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Abstract

We study the multi-armed bandit problem with adversarially chosen delays in the
Best-of-Both-Worlds (BoBW) framework, which aims to achieve near-optimal
performance in both stochastic and adversarial environments. While prior work
has made progress toward this goal, existing algorithms suffer from significant
gaps to the known lower bounds, especially in the stochastic settings. Our main
contribution is a new algorithm that, up to logarithmic factors, matches the known
lower bounds in each setting individually.
In the adversarial case, our algorithm achieves regret of Õ(

√
KT +

√
D), which

is optimal up to logarithmic terms, where T is the number of rounds, K is the
number of arms, and D is the cumulative delay. In the stochastic case, we provide
a regret bound which scale as

∑
i:∆i>0 (log (T )/∆i) +

1
K

∑
∆iσmax, where ∆i

is the sub-optimality gap of arm i and σmax is the maximum number of missing
observations.
To the best of our knowledge, this is the first BoBW algorithm to simultaneously
match the lower bounds in both stochastic and adversarial regimes in delayed en-
vironment. Moreover, even beyond the BoBW setting, our stochastic regret bound
is the first to match the known lower bound under adversarial delays, improving
the second term over the best known result by a factor of K.

1 Introduction

Delayed feedback presents a significant challenge that sequential decision-making algorithms en-
counter in many real-world applications. Notably, delays are often an inherent part of environments
involving sequential decision-making, such as in healthcare, finance, and recommendation systems.
As a central challenge in Online Learning, delays have been extensively explored in various con-
texts within Multi-armed Bandits (MAB), both in stochastic settings, where losses are generated
i.i.d. from a fixed underlying distribution [17, 22, 37, 33, 34, 5, 12, 18, 35, 14, 28, 24] and adversar-
ial settings, where the losses are chosen arbitrarily by an adversary [23, 4, 29, 2, 39, 15, 13, 31, 32].

Roughly speaking, under stochastic losses, delays contribute an additive regret term that does
not scale with the time horizon (but with the number of missing observations), whereas under
the adversarial losses, delays introduce an additive term that does scale with the horizon. More
specifically, for an arbitrary sequence of delays, the best-known regret under stochastic losses is∑

∆i>0
log (T )

∆i
+Kσmax (Joulani et al. [17]) where T is the number of rounds, K is the number of
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Table 1: Comparison of regret bounds (up to constants and log (K) factors) to the previous state-of-
the-art regret both under stochastic and adversarial losses under adversarial delays.

Algorithm Regime Regret
Joulani et al. [17] stochastic

∑
∆i>0(

log (T )
∆i

+ σmax∆i)
Thune et al. [29]
Bistritz et al. [2]1

Zimmert and Seldin [39]2

Gyorgy and Joulani [13]2

adversarial
√
TK +

√
D

Masoudian et al. [21]2
stochastic

∑
i:∆i>0(

log (T )
∆i

+ σmax

∆i
) + Φ∗

adversarial
√
TK +

√
D +Φ∗ +Kσmax

Φ∗ = min
{
dmaxK

2/3,
√
DK2/3

}
Our paper2 stochastic

∑
i:∆i>0(

log (T )
∆i

+ σmax
∆i

K )

adversarial
√

TK log (T ) +
√
D

Lower Bound
Lancewicki et al. [18] (constant delay) stochastic

∑
i:∆i>0(

log (T )
∆i

+ σmax
∆i

K )

Masoudian et al. [20]2 adversarial
√
TK +

√
D

arms, ∆i is the sub-optimality gap of arm i and σmax is the maximal number of missing observa-
tions. Under adversarial losses, the optimal bound is of the order

√
TK +

√
D (Thune et al. [29],

Bistritz et al. [2]1), where D is the sum of the delays.

While the regret bounds of delayed Multi-armed Bandit under stochastic losses and under adversarial
losses are well understood separately, the following question remains open:

Is there a single algorithm that, without knowing the nature of the losses a-priori in delayed
environment, can achieve the optimal regret bounds in both regimes simultaneously?

Such an algorithm is often referred to as a best-of-both-worlds algorithm. Masoudian et al. [20, 21]
have made significant progress toward answering this question. Their regret bound is O(

√
TK +√

D+Kσmax+Φ∗) in the adversarial regime and O
(∑

i:∆i>0

(
log (T )

∆i
+ σmax

log (K)∆i

)
+Φ∗

)
in the

stochastic regime, where Φ∗ = min{dmaxK
2/3,

√
DK2/3}. However, these bounds are still not

optimal.

Our contributions. In this work, we affirmatively answer the above question and present a new
best-of-both-worlds algorithm for Multi-armed Bandits (MAB) with delayed feedback that simul-
taneously achieves the near-optimal regret bounds under both stochastic and adversarial losses.
Specifically:

• In the adversarial regime our algorithm guarantees optimal Õ(
√
TK +

√
D) regret.

• In the stochastic regime our algorithm guarantees optimal O(
∑

i ̸=i⋆(
log (T )

∆i
+ 1

Kσmax∆i)) regret.

In the adversarial regime, compared to Masoudian et al. [21] we have an extra logarithmic factor in
the

√
TK term, which is independent of the delay. However, we eliminate the additive Φ∗ in their

bound, which is significant when dmax is very large; even a single large delay causes the regret to
scale as

√
DK2/3 rather than our

√
D delay term, which is tight to the lower bound of Masoudian

et al. [20].

Even more significantly, in the stochastic regime, our bound improves the O(
∑

i
σmax

∆i log (K) + Φ∗)

term from the bound of [21] to O( 1
K

∑
i σmax∆i). That is, for each term in the summation, we

1Bistritz et al. [2] may have some mistake in their analysis - for further details see footnote 1 in Gyorgy and
Joulani [13].

2In these papers the
√
D is actually minS⊆[T ]

{
|S|+

√
DS̄

}
, where DS̄ is the total delay of the steps not

in S. We wrote the worst-case for the simplicity of the table.
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achieve an improvement by a factor of K
∆2

i log (K)
. This is a significant improvement. For example,

consider the simple case of fixed delay d, which implies σmax = d, and constant number of actions.
For any sub-optimality gaps our regret is at most

√
T + d while there is a setting where the regret of

[21] is at least
√
dT . Moreover, if the maximum delay is large, Φ∗ can be as large as

√
D, offering

no improvement over the additive delay term in the adversarial setting.

Our bound in the stochastic regime represents an improvement even compared to state-of-the-art re-
sults for algorithms specifically designed for the stochastic case. Specifically, Joulani et al. [17] pro-
vides the best-known result for stochastic losses with adversarial delays where their bound includes
an additive term of

∑
i ̸=i∗ σmax∆i, which we improve by a factor of Θ(K). While Lancewicki

et al. [18] reduce this dependence on K, their result applies only to the case of stochastic delays.
Moreover, their regret bound scales with the maximal sub-optimality gap, rather than the average.
For example, in the simple case of a fixed delay d, their additive term is dmaxi ∆i, whereas ours is
d
K

∑
i ∆i, offering a strictly better dependence on the problem parameters in many scenarios.

1.1 Additional Related work

Delayed MAB with stochastic losses. The problem was first addressed by Dudik et al. [9], who
analyzed the case of constant delays and established a regret bound with linear dependence on the
delay. This line of work was extended by Joulani et al. [17], who allowed the delays to change
through time. Subsequent work introduced several important refinements: Zhou et al. [37] distin-
guished between arm-dependent and arm-independent delays; Pike-Burke et al. [22] introduced an
aggregated rewards model where only the sum of rewards that arrive at the same round is observed;
and Lancewicki et al. [18] studied delays in the contexts of reward-dependent or reward-independent
delays. More recently, Tang et al. [28], Schlisselberg et al. [24] and Zhang et al. [36] studied settings
in which the delay is equal to the payoff.

Delayed MAB with adversarial losses. Delayed feedback have also been explored in adversarial
settings, where both rewards and delays can be chosen adversarially. Quanrud and Khashabi [23]
studied this problem in the full-information setting. The bandit setting was first addressed by Cesa-
Bianchi et al. [6], who analyzed the case of constant delay. This line of work was extended by Thune
et al. [29] and Bistritz et al. [2]1, who considered general adversarial delays under the assumption
that the delay is known at the time the arm is pulled. Subsequently, Gyorgy and Joulani [13] and
Zimmert and Seldin [39] removed this assumption and analyzed the case where the delay is unknown
at the time of the action. Finally, Van Der Hoeven and Cesa-Bianchi [31] extended the setting to
allow for arm-dependent delays.

“Best of Both Worlds” without delays. The ”Best of Both Worlds” framework in multi-armed
bandits was introduced by Bubeck et al. [3], who proposed an algorithm that initially follows a
stochastic-style strategy but switches to a standard adversarial algorithm upon detecting signs of
adversarial losses. This adaptive approach was further developed by Auer and Chiang [1]. An alter-
native perspective is to start with an adversarial-style algorithm and prove that it achieves instance-
dependent regret bounds in stochastic settings as well. In this direction, Seldin and Slivkins [26] and
Seldin and Lugosi [25] adapted the EXP3 algorithm to perform well in both regimes, while Zimmert
and Seldin [38], Dann et al. [8], Ito et al. [16] extended this idea to Follow-The-Regularized-Leader
(FTRL), achieving optimal performance across both adversarial and stochastic settings.

2 Settings

We study the Multi-armed Bandit (MAB) problem with delayed feedback, summarized in Protocol 1.
In each round t = 1, 2, . . . , T , an agent chooses an arm at ∈ [K] and suffers loss ℓt(at), where
ℓt(·) ∈ [0, 1]K can be either stochastic or adversarial. Under the stochastic regime for each i ∈ [K],
{ℓt(i)}Tt=1

i.i.d∼ Di where Di is some distribution with expectation µi. Under the adversarial regime
the loss sequence {ℓt}Tt=1 are chosen arbitrarily by an oblivious adversary. Unlike the standard
MAB setting, the agent does not immediately observe ℓt(at) at the end of round t; rather, only after
dt rounds (namely, at the end of round t + dt) the tuple (t, ℓt(at)) is received as feedback. The
delays {dt}Tt=1 are chosen by an oblivious adversary and are unknown at action time.
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Protocol 1 Delayed MAB
1: for t ∈ [T ] do
2: Agent picks an action at ∈ [K].
3: Agent incurs loss ℓt(at) and observes feedback {(ℓs(as), ds) : t = s+ ds}.

The performance of the agent is measured as usual by the the difference between the algorithm’s
cumulative expected loss and the best possible total expected reward of any fixed arm:

RT = E

[
T∑

t=1

ℓt(at)

]
−min

i
E

[
T∑

t=1

ℓt(i)

]
.

In the stochastic case the regret can also be written as,

RT = E

[
T∑

t=1

µat

]
− Tµi∗ = E

[
T∑

t=1

∆at

]
,

where i∗ denotes the optimal arm and ∆i = µi − µi∗ for all i ∈ [K].

Additional notation. We denote the total delay by D =
∑T

t=1 dt and the maximal delay by dmax =
maxt∈[T ] dt. The amount of missing feedback at time t is defined by σ(t) = |{τ | τ ≤ t, τ + dτ >
t}| and the maximum over σ(t) is denoted by σmax = maxt∈[T ] σ(t). The rounds observed before
and available at round t are denoted by B(t) = {s : s+ ds < t}. For X ∈ R, [X] denotes the set of
all positive integers ≤ X .

Notation for the algorithms. Let S denotes a sequence of rounds that the algorithm pro-
cess. S:n is the first n elements in S and S:−n is S except for the last n elements.
ni(S) is the number of pulls of arm i in the rounds of S, µ̂i(S) = 1

ni(S)

∑
s∈S:as=i li(s)

is the empirical mean over S and widthi(S) = min
{
1,
√

2 log (T )
ni(S)

}
is a confidence width.

ucbi(S) = min {µ̂i + widthi(S), ucbi(S:−1)} and lcbi(S) = max {µ̂i − widthi(S), lcbi(S:−1)}
are upper and lower confidence bounds with respect to the empirical average. The algo-
rithm also maintains confidence bounds around an average importance sampling estimator. Let
Li(S) =

∑
s∈S

1[as=i]ℓi(s)
pi(s)

be the sum of the estimators over rounds in S, and µi(S) =

1
|S|Li(S) be the average. We also define width(S) = min

{
1,
√

2K log (T )
|S|

}
, lcbi(S) =

max
{
µi(S)− width(S), lcbi(S:−1)

}
and ucbi(S) = min

{
µi(S) + width(S), ucbi(S:−1)

}
. Fi-

nally, we define ucb∗(S) = mini
{

ucbi(S), ucbi(S)
}

.

3 Algorithm

Our algorithm, sketched in Algorithm 2 and formally described in Algorithm 5, builds on the SAPO
algorithm of Auer and Chiang [1]. The main idea is to integrate an external algorithm for adversarial
settings, ALG. Our algorithm initially follows a stochastic-like strategy while monitoring whether the
environment exhibits stochastic behavior. If this assumption is violated, it switches to ALG.

At its core, the algorithm is based on a successive elimination (SE) framework [11], maintaining a
set of active arms played with equal probability. It tracks a confidence bound, width, which defines
upper and lower estimates for each arm’s mean. When an arm is found to be non-optimal, it is
eliminated. However, unlike standard SE methods, the algorithm continues to play eliminated arms
but with reduced probability. This accounts for the possibility that losses are adversarial—an arm
that appears suboptimal at one point may later turn out to be optimal. To verify the stochastic nature
of arms, the algorithm employs the BSC procedure to assess the nature of active arms, and a more
advanced procedure EAP for assessing and determining the sampling probability of non-active arms.

Basic Stochastic Checks (BSC) Subroutine. This procedure performs two checks. The first ensures
that an unbiased estimate of the mean of each arm remains within its confidence interval, expanded
by an additional radius. In the stochastic regime, using standard concentration bounds we have that
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Algorithm 2 Sketch of Delayed SAPO Algorithm
Require: Number of arms K, number of rounds T ≥ K, Algorithm ALG.

1: Initialize active arms A = {1, . . . ,K}, S = ⟨⟩
2: for t = 1, 2, . . . , T do
3: for s ∈ B(t) \ S do ▷ Iterating newly received feedback
4: S = S + ⟨s⟩
5: if not BSC(S) then ▷ Non-stochastic behavior on active arms (Procedure 3)
6: Switch to ALG.
7: A = A \ {i ∈ A : µ̂i(S)− 9widthi(S) > ucb∗(S)} ▷ Elimination
8: for Each eliminated arm i do
9: Ei = 0, ri = 1, Cp1

i ·2
−j

i = ∅ ∀j ∈ [log (T )]
10: for i ∈ ([K] \ A) do
11: pi(t), err = EAP(i) ▷ Get the reduced probability for the non-active arm (Procedure 4)
12: if err then ▷ Non-stochastic behavior on nonactive arms
13: Switch to ALG.
14: ∀i ∈ A pi(t) =

(
1−

∑
j∈([K]\A(t)) pj(t)

)
/|A(t)| ▷ Equal probability for active arms

15: Sample at ∼ p(t), observe feedback and update variables

with high probability,

lcbi(S) ≤ µi ≤ µi(S) + width(S); µi(S)− width(S) ≤ µi ≤ ucbi(S).

Thus, in line 1 of Procedure 3, we check that the above conditions are met.

The second check in BSC constructs a lower bound on the regret and verifies that it is indeed smaller
than the expected regret in the stochastic regime, which can be shown to be Õ(

√
TK + σmax)

under stochastic losses. To define this lower bound, we use the fact that, with high probability,
µ∗ ≤ ucb∗(S). Thus,

∑
s′∈S

(
las′ (s

′)− ucb∗(S)
)

is a lower bound on the regret, which forms the
condition in line 3 of the procedure.

Procedure 3 Basic Stochastic Checks (BSC) Subroutine
Require: Series of processed pulls S

1: if ∃i ∈ A : µi(S) ̸∈ [lcbi(S)− width(S), ucbi(S) + width(S)] then
2: return False
3: if

∑
s′∈S

(
las′ (s

′)− ucb∗(S)
)
> 272

√
KT log (T ) + 10σmax(t) log (K) then

4: return False
return True

Eliminated Arms Processing (EAP) Subroutine. Since we do not know in advance whether we
are in the stochastic or adversarial regime, we cannot completely eliminate an arm — if we did,
the adversary could assign losses of 0 after elimination of an arm, and we would never detect this.
Therefore, we maintain a positive sampling probability even for eliminated actions. EAP maintains
these probabilities for eliminated arms and checks whether the estimated loss is significantly smaller
than the empirical mean at elimination. Intuitively, if we are in the stochastic regime, we want the
probability of playing an eliminated arm to decrease over time. Conversely, if we suspect the loss
after elimination is significantly smaller than the empirical mean at the elimination time, we increase
that arm’s probability to monitor it more closely. If there is sufficient confidence that the arm does
not behave stochastically, we switch to the adversarial algorithm.

In more detail, the probability of playing an eliminated arm i is updated in discrete phases. Let S̃i

be the set of processed rounds at the time of elimination of arm i. We denote ∆̃i = 8widthi(S̃i),
i.e the width at elimination time. As we’ll later see in the analysis, ∆̃i is indeed a good estimate
of the sub-optimality gap of arm i in the stochastic case (see Lemma D.10). Each phase r has a
maximum length Nr

i = Θ(1/(pri ∆̃
2
i )), where pri is the sample probability of arm i in its rth phase

and p1i = 1
2K + ni(S̃i)

2T .3 This value is always Ω(1/K), but can be as high as a uniform probability

3We note that the initial probability assigned in the first phase differs from that in Auer and Chiang [1], and
is crucial for obtaining adversarial regret bound that scales with

√
KT instead of K

√
T achieved in [1].

5



Procedure 4 Sketch of Eliminated Arms Processing (EAP) Subroutine
Note: The variables Ei, ri, and Cp

i are initialized in Algorithm 2 and updated through multiple calls
of this procedure.
Require: Arm i

1: p := prii , µ̃ is the empirical average at the elimination time of i
2: Let Bp

i be observed rounds after elimination in which i was played and the sampling probability
was p

3: while Bp
i \ Cp

i ̸= ∅ do
4: for s ∈ Bp

i \ Cp
i do

5: Cp
i = Cp

i ∪ {s}
6: Let Sri

i be the samples processes so far in phase ri
7: if |Sri

i |µ̃i − L̄(Sri
i ) ≥ 1

4∆̃iN
ri
i then ▷ phase error

8: Ei = Ei + 1, Nri+1
i = max

{
N1

i ,
1
2N

ri
i

}
, pri+1

i = min
{
p1i , 2p

ri
i

}
, ri = ri + 1

9: if Ei ≥ 3 log (T ) then return 0, True ▷ Switch to adversarial algorithm
10: break
11: if |Sri

i | = ⌊Nri
i ⌋ then ▷ phase ended

12: Nri+1
i = 2Nri

i , pri+1
i = 1

2p
ri
i , ri = ri + 1

13: break
14: p := prii
15: return prii , False

over the active arms at the time of elimination. If we reach the maximum length Nr
i , then we have

acquired additional Nr
i p

r
i = Θ(1/∆̃2

i ) samples from arm i. In this case, we can safely halve the
sampling probability of arm i and start a new phase with a doubled maximum length (line 11).
During the phase, we monitor whether the average importance sampling estimate of the loss µ̄(Sr

i )

is smaller than µ̃i = µ̂i(S̃i) by more than Θ(∆̃iN
r
i /|Sr

i |), where Sr
i is the sequence of processed

rounds in phase r. If this condition is met, referred to as a “phase error”, in means that the observed
losses appear slightly non-stochastic. Thus, we terminate the phase but now double the sampling
probability of arm i and halve the maximum phase length accordingly (line 6).

In the stochastic regime, phase errors occur with a constant probability, but the probability that they
will happen Θ(log (T )) times is negligible. In such cases, we transition to the adversarial algorithm.

During a phase with sampling probability p, we process only the observed rounds after elimination
in which arm i was played and the sampling probability was p. If a sample is observed with a
different sampling probability p′, it is stored in a “probability bank” which we denote by Bp′

i and
is processed only if a new phase is initiated with probability p′. The probability banks allow us
to utilize most samples, even if they are observed after their respective phases end, and play an
important role in removing a factor of the number of phases (Θ(log (T ))) from the delay term in the
regret.

4 Stochastic analysis

Theorem 4.1 The regret in the stochastic settings is bounded by:

Rsto ≤ O

(
K∑
i=1

log (T )

∆i
+ σmax∆avg log (K)

)

The first term above is the optimal MAB regret under stochastic losses without delays. The second
term is the additional regret due to delay and, in general, cannot be improved—except for the log (K)
factor, due to the lower bound for constant delays (see Table 1). We note that with a more involved
algorithm and analysis, we are able to eliminate the log (K) factor and match this lower bound. For
simplicity of presentation, the full details are deferred to Appendix F. The dependence on σmax

improves upon the BoBW result of Masoudian et al. [21] in the stochastic regime by a factor of
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Õ(K/∆2
i ) for each i. Moreover, it is tighter by a factor of K compared to the best previous known

algorithm that specifically designed for this regime (Joulani et al. [17]).

Proof sketch: The total regret can be decomposed as,

Rsto =
∑
i∈[K]

mi(T )∆i =
∑
i∈[K]

mi(τi)∆i +
∑
i∈[K]

(mi(T )−mi(τi))∆i, (1)

where mi(t) is the number of pulls of arm i, up to time t and τi is the elimination time of arm i.
The first term above is the regret up to elimination and second term is the regret after elimination.
(Recall that we need to keep sampling eliminated arms.)

Regret up to elimination. The regret before elimination analysis largely follows standard Stochastic
Elimination (SE) with delayed feedback arguments. However, achieving dependence on ∆avg rather
than ∆max necessitates a new algorithmic component and technical argument. We start by further
decomposing the regret up to elimination:∑

i∈[K]

mi(τi)∆i =
∑
i∈[K]

ni(τi)∆i +
∑
i∈[K]

(mi(τi)− ni(τi))∆i,

where ni(t) is the number of observed samples from arm i. Similar to standard non-delayed SE
analysis, we can show that with high probability, each suboptimal arm is eliminated whenever
Θ
(

log (T )
∆2

i

)
samples from arm i have been observed. Thus, ni(τi)∆i = Θ

(
log (T )

∆i

)
. For the second

term above, recall that the number of missing feedback is bounded by σmax; but only a fraction of
the missing feedback is from arm i. Loosely speaking, if pmax

i = maxt≤τi pi(t) is the maximal
probability of sampling i before elimination, then the number of missing feedback from arm i at
time τi is roughly bounded by mi(τi) − ni(τi) ≤ σmaxp

max
i . Further note that if κi is the number

of active arms at the time of elimination then pmax
i ≤ 1

κi
. Overall, the total regret up to elimination

is bounded by

O

(∑
i

log (T )

∆i
+
∑
i

σmax

κi
∆i

)
For the second term, each ∆i can be trivially bounded by ∆max, and

∑
i 1/κi ≤

∑
i 1/i ≤ 1 +

log (K), resulting in
∑

i
σmax

κi
∆i ≤ O(σmax∆max log (K)). In order to have dependency with

respect ∆avg instead of ∆max a more detailed argument is required. Unlike regular SE algorithms,
an arm isn’t eliminated when the ucb of some other arm is lower than its lcb. Instead, the algorithm
eliminates when there are multiple widths between the two (see line 7 in algorithm 2). This stricter
condition ensures that arms are roughly eliminated in decreasing order of ∆i. Specifically, we show
the following lemma:
Lemma 4.2 If arm i1 was eliminated before i2 then, ∆i2 ≤ 20∆i1 .

We note that this is relatively general trick that may be used in other regimes; see remark 1.

For the first half of eliminated arms where κi ≥ K/2, the additive delay term is at most order
of
∑

i:κi>K/2
σmax

κi
∆i ≤ σmax∆avg . Using the above lemma we show that for second half of

eliminated arms ∆i = O(∆avg), yielding an additive delay term of at most O(σmax∆avg log (K)).
Overall we get that the regret up to elimination is bounded by

∑
i∈[K] mi(τi)∆i ≲

∑
i
log (T )

∆i
+

σmax∆avg log (K).

Regret after elimination. For the regret after elimination, we break the number of pulls of arm
i after elimination for pulls that where processed by algorithm and pulls that where not processed
by the algorithm (either because the feedback had not returned or the samples remained in the
probability bank):

mi(T )−mi(τi) =

ri∑
r=1

ni(S
r
i ) +

log (T )∑
j=0

ni(M
p1
i 2

−j

i ), (2)

where ri is the total number of phases of arm i, Sr
i are the samples processes at phase r and Mp

i
denotes the post-elimination rounds where the probability of pulling arm i was p, but these were not
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processed by the algorithm (either because the feedback was not observed or the rounds remained
unprocessed in the probability bank).

Recall that the maximum length of phase r is Nr
i = Θ(1/(pri ∆̃

2
i )). Additionally, the fact that

arms are only eliminated when the empirical average exceeds ucb∗ by more than multiple widths

allows us to show that ∆̃i ≈ ∆i (see Lemma D.10). Using standard concentration bounds,
ni(S

r
i ) ≈ Nr

i p
r
i ≈ 1/∆2

i . To bound the number of phases, note that the maximum phase length
can be either doubled or halved. The number of times it is halved in the stochastic regime is at most
3 log (T ) with high probability (see Lemmas D.5 and D.19), where in case of a failure event, we
switch to the adversarial algorithm. Since the number of times it is halved is bounded by O(log (T )),
we can also bound the number of times it is doubled before reaching the time horizon T . Formally,
in Lemma C.4, we bound the total number of phases by 7 log (T ). Therefore the first term in Equa-
tion (2) is bounded by O( logT

∆2
i
) and the regret from these rounds is O( logT∆i

).

For the second term of eq. (2), note that the size of M
p1
i 2

−j

i is at most σmax, but only a small
fraction of those rounds belongs to arm i. Since the probability of pulling arm i in these rounds
was p1i 2

−j we have that ni(M
p1
i 2

−j

i ) ≈ σmaxp
1
i 2

−j . Summing over this geometric series gives

us
∑log (T )

j=0 ni(M
p1
i 2

−j

i ) = O(σmaxp
1
i ). Recall that p1i = 1

2K + ni(τi)
2T . Since the probability of

pulling arm i before elimination is at most 1/κi, where κi is the number of active arms at the time of
elimination, ni(τi)/T ≤ ni(τi)/τi ≲ 1/κi. That is, p1i ≤ O(1/κi). We get that the total regret after
elimination from unprocessed pulls (multiplying the second term in eq. (2) by ∆i and summing over
i) is of order

∑
i
σmax

κi
∆i. Again, leveraging the fact that arms are eliminated roughly in decreasing

order of their sub-optimality gaps, we can bound the last sum by σmax∆avg log (K).
Remark 1 As mentioned in the proof sketch, our algorithm adds additional width to the elimina-
tion inequality, which makes the eliminated arms to be in descending order of their sub-optimality
gap. We stress that this is a general trick that can be applied in any SE-based algorithm. Specifi-
cally, for every SE-based algorithm for delayed feedback (e.g [19, 24]), this will make their additive
term be dependent on ∆avg instead of ∆max.

5 Adversarial Analysis

Theorem 5.1 Assume that ALG has a regret guarantee of RALG in terms of T , K, D and possibly
dmax and σmax. Then, the regret in the adversarial setting is bounded by:

Radv ≤ O
(√

KT log (T ) + log (K)σmax +RALG

)
The log (K) factor can be removed with a slight algorithm modification. We deferred the details to
Appendix F to reduce the complexity of the already intricate main algorithm.

Proof sketch: Fix action i ∈ [K]. Let T̄ be the time the algorithm switches to ALG. Clearly,
the regret after the switch is bounded by RALG, so we focus on the regret up to time T̄ . First, we
decompose it to the following three terms:

E

 T̄∑
t=1

[
lat(t)− ucb∗(S̄)]


︸ ︷︷ ︸

(3)

+E

[
τi−1∑
t=1

[
ucb∗(S̄)− li(t)

]]
︸ ︷︷ ︸

(4)

+E

 T̄∑
t=τi

[
ucb∗(S̄)− li(t)

]
︸ ︷︷ ︸

(5)

where S̄ is the value of S when the algorithm switches to ALG and τi is the elimination time of
arm i. Term (3) is bounded by O(

√
KT log (T ) + log (K)σmax) due to the second check of BSC.

To bound term (4), note that L̄i is an unbiased estimator of Li. By Wald’s equation, E
[
Li(S̃i)

]
=

E
[
L̄i(S̃i)

]
= E

[
|S̃i|µi

(
S̃i

)]
, where S̃i is the set of rounds in which arm i was observed before

elimination. Now, since we have not switched to ALG yet, by the first check of BSC we know that for
every realization S of S̃i,

µi(S) ≥ lcbi(S)− width(S) ≥ ucbi(S)− 3width(S) ≥ ucb∗(S)− 3width(S),
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where in the second inequality we used the fact that ucbi(S)− lcbi(S) ≤ 2width(S) for any S and
the last inequality is by definition of ucb∗. Multiplying both sides above by |S̃i| gives us

E

∑
t∈S̃i

li(t)

 ≥ E
[
|S̃i|ucb∗

(
S̃i

)
− 3

√
2|S̃i|K log (T )

]
≥ E

[
|S̃i|ucb∗(S̄)− 3

√
2TK log (T )

]
Rearranging the terms above we get that E

[∑
t∈S̃i

[
ucb∗(S̄)− li(t)

]]
≤ 3
√
2TK log (T ). Hence,

(4) = E

∑
t∈S̃i

[
ucb∗(S̄)− li(t)

]+ E

 ∑
t∈[τi\S̃i]

[
ucb∗(S̄)− li(t)

] ≤ 3
√
2TK log (T ) + σmax

where we’ve used the fact that ucb decreases over time and |[τi − 1]\S̃i| ≤ σmax.

The core difficulty in the adversarial analysis is bounding (5) — ensuring that an eliminated arm
doesn’t become much better than the active arms, before switching to ALG. Let us further decompose
(5) to the phases of arm i:

E

 T̄∑
t=τi

[
ucb∗(S̄)− li(t)

]= E

ri(T )∑
r=1

∑
t∈Sr

i

[
ucb∗(S̄)− li(t)

]= E

ri(T )∑
r=1

(|Sr
i |ucb∗(S̄)− Li(S

r
i ))


The main tool to upper bound the optimality of an eliminated arm is the check in Line 9 of EAP.
This checks that the estimated loss (using an importance sampling estimator) isn’t much higher than
the loss observed when the arm was active. Using the condition in Line 9 of EAP and by bounding
the difference between the loss estimator of the phase and the actual cost in terms of Nr

i and ∆̃i we
show the following lemma (the proof is deferred to the appendix - see Lemma E.2):
Lemma 5.2 For every arm i and phase r we have:

Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− Li(S

r
i )
]
≤ 3

8
∆̃iN

r
i − 9

8
∆̃iEr

i [|Sr
i |],

where Er
i is the expectation conditioned on the observed history by the beginning of the rth phase of

arm i.

Note that the difference between ucb∗ and the expected loss depends on the relationship between
|Sr

i | and Nr
i . If the phase finished successfully (|Sr

i | = Nr
i ), the expected loss exceeds ucb∗. If the

phase was erroneous, then we may have |Sr
i | ≪ Nr

i , and the expected loss can be better than ucb∗.
Specifically:

Finished phase: |Sr
i |ucb∗(S̄)− E[Li(S

r
i )] ≤ −3

4
∆̃iN

r
i

Erroneous phase: |Sr
i |ucb∗(S̄)− E[Li(S

r
i )] ≤

3

8
∆̃iN

r
i

The trick for bounding the sum of these bounds over the phases is that every successfully finished
phase compensate for the erroneous phases after it, since the coefficient of ∆̃iN

r
i under finished

phases is twice as the coefficient for error phases. Since the algorithm halves Nr
i after an error,

even O(log (T )) erroneous phases are eventually covered by the last successful phase. The precise
argument is by induction and is rather technical. For full details, see the appendix in Lemma E.3.

To conclude the proof we use the following lemma (proof is deferred to the appendix):
Lemma 5.3 σmax ≤ O

(
minS∈[T ]

{
|S|+

√
DS̄

})
.

Corollary 5.4 Using ALG as the algorithm from Zimmert and Seldin [39], we have:

Radv ≤ Õ

(√
KT log (T ) + min

S∈[T ]

{
|S|+

√
DS̄

})
The first term in the regret bound is nearly optimal—up to the log (T ) factor, it matches the worst-
case regret for MAB without delays. The second term, which accounts for the delays, is also tight
in general due to the lower bound of Masoudian et al. [20]. Our bound eliminates altogether the
Φ∗ term that appears in the BoBW bound of Masoudian et al. [21] for the adversarial regime (see
Table 1). This is especially significant whenever dmax is very large (i.e., even if a single delay is
large), in which case Φ∗ =

√
DK2/3 while our delay term only scales with

√
D in the worst case.
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6 Discussion

We presented a novel algorithm for the delayed-BoBW problem that achieves a near-optimal re-
gret bound simultaneously for both stochastic and adversarial losses. Additionally, our bounds in
the stochastic regime improve even compared to algorithms specifically designed for the stochastic
case. As mentioned, our algorithm follows the “adaptive approach” for BoBW—it begins with an
algorithm that achieves optimal bounds in the stochastic setting, and upon identifying non-stochastic
losses, it switches to an optimal algorithm for the adversarial setting. The alternative perspective Ma-
soudian et al. [20, 21] offers a simpler algorithm but results in weaker bounds. It remains an open
question whether algorithms of the latter type can achieve optimality in the delayed scenario. Ad-
ditionally, while we considered worst-case adversarial delays, future research could explore delays
with additional structure (such as i.i.d. or payoff-dependent delays), potentially yielding improved
regret bounds.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract reflect the paper’s content and the paper contains proofs for the
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations and our assumptions throughout the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The precise setting and assumptions are given in Section 2. All the theorems
and lemmas are rigorously proved in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We did not find any direct societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations

For a series S, we denote S:k to be the first k elements of it. Additionally, S:−1 is the series without
the last element.

Additionally, for every variable defined inside the algorithm, in the analysis we will add (t) to
indicate that we refer to the value of this variable at the end of time t. For example, ri(t) is the value
of ri at the end of time t.

at chosen arm at step t
li(t) loss of arm i at step t
dt delay at step t
µi (stochastic) mean loss of arm i
T̄ switch to algorithm ALG point

ni(S) number of pulls of arm i in S |s ∈ S : as = i|
mi(t) number of pulls of arm i until time t |s ∈ [t] : as = i|
li(t) sample estimator for the loss of arm i in step t li(t)

1[at=i]
pi(t)

Li(S) total loss of arm i in set S
∑

s∈S li(s)
Li(S) sample estimator for the loss of arm i w.r.t the steps in S

∑
s∈S li(s)

µ̂i(S) average loss of arm i w.r.t the steps in S 1
ni(S)

∑
s∈S:as=i li(s)

µi(S) sample estimator average loss of arm i w.r.t the steps in S 1
|S|Li(S)

widthi(S) average confidence width of arm i w.r.t the steps in S min
{
1,
√

2 log (T )
ni(S)

}
width(S) estimator confidence width w.r.t the steps in S min

{
1,
√

2K log (T )
|S|

}
lcbi(S) average lower confidence bound of arm i w.r.t set S max {µ̂i − widthi(S), lcbi(S:−1)}
ucbi(S) average upper confidence bound of arm i w.r.t set S min {µ̂i + widthi(S), ucbi(S:−1)}
lcbi(S) estimator lower confidence bound of arm i w.r.t set S max

{
µi(S)− width(S), lcbi(S:−1)

}
ucbi(S) estimator upper confidence bound of arm i w.r.t set S min

{
µi(S) + width(S), ucbi(S:−1)

}
ucb∗(S) mini

{
ucbi(S), ucbi(S)

}
pmax
i (t1, t2) maximum pull probability of arm i in the interval maxt1≤t≤t2 pi(t)
pmin
i (t1, t2) minimum pull probability of arm i in the interval mint1≤t≤t2 pi(t)
pmax
i (t) pmax

i (0, t)
pmin
i (t) pmin

i (0, t)
B(t) Set of the steps whose feedback was observed {s : s+ ds < t}
Bp

i (t) Set of observed inactive steps that were pulled with prob. p {s ∈ B(t) : pi(s) = p ∧ s ≥ τi}
Mp

i (t) Set of inactive steps up to time t that were pulled with prob. p {τi ≤ s ≤ t : pi(s) = p}
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B Algorithm

Algorithm 5 Delayed SAPO Algorithm
Require: Number of arms K, number of rounds T ≥ K, Algorithm ALG.

1: Initialize active arms A = {1, . . . ,K}, S = ⟨⟩
2: for t = 1, 2, . . . , T do
3: for s ∈ B \ S do
4: S = S + ⟨s⟩
5: if not BSC(S) (Procedure 7) then
6: Switch to ALG.
7: U(t) = {i ∈ A : µ̂i(S)− 9widthi(S) > ucb∗(S)} ▷ Elimination
8: A = A \ U
9: for i ∈ U do ▷ Initialization for eliminated arms

10: Set τi = t, p1i = 1
2K + ni(S)

2T , S̃i = S, µ̃i = µ̂i(S), ∆̃i = 8widthi(S), N1
i :=

1280/(p1i ∆̃
2
i ), Ei = 0, ri = 1, S1

i = ⟨⟩, Cp1
i ·2

−j

i = ∅ ∀j ∈ [log (T )]
11: for i ∈ ([K] \ A) do
12: pi(t), err = EAP(i) (Procedure 6)
13: if err then
14: Switch to ALG.
15: ∀i ∈ A pi(t) =

(
1−

∑
j∈([K]\A(t)) pj(t)

)
/|A(t)|

16: Observe feedback and update variables

Procedure 6 Eliminated Arms Processing (EAP) Subroutine
Require: Arm i

1: p := prii
2: while Bp

i \ Cp
i ̸= ∅ do

3: for s ∈ Bp
i \ Cp

i do
4: Sri

i = Sri
i + ⟨s⟩, Cp

i = Cp
i ∪ {s}

5: if |Sri
i |µ̃i − L̄(Sri

i ) ≥ 1
4∆̃iN

ri
i then ▷ phase error

6: Ei = Ei + 1, Nri+1
i = max

{
N1

i ,
1
2N

ri
i

}
, pri+1

i = min
{
p1i , 2p

ri
i

}
, Sri+1

i = ⟨⟩,
ri = ri + 1

7: if Ei ≥ 3 log (T ) then return 0, True ▷ Switch to adversarial algorithm
8: break
9: if |Sri

i | = ⌊Nri
i ⌋ then ▷ phase ended

10: Nri+1
i = 2Nri

i , pri+1
i = 1

2p
ri
i Sri+1

i = ⟨⟩, ri = ri + 1
11: break
12: p := prii

return prii , False

Procedure 7 Basic Stochastic Checks (BSC) Subroutine
Require: Series of processed pulls S

1: if ∃i ∈ A : µi(S) ̸∈ [lcbi(S)− width(S), ucbi(S) + width(S)] then
2: return False
3: if

∑
s′∈S

(
las′ (s

′)− ucb∗(S)
)
> 272

√
KT log (T ) + 10σmax(t) log (K) then

4: return False
return True

C General Lemmas

Lemma C.1 (Freedman’s Inequality, Theorem 1.1 in Tropp [30]) Let {Xk}k≥1 be a real valued
martingale difference sequence adapted to a filtration {Ft}t≥0. If Xk ≤ R a.s. Then, for all t ≥ 0
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and σ2 ≥ 0,

Pr

[
∃k ≥ 0 :

k∑
i=1

Xi ≥ t and
k∑

i=1

E
[
X2

i |Fi−1

]
≤ σ2

]
≤ exp

{
− t2

2σ2 + 2Rt/3

}
Lemma C.2 (Lemma F.4 in Dann et al. [7]) Let {Xt}Tt=1 be a sequence of Bernoulli random and
a filtration F1 ⊆ F2 ⊆ ...FT with P(Xt = 1 | Ft) = Pt, Pt is Ft-measurable and Xt is Ft+1-
measurable. Then, for all t ∈ [T ] simultaneously, with probability 1− δ,

t∑
k=1

Xk ≥ 1

2

t∑
k=1

Pk − log

(
1

δ

)
Lemma C.3 (Consequence of Freedman’s Inequality, e.g., Lemma 27 in Efroni et al. [10])
Let {Xt}t≥1 be a sequence of random variables, supported in [0, R], and adapted to a filtration
F1 ⊆ F2 ⊆ ...FT . For any T , with probability 1− δ,

T∑
t=1

Xt ≤ 2

T∑
t=1

E[Xt | Ft] + 4R log

(
1

δ

)
.

Lemma C.4 For every arm i, ri(T ) ≤ 7 log (T )

Proof: Every phase must finish with Line 6 or Line 11. Let r1 be the number of phases finished
with Line 6. We have:

N
⌈7 log (T )⌉
i ≥ N1

i 2
−r127 log (T )−r1

= N1
i 2

7 log (T )−2r1

From Line 7, r1 ≤ 3 log (T ). Thus:

N
⌈7 log (T )⌉
i ≥ N1

i T ≥ T

If the 7 log (T )’s round is reached and finished, then the horizon has arrived. Else, the algorithm
will switch.
Lemma C.5 Let i be some arm, and S be a series of steps. Denote pmin = mins∈S pi(s). Then, if

|S| ≥ log ( 1
δ )

pmin
, w.p 1− δ:

max
k

L̄S:k
− LS:k

≤ 2

√
|S| log

(
1
δ

)
pmin

max
k

LS:k
− L̄S:k

≤ 2

√
|S| log

(
1
δ

)
pmin

Proof:

E
[(
li(t)

)2]
= li(t)

2 pi(t)

pi(t)2
≤ 1

pi(t)

Thus, for every k the variance is bounded by:

V
(
L̄S:k

− LS:k

)
≤ |S:k|

pmin
≤ |S|

pmin

Using Lemma C.1 with σ2 = |S|
pmin

and R = 1
pmin

:

log

Pr

max
k

L̄S:k
− LS:k

≥ 2

√
|S| log

(
1
δ

)
pmin

 ≤ −
4
|S| log ( 1

δ )
pmin

2 |S|
pmin

+ 4
3

1
pmin

√
|S| log ( 1

δ )
pmin
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Since |S| ≥ log ( 1
δ )

pmin
:

log

Pr

max
k

L̄S:k
− LS:k

≥ 2

√
|S| log

(
1
δ

)
pmin

 ≤ −
4
|S| log ( 1

δ )
pmin

2 |S|
pmin

+ 4
3

|S|
pmin

≤ − log

(
1

δ

)

Which means that w.p 1− δ:

max
k

L̄S:k
− LS:k

≤ 2

√
|S| log

(
1
δ

)
pmin

Which is exactly the first inequality in the lemma. The second has the same proof.

D Stochastic

D.1 Good Event

Definition D.1 Let Gsto be the event that:

∀i ∈ [K], n ≤
∣∣∣S̃i

∣∣∣ |µi − µ̂i(S:n)| ≤ widthi(S:n)

∀i ∈ [K], n ≤
∣∣∣S̃i

∣∣∣ |µi − µi(S:n)| ≤ width(S:n)

∀i ∈ [K], n ≤
∣∣∣S̃i

∣∣∣, S ∈
({(

S̃i

)
:n

}
∪
{
Sr
i |r ∈ [ri(T̄ )]

}) 1

2

∑
s∈S

pi(s)− 3 log (T ) ≤ ni(S) ≤ 2
∑
s∈S

pi(s) + 12 log (T )

∀i ∈ [K] Ei(T̄ ) ≤ E
[
Ei(T̄ )

]
+

√
7 log (T )

∀S
∑
s∈S

[las
(s)− la∗(s)]− E

[∑
s∈S

[las
(s)− la∗(s)]

]
≤ 3
√
T log (T )

If the delays are stochastic, also:

σmax ≤ 2E[d] + 8 log (T )

Lemma D.2 For every state of S and arm i, w.p 1− 2
T :

|µi − µ̂i(S)| ≤ widthi(S)

Proof: Directly from Equation 1.6 of Slivkins [27].

Lemma D.3 With probability 1− 2
T , For every arm i and n ≤

∣∣∣S̃i

∣∣∣:
|µi(S:n)− µi| ≤ width(S:n)

Proof: Denote S = S:n for brevity.

If |S| ≤ 3K log (T ) then width(S) ≥ 1 and the bound is trivial.

Notice that since n ≤
∣∣∣S̃i

∣∣∣, for s ∈ S we have pi(s) ≥ 1
K . If |S| ≥ 3K log (T ), w.p 1 − 2

T 3 from
Lemma C.5:

|S||µi(S)− µi| ≤ 2
√
3K|S| log (T )

|µi(t)− µi| ≤ 2

√
3K log (T )

|S|

Union bound on all arms and n ≤
∣∣∣S̃i

∣∣∣ we get the desired results.
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Lemma D.4 With probability 1− 2
T

∀i ∈ [K], S ∈
({(

S̃i

)
:k

})
∨ S ∈

{
Sr
i |r ∈ ri(T̄ )

} 1

2

∑
s∈S

pi(s)− 3 log (T ) ≤ ni(S) ≤ 2
∑
s∈S

pi(s) + 12 log (T )

Proof: Notice that ni(S) is a sum of bernoulli variables. Fix S and i, from Lemmas C.2 and C.3,
w.p 1− 2

T 3 :
1

2

∑
s∈S

pi(s)− 3 log (T ) ≤ ni(t) ≤ 2
∑
s∈S

pi(s) + 12 log (T )

Union bound for all the options for S and i gives us the desired results.
Lemma D.5 For every arm, w.p 1− 1

T :

Ei(T̄ ) ≤ E
[
Ei(T̄ )

]
+

√
7 log (T )

Proof: Using Hoeffding, with probability 1− 1
T 2 :

Ei(T̄ ) ≤ E
[
Ei(T̄ )

]
+

√
1

2
ri(T̄ ) log (T 2)

From Lemma C.4:
Ei(T̄ ) ≤ E

[
Ei(T̄ )

]
+

√
7 log (T )

Union bound for all arms concludes the proof.
Lemma D.6 For every state of S, w.p 1− 1

T :∑
s∈S

[las
(s)− la∗(s)]− E

[∑
s∈S

[las
(s)− la∗(s)]

]
≤ 3
√

T log (T )

Proof: From Lemma C.1, with σ2 = T and R = 1:

Pr

[
∃S :

∑
s∈S

[las
(s)− la∗(s)]− E

[∑
s∈S

[las
(s)− la∗(s)]

]
≥ 3
√

T log (T )

]
≤ exp

(
− 9T log (T )

2T + 2
√

T log (T )

)

≤ exp(− log (T )) =
1

T

Lemma D.7 If the delays are stochastic, with probability 1− 1
T :

σmax ≤ 2E[d] + 8 log (T )

Proof: For every t ≤ T :

E[σ(t)] =
t∑

s=1

Pr[d > t− s]

=

t∑
s=1

∞∑
i=t−s+1

Pr[d = i]

≤
∞∑
i=1

iPr[d = i]

= E[d]

Fix some t ≤ T . From Lemma C.3, w.p 1− 1
T 2 :

σ(t) ≤ 2E[d] + 8 log (T )

Union bound for all t concludes the proof.
Corollary D.8 Gsto happens w.p 1− 9

T

Proof: Union bound of Lemmas D.2 to D.7
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D.2 Regret Analysis

Lemma D.9 Assume Gsto, the optimal arm i∗ will not be evicted.

Proof: Assume by contradiction that arm i∗ was evicted. Namely, there is S such that:

ucb∗(S) < µ̂i∗(S)− 9widthi∗(S)

From Gsto:

ucb∗(S) < µi∗(S)− 9widthi∗(S) < µ∗

From the definition of ucb∗ and Gsto, there is an arm i such that:

µi ≤ ucb∗(S) < µ∗

Which contradicts the fact that i∗ is optimal.

Lemma D.10 Assume Gsto, For every two arms i1, i2 and series n ≤ min
{∣∣∣S̃i1

∣∣∣, ∣∣∣S̃i2

∣∣∣}:

widthi1(S:n) ≤ 10widthi2(S:n)

Additionally, for every arm i:

∆̃i ≤ ∆i ≤ 2∆̃i

Proof: Denote S = S:n for brevity.

Since i1 was not eliminated:

µ̂i1(S)− 9widthi1(S) ≤ ucb∗(S) ≤ ucb∗(S) ≤ ucbi2(S) ≤ µ̂i2(S) + widthi2(S)

From Gsto:

µi − 10widthi1(S) ≤ µ∗ + 2widthi2(S)

∆i1 ≤ 10widthi1(S) + 2widthi2(S)

Notice that since i1 and i2 were not evicted in the steps of S, we have E[ni1(S)] = E[ni2(S)]. Thus:

ni1(S) ≤ 2E[ni1(S)] + 12 log (T )

E[ni1(S)] ≥
1

2
ni1(S)− 6 log (T )

ni2(S) ≥
1

2
E[ni2(S)]− 3 log (T )

E[ni2(S)] ≤ 2ni2(S) + 6 log (T )

1

2
ni1(S)− 6 log (T ) ≤ 2ni2(S) + 6 log (T )

1

4
ni1(S)− 24 log (T ) ≤ ni2(S)

If ni(S) ≥ 192 log (T ):

1

4
ni1(S)−

1

8
ni1(S) ≤ ni2(S)

1

8
ni1(S) ≤ ni2(S)√

2 log (T )

ni2(S)
≤ 3

√
2 log (T )(S)

ni1(S)

widthi2(S) ≤ 3widthi1(S)
∆i1 ≤ 16widthi1(S)
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If ni(S) ≤ 192 log (T ):

widthi1(S) ≥

√
2 log (T )

192 log (T )
≥ 1

10

∆i1 ≤ 1 ≤ 10widthi1(S)
widthi2(S) ≤ 1 ≤ 10widthi1(S)

In both cases:

∆i1 ≤ 16widthi1(S) ≤ 16widthi1
(
S̃i1

)
= 2∆̃i1

Additionally, from Gsto:

µi1 − 8widthi1

(
S̃i1

)
≥ µ̂i1(S̃i1)− 9widthii1

(
S̃i1

)
> ucb∗

(
S̃i1

)
≥ µ∗

∆i1 ≥ 8widthi1
(
S̃i1

)
= ∆̃i1

Lemma D.11 Let N be a set over R with average µ. Then, at most half of N are greater than 2µ.

Proof: Let X be a r.v sampled from N with uniform distribution. Easy to see that E[X] = µ. From
Markov inequality:

Pr[X ≥ 2µ] ≤ µ

2µ
=

1

2

Lemma D.12 (restatement of Lemma 4.2) If arm i1 was eliminated before i2 then,

∆i2 ≤ 20∆i1

Proof: Let i1 and i2 be two arms such that i1 was evicted before i2. From Lemma D.10:

∆i2 ≤ 16widthi2
(
S̃i2

)
≤ 16widthi2

(
S̃i1

)
≤ 160widthi1

(
S̃i1

)
≤ 20∆i1

Lemma D.13 Assume Gsto, we have:∑
i

pmax
i (τi)∆i ≤ ∆max log (K)∑

i

pmax
i (τi)∆i ≤ 42∆avg log (K)

Proof:

Let A′ be the state of A such that |A| = K
2 (namely, the last half active arms). We show that:

∀i ∈ A′ ∆i ≤ 40∆avg

If ∆i ≤ 2∆avg it is trivial. Otherwise, from Lemma D.11 there is an arm j /∈ A′ such that
∆i ≤ 2∆avg . From Lemma D.12, ∆i ≤ 20∆j ≤ 40∆avg .

Notice that if arm i was the jth evicted arm, we have:

pmax
i (τi) ≤

1

j
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Which means: ∑
i

pmax
i (τi)∆i =

∑
i/∈A′

pmax
i (τi)∆i +

∑
i∈A′

pmax
i (τi)∆i

≤
∑
i/∈A′

∆i

K
2

+

K
2∑

j=1

40∆avg

j

≤ 2∆avg + 40∆avg log (K)

Lemma D.14 Assume Gsto, then for any arm i and step t < τi:

mi(t)∆i ≤
515 log (T )

∆i
+ 2σ(t)∆ip

max
i (τi)

Proof: Let S be the set of observed pulls at time t. From Lemma D.10:

∆i ≤ 16

√
2 log (T )

ni(S)

ni(S) ≤
512 log (T )

∆̃2

At step t, there are σ(t) missing pulls. When those missing pulls were pull, the probability of arm i
was bounded by pmax

i (τi−1) (as it is its general maximum probability). Thus, from Gsto, we have:

mi(t) ≤ ni(S) + 2σ(t)pmax
i (τi − 1) + 3 log (T )

Thus:

mi(t)∆i ≤
515 log (T )

∆i
+ 2σ(t)pmax

i (τi)∆i

Lemma D.15 Assume Gsto and that K ≤ T
12 log (T ) , then for any arm i and step τi < t ≤ T̄ :

(mi(t)−mi(τi))∆i ≤
71728 log (T )

∆i
+ 8pmax

i (τi)σmax(t)∆i

Proof: From the algorithm defintion we have:

mi(t)−mi(τi) =

ri(t)∑
r=1

ni(S
r
i ) +

log (T )∑
j=0

ni(M
p1
i 2

−j

i (t) \ Cp1
i 2

−j

i (t)) (6)

From Gsto, for every i and every phase ri:

E[ni(S
r
i )] = priN

r
i = p1iN

1
i =

1280

∆̃2
i

From Lemma C.4 and Gsto:

E

ri(t)∑
r=1

ni(S
r
i )

 ≤ 7 log (T )
1280

∆̃2
i

≤ 8960 log (T )

∆̃2
i

ri(t)∑
r=1

ni(S
r
i ) ≤

17920 log (T )

∆̃2
i

+ 3 log (T ) ≤ 17923 log (T )

∆̃2
i
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Let s ≤ t be the last pull of a phase w.p p, which means that Bp
i (s) \ Cp

i (s) = ∅, so
|Mp

i (t) \ C
p
i (t)| = |Mp

i (s) \ C
p
i (s)| ≤ σ(s) ≤ σmax(t). Then:

E[ni(M
p
i \ Cp

i )] ≤ pσmax(t)

log (T )∑
j=0

E
[
ni(M

p1
i ·2

−j

i \ Cp1
i 2

−j

i )
]
≤

log (T )∑
j=0

p1i 2
−jσmax(t) ≤ 2p1iσmax(t)

log (T )∑
j=0

ni(M
p1
i 2

−j

i \ Cp1
i 2

−j

i ) ≤ 4p1iσmax(t) + 3 log (T ) (Gsto)

Thus, from Equation (6):

mi(t)−mi(τi) ≤
17926 log (T )

∆̃2
i

+ 4p1iσmax(t)

From Gsto and the assumption that K ≤ T
12 log (T ) :

1

K
≤ pmax

i (τi)

ni(S̃i) ≤ 2
∣∣∣S̃i

∣∣∣pmax
i (τi) + 12 log (T ) ≤ 2Tpmax

i (τi) +
T

K
≤ 3Tpmax

i (τi)

p1i =
1

2K
+

ni(S̃i)

2T
≤ pmax

i (τi)

2
+

3pmax
i (τi)

2
= 2pmax

i (τi)

mi(t)−mi(τi) ≤
17932 log (T )

∆̃2
i

+ 8pmax
i (τi)σmax(t)

From Lemma D.10:

mi(t)−mi(τi) ≤
71728 log (T )

∆2
i

+ 8pmax
i (τi)σmax(t)

(mi(t)−mi(τi))∆i ≤
71728 log (T )

∆i
+ 8pmax

i (τi)σmax(t)∆i

Corollary D.16 Assume Gsto, for every t ≤ T̄ :

K∑
i=1

∆imi(t) ≤
K∑
i=1

72243 log (T )

∆i
+ 10σmax(t)∆max log (K)

K∑
i=1

∆imi(t) ≤
K∑
i=1

72243 log (T )

∆i
+ 420σmax(t)∆avg log (K)

Proof: If K ≤ T
12 log (T ) , it follows directly from Lemmas D.13 to D.15. Else, we have:

K∑
i=1

∆imi(t) ≤ T ≤ 12K log (T ) ≤
K∑
i=1

12 log (T )

∆i

D.3 With high probability the algorithm doesn’t switch

Lemma D.17 Assume Gsto, for every arm i and S ⊆ S̃i:

µi(S) ∈ [lcbi(S)− width(S), ucbi(S) + width(S)]
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Proof: From Gsto:

lcbi(S) ≤ µi ≤ µi(S) + width(S)

ucbi(S) ≥ µi ≥ µi(S)− width(S)

Lemma D.18 Assume Gsto, for every state of S at time t:∑
s∈S

[las(s)− ucb∗(S)] ≤ 272
√
KT log (T ) + 30σmax(t) log (K)

Proof: From Corollary D.16:

E

[∑
s∈S

[las
(s)− la∗(s)]

]
≤

K∑
i=1

72243 log (T )

∆i
+ 30σmax(t)∆i

≤
∑

i s.t ∆i≤269

√
log (T )
KT

269

√
T log (T )

K
+

∑
i s.t ∆i≥269

√
log (T )
KT

72243 log (T )

∆i
+ 30σmax(t)

≤ 269
√
KT log (T ) + 30σmax(t) log (K)

From Gsto, for every state of S:∑
s∈S

[las
(s)− ucb∗(S)] ≤

∑
s∈S

[las
(s)− la∗(s)] ≤ 272

√
KT log (T ) + 30σmax(t) log (K)

Lemma D.19 Assume Gsto, for every arm i, Ei(T̄ ) ≤ 3 log (T ).

Proof: Fix phase r. We will show that w.p 31
32 ,

|Sr
i |µ̃i − L̄r

i ≤ 1

4
∆̃Nr

i

If |Sr
i | ≤ 1

4∆̃iN
r
i , this is trivial. Otherwise, it means that:

|Sr
i | ≥

1

4
∆̃iN

r
i

=
1

4
∆̃i

p1iN
1
i

pri

=
1

4
∆̃i

1280

pri ∆̃
2
i

=
320

pri ∆̃i

≥ 40

pri
(∆̃i ≤ 8)

Now we can use Lemma C.5, w.p 31
32 , as the inequality |Sr

i | ≥
log (32)

pr
i

is satisfied. We have:

E[Li(S
r
i )]− L̄i(S

r
i ) ≤ 2

√
5Nr

i

pri

= 2

√
5Nr

i
2∆̃2

i

1280

=
1

8
Nr

i ∆̃i (7)
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Additionally, from Gsto:

µ̃i − µi ≤ widthi

(
S̃i

)
=

1

8
∆̃ (Gsto)

|Sr
i |µ̃i − E[Lr

i ] ≤
1

8
∆̃|Sr

i | ≤
1

8
∆̃Nr

i

|Sr
i |µ̃i − L̄r

i ≤ 1

4
∆̃Nr

i (Equation (7))

All of the above is true to all states throughout the phase (since Lemma C.5 is true for maxk).

This means that in every phase Line 6 happens w.p 1
32 . Thus:

E
[
Ei(T̄ )

]
=

ri(T̄ )

32

≤ 7 log (T )

32
(Lemma C.4)

From Gsto:
Ei(T̄ ) ≤ E

[
Ei(T̄ )

]
+

√
7 log (T ) ≤ 3 log (T )

Corollary D.20 Assume Gsto, T = T̄ .

Proof: Directly from Lemmas D.17 to D.19

D.4 Conclusion

Theorem D.21 For adversarial delays:

Rsto ≤ O

(
K∑
i=1

log (T )

∆i
+ σmax∆avg log (K)

)
For stochastic delays we can also say:

Rsto ≤ O

(
K∑
i=1

log (T )

∆i
+ E[d]∆avg log (K)

)

Proof: Assume Gsto, from Corollaries D.16 and D.20, The above is true with probability 1− 2
T .

From Corollary D.8, this is asymptotically true even without the assumption of Gsto.

E Adversarial

Lemma E.1 Let X be a random variable such that for every x ≥ 0 there is some a > 0 such that:
FX(x) ≥ 1− e−x/a

Then:
E[X] ≤ a

Proof: We use the CDF representation of the expectation:

E[X] =

∫ ∞

0

(1− F (x))dx+

∫ 0

−∞
F (x)dx

≤
∫ ∞

0

(1− F (x))dx

≤
∫ ∞

0

e−x/adx

=
[
−ae−x/a

]∞
0

= a

31



Lemma E.2 (restatement of Lemma 5.2) Let Hr
i be the history (i.e., chosen actions) of rounds

that are observed by the begining of the r phase of arm i. Denote Er
i [·] = E[· | Hr

i ] and Prri [·] =
Pr[· | Hr

i ]. For every arm i and phase r we have:

Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− Li(S

r
i )
]
≤ 3

8
∆̃iN

r
i − 9

8
∆̃iEr

i [|Sr
i |]

Proof: Let S be the sequence of Nr
i observed rounds starting from the beginning of r phase of arm

i, so that the first |Sr
i | rounds in S are exactly Sr

i . Let also X1, ..., XNr
i

i.i.d∼ Bernoulli(pri ). From
Lemma C.5, if Nr

i ≥ m
pr
i

, we have for every m > 0, conditioned on the history Hr
i , with probability

of at least 1− e−m:

max
k

∑
t∈S:k

[
Xtlt
pri

− li(t)

]
≤ 2

√
mNr

i

pri

≤ 2

√√√√mNr
i

p1
iN

1
i

Nr
i

= 2

√
mNr

i
2∆̃2

i

1280

≤ mNr
i ∆̃i√
320

Now, note that for k = |Sr
i |,
∑

t∈S:k

[
Xtlt
pr
i

− li(t)
]

distributes exactly like Li(S
r
i )− L̄i(S

r
i ). Thus,

conditioned on the history Hr
i , with probability of at least 1− e−m:

L̄i(S
r
i )− Li(S

r
i ) ≤ |Sr

i | ≤
mNr

i ∆̃i√
320

If Nr
i ≤ m

pr
i

:

L̄i(S
r
i )− Li(S

r
i ) ≤ Nr

i

≤ m

pri

=
mNr

i

p1iN
1
i

=
mNr

i ∆̃
2
i

1280

≤ mNr
i ∆̃i

160
(∆̃i ≤ 8)

≤ mNr
i ∆̃i√
320

From Lemma E.1:

Er
i

[
L̄i(S

r
i )− Li(S

r
i )
]
≤ Nr

i ∆̃i√
320

≤ 1

8
Nr

i ∆̃i (8)

Notice that if the phase was not finished it means that |Sr
i |µ̃i − L̄r

i ≤ 1
4∆̃Nr

i . Given that we have:
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Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− L̄i(S

r
i ) +

9

8
∆̃i|Sr

i |
]
= Er

i

[
|Sr

i |
(

ucb∗
(
S̃i

)
+ 9widthi

(
S̃i

))
− L̄i(S

r
i )
]

< Er
i

[
|Sr

i |µ̃i − L̄i(S
r
i )
]

(Elimination inequality)

≤ 1

4
∆̃iN

r
i

Combining the above with Equation (8) completes the proof.

Lemma E.3 For every arm i and phase r,

Er
i

ri(T )∑
r′=r

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] ≤ 3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

4
∆̃iN

r
i

Proof: We will prove using reverse induction on r.

For r = ri(T ) (namely, after all phases) we have:

Er
i

 ri(T )∑
r′=ri(T )

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Lr′

i

] = 0

3(0− 2)

8
∆̃iN

1
i +

3

4
∆̃iN

r
i ≥ 3(0− 2)

8
∆̃iN

1
i +

3

4
∆̃iN

1
i = 0

Assume true for r + 1, we prove for r.

If Line 11 was triggered it means that |Sr
i | = Nr

i and Nr+1
i = 2Nr

i . We have:

Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3

8
∆̃iN

r
i − 9

8
∆̃iN

r
i (Lemma E.2)

Er
i

ri(T )∑
r′=r

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] = Er

i

 ri(T )∑
r′=r+1

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
]+ Er

i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3(ri(T )− r − 3)

8
∆̃iN

1
i +

3

4
∆̃iN

r+1
i − 3

4
∆̃iN

r
i

≤ 3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

2
∆̃iN

r
i − 3

4
∆̃iN

r
i

=
3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

4
∆̃iN

r
i

If Line 6 was triggered and Nr
i ̸= N1

i it means that Nr+1
i = 1

2N
r
i . We have:

Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3

8
∆̃iN

r
i (Lemma E.2)

Er
i

ri(T )∑
r′=r

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] = Er

i

 ri(T )∑
r′=r+1

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
]+ Er

i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3(ri(T )− r − 3)

8
∆̃iN

1
i +

3

4
∆̃iN

r+1
i +

3

8
∆̃iN

r
i

≤ 3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

8
∆̃iN

r
i +

3

8
∆̃iN

r
i

=
3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

4
∆̃iN

r
i
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If Nr
i = N1

i it means that Nr+1
i = Nr

i . We have:

Er
i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3

8
∆̃iN

1
i (Lemma E.2)

Er
i

ri(T )∑
r′=r

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] = Er

i

 ri(T )∑
r′=r+1

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
]+ Er

i

[
|Sr

i |ucb∗
(
S̃i

)
− Lr

i

]
≤ 3(ri(T )− r − 3)

8
∆̃iN

1
i +

3

4
∆̃iN

r+1
i +

3

8
∆̃iN

1
i

=
3(ri(T )− r − 2)

8
∆̃iN

1
i +

3

4
∆̃iN

r
i

Lemma E.4 For every arm i:

E

 T̄∑
t=τi

[
ucb∗(S̄)− li(t)

] ≤ 594
√
KT log (T )

Proof: Lemma E.3 with r = 1 gives:

E1
i

ri(T )∑
r′=1

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] ≤ 3(ri(T )− 3)

8
∆̃iN

1
i +

3

4
∆̃iN

1
i ≤ 3ri(T )

8
∆̃iN

1
i

From Lemma C.4:

E1
i

ri(T )∑
r′=1

[∣∣∣Sr′

i

∣∣∣ucb∗
(
S̃i

)
− Li(S

r′

i )
] ≤ 21 log (T )

8
∆̃iN

1
i (9)

If
ni(S̃i)

T ≥ 1
K :

p1i ∆̃i ≥
ni

(
S̃i

)
2T

8

√√√√2 log (T )

ni

(
S̃i

)

=

√
32 log (T )

T

√√√√ni

(
S̃i

)
T

≥
√

32 log (T )

KT

If
ni(S̃i)

T ≤ 1
K :

p1i ∆̃i ≥
8

2K

√√√√2 log (T )

ni

(
S̃i

)
=

√
32 log (T )

K

√√√√ 1

Kni

(
S̃i

)
≥
√

32 log (T )

KT

In any case:

p1i ∆̃i ≥
√

32 log (T )

KT
(10)
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Since for every i, S̃i is a sub-series of S̄, we have ucb∗
(
S̃i

)
≥ ucb∗(S̄). From Equations (9)

and (10):

E1
i

 T̄∑
t=τi

[
ucb∗(S̄)− li(t)

] ≤ E1
i

 T̄∑
t=τi

[
ucb∗

(
S̃i

)
− li(t)

]
≤ 21 log (T )

8
∆̃iN

1
i

=
3360 log (T )

p1i ∆̃i

≤ 594
√

KT log (T )

Theorem E.5
Radv ≤ O

(√
KT log (T ) + log (K)σmax +RALG

)
Proof: From Line 3:∑

s∈S̄

[las
(s)− ucb∗(S̄)] ≤ 272

√
KT log (T ) + 10σmax log (K)

T̄∑
t=1

[lat
(t)]− T̄ucb∗(S̄) ≤ 272

√
KT log (T ) + 11σmax log (K) (11)

From Wald’s equation and Line 1, for every arm i:

E

∑
t∈S̃i

li(t)

 = E
[∣∣∣S̃i

∣∣∣µi

(
S̃i

)]
≥ E

[∣∣∣S̃i

∣∣∣lcbi
(
S̃i

)
− width

(
S̃i

)]
≥ E

[∣∣∣S̃i

∣∣∣(ucbi

(
S̃i

)
− 3width

(
S̃i

))]
≥ E

∣∣∣S̃i

∣∣∣
ucb∗

(
S̃i

)
− 3

√√√√2K log (T )∣∣∣S̃i

∣∣∣



≥ E
[∣∣∣S̃i

∣∣∣ucb∗(S̄)− 3
√
2KT log (T )

]
Adding the missing pulls we get:

E

[∣∣∣S̃i

∣∣∣ucb∗(S̄)− τi−1∑
t=1

li(t)

]
≤ 3
√
2KT log (T ) + σ(τi − 1) (12)

From Equations (11) and (12) and lemma E.4, for every arm i:

E

 T̄∑
t=1

[lat
(t)− li(t)]

 = E

 T̄∑
t=1

[lat
(t)]− T̄ucb∗(S̄)


+ E

[
(τi − 1)ucb∗(S̄)− τi−1∑

t=1

li(t)

]

+ E

 T̄∑
t=τi

[
ucb∗(S̄)− li(t)

]
≤ 869

√
KT log (T ) + 12σmax log (K)
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Since after T̄ the algorithm switches to ALG, we have:

E

 T∑
t=T̄+1

[lat
(t)− li(t)]

 ≤ RALG

Which concludes the proof.
Lemma E.6 (Restatement of Lemma 5.3)

σmax ≤ O

(
min
S∈[T ]

{
|S|+

√
DS̄

})
Proof: Let S∗ be the set that minimizes |S| +

√
DS̄ . If |S∗| ≥ 1

2σmax it concludes the proof.
Continuing with the case that |S∗| < 1

2σmax.

Let t be the step such that σ(t) = σmax. Since |S∗| < 1
2σmax, after skipping there are at least

1
2σmax non-skipped missing steps at time t. Let s1, ..., s 1

2σ(t)
∈ S̄∗ be the series of those 1

2σ(t)

missing steps, ordered in descending order of when they were pulled. Namely, s1 is the most recent
pull in the series and s 1

2σ(t)
is the oldest pull.

Since there are at least i−1 missing pulls that were pulled after si, we have t−si ≥ i. Additionally,
since si is missing, we have si + dsi > t. Combining both we have dsi > i. Thus:

DS̄∗ ≥
1
2σ(t)∑
i=1

dsi >

1
2σ(t)∑
i=1

i ≥
(
1
2σ(t)

)2
2

=
1

8
σ(t)2

F Removing the log (K) factor

We show that a simple modification of the algorithm can eliminate the log (K) factor from the
additive delay term in both the adversarial and stochastic settings (Theorems D.21 and E.5). To
avoid adding complexity to the already intricate algorithm, we present this modification separately
as an optional, opt-in feature.

Algorithm 8 Delayed SAPO Algorithm with reduced log (K)

Require: Number of arms K, number of rounds T ≥ K, Algorithm ALG.
1: Initialize active arms A = {1, . . . ,K}, S = ⟨⟩, h = 1, G = ∅
2: for t = 1, 2, . . . , T do
3: for s ∈ B \ S do
4: S = S + ⟨s⟩
5: if not BSC(S) (Procedure 7) then
6: Switch to ALG.
7: U(t) = {i ∈ A : µ̂i(S)− 9widthi(S) > ucb∗(S)} ▷ Ghosting
8: G = G ∪ U
9: for i ∈ U do ▷ Initialization for phases variables

10: Set p1i = 1
2K + ni(S)

2T , S̃i = S, µ̃i = µ̂i(S), ∆̃i = 8widthi(S), N1
i := 1280/(p1i ∆̃

2
i ),

Ei = 0, ri = 1, S1
i = ⟨⟩, Cp1

i ·2
−j

i = ∅ ∀j ∈ [log (T )]
11: if mini widthi(S) ≤ 2−h then ▷ Elimination point
12: for i ∈ G do
13: τi = t, Sg

i = S \ S̃i

14: A = A \G, G = ∅, h = h+ 1
15: for i ∈ ([K] \ A) do
16: pi(t), err = EAP(i) (Procedure 6)
17: if err then
18: Switch to ALG.
19: ∀i ∈ A pi(t) =

(
1−

∑
j∈([K]\A(t)) pj(t)

)
/|A(t)|

20: Observe feedback and update variables
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Procedure 9 Basic Stochastic Checks (BSC) Subroutine with reduced log (K)

Require: Series of processed pulls S
1: if ∃i ∈ A : µi(S) ̸∈ [lcbi(S)− width(S), ucbi(S) + width(S)] then
2: return False
3: if

∑
s′∈S

(
las′ (s

′)− ucb∗(S)
)
> C

(√
KT log (T ) + σmax(t)

)
then

4: return False
return True

The key change involves introducing elimination points, where the hth elimination point is when the
confidence width of at least one arm falls below 2−h. When an arm is eliminated under the current
algorithm, it enters a ghost period—a phase during which it remains practically active (receiving
the same pull probability as active arms) and is then formally eliminated at the next elimination
point. Additionally, we modify the threshold in BSC’s Line 3 by removing the log (K) term from
its additive component.

We first show that the leading term in the stochastic regret remains asymptotically unchanged, since
the number of pulls during the ghost period is asymptotically smaller than the number of pulls during
the active period (Lemma F.1). We then prove a variant of Lemma D.13 without the log (K) factor
(Lemma F.3), which is the original source of this term in the regret bound. With these changes, the
updated version of BSC’s Line 3 (with an appropriate choice of the constant C) still doesn’t triggers
a switch in the stochastic settings.

The log (K) factor is also removed from the adversarial regret, without affecting the asymptotic
behavior. The main contribution to adversarial regret comes from the check in BSC’s Line 3, where
we removed the log (K) term. We also need to verify that the relation between the losses and ucb∗

given in Equation (12) still holds. This is indeed the case, since the check in BSC’s Line 1 continues
to be valid during the ghost period (as i ∈ A still holds).
Lemma F.1 Assume Gsto, we have:

n(Sg
i ) = O

(
ni(S̃i)

)
Proof: Assume i is eliminated in the hth elimination point and denote Sh to be S at that time. Let
ih be the arm whose width crossed 2−h in the hth elimination point. From the definition of width,
we still have that its width is greater then 1

22
−h. Thus:

widthi(Sh) ≥ widthih(Sh) ≥
1

2
2−h

widthi(Sh−1) ≤ 10widthih−1
(Sh−1) ≤ 10 · 2−h+1 = 20 · 2−h (Lemma D.10)

40

√
2 log (T )

ni(Sh)
≥

√
2 log (T )

ni(Sh−1)

1600ni(S̃i) ≥ 1600ni(Sh−1) ≥ ni(Sh) ≥ ni(S
g
i )

Lemma F.2 Assume Gsto, for every i ∈ [d] that is eliminated at the hth elimination point we have:

8 · 2−h ≤ ∆i ≤ 320 · 2−h

Proof: Let Sh be S at the time of hth elimination point. From Lemma D.10:

widthi(Sh) ≥ 2−h

widthi(Sh−1) ≤ 10 · 2−h+1 = 20 · 2−h

Since |Sh−1| ≤
∣∣∣S̃i

∣∣∣ ≤ |Sh|:

2−h ≤ widthi

(
S̃i

)
≤ 20 · 2−h
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Again from Lemma D.10:

8 · 2−h ≤ ∆i ≤ 320 · 2−h

Lemma F.3 Assume Gsto, we have: ∑
i

pmax
i ∆i = O(∆avg)

Proof: In the same way as Lemma D.13, we denote A’ to be the state of A such that |A| = K
2 . In

the same way we have that ∀i ∈ A′ ∆i ≤ 40∆avg and:∑
i

pmax
i ∆i ≤

∆avg

2
+
∑
i∈A′

pmax
i ∆i

Fix elimination point h, denote Ih to be the set of arms eliminated at that point. By definition, we
have for every i ∈ Ih that pmax

i ≤ 1
|Ih| . From Lemma F.2:∑

i∈Ih

pmax
i ∆i ≤

∑
i∈Ih

1

|Ih|
320 · 2−h = 320 · 2−h

Let h1 be the first elimination point in which arms from A’ are eliminated. Again from Lemma F.2,
we have for some i ∈ A′:

8 · 2−h1 ≤ ∆i ≤ 40∆avg

2−h1 ≤ 5∆avg

This concludes to:∑
i∈A′

pmax
i ∆i =

∞∑
h=h1

∑
i∈Ih

pmax
i ∆i ≤

∞∑
h=h1

320 · 2−h = 640 · 2−h1 ≤ 3200∆avg
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