostic) loss, and388

(3) pretraining the best architecture from scratch389

(1x pretraining budget, equivalent to 2048 batch390

size * 125,000 steps). The third step needs to be391

repeated for every constraint change and hardware392

change, incurring substantial costs. The AutoDis-393

til pipeline involves: (1) constructing K search394

spaces and training supernets for each search space395

independently, (2a) agnostic-search mode: search-396

ing based on the self-attention distillation (task-397

agnostic) loss, (2b) proxy-search mode: searching398

based on the MNLI validation score, and (3) ex-399

tracting architecture-specific weights from the su-400

pernet without additional training. The first step401

can be costly as pretraining K supernets requires402

K times training compute and memory, compared403

to training a single supernet. The proxy-search404

mode may favor AutoDistil unfairly, as it finetunes405

all architectures in its search space on MNLI and406

utilizes the MNLI score for ranking. For a fair com-407

parison with SoTA, MNLI task is excluded from408

evaluation. 5409

3Consistency of these results across different seeds is dis-
cussed in A.4.5.

4AutoDistil (proxy) outperforms SoTA distillation ap-
proaches such as TinyBERT (Jiao et al., 2020) and
MINILM (Wang et al., 2020b) by 0.7 average GLUE points.
Hence, we do not compare against these works.

5Refer to A.4.4 for a comparison of neuron-wise MoS
against baselines that don’t directly tune on the MNLI task.

Our proposed NAS pipeline addresses chal- 410

lenges in NAS-BERT and AutoDistil. In com- 411

parison to SoTA NAS, our search space includes 412

BERT architectures with uniform Transformer lay- 413

ers: hidden size (120 to 768 in increments of 12), 414

attention heads (6, 12), intermediate FFN hidden 415

dimension ratio (2, 2.5, 3, 3.5, 4). This search 416

space comprises 550 architectures, similar to Au- 417

toDistil. The supernet is based on neuron-wise 418

MoS, and the search uses perplexity (task-agnostic) 419

to rank architectures. Unlike NAS-BERT, our fi- 420

nal architecture weights are directly extracted from 421

the supernet without additional pretraining. Unlike 422

AutoDistil, our pipeline pretrains only one super- 423

net, significantly reducing training compute and 424

memory. We use only task-agnostic metrics for 425

search, similar to AutoDistil’s agnostic setting. Ta- 426

ble 3 compares neuron-wise MoS supernet with 427

NAS-BERT and AutoDistil for various model sizes. 428

NAS-BERT and AutoDistil performances are ob- 429

tained from respective papers. On average GLUE, 430

our pipeline improves over NAS-BERT for 5M , 431

10M , and 30M model sizes, with no additional 432

training (100% additional training compute sav- 433

ings, equivalent to 2048 batch size * 125,000 steps). 434

On average GLUE, our pipeline: (i) surpasses 435

AutoDistil-proxy for 6.88M and 50M model sizes 436

with 1.88M and 0.1M fewer parameters respec- 437

tively, and (ii) outperforms both AutoDistil-proxy 438

and AutoDistil-agnostic for 26M model size. Be- 439

sides achieving SoTA results, our method signifi- 440

cantly reduces the heavy workload of training mul- 441

tiple models in subnetwork retraining (NAS-BERT) 442

or supernet training (AutoDistil). 443

5 Experiments - Efficient MT 444

5.1 Experiment setup 445

We discuss the application of proposed super- 446

nets for building efficient MT models follow- 447

ing the setup by Hardware-aware Transformers 448

(HAT (Wang et al., 2020a)), the SoTA NAS frame- 449

work for MT models with good latency-BLEU 450

tradeoffs. Focusing on WMT’14 En-De, WMT’14 451

En-Fr, and WMT’19 En-De benchmarks, we main- 452

tain consistent architecture encoding and training 453

settings for supernet and standalone models (de- 454

tails in A.5.2). Baseline supernets include HAT 455

and Supernet (Sandwich). Proposed supernets are 456

Layer-wise MoS and Neuron-wise MoS, both us- 457

Neuron-wise MoS consistently outperforms baselines in terms
of both average GLUE and MNLI task performance.

6

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet MAE (↓) Kendall (↑) MAE (↓) Kendall (↑) MAE (↓) Kendall (↑)

HAT 1.84 0.81 1.37 0.63 2.07 0.71
Supernet (Sandwich) 1.62 (12%) 0.81 1.37 (0%) 0.63 2.02 (2.4%) 0.87

Layer-wise MoS (ours) 1.61 (12.5%) 0.54 1.24 (9.5%) 0.73 1.57 (24.2%) 0.87
Neuron-wise MoS (ours) 1.13 (38.6%) 0.71 1.2 (12.4%) 0.85 1.48 (28.5%) 0.81

Table 4: Mean absolute error (MAE) and Kendall rank correlation coefficient between the supernet and the
standalone model BLEU performance for 15 random architectures from the MT search space. Improvements (%)
in mean absolute error over HAT are in parentheses. Our supernets enjoy minimal MAE and comparable ranking
quality with respect to the baseline models.

ing sandwich training, with m and router’s hidden458

dimension set to 2 and 128, respectively. Refer459

to A.5.8 for the rationale behind choosing ‘m’.460

5.2 Supernet vs. standalone gap461

In HAT’s search space of 6M encoder-decoder ar-462

chitectures, featuring flexible parameters like em-463

bedding size (512 or 640), decoder layers (1 to464

6), self/cross attention heads (4 or 8), and number465

of top encoder layers for decoder attention (1 to466

3), good supernets should exhibit minimal mean467

absolute error (MAE) and high rank correlation468

between supernet and standalone performance for469

a given architecture. Table 4 presents MAE and470

Kendall rank correlation for 15 random architec-471

tures, showcasing that sandwich training yields472

better MAE and rank quality compared to HAT.473

While our proposed supernets achieve compara-474

ble rank quality for WMT’14 En-Fr and WMT’19475

En-De, and slightly underperform for WMT’14476

En-De, they exhibit minimal MAE across all tasks.477

Particularly, neuron-wise MoS achieves substan-478

tial MAE improvements, suggesting lower addi-479

tional training steps needed to make MAE negligi-480

ble (as detailed in Section 5.4). Supernet and stan-481

dalone performance plots reveal neuron-wise MoS482

excelling for almost all top-performing architec-483

tures (see A.5.3). The training overhead for MoS is484

generally negligible, e.g., for WMT’14 En-De, su-485

pernet training takes 248 hours, with neuron-wise486

MoS and layer-wise MoS requiring 14 and 18 addi-487

tional hours, respectively (less than 8% overhead,488

see Section A.5.10 for details).489

5.3 Comparison with the SoTA NAS490

The pareto front from the supernet is obtained us-491

ing an evolutionary search algorithm that leverages492

the supernet for quickly identifying top-performing493

candidate architectures and a latency estimator for494

promptly discarding candidates with latencies sur-495

passing a threshold. Settings for the evolutionary496

search algorithm and latency estimator are detailed 497

in A.5.4. Three latency thresholds are explored: 498

100 ms, 150 ms, and 200 ms. Table 5 illustrates 499

the latency vs. supernet performance tradeoff for 500

models in the pareto front from different supernets. 501

Compared to HAT, the proposed supernets consis- 502

tently achieve significantly higher BLEU for each 503

latency threshold across all datasets, emphasizing 504

the importance of architecture specialization and 505

expressiveness of the supernet. See A.5.6 for the 506

consistency of these trends across different seeds. 507

5.4 Additional training to close the gap 508

The proposed supernets significantly minimize the 509

gap between the supernet and standalone MAE 510

(as discussed in Section 5.2), yet the gap remains 511

non-negligible. Closing the gap for an architecture 512

involves extracting architecture-specific weights 513

from the supernet and conducting additional train- 514

ing until the standalone performance is reached 515

(achieving a gap of 0). An effective supernet should 516

demand a minimal number of additional steps and 517

time for the extracted architectures to close the 518

gap. In the context of additional training, we evalu- 519

ate the test BLEU for each architecture after every 520

10K steps, stopping when the test BLEU matches 521

or exceeds the test BLEU of the standalone model. 522

Table 6 presents the average number of additional 523

training steps required for all models on the pareto 524

front from each supernet to close the gap. Com- 525

pared to HAT, layer-wise MoS achieves an impres- 526

sive reduction of 9% to 51% in training steps, while 527

neuron-wise MoS delivers the most substantial re- 528

duction of 21% to 60%. For the WMT’14 En- 529

Fr task, both MoS supernets require at least 2.7% 530

more time than HAT to achieve SoTA BLEU across 531

different constraints. These results underscore the 532

importance of architecture specialization and su- 533

pernet expressivity in significantly improving the 534

training efficiency of subnets extracted from the 535

supernet. 536

7

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet / Latency Constraint 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms

HAT 25.26 26.25 26.28 38.94 39.26 39.16 42.61 43.07 43.23
Layer-wise MoS (ours) 26.28 27.31 28.03 39.34 40.29 41.24 43.45 44.71 46.18

Neuron-wise MoS (ours) 26.37 27.59 27.79 39.55 40.02 41.04 43.77 44.66 46.21

Table 5: Latency vs. Supernet BLEU for the models on the pareto front, obtained by performing search with
different latency constraints (100 ms, 150 ms, 200 ms) on the NVIDIA V100 GPU. Our supernets yield architectures
that enjoy better latency-BLEU tradeoffs than HAT.

Dataset Additional training steps (↓) Additional training time (NVIDIA V100 hours) (↓)
Supernet WMT’14 En-De WMT’14 En-Fr WMT’19 En-De WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

HAT 33K 33K 26K 63.9 60.1 52.3
Laye. MoS 16K (51.5%) 30K (9%) 20K (23%) 35.5 (44.4%) 66.5 (-10.6%) 45.2 (13.5%)
Neur. MoS 13K (60%) 26K (21%) 16K (38.4%) 31.0 (51.4%) 61.7 (-2.7%) 39.5 (24.5%)

Table 6: Average number of additional training steps and time required for the models on the pareto front to close
the supernet vs. standalone gap. Improvements (%) over HAT are shown in parentheses. Our supernets require
minimal number of additional training steps and time to close the gap compared to HAT for most tasks. See A.5.5
for each latency constraint.

6 Related Work537

In this section, we briefly review existing research538

on NAS in NLP. Evolved Transformer (ET) (So539

et al., 2019) is an initial work that explores NAS540

for efficient MT models. It employs evolution-541

ary search and dynamically allocating training re-542

sources for promising candidates., HAT (Wang543

et al., 2020a) introduces a weight-sharing supernet544

as a performance estimator, amortizing the train-545

ing cost for candidate MT evaluations in evolu-546

tionary search. NAS-BERT (Xu et al., 2021) parti-547

tions the BERT-Base model into blocks and trains a548

weight-sharing supernet to distill each block. NAS-549

BERT uses progressive shrinking during supernet550

training to prune less promising candidates, iden-551

tifying top architectures for each efficiency con-552

straint quickly. However, NAS-BERT requires pre-553

training the top architecture from scratch for ev-554

ery constraint change, incurring high costs. Super-555

Shaper (Ganesan et al., 2021) pretrains a weight-556

sharing supernet for BERT using a masked lan-557

guage modeling objective with sandwich training.558

AutoDistil (Xu et al., 2022a) employs few-shot559

NAS (Zhao et al., 2021c): constructing K search560

spaces of non-overlapping BERT architectures and561

training a weight-sharing BERT supernet for each562

search space. The search is based on self-attention563

distillation loss with BERT-Base (task-agnostic564

search) and MNLI score (proxy search). Auto-565

MoE (Jawahar et al., 2023) augments the search566

space of HAT with mixture-of-expert models to567

design efficient translation models. Refer to A.3568

for the main differences between our framework569

and the AutoMoE framework. 570

In the computer vision community, K-shot 571

NAS (Su et al., 2021) generates weights for each 572

subnet as a convex combination of different super- 573

net weights in a dictionary using a simplex code. 574

While K-shot NAS shares similarities with layer- 575

wise MoS, there are key distinctions. K-shot NAS 576

trains the architecture code generator and supernet 577

iteratively due to training difficulty, whereas layer- 578

wise MoS trains all its components jointly. K-shot 579

NAS has been applied specifically to convolutional 580

architectures for image classification tasks. How- 581

ever, it introduces too many parameters with an 582

increase in the number of supernets (K), a concern 583

alleviated by neuron-wise MoS due to its granu- 584

lar weight specialization. In our work, we focus 585

on NLP tasks and relevant baselines, noting that 586

supernets in NLP tend to lag significantly behind 587

standalone models in terms of performance. Ad- 588

ditionally, the authors of K-shot NAS have not 589

released the code to reproduce their results, pre- 590

venting a direct evaluation against their method. 591

7 Conclusion 592

We introduced Mixture-of-Supernets, a formula- 593

tion aimed at enhancing the expressive power of 594

supernets. By adopting the idea of MoE, we demon- 595

strated the ability to generate flexible weights for 596

subnetworks. Through extensive evaluations for 597

constructing efficient BERT and MT models, our 598

supernets showcased the capacity to: (i) minimize 599

retraining time, thereby significantly improving 600

NAS efficiency, and (ii) produce high-quality archi- 601

tectures that meet user-defined constraints. 602

8

8 Limitations603

The limitations of this work are as follows:604

1. Applying Mixture-of-Supernet (MoS) to pop-605

ular benchmarks in NLP, focusing on efficient606

machine translation and BERT, offers valu-607

able insights. A potential impactful future608

direction could involve extending the applica-609

tion of MoS to build efficient autoregressive610

decoder-only language models, such as GPT-611

4 (OpenAI, 2023).612

2. Introducing MoE architecture potentially need613

more training budget. In our work, we do614

not use large number of training iteration for615

fair comparison and fixing the number of ex-616

pert weights (m) to 2 works well. We will617

investigate the full potential of the proposed618

supernets by combining larger training budget619

(e.g., ≥ 200K steps) and larger number of620

expert weights (e.g., ≥ 16 expert weights) in621

the future work.622

9 Acknowledgments623

We used ChatGPT for rephrasing and grammar624

checking of the paper.625

References626

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,627
Vijay Vasudevan, and Quoc Le. 2018. Understand-628
ing and simplifying one-shot architecture search. In629
International conference on machine learning, pages630
550–559. PMLR.631

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,632
and Song Han. 2020. Once for all: Train one network633
and specialize it for efficient deployment. In Interna-634
tional Conference on Learning Representations.635

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and636
Kristina Toutanova. 2019. BERT: Pre-training of637
deep bidirectional transformers for language under-638
standing. In Proceedings of the 2019 Conference of639
the North American Chapter of the Association for640
Computational Linguistics: Human Language Tech-641
nologies, Volume 1 (Long and Short Papers), pages642
4171–4186, Minneapolis, Minnesota. Association for643
Computational Linguistics.644

William Fedus, Barret Zoph, and Noam Shazeer. 2022.645
Switch transformers: Scaling to trillion parameter646
models with simple and efficient sparsity. Journal of647
Machine Learning Research, 23(120):1–39.648

Vinod Ganesan, Gowtham Ramesh, and Pratyush Ku-649
mar. 2021. Supershaper: Task-agnostic super pre-650
training of BERT models with variable hidden di-651
mensions. CoRR, abs/2110.04711.652

Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen, 653
Zhicheng Yan, Yuandong Tian, Vikas Chandra, et al. 654
2021. Nasvit: Neural architecture search for effi- 655
cient vision transformers with gradient conflict aware 656
supernet training. In International Conference on 657
Learning Representations. 658

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, 659
Zechun Liu, Yichen Wei, and Jian Sun. 2020. Single 660
path one-shot neural architecture search with uniform 661
sampling. In Computer Vision – ECCV 2020: 16th 662
European Conference, Glasgow, UK, August 23–28, 663
2020, Proceedings, Part XVI, page 544–560, Berlin, 664
Heidelberg. Springer-Verlag. 665

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. 666
How to train BERT with an academic budget. In Pro- 667
ceedings of the 2021 Conference on Empirical Meth- 668
ods in Natural Language Processing, pages 10644– 669
10652, Online and Punta Cana, Dominican Republic. 670
Association for Computational Linguistics. 671

Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, 672
Young Jin Kim, Muhammad Abdul-Mageed, Laks 673
Lakshmanan, V.S., Ahmed Hassan Awadallah, Se- 674
bastien Bubeck, and Jianfeng Gao. 2023. Auto- 675
MoE: Heterogeneous mixture-of-experts with adap- 676
tive computation for efficient neural machine trans- 677
lation. In Findings of the Association for Compu- 678
tational Linguistics: ACL 2023, pages 9116–9132, 679
Toronto, Canada. Association for Computational Lin- 680
guistics. 681

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 682
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 683
TinyBERT: Distilling BERT for natural language un- 684
derstanding. In Findings of the Association for Com- 685
putational Linguistics: EMNLP 2020, pages 4163– 686
4174, Online. Association for Computational Lin- 687
guistics. 688

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 689
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 690
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 691
Roberta: A robustly optimized bert pretraining ap- 692
proach. Cite arxiv:1907.11692. 693

OpenAI. 2023. Gpt-4 technical report. 694

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 695
Jing Zhu. 2002. Bleu: a method for automatic evalu- 696
ation of machine translation. In Proceedings of the 697
40th Annual Meeting of the Association for Compu- 698
tational Linguistics, pages 311–318, Philadelphia, 699
Pennsylvania, USA. Association for Computational 700
Linguistics. 701

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and 702
Jeff Dean. 2018. Efficient neural architecture search 703
via parameters sharing. In International conference 704
on machine learning, pages 4095–4104. PMLR. 705

Matt Post. 2018. A call for clarity in reporting BLEU 706
scores. In Proceedings of the Third Conference on 707
Machine Translation: Research Papers, pages 186– 708
191, Brussels, Belgium. Association for Computa- 709
tional Linguistics. 710

9

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.18653/v1/2021.emnlp-main.831
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2023.findings-acl.580
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319

David So, Quoc Le, and Chen Liang. 2019. The evolved711
transformer. In Proceedings of the 36th International712
Conference on Machine Learning, volume 97 of Pro-713
ceedings of Machine Learning Research, pages 5877–714
5886. PMLR.715

Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen716
Qian, Changshui Zhang, and Chang Xu. 2021. K-717
shot nas: Learnable weight-sharing for nas with k-718
shot supernets. In Proceedings of the 38th Interna-719
tional Conference on Machine Learning, volume 139720
of Proceedings of Machine Learning Research, pages721
9880–9890. PMLR.722

Alex Wang, Amanpreet Singh, Julian Michael, Felix723
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:724
A multi-task benchmark and analysis platform for nat-725
ural language understanding. In Proceedings of the726
2018 EMNLP Workshop BlackboxNLP: Analyzing727
and Interpreting Neural Networks for NLP, pages728
353–355, Brussels, Belgium. Association for Com-729
putational Linguistics.730

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,731
Ligeng Zhu, Chuang Gan, and Song Han. 2020a.732
HAT: Hardware-aware transformers for efficient nat-733
ural language processing. In Proceedings of the 58th734
Annual Meeting of the Association for Computational735
Linguistics, pages 7675–7688, Online. Association736
for Computational Linguistics.737

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan738
Yang, and Ming Zhou. 2020b. Minilm: Deep self-739
attention distillation for task-agnostic compression740
of pre-trained transformers. In Proceedings of the741
34th International Conference on Neural Information742
Processing Systems, NIPS’20.743

Dongkuan Xu, Subhabrata Mukherjee, Xiaodong Liu,744
Debadeepta Dey, Wenhui Wang, Xiang Zhang,745
Ahmed Hassan Awadallah, and Jianfeng Gao. 2022a.746
Few-shot task-agnostic neural architecture search for747
distilling large language models. In Advances in748
Neural Information Processing Systems.749

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao750
Qin, and Tie-Yan Liu. 2021. Nas-bert: Task-agnostic751
and adaptive-size bert compression with neural ar-752
chitecture search. In Proceedings of the 27th ACM753
SIGKDD Conference on Knowledge Discovery and754
Data Mining, KDD ’21, page 1933–1943, New York,755
NY, USA. Association for Computing Machinery.756

Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong757
Leng, Tao Qin, Tie-Yan Liu, and Jian Li. 2022b. An-758
alyzing and mitigating interference in neural architec-759
ture search. In Proceedings of the 39th International760
Conference on Machine Learning, volume 162 of761
Proceedings of Machine Learning Research, pages762
24646–24662. PMLR.763

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Ben-764
der, Pieter-Jan Kindermans, Mingxing Tan, Thomas765
Huang, Xiaodan Song, Ruoming Pang, and Quoc766
Le. 2020. Bignas: Scaling up neural architecture767

search with big single-stage models. In Computer Vi- 768
sion – ECCV 2020, pages 702–717, Cham. Springer 769
International Publishing. 770

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo 771
Fonseca, and Tian Guo. 2021a. Few-shot neural 772
architecture search. In International Conference on 773
Machine Learning, pages 12707–12718. PMLR. 774

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo 775
Fonseca, and Tian Guo. 2021b. Few-shot neural 776
architecture search. In Proceedings of the 38th Inter- 777
national Conference on Machine Learning, volume 778
139 of Proceedings of Machine Learning Research, 779
pages 12707–12718. PMLR. 780

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo 781
Fonseca, and Tian Guo. 2021c. Few-shot neural 782
architecture search. In Proceedings of the 38th Inter- 783
national Conference on Machine Learning, volume 784
139 of Proceedings of Machine Learning Research, 785
pages 12707–12718. PMLR. 786

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 787
dinov, Raquel Urtasun, Antonio Torralba, and Sanja 788
Fidler. 2015. Aligning books and movies: Towards 789
story-like visual explanations by watching movies 790
and reading books. In The IEEE International Con- 791
ference on Computer Vision (ICCV). 792

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and 793
Quoc V Le. 2018. Learning transferable architectures 794
for scalable image recognition. In Proceedings of 795
the IEEE conference on computer vision and pattern 796
recognition, pages 8697–8710. 797

A Appendix 798

A.1 Weight Sharing and Gradient Conflict 799

Analysis 800

A.1.1 Jensen-Shannon distance of alignment 801

vector as a weight sharing measure 802

We use the Jensen-Shannon distance of alignment 803

vector generated by Layer-wise MoS for two archi- 804

tectures as a proxy to quantify the degree of weight 805

sharing. Ideally, the lower the Jensen-Shannon dis- 806

tance, the higher the degree of weight sharing and 807

vice-versa. We experiment with two architectures 808

of 23M parameters (Smallest A and Smallest B) 809

and two architectures of 118M parameters (Largest 810

A and Largest B). From Table 7, it is clear that 811

Layer-wise MoS induces low degree of weight shar- 812

ing between differently sized architectures shown 813

by higher Jensen-Shannon distance between their 814

alignment vectors. On the other hand, there is a 815

high degree of weight sharing between similarly 816

sized architectures where Jensen-Shannon distance 817

is significantly low. 818

10

https://proceedings.mlr.press/v97/so19a.html
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.mlr.press/v139/su21a.html
https://proceedings.mlr.press/v139/su21a.html
https://proceedings.mlr.press/v139/su21a.html
https://proceedings.mlr.press/v139/su21a.html
https://proceedings.mlr.press/v139/su21a.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://openreview.net/forum?id=GdMqXQx5fFR
https://openreview.net/forum?id=GdMqXQx5fFR
https://openreview.net/forum?id=GdMqXQx5fFR
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html

Model 1 Model 2 WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

Smallest A (23M) Largest A (118M) 0.297 0.275 0.263
Smallest B (23M) Largest B (118M) 0.281 0.258 0.245
Smallest A (23M) Largest B (118M) 0.284 0.263 0.249
Smallest B (23M) Largest A (118M) 0.294 0.27 0.259
Smallest A (23M) Smallest B (118M) 0.006 0.008 0.004
Largest A (23M) Largest B (118M) 0.014 0.012 0.015

Table 7: Jensen-Shannon distance of Layer-wise MoS alignment vector across models as a weight sharing measure.
Layer-wise MoS induces low degree of weight sharing between differently sized architectures shown by higher
Jensen-Shannon distance between their alignment vectors compared to that of similarly sized architectures. Note
that architectures A and B differ by number of encoder/decoder attention heads.

A.1.2 Cosine similarity between the supernet819

gradient and the smallest subnet820

gradient as a gradient conflict measure.821

We compute gradient conflict using cosine similar-822

ity between the supernet gradient and the smallest823

subnet gradient, following NASVIT work (Gong824

et al., 2021). In Table 8, we show that Neuron-wise825

MoS enjoys lowest gradient conflict compared to826

Layer-wise MoS and HAT, shown by highest cosine827

similarity.828

A.2 Detailed algorithm for Supernet training829

and Search830

A.2.1 Supernet training algorithm831

The detailed algorithm for supernet training is832

shown in Algorithm 1.833

A.2.2 Search algorithm834

The detailed algorithm for search is shown in Al-835

gorithm 2.836

A.3 Comparison to the AutoMoE work837

Goals: Given a search space of dense and mixture-838

of-expert models, the goal of the AutoMoE frame-839

work (Jawahar et al., 2023) is to search for high-840

performing model architectures that satisfy user-841

defined efficiency constraints. The final architec-842

tures can be dense or mixture-of-expert models.843

On the other hand, given a search space of dense844

models only, the goal of the Mixture-of-Supernets845

framework is to search for high-performing dense846

model architectures that satisfy user-defined effi-847

ciency constraints. The final architecture can be848

a dense model only. In addition, the MoS frame-849

work minimizes the retraining compute required850

for the searched architecture to approach the stan-851

dalone performance. The MoS framework designs852

the supernet with flexible weight sharing and high853

capacity. On the other hand, the supernet under-854

lying the AutoMoE framework suffers from strict855

weight sharing and limited capacity.856

Applications of mixture-of-experts: The main 857

application of mixture-of-experts idea by the Auto- 858

MoE framework is to augment the standard NAS 859

search space of dense models with mixture-of- 860

experts models. To this end, the AutoMoE frame- 861

work modifies the standard weight sharing super- 862

net to support weight generation for mixture-of- 863

expert models. On the other hand, the Mixture-of- 864

Supernets framework uses the mixture-of-expert de- 865

sign to: (i) increase the capacity of standard weight 866

sharing supernet and (ii) customize weights for 867

each architecture. Post training, the expert weights 868

are collapsed to create a single weight for the dense 869

architecture. 870

Router specifications: The router underlying the 871

AutoMoE framework takes token embedding as in- 872

put, outputs a probability distribution over experts, 873

and passes token embedding to top-k experts. On 874

the other hand, the router underlying the Mixture- 875

of-Supernets framework takes architecture embed- 876

ding as input, outputs a probability distribution over 877

experts (layer-wise MoS) / neurons (neuron-wise 878

MoS), uses the probability distribution to combine 879

ALL the expert weights into a single weight, and 880

passes token embedding to the single weight (all 881

experts). 882

A.4 Additional Experiments - Efficient BERT 883

A.4.1 BERT pretraining / finetuning settings 884

Pretraining data: The pretraining data consists 885

of text from Wikipedia and Books Corpus (Zhu 886

et al., 2015). We use the data preprocessing scripts 887

provided by Izsak et al. to construct the tokenized 888

text. 889

Supernet and standalone pretraining settings: 890

The pretraining settings for supernet and standalone 891

models are taken from SuperShaper (Ganesan et al., 892

2021): batch size of 2048, maximum sequence 893

length of 128, training steps of 125K, learning rate 894

of 5e−4, weight decay of 0.01, and warmup steps 895

11

Supernet WMT’14 En-De WMT’19 En-De

HAT 0.522 0.416
Layer-wise MoS 0.515 0.517

Neuron-wise MoS 0.555 0.52

Table 8: Gradient conflict via cosine similarity between the supernet gradient and the smallest subnet gradient.
Neuron-wise MoS enjoys lower gradient conflict, shown via. high cosine similarity.

Algorithm 1 Training algorithm for Mixture-of-Supernets used in MT.
Input: Training data: Xtr, Search space: A,

No. of training steps: num-train-steps, Type of MoS: mos-type
Output: Training Supernet Weights: E

1: E← Random weights from Normal Distribution.
2: for iter ← 1 to num-train-steps do
3: // sample data
4: x, y ∼ Xtr

5: // perform sandwich sampling
6: for a in [arand ∼ A, abig, asmall] do
7: Enc(a) // create the architecture encoding
8: // generate architecture-specific weights
9: if mos-type == Layer wise MoS then

10: Wa =
∑

i r(Enc(a))iEi
a

11: else if mos-type == Neuron wise MoS then
12: Wa =

∑
i diag(βi

a)E
i
a

13: // compute task-specific loss
14: loss← L(Wax, y)
15: loss.backward() // compute gradients
16: Update E using accumulated gradients // learning rule
17: return E

12

Algorithm 2 Evolutionary search algorithm for Neural architecture search used in MT.
Input: supernet, latency-predictor, num-iterations, num-population, num-parents,

num-mutations, num-crossover, mutate-prob, latency-constraint
Output: best-architecture

1: // create initial population
2: popu← num-population random samples from the search space
3: for iter ← 1 to num-iterations do
4: // generate parents by picking top candidates
5: cur-parents← top ‘num-parents’ architectures from popu by MoS validation loss
6: // generate candidates via mutation
7: cur-mutate-popu = {}
8: for mi← 1 to num-mutations do
9: cur-mutate-gene ← mutate a random example from popu with mutation probability

mutate-prob
10: if cur-mutate-gene satisfies latency-constraint via latency-predictor then
11: cur-mutate-popu = cur-mutate-popu ∪ cur-mutate-gene

12: // generate candidates via cross-over
13: cur-crossover-popu = {}
14: for ci← 1 to num-crossover do
15: cur-crossover-gene← crossover two random examples from popu
16: if cur-crossover-gene satisfies latency-constraint via latency-predictor then
17: cur-crossover-popu = cur-crossover-popu ∪ cur-crossover-gene

18: // update population
19: popu = cur-parents ∪ cur-mutate-popu ∪ cur-crossover-popu

20: return top architecture from popu by MoS’s validation loss

13

of 10K (0 for standalone). For experiments with896

the search space from SuperShaper (Ganesan et al.,897

2021) (Section 4.2), the architecture encoding a is898

a list of hidden size at each layer of the architecture899

(12 elements since the supernet is a 12 layer900

model). For experiments with the search space on901

par with AutoDistil (Xu et al., 2022a) (Section 4.3),902

the architecture encoding a is a list of four elastic903

hyperparameters of the homogeneous BERT904

architecture: number of layers, hidden size of all905

layers, feedforward network (FFN) expansion ratio906

of all layers and number of attention heads of all907

layers (see Table 9 for sample homogeneous BERT908

architectures).909

Finetuning settings: We evaluate the performance910

of the BERT model by finetuning on each of911

the seven tasks (chosen by AutoDistil (Xu et al.,912

2022a)) in the GLUE benchmark (Wang et al.,913

2018). The evaluation metric is the average accu-914

racy (Matthews’s correlation coefficient for CoLA915

only) on all the tasks (GLUE average). The fine-916

tuning settings are taken from the BERT paper (De-917

vlin et al., 2019): learning rate from {5e−5, 3e−5,918

2e−5}, batch size from {16, 32}, and epochs from919

{2, 3, 4}.920

A.4.2 Learning curve for BERT supernet921

variants922

Figure 2 shows the training steps versus valida-923

tion MLM loss (learning curve) for the standalone924

BERT model and different supernet based BERT925

variants. The standalone model and the supernet926

are compared for the biggest architecture (big) and927

the smallest architecture (small) from the search928

space of SuperShaper (Ganesan et al., 2021). For929

the biggest architecture, the standalone model per-930

forms the best. For the smallest architecture, the931

standalone model is outperformed by all the super-932

net variants. In both cases, the proposed supernets933

(especially neuron-wise MoS) perform much better934

than the standard supernet.935

A.4.3 Architecture comparison of936

Neuron-wise MoS vs. AutoDistil937

Table 9 shows the comparison of the BERT archi-938

tecture designed by our proposed neuron-wise MoS939

with AutoDistil.940

A.4.4 Fair comparison of Neuron-wise MoS941

w.r.t SoTA with MNLI942

We compare neuron-wise MoS with NAS-BERT943

and AutoDistil (agnostic) for different model sizes944

(≤ 50M parameters) based on GLUE validation 945

performance. In Table 10, we include results on 946

MNLI task. For fair comparison, we drop AutoDis- 947

til (proxy), which directly uses MNLI task for ar- 948

chitecture selection. Neuron-wise MoS improves 949

over the baselines in all model sizes, in terms of 950

average GLUE. For MNLI task, neuron-wise MoS 951

improves over the baselines in most model sizes. 952

A.4.5 BERT results with different random 953

seeds 954

Table 11 displays BERT results on CoLA and 955

RTE with various random seeds. Layer-wise MoS 956

consistently enhances performance over baselines 957

in RTE and diminishes performance compared to 958

baselines in CoLA for both seeds. The BERT ar- 959

chitecture (67M parameters) corresponds to the top 960

model from the pareto front of Supernet (Sand- 961

wich) in SuperShaper’s search space (consistent 962

with Table 2). 963

A.5 Additional Experiments - Efficient 964

Machine Translation 965

A.5.1 Machine translation benchmark data 966

Table 12 shows the statistics of three machine trans- 967

lation datasets: WMT’14 En-De, WMT’14 En-Fr, 968

and WMT’19 En-De. 969

A.5.2 Training settings and metrics 970

The training settings for both supernet and stan- 971

dalone models are the same: 40K training steps, 972

Adam optimizer, a cosine learning rate scheduler, 973

and a warmup of learning rate from 10−7 to 10−3 974

with cosine annealing. The best checkpoint is se- 975

lected based on the validation loss, while the per- 976

formance of the MT model is evaluated based on 977

BLEU. The beam size is four with length penalty 978

of 0.6. The architecture encoding a is a list of 979

following 10 values: 980

1. Encoder embedding dimension corresponds 981

to embedding dimension of the encoder. 982

2. Encoder #layers corresponds to number of 983

encoder layers. 984

3. Average encoder FFN. intermediate dimen- 985

sion corresponds to average of FFN interme- 986

diate dimension across encoder layers. 987

4. Average encoder self attention heads corre- 988

sponds to average of number of self attention 989

heads across encoder layers. 990

14

Figure 2: Learning Curve - Training steps vs. Validation MLM loss. ‘Big’ and ‘Small’ correspond to the largest and
the smallest BERT architecture respectively from the search space of SuperShaper. ‘Standalone’ and ‘Supernet’
correspond to training from scratch and sampling from the supernet respectively. All the supernets are trained with
sandwich training.

Standalone / Supernet Model Size #Layers #Hidden Size #FFN Expansion Ratio #Heads

BERT 109M 12 768 4 12

AutoDistil (proxy) 6.88M 7 160 3.5 10
Neuron-wise MoS 5M 12 120 2.0 6

Neuron-wise MoS 10M 12 180 3.5 6

AutoDistil (agnostic) 26.8M 11 352 4 10
Neuron-wise MoS 26.8M 12 372 2.5 6

Neuron-wise MoS 30M 12 384 3 6

AutoDistil (proxy) 50.1M 12 544 3 9
Neuron-wise MoS 50M 12 504 3.5 12

Table 9: Architecture comparison of the best architecture designed by the neuron-wise MoS with AutoDistil (Xu
et al., 2022a) and BERT-Base (Devlin et al., 2019).

15

Supernet #Params #Steps MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 74.4 19.8 79.6 87.3 84.9 85.8 66.7 71.2
Neuron-wise MoS 5M 0 75.5 28.3 82.7 86.9 84.1 88.5 68.1 73.4

NAS-BERT 10M 125K 76.4 34.0 79.1 88.6 86.3 88.5 66.7 74.2
Neuron-wise MoS 10M 0 77.2 34.7 81.0 88.1 85.1 89.1 66.7 74.6

AutoDistil (agnostic) 26.8M 0 82.8 47.1 87.3 90.6 89.9 90.8 69.0 79.6
Neuron-wise MoS 26.8M 0 80.7 52.7 88.0 90.0 87.7 89.9 78.1 81.0

NAS-BERT 30M 125K 81.0 48.7 84.6 90.5 88.4 90.2 71.8 79.3
Neuron-wise MoS 30M 0 81.6 51.0 87.3 91.1 87.9 90.2 72.2 80.2

Neuron-wise MoS 50M 0 82.4 55.0 88.0 91.9 89.0 90.6 75.4 81.8

Table 10: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil (agnostic) for different model sizes
(≤ 50M parameters) based on GLUE validation performance. We include results on MNLI task. For fair comparison,
we drop AutoDistil (proxy), which directly uses MNLI task for architecture selection. Neuron-wise MoS improves
over the baselines in all model sizes, in terms of average GLUE. For MNLI task, neuron-wise MoS improves over
the baselines in most model sizes.

Seeds Seed 1 Seed 2
Model CoLA RTE CoLA RTE Average

Standalone 59.03 71.53 58.04 72.22 65.21
Supernet (Sandwich) 57.58 73.26 57.1 72.92 65.22

Layer-wise MoS 57.62 77.08 56.3 76.74 66.91

Table 11: BERT results on CoLA and RTE with different random seeds. Layer-wise MoS improves over baselines
in RTE and degrades over baselines in CoLA consistently across both seeds.

5. Decoder embedding dimension corresponds991

to embedding dimension of the decoder.992

6. Decoder #Layers corresponds to number of993

decoder layers.994

7. Average Decoder FFN. Intermediate Dimen-995

sion corresponds to average of FFN interme-996

diate dimension across decoder layers.997

8. Average decoder self attention heads corre-998

sponds to average of number of self attention999

heads across decoder layers.1000

9. Average decoder cross attention heads corre-1001

sponds to average of number of cross attention1002

heads across decoder layers.1003

10. Average arbitrary encoder decoder attention1004

corresponds to average number of encoder1005

layers attended by cross-attention heads in1006

each decoder layer (-1 means only attend to1007

the last layer, 1 means attend to the last two1008

layers, 2 means attend to the last three layers).1009

A.5.3 Supernet vs. Standalone performance1010

plot1011

Figure 3 displays the supernet vs. the standalone1012

performance for 15 randomly sampled architec-1013

tures on all the three tasks. Neuron-wise MoS1014

excel for almost all the top performing architec- 1015

tures (≥ 26.5 and ≥ 42.5 standalone BLEU for 1016

WMT’14 En-De and WMT’19 En-De respectively), 1017

which indicates that the models especially in the 1018

pareto front can benefit immensely from neuron 1019

level specialization. 1020

A.5.4 HAT Settings 1021

Evolutionary search: The settings for the evolu- 1022

tionary search algorithm include: 30 iterations, 1023

population size of 125, parents population of 25, 1024

crossover population of 50, and mutation popula- 1025

tion of 50 with 0.3 mutation probability. 1026

Latency estimator: The latency estimator is de- 1027

veloped in two stages. First, the latency dataset is 1028

constructed by measuring the latency of 2000 ran- 1029

domly sampled architectures directly on the user- 1030

defined hardware (NVIDIA V100 GPU). Latency 1031

is the time taken to translate a source sentence to a 1032

target sentence (source and target sentence lengths 1033

of 30 tokens each). For each architecture, 300 la- 1034

tency measurements are taken, outliers (top 10% 1035

and bottom 10%) are removed, and the rest (80%) 1036

is averaged. Second, the latency estimator is a 3 1037

layer multi-layer neural network based regressor, 1038

which is trained using encoding and latency of the 1039

architecture as features and labels respectively. 1040

16

Dataset Year Source Lang Target Lang #Train #Valid #Test

WMT 2014 English (en) German (de) 4.5M 3000 3000
WMT 2014 English (en) French (fr) 35M 26000 26000
WMT 2019 English (en) German (de) 43M 2900 2900

Table 12: Machine translation benchmark data.

(a) WMT’14 En-De (b) WMT’14 En-Fr

(c) WMT’19 En-De

Figure 3: Supernet vs. Standalone model performance for 15 random architectures from MT search space. Supernet
performance is obtained by evaluating the architecture-specific weights extracted from the supernet. Standalone
model performance is obtained by training the architecture from scratch to convergence and evaluating it.

A.5.5 Additional training steps to close the1041

gap vs. performance1042

Figure 4, Figure 5, and Figure 6 show the addi-1043

tional training steps vs. BLEU for different latency1044

constraints on the WMT’14 En-De task, WMT’141045

En-Fr and WMT’19 En-De tasks respectively.1046

A.5.6 Evolutionary Search - Stability1047

We study the initialization effects on the stability1048

of the pareto front outputted by the evolutionary1049

search for different supernets. Table 13 displays1050

sampled (direct) BLEU and latency of the mod-1051

els in the pareto front for different seeds on the1052

WMT’14 En-Fr task. The differences in the latency1053

and BLEU across seeds are mostly marginal. This1054

result highlights that the pareto front outputted by1055

the evolutionary search is largely stable for all the1056

supernet variants.1057

A.5.7 Impact of different router function1058

Table 14 displays the impact of varying the number1059

of hidden layers in the router function for neuron-1060

wise MoS on the WMT’14 En-De task. Two hidden 1061

layers provide the right amount of router capacity, 1062

while adding more hidden layers results in steady 1063

performance drop. 1064

A.5.8 Impact of increasing the number of 1065

expert weights ‘m’ 1066

Table 15 displays the impact of increasing the num- 1067

ber of expert weights ‘m’ for the WMT’14 En-Fr 1068

task, where the architecture for all the supernets is 1069

the top architecture from the pareto front of HAT 1070

for the latency constraint of 200 ms. Under the 1071

standard training budget (40K steps for MT), the 1072

performance of layer-wise MoS does not seem to 1073

improve by increasing ‘m’ from 2 to 4. Increasing 1074

‘m’ introduces too many parameters, which might 1075

necessitate a significant increase in the training 1076

budget (e.g., 2 times more training steps than the 1077

standard training budget). For fair comparison with 1078

existing literature, we use the standard training bud- 1079

get for all the experiments. We will investigate the 1080

full potential of the proposed supernets by combin- 1081

17

(a) 100ms (b) 150ms (c) 200ms

Figure 4: Additional training steps to close the supernet - standalone gap vs. performance for different latency
constraints on the WMT’14 En-De dataset.

(a) 100ms (b) 150ms (c) 200ms

Figure 5: Additional training steps to close the supernet - standalone gap vs. performance for different latency
constraints on the WMT’14 En-Fr dataset.

(a) 100 ms (b) 150 ms (c) 200 ms

Figure 6: Additional training steps to close the supernet - the standalone gap vs. performance for different latency
constraints on the WMT’19 En-De dataset. For 200 ms latency constraint, neuron-wise MoS closes the gap without
additional training.

ing larger training budget (e.g., ≥ 200K steps) and1082

larger number of expert weights (e.g., ≥ 16 expert1083

weights) in future work.1084

A.5.9 SacreBLEU vs. BLEU1085

We use the standard BLEU (Papineni et al., 2002)1086

to quantify the performance of supernet following1087

HAT for a fair comparison. In Table 16, we also ex-1088

periment with SacreBLEU (Post, 2018), where the1089

similar trend of MoS yielding better performance1090

for a given latency constraint holds true.1091

A.5.10 Breakdown of the overall time savings1092

Table 17 shows the breakdown of the overall time1093

savings of MoS supernets versus HAT for comput-1094

ing pareto front for the WMT’14 En-De task. The1095

latency constraints include 100 ms, 150 ms, 200 1096

ms. MoS have an overall GPU hours savings of at 1097

least 20% w.r.t. HAT, thanks to significant savings 1098

in additional training time (45%-51%). 1099

A.5.11 Codebase 1100

We share the codebase in the supplementary mate- 1101

rial, which can be used to reproduce all the results 1102

in this paper. For both BERT and machine transla- 1103

tion evaluation benchmarks, we add a README 1104

file that contains the following instructions: (i) en- 1105

vironment setup (e.g., software dependencies), (ii) 1106

data download, (iii) supernet training, (iv) search, 1107

and (v) subnet retraining. 1108

18

Supernet / Pareto Front Model 1 Model 2 Model 3
Seed Latency BLEU Latency BLEU Latency BLEU

HAT (SPOS) 1 96.39 38.94 176.44 39.26 187.53 39.16
HAT (SPOS) 2 98.91 38.96 159.87 39.20 192.11 39.09
HAT (SPOS) 3 100.15 38.96 158.67 39.24 189.53 39.16

Layer-wise MoS 1 99.42 39.34 158.68 40.29 205.55 41.24
Layer-wise MoS 2 99.60 39.32 156.48 40.29 209.80 41.13
Layer-wise MoS 3 119.65 39.32 163.17 40.36 208.52 41.18

Neuron-wise MoS 1 97.63 39.55 200.17 40.02 184.09 41.04
Neuron-wise MoS 2 100.46 39.55 155.96 40.04 188.87 41.15
Neuron-wise MoS 3 100.47 39.57 157.26 40.04 190.40 41.17

Table 13: Stability of the evolutionary search w.r.t. different seeds on the WMT’14 En-Fr task. Search quality is
measured in terms of latency and sampled (direct) supernet performance (BLEU) of the models in the pareto front.

layers in router function BLEU (↑)

2-layer 26.61
3-layer 26.14
4-layer 26.12

Table 14: Validation BLEU of different router functions
for neuron-wise MoS on the WMT’14 En-De task.

Supernet m BLEU (↑) Supernet GPU Memory (↓)

HAT - 39.13 11.4 GB
Layer-wise MoS 2 40.55 15.9 GB
Layer-wise MoS 4 40.33 16.1 GB

Table 15: Impact of increasing the number of expert
weights ‘m’ for the WMT’14 En-Fr task. The architec-
ture is the top model from the pareto front of HAT for
the latency constraint of 200 ms.

Supernet BLEU (↑) SacreBLEU (↑)

HAT 26.25 25.68
Layer-wise MoS 27.31 26.7

Neuron-wise MoS 27.59 27.0

Table 16: Performance of supernet as measured by
BLEU and SacreBLEU for the latency constraint of
150 ms on the WMT’14 En-De task.

19

Supernet Overall Time (↓) Supernet Training Time (↓) Search Time (↓) Additional Training Time (↓)

HAT 508 hours 248 hours 3.7 hours 256 hours
Layer-wise MoS 407 hours (20%) 262 hours (-5.6%) 4.5 hours (-21.6%) 140 hours (45.3%)

Neuron-wise MoS 394 hours (22%) 266 hours (-7.3%) 4.3 hours (-16.2%) 124 hours (51.6%)

Table 17: Breakdown of the overall time savings of MoS supernets vs. HAT for computing pareto front (latency
constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De task. Overall time (measured as single NVIDIA
V100 hours) includes supernet training time, search time, and additional training time for the optimal architectures.
Savings in parentheses.

20

	Introduction
	Supernet - Fundamentals
	Mixture-of-Supernets
	Generalized Model Function
	Layer-wise MoS
	Neuron-wise MoS
	Adding g(x,a;E) to Transformer

	Experiments - Efficient BERT
	Experiment Setup
	Supernet vs. standalone gap
	Comparison with SoTA NAS

	Experiments - Efficient MT
	Experiment setup
	Supernet vs. standalone gap
	Comparison with the SoTA NAS
	Additional training to close the gap

	Related Work
	Conclusion
	Limitations
	Acknowledgments
	Appendix
	Weight Sharing and Gradient Conflict Analysis
	Jensen-Shannon distance of alignment vector as a weight sharing measure
	Cosine similarity between the supernet gradient and the smallest subnet gradient as a gradient conflict measure.

	Detailed algorithm for Supernet training and Search
	Supernet training algorithm
	Search algorithm

	Comparison to the AutoMoE work
	Additional Experiments - Efficient BERT
	BERT pretraining / finetuning settings
	Learning curve for BERT supernet variants
	Architecture comparison of Neuron-wise MoS vs. AutoDistil
	Fair comparison of Neuron-wise MoS w.r.t SoTA with MNLI
	BERT results with different random seeds

	Additional Experiments - Efficient Machine Translation
	Machine translation benchmark data
	Training settings and metrics
	Supernet vs. Standalone performance plot
	HAT Settings
	Additional training steps to close the gap vs. performance
	Evolutionary Search - Stability
	Impact of different router function
	Impact of increasing the number of expert weights `m'
	SacreBLEU vs. BLEU
	Breakdown of the overall time savings
	Codebase

