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Abstract

This paper introduces the Convex Potential Mirror Langevin Algorithm (CPMLA),
a novel method to improve sampling efficiency for Energy-Based Models (EBMs).
CPMLA uses mirror Langevin dynamics with a convex potential flow as a dynamic
mirror map for EBM sampling. This dynamic mirror map enables targeted geo-
metric exploration on the data manifold, accelerating convergence to the target
distribution. Theoretical analysis proves that CPMLA achieves exponential con-
vergence with vanishing bias under relaxed log-concave conditions, supporting its
efficiency in adapting to complex data distributions. Experiments on benchmarks
like CIFAR-10, SVHN, and CelebA demonstrate CPMLA’s improved sampling
quality and inference efficiency over existing techniques.

1 Introduction

Energy-based models (EBMs) represent a class of generative machine learning models designed
to capture and synthesize complex data distributions. EBMs define an unnormalized probability
distribution via an energy function, assigning low energy values to likely data samples (corresponding
to the target distribution) and high energy values to unlikely ones [55, 39, [10]. Known for their
conceptual simplicity and training stability, EBMs have found diverse applications ranging from 3D
object recognition [15]] and analysis [S6] to image segmentation [24]], super-resolution restoration
[60], machine translation [47], and protein folding [48] 52]].

A critical limitation of energy-based models (EBMs) lies in their reliance on Markov Chain Monte
Carlo (MCMC) sampling methods, particularly when operating in high-dimensional data spaces
[4} 110} 29]. MCMC algorithms like Langevin dynamics often get trapped in local energy minima
when the underlying data manifold is characterized by multi-modal energy landscapes [21] or
exhibits non-Euclidean geometry [59,21]. When sampling from the complex, highly multi-modal
energy landscapes characteristic of deep EBMs, these MCMC methods can become computationally
intensive and yield biased sampling [58]. These factors hinder the efficient approximation of complex
distributions and can lead to slow convergence towards the target distribution.

Recent methods address sampling inefficiencies within EBMs. Some strategies refine MCMC
initialization [[18, [10], while others explore gradient approximation techniques [25}29]. However,
persistent challenges such as non-mixing issues remain unresolved [58]|. Mirror Langevin algorithms
have recently emerged as an alternative approach to alter sampling geometry via a fixed mirror map,
i.e., a predefined function. Prior work [, [30] demonstrates that mirror Langevin algorithms, under
certain assumptions, exhibit vanishing bias (bias — 0 as the step size h — 0). This property ensures
reliable convergence to the target distribution and improves sampling accuracy. Moreover, mirror
Langevin algorithms achieve mixing times independent of the domain’s condition number, enabling
fast convergence [19,/59]. However, fixed mirror maps in conventional mirror Langevin algorithms
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struggle to capture complex data manifolds efficiently, limiting their use for large-scale problems,
especially those associated with deep neural networks.

This paper introduces Convex Potential Mirror Langevin Algorithm (CPMLA), a novel approach
for sampling EBMs with enhanced efficiency. Unlike conventional mirror Langevin algorithms
in Euclidean space, CPMLA employs a learnable, data-driven mirror map that actively infers the
intrinsic manifold structure of the data. By parameterizing the mirror map as the gradient of a convex
potential function (cf. Brenier’s theorem [44]), CPMLA dynamically reorients sampling trajectories
to align with the non-Euclidean geometry of the target distribution, enabling adaptive exploration of
high-density regions while avoiding metastable states.

We employ a cooperative learning strategy that jointly trains the dynamic mirror map and the EBM.
First, the dynamic mirror map is learned by optimizing a convex potential flow (CP-Flow) [20].
Building on Brenier’s theorem for optimal transport [44], this formulation guarantees that CP-Flow —
defined as the gradient of a convex potential function [3] — inherently captures the geometric structure
of the data distribution. Then, the EBM is trained by contrasting the energy of real samples with that
of those synthesized via CPMLA. Concurrently, synthesized samples are fed back into the CP-Flow
training phase. This alternating process aligns the CP-Flow’s transport dynamics with the EBM’s
energy-based density estimation, mitigating sampling bias and accelerating sampling convergence.

We theoretically analyze the convergence of CPMLA. Based on the recent study [21], we prove
exponential convergence under relaxed log-concavity assumptions with two improvements. First,
we specialize our proof for the dynamic mirror map modeled with deep neural networks. Second,
beyond the sampling algorithm’s error, our analysis also incorporates the approximation errors from
modeling both the CP-Flow and the EBM with deep neural networks. These improvements broaden
the applicability to a wider range of target distributions in various machine learning tasks. To the best
of our knowledge, this is the first analysis of mirror Langevin algorithms within the framework of
deep neural networks, resulting in exponential convergence with vanishing bias (Theorem [4.5).

We evaluate CPMLA across several benchmark datasets, including CIFAR-10, SVHN, and CelebA.
The results demonstrate that CPMLA not only achieves superior sampling quality but also exhibits
enhanced inference efficiency compared to existing cooperative algorithms. Specifically, CPMLA
achieves an FID score 73% lower than Flow+EBM [[13,[38]], indicating a substantial improvement
in visual quality. Additionally, CPMLA not only achieves a lower FID score (20.85 vs. 21.16) than
CoopFlow [58] with fewer inference iterations (20 vs. 30) and less time (15.92s vs. 16.84s) as
shown in Table [2] but also operates with only 0.9% of the parameter count w.r.t. the flow part as
shown in Table 3| underscoring its efficiency in both sampling and inference. CPMLA also excels in
specialized tasks like image reconstruction and inpainting, further emphasizing its effectiveness in
tackling complex image processing challenges.

Our main contributions are summarized as follows:

* We propose a novel Convex Potential Mirror Langevin Algorithm (CPMLA) for efficient
sampling of EBMs. The efficiency comes from the modification of the sampling geometry
through a dynamic mirror map modeled with a deep neural network.

* We provide a theoretical convergence analysis of the proposed CPMLA, specifically focusing
on deep neural networks under relaxed assumptions.

* We evaluate the efficacy of our proposed algorithm through comprehensive experimental
analyses on various benchmark datasets, including CIFAR-10, SVHN, and CelebA. Our
experiments demonstrate that our CPMLA achieves superior sampling efficiency compared
to existing methods. Furthermore, it surpasses alternative approaches in terms of sample
quality and the fidelity of image reconstruction and inpainting.

2 Background
2.1 Energy-Based Models

Energy-Based Models (EBMs) characterize a probability density over data 2 € R? as follows:

po(z) = %exmﬁe(z)] (1)



Here, f : R? — R represents the negative energy function, parameterized by a neural network
with parameters 6. The term Z(0) = [ exp[fo(z)]dz is the normalizing constant, which is generally
intractable to compute.

Generating samples from pgy(z) involves Markov Chain Monte Carlo (MCMC) methods, with
Langevin Monte Carlo (LMC) [50]] being a prevalent choice. The LMC update rule is given by:

(52
=gt 4 EVI fo(2") + 6t 2)

where 2! is the sample at step ¢, 4 is the step size, ' ~ N(0, I) is Gaussian noise, and the process is
often initialized with £° drawn from a simple distribution like uniform pg(x).

The parameters € of the energy function are learned by maximizing the log-likelihood of observed
data samples x;,7 = 1,...,n drawn from the true data distribution pgy,(z). The gradient of the
log-likelihood objective is:

Vo logpy(z) = Ep,, [Vefo(z)] — Ep, [Vofo(z)] ~ %Z Vo fo (xi) — %Z Vofo (i) (3)
=1 =1

In this expression, &; represents samples drawn from the current model distribution py (), usually
obtained via LMC as described above. The expectation under pg, which implicitly depends on the
intractable Z(9), is estimated using these generated samples ;. Consequently, the learning updates
by contrasting the average gradient of the energy function evaluated on real data with the average
gradient evaluated on samples generated by the model.

2.2 Convex Potential Flow

A foundational requirement for CPMLA to satisfy the mirror Langevin algorithm is that the dynamic
mirror map must be derived from a strongly convex potential function via its gradient. To this end,
we choose Convex Potential Flow (CP-Flow) [20] for this role precisely because its architecture,
based on Input-Convex Neural Networks (ICNNs), guarantees this convexity property. A standard
normalizing flow, in contrast, does not generally have a convex potential, making it unsuitable for
a mirror Langevin framework. As shown below, CP-Flow learns a tractable probability density by
approximating the optimal transport map between a noise distribution and the target data distribution,
specifically minimizing the quadratic cost (Monge) problem.

Optimal Transport The Monge problem [49] seeks an optimal transport map g minimizing the
expected cost as follows:

Jc(anpY) = inf EXNPX [c(m,g(x))] (4)

g:9(x)~py
where ¢(z, y) is the given cost function.

Theorem 2.1. (Brenier’s Theorem [44)]) Suppose i and v are probability measures with finite
second moments, and assume that p has a Lebesgue density px. In this case, there exists a convex
potential G such that the gradient map g = VG (uniquely defined except for a null set) provides the
solution to the Monge problem in Equation 4| with square cost function c(z,y) = ||z — y||.

To approximate the optimal solution for the Monge problem, the convex potential is modeled with
several layers of an input-convex neural network (ICNN) G [3l], which is convex w.r.t the input:

Go(x) = Ljey (s (2x)) + Lic+1(2)
zp =L (s (25-1)) + Li(z), 21 := Li(2)

where ¥ denotes parameters of the neural network, L(x) denotes a linear layer, L™ (x) denotes a
linear layer with positive weights, and s is a non-decreasing convex activation function.

&)

To ensure Gy is strongly convex, which is required for VGy to be an invertible mirror map, a
quadratic term is added: G, (z) = Gy(x) + (a/2)||z||3. For a small positive scalar c, this guarantees
that the Hessian V2G,, = ol >~ 0. This modification ensures that the gradient VG, is bijective and
its inverse can be computed efficiently. For brevity, we omit the subscript « and use Gy to denote the
strongly convex potential hereafter.
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Figure 1: Overview of CPMLA sampling. Starting from a noisy sample xy, CPMLA iteratively
refines it by alternating between the primal space (interpretable images) and the space (geometry
encoded by VGy). At each step, xj, is mapped to the dual space, then updated via an EBM energy
gradient step and perturbed with geometry-aware noise scaled by V2Gy(z},). Finally, the result is
mapped back to the primal space as zj1, yielding progressively sharper samples that efficiently
explore the data manifold.

Like standard flow-based models, CP-Flow is trained by max-
imizing the log-likelihood of the model density. This requires
computing the log-determinant of the Hessian matrix of the Algorithm 1 CP-Flow training ob-
convex potential, logdet H, where H = V2Gy(z). For  jective

high-dimensional data, forming and storing the full Hessian Procedure: Obj(Gy, z, CG)

is computationally infeasible. To overcome this, we use a Sample Ra demachc:r’r ’
matrix-free approach based on Hutchinson’s trace estimator, def hvp(v):

which relies on efficient Hessian-vector products (HVPs). return {}T RV ()

The gradient of the log-determinant can be estimated as: 2 « stop graggcC G (ffvp )

9] B T.._10H return hvp(z) " r
%log det H =E, {v H 8191)] (6)

where v is a random vector with zero mean and unit covariance (e.g., Rademacher). The term H v
is expensive to compute directly. Instead, we reframe its calculation as a quadratic optimization
problem, z* = argmin, {%ZTH z— sz}, which can be solved efficiently using the conjugate
gradient (CG) algorithm without ever instantiating H. This procedure is summarized in Algorithm [I]

3 Algorithms

3.1 Mirror Langevin Algorithm

To generate synthesized examples from a target distribution p(x) with mirror Langevin dynamics
[19], we solve the stochastic differential equation:

dyt =V Ing(.I‘t)dt + v 2V2G (mt)th, (7)
zy = VG (yt)

where x; and y; are stochastic processes in the primal and dual spaces, respectively, W, is the standard
Brownian motion in R?, and VG is the mirror map. The term VG* is the gradient of the convex
conjugate G*, which serves as the inverse of the mirror map, i.e., (VG)~! = VG* (Appendix .

We use the Alternative Forward Discretization Scheme (MLA app) which has exponential convergence
and vanishing bias 21} [1]. We use our CP-Flow VG (Section@) as the dynamic mirror map. For



an iteration with step size 7, the update is:
Lk+1/2 = VG (VGy (k) =0V fo (z1))
solve dy; = /2 [V2G} (yt)]_lth

= \[2V2G (VGy) AW, for yo = VGy (2511/2)

r41=VGy (yr)

®)

The * step is derived from the property of convex conjugate [2] (see Appendix[F). The computation
of VG in step 1 and VG in step 2 can be simplified by noting that they are inverses and cancel
each other out in successive iterations.

3.2 CPMLA

Our CPMLA facilitates exploration of the underlying data manifold. It achieves this by using
MLA spp in Equation (8) with a CP-Flow dynamic mirror map, which dynamically transforms the
sampling geometry based on the metric induced by the V2Gy.

Like standard mirror Langevin methods, CPMLA alternates between updates in primal and dual
spaces. The alternating sampling process entails transitioning between updating samples in the dual
space using a dynamic mirror map for LMC exploration, followed by mapping the sample back to
the primal space utilizing the inverse of the mirror map.

Figure[T]illustrates the sampling process of the proposed CPMLA. Specifically, each CPMLA iteration
involves three steps: First, noise examples {yo} are generated from a standard Gaussian distribution
N(0,1) in the dual space. And for each sampling step k, a noise vector & is generated from a
Gaussian distribution A/ (0, V2Gy(xy)). Second, starting from {yo}, T steps of EBM sampling
(gradient and SDE steps) are performed in the dual space, yielding {yr}. Third, the inverse map
transforms {yr } back to the primal space, yielding {Z}. The synthesized examples {} are considered
as outputs sampled by CPMLA.

Algorithm 2| shows the cooperative learning of EBM and CP-Flow. At each update, we re-initialize
the MCMC chain. This is a standard practice in methods like Persistent Contrastive Divergence
(PCD) to prevent chain collapse and ensure that model gradients are estimated from samples of the
current model distribution, avoiding feedback from stale samples. First, we update the parameters 1
of the CP-Flow using both original examples {x} and synthesized examples {}. Then, we update
the parameters 6 of the EBM based on the contrast between {z} and {Z}, as in Equation 3} The
updates for both 6 and ) are performed using the Adam optimizer, with learning rates and other
hyperparameters specified in Appendix [I} This cooperative mechanism simultaneously improves
sampling efficiency and model expressiveness, creating a virtuous cycle of mutual enhancement.

In Algorithm initial samples {yo} ~ A(0, I) are drawn in the dual space, so no initial mapping
with VG is needed. We also use a computational trick to avoid the expensive matrix square root of
the Hessian: the term 1/2nV2Gy(x) - &, (where &, ~ N(0, 1)) is statistically equivalent to /27 - &,
(where & ~ N(0,V2Gy(x))). In practice, we approximate VG with its diagonal to reduce
computational complexity from O(d?) to O(d), enabling efficient high-dimensional sampling.

4 Theoretical Analysis

This section presents the convergence analysis of CPMLA, the first for mirror Langevin algorithms
with deep neural network mirror maps. Our analysis relies on standard properties of neural networks
(e.g., bounded gradients via clipping) and a set of theoretical assumptions, which are standard in the
analysis of Langevin-type algorithms [21}[1]]. We provide detailed justifications for their validity in
our framework below.

Assumption 4.1. (3-Mirror Log-Sobolev Inequality, 5-Mirror LSI) The target distribution 7 satisfies
B-Mirror LSI with constant w.r.t a given mirror map VG, i.e., for every locally lipschitz function h,
it holds that 7 satisfies

%/HVhH[QVZ,G],ldW > /h2 log hdm — (/ h2d7r> log </ h2d7T> )



Algorithm 2 Convex Potential Mirror Langevin Algorithm (CPMLA)

Input: (1) Observed images {x} ~ pga(2); (2) Number of Mirror Langevin steps T'; (3) Step
size in dual space 7.
Output: Parameters of EBM and CP-Flow {6, 9}
Randomly initialize 6 and ).
repeat
Sample noise examples {yo} ~ N (0, I) in dual space.
fork=0toT —1do
Letx = VG;; (yk)
Sample noise & ~ N(0, V2Gy (1))
Yk+1/2 = Yk — 0V fo(xr)
Y1 = Yrr1/2 T V21 - &k
end for
Map back to primal space & = VG (yr)
Starting from {}, update ¥} by Algorithm
Given {z} and {Z}, update 6 with Equation
until converged

Justification: This is a foundational assumption about the properties of the target data distribution
itself, relative to the geometry induced by the mirror map. While difficult to verify empirically
for complex, high-dimensional data distributions, it is a standard and necessary assumption in the
literature for proving the convergence of Langevin-type algorithms in non-Euclidean spaces [21} [1].
Our contribution focuses on the aspects of the algorithm we can control and verify.

Assumption 4.2. ((-Self-Concordance) There exists a constant ¢ > 0 such that the conjugate mirror
map VG* satisfies that Vy, u, s, v,

‘V?)G* (y)[u, 5, 0] | <9 (uTsz* (y)u) /2 (STVQG* (y)s) /2 (UTVQG* (y)v) 1/2 (10)
Justification: This assumption bounds the third derivative of the potential function relative to its
second derivative, ensuring the geometry does not change too abruptly. We empirically validate this
assumption for our trained models on CIFAR-10. As direct computation of the third-order derivative
tensor is infeasible, we employ a matrix-free validation approach. We estimate the Frobenius norms of
the Hessian V2G () and five random directional third derivatives V3G (x)[v] using Hutchinson’s

estimator, which relies on efficient Hessian-vector products. We then compute the proxy metric
6 — I¥V’Goy@dlr
Proxy ™ IV2Go (2)[[55+e

small and stable (in the range [10~%, 10~2]), providing strong empirical support that this assumption
holds in practice.

Assumption 4.3. (L-Relative Lipschitz) For all z, it holds that f : R? — R is differentiable with
IVf(@)livecay-— <L (11)

. Across all training checkpoints, the value of épmxy consistently remains

Justification: This assumption is satisfied in our framework due to standard deep learning practices.
Our potential function G is designed to be strongly convex, meaning its Hessian V2G(x) = oI for
some o > 0. In practice, we use gradient clipping on the EBM, which ensures that ||V f(x)]| is
bounded by a constant C'. This directly leads to ||V f(z)||[v2g(ey-1 < (1/vV@)||Vf(2)]| < C/y/ea.
Thus, the assumption holds by setting L = C/+/a.

Assumption 4.4. (Weaker ~-Relative Smooth) For all z, 2" € dom(G),
IVf(@) = VI (@) w2a@y-1 <7 IVG(@) = VG (@) jv2g w1 (12)

Justification: Similarly, the gradient of our EBM, V f, is Lipschitz with some constant L (deter-
mined by the network architecture and enforced by weight decay and gradient clipping). The potential
G is also smooth. This allows us to bound the relative smoothness, and the assumption holds by
setting v = Ly /.

Theorem 4.5 (Convergence of CPMLA). Let d be the dimension of the data space. For any mirror
map VG, define M := exp (2(D/+/a), where D := max,, , | VG(u) — VG(v)||2 is the diameter



of the image of VG. Under Assumptions forany & > 0, after k > (M'y2d/525) iterations
with step size h = O(B3/~2d), the total variation distance between the sampling distribution p; and
the data distribution pg.tq Satisfies:

dTV (pt ) pdata) <4

where Q(-) hides polylogarithmic factors, i.e. f = Q(g) <= J¢ > 0, ng, p € N such that f(n) >

c- (lgg(inn)),,,Vn > ng. 0 = \/01/2 + 02 + O3, with 01, 0, 03 being small constants related to the

convergence error of CPMLA, approximation errors from the EBM and CP-Flow respectively.

This theorem provides a non-asymptotic bound that characterizes the best achievable error of our
framework. It states that if the EBM and the CP-Flow are trained to a certain approximation accuracy
(represented by the epsilon terms), then the sampler is guaranteed to be within a certain Total Variation
distance of the true data distribution. The number of iterations and step sizes are implicitly embedded
in the conditions required to reach these error bounds.

Proof sketch: Lemma 1 from [21]] provides the form of shifted drift and covariance of Equation 7]
in primal space. Using this lemma, we express CPMLA in primal space as a weighted Langevin
dynamics in differential form with a shifted drift term . Analyzing the Fokker-Planck equation
for the conditional density pyjo(z¢ | z0), we bound the KL-divergence between p; and the target 7
using integration by parts, the Cauchy-Schwarz inequality, and the mirror log-Sobolev inequality (As-
sumption[4.T). This yields a differential inequality showing exponential decay of the KL-divergence,
with convergence rate governed by the algorithm’s parameters and target distribution properties. The
total variation bound drv (pt, paaa) < 0 decomposes into three terms: ¢; measures the distance
between the distribution pj, generated after k outer iterations of CPMLA (Algorithm [2) and the
stationary distribution py« associated with the learned energy function fy-. do and d3 represent the
fundamental limitation in the expressive power of the chosen model architectures, namely the EBM
fo and the CP-flow Gy. They reflect how well the model family can intrinsically capture the target
data distribution, irrespective of sampling or optimization efficiency.

The theorem states that, incorporating slight assumptions, CPMLA not only achieves exponential
convergence but also exhibits vanishing bias, making it more applicable to the practical training
scenario where both the energy model and mirror map parameters are continuously updated. Details
on this proof may be found in Appendix [H]

5 Experiments

We evaluate the proposed CPMLA on diverse tasks. We start with a toy example in Section
Next, we present image generation results in Section[5.2] Finally, we demonstrate CPMLA for image
reconstruction and inpainting in Section[5.3]
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(a) Data (b) CP-Flow (c) CPMLA

Figure 2: Comparison between CPMLA and CP-Flow for Fitting Eight Gaussians. CPMLA reaches
the same result in just 3 iterations that CP-Flow takes 10 iterations to achieve.



5.1 Toy Model Study

We first illustrate our approach on a toy example. Specifically, We apply CPMLA to model the
eight Gaussians density from [42]] and [5]. The results, presented in Figure @ show that CPMLA
efficiently fits these distributions. It demonstrates that on synthetic data, CPMLA provides a reliable
approximation of the target distribution without introducing bias. Notably, CPMLA matches CP-
Flow’s 10-iteration result [20] in only 3 iterations, highlighting its superior convergence speed.

5.2 Image Generation

Model type Models FID|
VAE VAE [26] 78.41
Autoregressive PixelCNN [43] 65.93
GAN WGAN-GP [14] 36.40
StyleGAN2-ADA [23] 2.92
Score-Based NCSN [45]] 25.32
NCSN++ [46] 2.20
Flow Glow [27] 45.99
Residual Flow [6] 46.37
EBMs LP-EBM [41]] 70.15
EBM-SR [39]] 44.50
EBM-IG [10] 38.20
CoopVAEBM [57] 36.20
CoopNets [54] 33.61
Flow+EBM NT-EBM [38] 78.12
EBM-FCE [13] 37.30

CoopFlow (T=20) [58] 30.74
CoopFlow (T=30) [58] 21.16

CPMLA (Ours) CPMLAprt (T=20) 20.85
CPMLA (T=30) 21.09

Table 1: FID scores on the CIFAR-10. Our work focuses on improving the sampling efficiency
and quality for the EBM family of models, making them more competitive. While other classes of
generative models like score-based diffusion (e.g., NCSN++) or flow-matching models may achieve
lower (better) FID scores on benchmark datasets, a direct comparison is not the primary goal. EBMs
offer greater modeling flexibility, as they only require specifying an unnormalized energy function,
unlike models requiring specific architectures or tractable noise processes. Our method helps make
this flexibility more practical by closing the sample quality gap. The comparison to CoopFlow, a
strong EBM baseline, demonstrates CPMLA’s superior efficiency in this context.

We evaluate image synthesis performance on three datasets: CIFAR-10 [28]], which consists of 50,000
training images and 10,000 test images across 10 categories; SVHN [37], a dataset with over 70,000
training images and more than 20,000 test images of house numbers; and CelebA [31]], a large dataset
of celebrity faces containing over 200,000 images. For fair comparison, all images are resized to
32 x 32 pixels. We present results under two settings. CPMLA: CP-Flow and EBM trained from
scratch. CPMLAprt: CP-Flow is first pretrained on data, then used to initialize CPMLA training.
Pretraining provides a better initialization, potentially leading to higher quality images.

We present qualitative results (Figure [3) and quantitative FID scores (Table[I). FID scores [17] are
computed based on 50,000 samples. Our models outperform most baselines, achieving lower FID
scores compared to standalone normalizing flows and previous EBM+flow methods [13] 38]].

The results demonstrate that CPMLA is parameter-efficient and effective compared to other coopera-
tive and flow-only approaches. In particular, compared to CoopFlow, CPMLA provides a distinct
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Figure 3: Generated Samples (32 x 32 pixels) by CPMLA from CIFAR-10, SVHN, and CelebA
datasets. These images are produced under the CPMLAprt training setting.

EBM part  Flow part

Models Time (s/1k images) FID|
CoopFlow (T=30) 16.84 21.16 %)I?KR(ZV i;i% 208'27681\1}4
CPMLAprt (T=20) 15.92 20.85 : :

Table 3: Comparison of the param-
eter amount between CoopFlow and
CPMLA. CPMLA achieves lower FID
scores to CoopFlow with only 0.9% pa-
rameter count w.r.t the flow part.

Table 2: Wall-clock time (s/1k images) and FID com-
parison on CIFAR-10 (50k samples). CPMLA achieves
a lower FID than CoopFlow with fewer LMC iterations
and less computation time.

advantage in terms of inference efficiency. (i) As shown in Table[2} CPMLA achieves a lower FID
than CoopFlow with fewer LMC iterations and less computation time. Figure [ further illustrates
how CPMLA’s FID improves faster than CoopFlow’s across sampling steps (7' = 3 to T' = 30),
highlighting its superior convergence speed. (ii) CPMLA’s CP-Flow component uses significantly
fewer parameters (0.27M) than CoopFlow’s normalizing flow (28.78M, see Table EI) Remarkably,
CPMLA outperforms CoopFlow while using only 0.9% of its parameters.

90 —+— CPMLA
—=— CoopFlow

(iii) To further analyze computational cost, we il
compare the total training time of CPMLA and -
CoopFlow on CIFAR-10 under realistic hardware
constraints. When maximizing batch size to fit
within 24GB of VRAM, CoopFlow is estimated 50
to require approximately 38 hours for training,
whereas CPMLA completes in only 10.5 hours.
While a direct per-iteration comparison for a fixed

60

FID

40

30

batch size shows that CPMLA is marginally slower )

(15.7 sfiter vs. 12.0 s/iter for CoopFlow) due to the ’ 0 B » »
more complex CP-Flow architecture, its memory

efficiency allows for larger batches, leading to sig- Figure 4: FID comparison from
nificantly better overall training throughput. This T = 3 toT = 30 between
highlights CPMLA’s superior training efficiency in CPMLA and CoopFlow on CIFAR-
practical, resource-constrained scenarios. 10 dataset. From an inferior initial-

ization, CPMLA demonstrates faster
inference speeds than CoopFlow.



5.3 Image Reconstruction and Inpainting

We evaluate CPMLA for image reconstruction task,
with a focus on the CIFAR-10 testing set as illus-
trated in Figure[6](Appendix[J). The high fidelity of
reconstructions demonstrates the model’s capabil-
ity. This empirical evidence suggests the CPMLA
framework can function effectively for reconstruc-
tion.

We further demonstrate CPMLA for image inpaint-
ing. Let’s assume we have an image represented
by a function 7 : Q C R? — R?, where  is
the domain of the image, and I(x,y) gives the
color at coordinates (z,y). We optimize the ob-
jective energy function Equation [I3] to measure
the difference between the restored region and
the original image. To ensure that the restora-
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Flgure 5: Image inpainting on the CelebA.
The first 17 columns exhibit the inpainting
results at various iterations, while the last

tion process does not alter the undamaged parts
of the original image, we introduce a constraint:
u(z,y) = I(x,y) if M(z,y)=1.

two columns visually compare the masked
images and the originals. CPMLA faithfully
inpaints the masked images.

B = [ ((@9) = ule.)? - Ma.y)dody (13)
Q

Experiments conducted on CelebA, are shown in Figure[5] The first 17 columns show inpainting

results over optimization iterations, offering a dynamic view of the reconstruction process. The

last two columns visually compare the masked images and the originals. Figure[5]shows CPMLA

successfully inpaints masked images from diverse initializations.

6 Limitations and Future works

In our experiments, estimating the Hessian can introduce bias to the optimal point. However,
compared to the exact evaluation of the inverse Hessian, this is a trade-off we must make. While our
experimental results demonstrate effectiveness for diverse sampling tasks, the mirror LSI assumption
(Assumption [£.T) is rather general, as we cannot ensure that the target distributions of different
sampling tasks satisfy this assumption, particularly in EBMs where the target distribution is highly
complex. We note that, like other generative models, improvements could potentially be misused
(e.g., for deepfakes). For future work, we plan to explore the deeper connection between sampling
and optimization. For instance, can optimization techniques (e.g., adaptive step sizes like Adam,
trust regions) accelerate sampling or correct bias? Additionally, higher-order discretizations (e.g.,
Runge-Kutta) might improve convergence rates. We aim to investigate these questions and further
advance the field of sampling and optimization.

7 Conclusions

This paper presented CPMLA, a sampling algorithm developed for Energy-Based Models (EBMs).
The method utilizes Convex Potential Flow (CP-Flow) as a dynamic mirror map, allowing the sam-
pling process to adapt to the underlying geometry of the data distribution. This adaptive mechanism
facilitates sampling with vanishing bias and contributes to sampling efficiency. Theoretical analysis
establishes the algorithm’s convergence properties within the mirror Langevin dynamics framework.
The algorithm demonstrated its applicability and effectiveness in image generation, reconstruction,
and inpainting tasks. Experimental results indicated favorable performance concerning computational
time and parameter count compared to related methods. In summary, CPMLA provides a principled
approach to EBM sampling, integrating theoretical convergence properties with empirical perfor-
mance. The method’s capacity for adaptive sampling suggests its potential utility for enhancing the
application of EBMs in various domains.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Section [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides the full set of assumptions and a complete and correct
proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper (Appendix [I).

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: This paper provides open access to the data (Section [3)), but not to the code.
We will provide an open resource of our code when this paper is accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results (Section [I)).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports appropriate information about the statistical significance of
the experiments (Section [3).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources (Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper mentioned both potential positive societal impacts and negative
societal impacts of the work performed (Section [6).

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: This is challenging.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited.
The license and terms of use explicitly mentioned and are properly respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper uses LLM only for writing, editing and does not involve any
important, original and non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Langevin sampling Many discretizations of Langevin dynamics within Euclidean geometry have
been studied in the literature, with non-asymptotic error bounds derived for various metrics like
Kullback-Leibler divergence, Total Variation, and Wasserstein distance. The most extensively studied
scenarios include cases where the target distribution is m-strongly log-concave [[12} 11} (7} 9} 34] and
those where it is relaxed log-concave [S1} 132} 33]].

Mirror Langevin Dynamics (MLD) extends standard Langevin dynamics by operating in a ’curved’
Riemannian geometry defined by a convex potential, rather than the *flat” Euclidean space. This
allows the sampling process to adapt to the underlying geometry of the data distribution, which can
lead to faster convergence. When the convex potential is quadratic, MLD reduces exactly to standard
Langevin dynamics. MLD has recently gained attention in the field of non-Euclidean geometry
sampling due to its superior convergence properties in constrained optimization problems. Introduced
by [19] as a measure transformation of the classical Langevin dynamics, its convergence under
relaxed log-concavity was investigated by [S9]], where the authors demonstrated convergence to a
Wasserstein ball with non-vanishing bias. [1]] showed vanishing bias under similar conditions as
the step size decreases. [8]] studied convergence using similar functional inequalities, but without
exploring practical applications.

Cooperative learning The cooperative learning concept, first introduced in [53]], involves the joint
maximum likelihood training of a ConvNet-EBM [55]] and a top-down generator [16]]. Similarly, [57]]
replaced the generator in the original CoopNets with a variational autoencoder (VAE) [26] to improve
inference efficiency. Our learning algorithm draws inspiration from the recent Coopflow approach
(58], which collaboratively trains a Langevin flow and a normalizing flow to improve initial samples.

B Optimal Transport

In recent years, there has been increasing interest in applying optimal transport theory to generative
modeling, which considers the training process as a task of minimizing the distance between two
probability distributions. More specifically, the objective is to transform a random distribution into
a target distribution that closely approximates the underlying data distribution, with the distance
between these two distributions often quantified using the Wasserstein distance in the context of
optimal transport. The Wasserstein p-distance between two probability measures 1 and v on a metric
space M with finite p-moments is

1/p
Wy (p,v) = ( inf E(m’y)wvd(m,y)p) (14)
YEL (p,v)

where I'(u,v) is the set of all couplings of p and v. [22] shows that the Langevin dynamics
manifests as the gradient flow of the Kullback-Leibler divergence within the probability measure space,
characterized by the Wasserstein metric, as elucidated through the Fokker-Planck equation. This
observation establishes a more substantial linkage between the realms of sampling and optimization;
see also by the paper [40].

C Mirror Langevin Algorithm for Constrained Sampling

The mirror Langevin algorithm is a powerful technique for sampling from complex distributions,
particularly those with constraints or intricate geometries. It leverages the concept of mirror maps,
which can adapt to the geometric structure of the target distribution, enabling efficient and accurate
sampling. One notable application of the mirror Langevin algorithm is constrained sampling, where
the goal is to draw samples from a population while adhering to specific conditions or constraints.

Constrained sampling involves drawing a set of samples .S from a population U = uy, us, ..., u,
while satisfying predefined constraint conditions expressed as inequalities. The general form of these
constraints can be written as:

C(z):gi(x) <0, i=1,2,...,m (15)

Here, g;(z) represents the constraint functions, and the goal is to ensure that g;(z) < 0 for all i.
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The mirror Langevin algorithm addresses constrained sampling by leveraging mirror maps that can
adapt to the geometry of the constraints. Specifically, we employ CP-Flow as our dynamic mirror
map, which utilizes Implicit Convex Neural Networks (ICNNSs) to approximate arbitrary convex
functions effectively. Given that the derivative of a convex function is monotonic, we can ensure that
the convergence of potential functions implies the convergence of the associated gradient fields, as
stated in the following theorem:

Theorem C.1 (Optimality (Theorem 4 in [20])). Let F' be the Brenier potential of X ~ pandY ~ v,
and let G, be a convergent sequence of differentiable, convex potentials, such that VG, o X — Y
in distribution. Then, V G, converges almost surely to VF'.

In our context, where p represents the unconstrained space and v serves as the convex constraint,
Theorem [C.]] guarantees the existence of a convex potential whose derivative maps p to v. By
leveraging the expressive nature of ICNNs through CP-Flow, we can adapt to the intrinsic geometry
of the constraints, resulting in accelerated convergence during constrained sampling. The mirror
Langevin algorithm’s ability to handle complex constraints makes it a valuable tool for various
applications beyond constrained sampling, such as sampling from EBMs, Bayesian inference, and
more [1]].

D Derivative of CP-Flow

[20] presents an alternative formulation of the gradient as the solution to a convex optimization
problem, eliminating the need to differentiate through the log-determinant estimation process. By
adapting the gradient formula from Appendix C in [6] to the context of convex potentials, and
utilizing Jacobi’s formula* alongside the adjugate representation of the matrix inverse {, we derive
the following identity for any invertible matrix H parameterized by 6:

) 1 9 .1 L OHN\ o L OH
9 logdet H = —— 2 det H = r(adj(H) e ) Lo (B 1S ) =R, [0 TH DD
99 0% det H 96 ¢ det H r(a i >ae> r( ae) [” 00"

(16)

In the last equality, [20] apply the Hutchinson trace estimator using a Rademacher random vector v,
which is an unbiased Monte Carlo gradient estimator.

E Property of Convex Conjugate

G™ is the convex conjugate of G. Then

VG(z) = z"(z) == arg sup (x,x") — G* (z¥)

17
VG* (2*) = z (z¥) := argsup (z,z") — G(x) {an
Hence
z=VG (VG(z)) and 2" =VG (VG (z")) (18)
F Lemma of Convex Conjugate
Lemma F.1. Suppose we have a dualistic structure
£ =VG(E), £€=VG(£) (19)
G* is the Legendre dual of G, which is defined as
G* (&) = K {¢-¢-G(¢)} (20)
Then the Hessian of G* (€*) is written as
%3
VG €)= o @1
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which is the inverse of the Hessian of G(§)

oe*
% VVG(E)

The last step is guaranteed by VG* = VG, which can be shown from Appendix

G Details of Assumptions

Previous investigations into the mirror Langevin algorithm [59] have required the relative p-strong
convexity of f with respect to GG to guarantee convergence. However, our work introduces Assumption
[@.1] which relaxes this requirement and permits consideration of non-strongly convex distributions.

Assumptloncan be transformed as following. Taking h(z) = 4/ dﬂgm) , then Vp

<35 / plz)

()

The D1 (p||7) term represents the KL divergence, often serving as a measure of the distance between
distributions p and 7. On the other hand, the right-hand side term, J&(p), signifies the weighted
Fisher information. As demonstrated by [22], Langevin dynamics can be interpreted as the gradient
flow of the KL divergence within the space of probability measures, equipped with the Wasserstein
metric through the Fokker-Planck equation. This connection establishes a link between sampling and
optimization.In this context, Assumption4.T|can be perceived as the condition of gradient domination
for KL-divergence in the Wasserstein metric.

D (pllm) = / plz) log

‘V og

1
dv = 52T (p) (22)
(V2G(2)] ! p

Assumption [4.2] specifically relates to the interplay between the higher-order derivatives and the
lower-order derivatives of the function. When the secondary derivative is small, it implies that the
first derivative, which is governed by the secondary derivative, is also small. This property ensures the
solution of continuous dynamics and Hessian stability [59], indicating that the underlying geometry
does not undergo rapid changes. Moreover, this property is preserved under Fenchel conjugation (with
the same parameter), affine transformation and summation [36]. The concept of self-concordance is
also prevalent in quadratic optimizations, such as the interior point method, where it guarantees the
convergence performance O (\f log l).
In Assumption H when G(z) = |“2H we regain the conventional definition of a differentiable
function being Lipschitz continuous with a parameter 8. This property has been extensively employed
in prior research. In the case where G = f and a function f satisfies ||V f(2)||(y2 f(4)-1 < L itis
referred to as a barrier function [35]]. This property also emerges in the analysis of Newton’s method
in quadratic optimization scenarios.

In formal algorithms, it is often necessary to have the ~y-relative smooth property in order to ensure
convergence. y-relative smooth is defined by

H [V2G(2)] ' V() — [V2G ()] V()
<7 VG(2) = VG (@) vy

V2G(z') (23)

However, the CPMLA utilizes a distinct approach by employing deterministic gradient steps and
stochastic steps separately. This allows for the utilization of a weaker notion of smoothness assump-
tion, namely Assumption@ Unlike the ~y-relative smooth, which necessitated Lipschitz continuity
across different metrics VG and could be unavoidable when discretizing the geometry, this definition
of relative smoothness only considers the local metric V2G at a single point.

H Proof of Theorem 4.5

Proof. We first clarify which parts of this proof are novel contributions and which are standard
techniques adapted from prior work. Our primary contribution is the adaptation of the convergence
proof of Mirror Langevin Dynamics to a setting where the mirror map is a learnable neural network
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(CP-Flow) and is trained jointly with the target distribution (EBM). The overall structure of the
proof, including the use of the Fokker-Planck equation and the mirror LSI, follows the framework
established by [21]]. Our novel steps include explicitly accounting for the approximation errors from
both the EBM and CP-Flow (d2 and d3) and ensuring the proof holds under standard deep learning
practices like gradient clipping.

For the proof, we analyze the convergence of the sampling distribution p, to the stationary distribution
of the learned EBM, py-. We therefore assume that pg- satisfies the S-Mirror LSI (Assumption 4.1},
as pyp~ is trained to be a close approximation of the target data distribution ™ = pga,.

We decompose the total variation distance using the triangle inequality:

drv (pe; Paaa) < drv (pe, Do) + drv (po+, qo+) + drv (qo+, Pdata) - (24)

where pg~ is the stationary distribution of the energy model and gy~ is the optimal CP-Flow distribu-
tion.

For the first term, following Lemma 1 in [21], we analyze the differential form in primal space.
Lemma 1 in [21] tells us that the differential form of Algorithm [2]in primal space is

dX, = — [V2G (X,)] ' Vf (Xo) dt — [V2G (X,)] ' T (V?’G(Xt) [V2G(Xt)}‘1) dt
2[V2G (X,)] " dw,

- [_ [V2G(2,)] ' V(o) + [V2C(2)] ™ V() = [V2G ()] V(1) (25)

—1

— [V2G (X,)] Tr(VgG(Xt) [V2G(Xt)}‘1)}dt+ 2 [V2G (X,)] dW,

=(V-H ' (Xy) — H ' (Xy) Vf(Xy) + ) dt + /2H1 (X,)dW,

where we denote i = [V2G (X,)] ™ (Vf (X;) — Vf (X)) and H! = [V2G] !

This is a weighted Langevin dynamics with shifted drift &z (the reason of the convergence to a biased
limit).

Now consider the Fokker-Planck equation for the conditional density p;|o (z; | o). For the drift
b=V -H ' - H-'Vf+ i, applying Lemma 3 in [51], we have

Lo (ﬁo) d$0

Ope(x) _ / Ipsjo (z | o)
ot ot

= / [V (prjo (V- Go(x) — Go(2)V f(2))) 4+ (V?, poGo(x)) — V - (pyofio(x))] po (zo) dzo

= (o [ = (7 Gote) = Gol@) V1) + V- (Gl o ) = 7+ (1 [ gl

) ( pojtfio(x )deo>
) ( pojtfio(x )d$0>

=V <P0|t/PtG0VIOg

~v. <P0|t [ Govioe

(26)
where the last equality is because V log ﬁ = V(logp+ fo-).
Now consider the KL-divergence
d dpi Pt / 1 dp dpt
—D 2) = 1 d s ———dx = d 27
o xL(pt|po-) 7 o8 o r+ [ po T dt x (27)
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According to Equation [26] we have

d dpt Pt
—D =[] —1 d
DL (pellpo-) 085, 0
_|v Pt Pt N Pt
= “\ poje | ptGoVlog —dzo | log —dx — [ V- pt [ pojeitodzo | log —dz
Do+ Do Po*
Pt Pt A Pt
= _/Po\t/pt <V10g — G, Vlog >d$0d$+/l)t/ﬂ0|t </~L,V10g >d:cod:c
Do+ Do+ Po~+

2

=-E,, U‘Vlog pe

+E,,, Kﬂ,wog Pt >}
Do~

pg* [VQG]—I

P 2 1 Pt 2

t ~
S _Ept HVIOg +EPO,t [H/J'||2V2G} + ZEPt [HVIOg ‘|

Po= [V2G]71 Do+ [sz]fl
< BBD E i3
<~ Dxr(pellpe) + Eny , [[1il326]

(28)

The third equality refers to the integration by parts formula [(VG(z),v(z))dz = — [ G(x)V -

v(z)dz. The first inequality is because z "y < ||z[|3 + 1||y||3 and the last inequality is from Mirror
LSI (Assumption A.T).

Under Assumption @4.2|- let M := exp (2(D/+/a). We have

Epo. [Il1326] <72 By, [IVG (20) = VG (20) Fgagiany 1]

t 2
— 2. lH—tVf (z0) + \/5/ [V2G ()] aw, ]
0 [V2G ()]t (29)

t
< 272t2EIIVf(:vo)H[szc(x,)rl +4E/O IV2G (25) l{v2c (a1 ds
< 22 L2 + 4ty Md

where the second inequality we use It6 isometry and (a + b)? < 2(a? + b?).

Then if 0 < ¢ < h, we have

d 3
S Dxz(pellpe-) < *gDKL(Pthe*) +29°h? L% + 4hv* Md (30)
which is p
38 38
= (e : tDKL(pt”pg*)) < %t (29?h2L2 + 4hy? Md) 31)
Integrate it for 0 < ¢ < h,

38h

38 2 [ sen
e "Dr(pnllpo-) — DrcL(pollpe-) < @(e 2 —1) (2y°h°L? + 4hn?Md)  (32)

Then
Dicr.(pnllpe-) < e~ % "Dt (pol|pe-) + %(1 — e 7) (29K°L% + 4y Md)  (33)
Iterating the recursion,
Dicr(prlpe-) < e~ F D1 (pol|pe-) + % (29°R°L? + 4hy*Md) (34)

Using Lemma 6 in [21]] for initialization, picking the assumed stepsize, after k > Q (M~2d/B%5),
we have D1, (pt||pe-) < 0.
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Using Pinsker’s inequality, we establish:

1 1)
drv (pe, por) < §DKL(pt|p9*) <4/ 51 (35)

The second term, dry (pg+, gy+ ), represents the approximation error from running the LMC for
a finite number of steps T instead of running it to convergence. This term can be bounded by
summing the incremental changes over the 7" steps. Let pg = pg+ and pr = gy~ be the distributions
at the start and end of the sampling chain. By the triangle inequality for TV distance, we have
drv (pes, gy~ ) < Z?:l drv (pt,pi—1). We can analyze the single-step change using the Fokker-
Planck equation:

Ope(x)
ot

N [
=V (00 552 0)) + L V2o 30

From this, we can estimate the incremental change as dry (ps, pr—1) < %DKL(pt Ipi—1) ~ O(n).
Summing over T steps gives a total error of: dpy (pe+, gg=) ~ O(T'n).

The third term leverages the universality property of CP-Flow (Theorem 3 in [20]). Given that the
initial noise distribution is absolutely continuous with respect to the Lebesgue measure, there exists a
sequence gy, such that dpv (g, , Ddaa) < 03 as n > N.The optimality of CP-Flow (Theorem 4 in
[20]) further guarantees almost sure convergence in distribution of gy, to the optimal Brenier map
g+, ensuring that dry (qy+, Pdaa) < 93.

Combining these results, we conclude that drv (p¢, paa) < 0 = 1/ % + 62 + 0.
O
I Experimental Details
Parameter \ Value
Dataset Size 50,000 samples
Dynamic Mirror Map VG 1 CP-Flow block
Depth 20
Dimh 32
VG Optimizer Adam
VG Activation Gaussian Softplus
VG Initial Learning Rate 0.005
EBM V f 4 linear layers
V f Optimizer Adam
V f Activation Swish
V f Initial Learning Rate 0.005
Batch Size 128
Reported Results After 3 and 10 epochs

Table 4: Experimental setup for toy dataset

Table ] outlines the experimental setup for an Eight Gaussian toy dataset experiment. This setup
includes a dataset size of 50,000 samples, using single CP-Flow block with the Gaussian Softplus
activation function for the Dynamic Mirror Map VG. The optimizer for VG is Adam, with a and an
initial learning rate of 0.005. The EBM V f comprises four linear layers with Swish activation, also
utilizing the Adam optimizer, and an initial learning rate of 0.005. The batch size for this setup is
128, with reported results after 3 and 10 epochs.

Table E]presents the experimental setup for the CIFAR-10, SVHN, and CelebA datasets. We use a
multi-scale structure, involving two CP-Flow blocks, followed by invertible downsampling, and then
another two CP-Flow blocks. All ICNN architectures had two hidden layers. The strong convexity
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Parameter

Value

Datasets CIFAR-10, SVHN, CelebA
Dynamic Mirror Map VG 2 CP-Flow blocks
ICNN Architecture 2 hidden layers
VG Optimizer Adam
VG Activation Gaussian Softplus
VG Initial Learning Rate Se-4
VG Weight Decay Se-5
Mirror Steps 10
Mirror Step Size le-2
EBM V f 3 blocks with 3 convolutional layers
V f Optimizer Adam
V f Activation Swish
V f Initial Learning Rate S5e-3
Batch Size 128
Reported Results After 200 epochs

Table 5: Experimental setup for CIFAR-10, SVHN, and CelebA datasets

CIFAR-10 SVHN CelebA
10.5 12.6 40.2

Training time (hours)

Table 6: Training time on each dataset on eight 3090 GPUs

parameter « (Section @]) is set to le-4. For the EBM in CPMLA, a 3 blocks network is used to
design the negative energy function. The following Table[6| presents training time of our model on
each dataset on eight 3090 GPUs.

In the CPMLAprt setting, we first pretrain a CP-Flow on training examples, and then train a 30-step
mirror Langevin sampling, whose parameters are initialized randomly, together with the pretrained
CP-Flow by following Algorithm 2]

J More Image Generation Results

In Section @ we have shown generated examples from CPMLA. In this section, we first show
the examples generated by LMC on CIFAR-10. Then we compare the examples generated by the
CP-Flow only and CPMLAprt in Figure[8]and[0] We can see huge difference between two algorithms
and our generated examples are meaningful.

Models #Para FID]
NT-EBM 23.8M  78.12
EBM-FCE 449M  37.30
GLOW 442M 4599
Flow++only 28.8M 92.10
CoopFlow 459M  21.16
CPMLA 17.39M  20.85

Table 7: Model size vs. performance comparison (lower is better). CPMLA is lightweight yet highly
effective, showcasing superior efficiency.
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Figure 6: Image reconstruction on the CIFAR-10. The right column showcases the original images.
The left and middle columns feature flow-generated images and the reconstructed images, respectively.

We can see that the reconstruction is almost the same as the original one, which solidifies the stance
that CPMLA functions effectively as a sampling algorithm.

(a) CIFAR-10 (b) SVHN (c) CelebA

Figure 8: CP-Flow results
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Figure 9: CPMLAprt results
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