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Abstract

Currently, masked language modeling (e.g.,001
BERT) is the prime choice to learn contextual-002
ized representations. Due to the pervasiveness,003
it naturally raises an interesting question: how004
do masked language models (MLMs) learn005
contextual representations? In this work, we006
analyze the learning dynamics of MLMs and007
find that it adopts sampled embeddings as an-008
chors to estimate and inject contextual seman-009
tics to representations, which limits the effi-010
ciency and effectiveness of MLMs. To ad-011
dress these problems, we propose TACO, a012
simple yet effective representation learning ap-013
proach to directly model global semantics. To014
be specific, TACO extracts and aligns contex-015
tual semantics hidden in contextualized rep-016
resentations to encourage models to attend017
global semantics when generating contextu-018
alized representations. Experiments on the019
GLUE benchmark show that TACO achieves020
up to 5x speedup and up to 1.2 points average021
improvement over MLM.1022

1 Introduction023

In the age of deep learning, the basis of repre-024

sentation learning is to learn distributional seman-025

tics. The target of distributional semantics can be026

summed up in the so-called distributional hypoth-027

esis (Harris, 1954): Linguistic items with similar028

distributions have similar meanings. To model029

similar meanings, traditional representation ap-030

proaches (Mikolov et al., 2013; Pennington et al.,031

2014) (e.g., Word2Vec) model distributional seman-032

tics by defining tokens using context-independent033

(CI) dense vectors, i.e., word embeddings, and di-034

rectly aligning the representations of tokens in the035

same context. Nowadays, pre-trained language036

models (PTMs) (Devlin et al., 2019; Radford et al.,037

2018; Qiu et al., 2020) expand static embeddings038

into contextualized representations where each to-039

1We will publish all codes on GitHub.
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Figure 1: An illustration of the proposed token-
alignment contrastive objective. It extracts and aligns
the global semantics hidden in contextualized represen-
tations via the gap between contextualized representa-
tions and static embeddings.

ken has two kinds of representations: context- 040

independent embedding, and context-dependent 041

(CD) dense representation that stems from its em- 042

bedding and contains context information. Al- 043

though language modeling and representation learn- 044

ing have distinct targets, masked language model- 045

ing is still the prime choice to learn token represen- 046

tations with access to large scale of raw texts (Pe- 047

ters et al., 2018; Devlin et al., 2019; Raffel et al., 048

2020; Brown et al., 2020). 049

It naturally raises a question: How do masked 050

language models learn contextual representa- 051

tions? Following the widely-accepted understand- 052

ing (Wang and Isola, 2020), MLM optimizes two 053

properties, the alignment of contextualized repre- 054

sentations and the uniformity of representations in 055

the representation space. In the alignment prop- 056

erty, sampled embeddings of masked tokens play 057

as an anchor to align contextualized representa- 058

tions. We find that although such local anchor is 059

essential to model local dependencies, the lack of 060

global anchors brings several limitations. First, 061

experiments show that the learning of contextual 062

representations is sensitive to embedding quality, 063

which harms the efficiency of MLM at the early 064

stage of training. Second, MLM typically masks 065
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multiple target words in the same context, resulting066

in multiple embedding anchors in the same con-067

text. This pushes contextualized representations068

into different clusters and thus harms modeling069

global dependencies.070

To address these challenges, we propose a novel071

Token-Alignment Contrastive Objective (TACO)072

to directly build global anchors. By combing lo-073

cal anchors and global anchors together, TACO074

achieves better performance and faster convergence075

than MLM. Motivated by the widely-accepted be-076

lief that contextualized representation of a token077

should be the mapping of its static embedding on078

the contextual space given global information, we079

propose to directly align global information hid-080

den in contextualized representations at all steps to081

encourage models to attend same global seman-082

tics when generating contextualized representa-083

tions. Concerning possible relationships between084

context-dependent and context-independent repre-085

sentations, we adopt the simplest probing method086

to extract global information via the gap between087

context-dependent and context-independent repre-088

sentations of a token for simplification, as shown089

in Figure 1. To be specific, we define tokens in090

the same context as positive pairs and tokens in dif-091

ferent contexts as negative pairs, to encourage the092

global information among tokens within the same093

context to be more similar compared to that from094

different contexts.095

We evaluate TACO on GLUE benchmark. Ex-096

periment results show that TACO outperforms097

MLM with average 1.2 point improvement and098

5x speedup on BERT-small, and with average 0.9099

point improvement and 2x speedup on BERT-base.100

The contributions of this paper are as follows.101

• We analyze the limitation of MLM and pro-102

pose a simple yet efficient method TACO to103

directly model global semantics.104

• Experiments show that TACO outperforms105

MLM with up to 1.2 point improvement and106

up to 5x speedup on GLUE benchmark.107

2 Understanding Language Modeling108

2.1 Objective Analysis109

The key idea of MLM is to randomly replace a110

few tokens in a sentence with the special token111

[MASK] and ask a neural network to recover the112

original tokens. Formally, we define a corrupted113

sentence as x1, x2, · · · , xL, and feed it into a114

Transformers encoder (Vaswani et al., 2017), the 115

hidden states from the final layer are denoted as 116

h1, h2, · · · , hL. We denote the embeddings of the 117

corresponding original tokens as e1, e2, · · · , eL. 118

The MLM objective can be formulated as: 119

LMLM(x) = − 1

|M|
∑
i∈M

log
exp(mi · ei)∑|V|

k=1 exp(mi · ek)
(1) 120

where M denotes the set of masked tokens and 121

|V| is the size of vocabulary V . mi is hidden state 122

of the last layer at the masked position and can 123

be regarded as a fusion of contextualized repre- 124

sentations of surrounding tokens. Following the 125

widely-accepted understanding (Wang and Isola, 126

2020), Eq.1 optimizes: (1) the alignment between 127

contextualized representations of surrounding to- 128

kens and the contextual-independent embedding of 129

the target token and (2) the uniformity of represen- 130

tations in the representation space. 131

In the alignment part, MLM relies on sampled 132

contextual-independent embeddings of masked to- 133

kens as anchors to align contextualized represen- 134

tations in contexts, as shown in Figure 2. Local 135

anchor is the key feature of MLM. Therefore, the 136

learning of contextualized representations heavily 137

relies on embedding quality. In addition, multiple 138

local anchors tend to pushing contextualized repre- 139

sentations of surrounding tokens closer to different 140

clusters, encouraging models to attend local depen- 141

dencies where global semantics are neglected. 142

Contextualized Representation

Static Embedding

Token Boundary

Alignment

Context
bank

deposit money 
with the bank

the east bank
bank the river

Figure 2: An illustration of the MLM objective. At the
alignment part, it uses static embedding of masked to-
kens to align contextualized representations in the same
context.

2.2 Empirical Analysis 143

To verify our understanding, we conduct compre- 144

hensive experiments to investigate: How does em- 145

bedding anchor affect the learning dynamics of 146

MLM? We re-train a BERT-small (Devlin et al., 147

2019) model with the MLM objective and ana- 148

lyze the changes in its semantic space during pre- 149

training. The training details are described in Ap- 150

pendix A. 151
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Contextualized representation evaluation In152

general, if contextualized representations are well153

learned, the contextualized representations in a154

same context will have higher similarity than that of155

in different contexts. Naturally, we use the gap be-156

tween intra-sentence similarity and inter-sentence157

similarity to evaluate contextual information in con-158

textualized representations. For simplification, we159

call this gap as contextual score. The similarity can160

be evaluated via probing methods like L2 distance,161

Cosine distance. We observe similar findings on162

different probing methods and report Cosine dis-163

tance here for simplification. Figure 3(b) shows164

how contextual score changes during training.165

Embedding similarity evaluation To observe166

how sampled embeddings affect contextualized rep-167

resentation learning, we evaluate the embedding168

similarity between co-occurrent tokens. Motivated169

by the target that co-occurrent tokens should have170

similar representations, we use the similarity score171

between co-occurrent words labeled by humans as172

a kind of evaluation measure. Figure 3(a) shows173

how embedding similarity between co-occurrent174

tokens changes during training.175

The learning of contextualized representations176

heavily relies on embeddings similarity. As we177

can see from Figure 3(a), the embedding similarity178

between co-occurrent tokens first decreases during179

the earliest stage of pre-training. All embeddings180

are randomly initialized with the same distribution.181

The uniformity feature in MLM pushes tokens far182

away from each other and thus embedding simi-183

larity begins to decrease. At the earliest stage of184

training, the contextual score, i.e., the gap between185

intra-context similarity and inter-context similarity186

in Figure 3(b), does not increase. It shows that187

random embeddings provide little help to learn188

contextual semantics. During 5K-10K iterations,189

only when embeddings become closer, contextual-190

ized representations in the same context begin to191

have similar features. At this stage, the randomly192

sampled embeddings usually have similar repre-193

sentations and thus MLM can push contextualized194

tokens closer to each other.195

We further verify the effects of embedding qual-196

ity in Figure 4. We fix embeddings to learn con-197

textualized representations. We can see the model198

initialized with random embedding fails to teach199

contextualized representations to attend sentence200

meanings and representations from different con-201

texts have almost the same similarity. These statis-202

Figure 3: The learning dynamics of MLM. The top fig-
ure (a) and the bottom figure (b) illustrate the similarity
between embeddings of frequently co-occurrent tokens
(e.g., bank and money), and the similarity between con-
textualized representation of tokens from the same con-
text and from different contexts, respectively. These fig-
ures show an embedding bias problem where only the
randomly selected embeddings are similar, contextual-
ized representations in the same context will be aligned
with similar features.

tical observations verify that embedding anchors 203

bring the efficiency and effectiveness problem. 204

Surprisingly, embedding anchors reduce global 205

contextual information in contextualized repre- 206

sentation at the later stage of training. Fig- 207

ure 3(a) shows that embedding similarity begins 208

to drop after 8k steps. It shows that the model 209

learns the specific meanings of co-occurrent to- 210

kens and begins to push them a little bit far away. 211

Since MLM adopts local anchors, these local em- 212

beddings push contextualized representations into 213

different clusters. The contextual score begins to 214

decrease too. This phenomenon proves the embed- 215

ding bias problem where the learning of contextu- 216

alized representations is decided by the selected 217

embeddings where the global contextual semantics 218

are neglected. 219

3 Proposed Approach: TACO 220

To address the challenges of MLM, we propose 221

a new method TACO to combine global anchors 222

and local anchors. We first introduce TC, a token- 223
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Figure 4: An illustration of the embedding bias prob-
lem. Two BERT-small variants are pre-trained from
scratch with fixed embedding that are (a) randomly ini-
tialized, (b) from pre-trained BERT at 250k steps, re-
spectively. These figures demonstrate the importance
of embedding quality for the learning of contextualized
representations.

alignment contrastive loss which explicitly models224

global semantics in Section 3.1, and combine TC225

with MLM to get the overall objective for training226

our TACO model in Section 3.2.227

3.1 Token-alignment Contrastive Loss228

To model global semantics, the objective is ex-229

pected to be capable of explicitly capturing infor-230

mation shared between contextualized representa-231

tion of tokens within the same context. Therefore,232

a natural solution is to maximize the mutual infor-233

mation of contextual information hidden in contex-234

tualized representations in the same context. To235

extract shared contextual information, we first de-236

fine a rule to generate contextual representations237

of tokens by combining embeddings and global238

information. Formally,239

hi = f(ei, g). (2)240

where f is a probing algorithm and ei is the embed-241

ding and g is the global bias of a concrete context.242

In this paper, we adopt the simplest probing method243

to get global information hidden in contextualized244

representations, where245

gi = hi − ei. (3)246

Given a contextualized representation x and an- 247

other representation c of nearby tokens in the same 248

context, we use gx and gc to represent global se- 249

mantics hidden in these representations. The mu- 250

tual information between the two global bias gx 251

and gc is 252

I(gx, gc) =
∑
gx,gc

p(gx, gc) log
p(gx|gc)

p(gx)
(4) 253

According to van den Oord et al. 2019, the In- 254

foNCE loss serves as an estimator of mutual infor- 255

mation of x and c: 256

I(gx, gc) ≥ log(K)− L(gx, gc) (5) 257

where L(gx, gc) is defined as: 258

L(gx, gc) = −E

[
log

f(gx, gc)

f(gx, gc) +
∑K

k=1 f(gx, g
−
c,k)

]
(6) 259

where g−c,k is the k-th negative sample of x and K 260

is the size of negative samples. Hence minimizing 261

the objective L(gx, gc) is equivalent to maximiz- 262

ing the lower bound on the mutual information 263

I(gx, gc). This objective contains two parts: posi- 264

tive pairs f(gx, gc) and negative pairs f(gx, g−c,k). 265

Previous study (Chen et al., 2020) has shown 266

that Cosine similarity with temperature performs 267

well as the score function f in InfoNCE loss (Chen 268

et al., 2020). Following them, we take 269

f(gx, gc) =
1

τ

gx · gc
‖gx‖‖gc‖

(7) 270

where τ is the temperature hyper-parameter and 271

‖ · ‖ is `2-norm function. 272

Contextualized representation: To get global 273

bias gx and gc following Eq. 3, we adopt the 274

widely-used Transformer (Vaswani et al., 2017) 275

as the encoder and take the last hidden states as 276

the contextualized representations hx and hc. For- 277

mally, suppose a batch of sequences {si} where 278

i ∈ {1, · · · , n}. We feed it into the Transformer 279

encoder to obtain contextualized representations, 280

hi
1, hi

2, · · · , hi
|si| where hi

j ∈ Rd. 281

Positive pairs: Given each token x, we randomly 282

sample a positive sample c from nearby tokens in 283

the same context (sequence) within a window span 284

where W is the window size. 285

Negative pairs: Given each token x, we sample 286

K tokens from other sequences in this batch as 287

negative samples ck. 288
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The Token-alignment Contrastive (TC) loss is289

applied to every token in a batch:290

LTC =
1

N

N∑
i=1

|si|∑
j=1

L(gi
j , g

i
jc) (8)291

where N is the number of tokens of this batch;292

si is the i-th sequence; j and jc is tokens in si293

where jc 6= j; gi is the global semantics hidden in294

contextualized representation of token si. gi
j and295

gi
jc

are generated via:296

gi
j = hi

j − eij (9)297

gi
jc = hi

jc − eijc (10)298

where hi
j and eij are the contextualized represen-299

tation and static embedding, respectively. hi
jc

and300

eijc are the contextualized representation and static301

embedding of the sampled token in the context.302

3.2 Training Objective303

As described before, the token-alignment con-304

trastive loss LTC is designed to model global de-305

pendencies while MLM is able to capture local306

dependencies. Therefore, we can better model con-307

textualized representations by combining the token-308

alignment contrastive loss LTC and the MLM loss309

to get our overall objective LTACO:310

LTACO = LTC + LMLM (11)311

We implement it in a multi-task learning manner312

where all objectives are calculated within one for-313

ward propagation, which only introduces negligible314

extra computations.315

4 Experiments316

4.1 Experimental Settings317

Training Following BERT (Devlin et al., 2019),318

we select the BooksCorpus (800M words after319

WordPiece tokenization) (Zhu et al., 2015) and En-320

glish Wikipedia (4B words) as pre-training corpus.321

We pre-train two variants of BERT models: BERT-322

small and BERT-base. All models are equipped323

with the vocabulary of size 30,522, trained with324

15% masked positions for MLM. The maximum325

sequence length is 256 and batch size is 1,280.326

We adopt optimizer AdamW (Loshchilov and Hut-327

ter, 2019) with learning rate 1e-4. All models are328

trained until convergence. To be specific, the small329

model is trained up to 250k steps with a warm-up330

of 2.5k steps. The base model is trained up to 500k331

steps with a warm-up of 10k steps. For TACO, we 332

set the positive sample window size W to 5, the 333

negative sample number K to 50, and the tempera- 334

ture parameter τ to 0.07 after a slight grid-search 335

via preliminary experiments. More pre-training 336

details can be found in Appendix A. 337

During fine-tuning models, we conduct a grid 338

search over batch sizes of {16, 32, 64, 128}, learn- 339

ing rates of {1e-5, 2e-5, 3e-5, 5e-5}, and training 340

epochs of {4, 6} with an Adam optimizer (Kingma 341

and Ba, 2015). We use the open-source pack- 342

ages for implementation, including HuggingFace 343

Datasets2 and Transformers3. All the experiments 344

are conducted on 16 GPU chips (32 GB V100). 345

Evaluation We evaluate methods on the GLUE 346

benchmark (Wang et al., 2019). Specifically, we 347

test on Microsoft Research Paraphrase Matching 348

(MRPC) (Dolan and Brockett, 2005), Quora Ques- 349

tion Pairs (QQP)4 and STS-B (Conneau and Kiela, 350

2018) for Paraphrase Similarity Matching; Stan- 351

ford Sentiment Treebank (SST-2) (Socher et al., 352

2013) for Sentiment Classification; Multi-Genre 353

Natural Language Inference Matched (MNLI-m), 354

Multi-Genre Natural Language Inference Mis- 355

matched (MNLI-mm) (Williams et al., 2018), Ques- 356

tion Natural Language Inference (QNLI) (Ra- 357

jpurkar et al., 2016) and Recognizing Textual En- 358

tailment (RTE) (Wang et al., 2019) for the Natural 359

Language Inference (NLI) task; The Corpus of 360

Linguistic Acceptability (CoLA) (Warstadt et al., 361

2019) for Linguistic Acceptability. 362

Following Devlin et al. (2019), we exclude 363

WNLI (Levesque, 2011). We report F1 scores for 364

QQP and MRPC, Spearman correlations for STS- 365

B, and accuracy scores for the other tasks. For 366

evaluation results on validation sets, we report the 367

average score of 4 fine-tunings with different ran- 368

dom seeds. For results on test sets, we select the 369

best model on the validation set to evaluate. 370

Baselines We mainly compare TACO with MLM 371

on models BERT-small and BERT-base. In ad- 372

dition, we also compare TACO with related con- 373

trastive methods: a sentence-level contrastive 374

method BERT-NCE and a span-based contrastive 375

learning method INFOWORD, both from Kong 376

2https://github.com/huggingface/
datasets

3https://github.com/huggingface/
transformers

4https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs
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Approach MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Validation Set
MLM-250k 76.9 / 77.4 85.7 86.2 89.0 28.8 85.6 85.9 59.6 75.0
TACO-50k 76.7 / 76.8 85.2 85.0 87.5 31.3 85.6 87.1 59.1 74.9
TACO-250k 77.9 / 78.4 86.1 86.5 88.9 34.2 86.1 88.1 59.5 76.2

Test Set MLM-250k 77.5 / 76.5 68.2 85.6 89.3 27.9 76.9 82.6 60.6 71.7
TACO-250k 78.0 / 76.9 67.6 86.3 89.5 31.2 77.8 84.4 58.4 72.2

Table 1: Results on BERT-small. We report the results on GLUE validation sets in the upper part and the test
results in the bottom part. We run 4 experiments with different seeds on each task and report the average score.
TACO outperforms BERT with 1.2 point improvement and 5× speedup on validations sets. On test sets, TACO
also obtains better results on 6 out of 8 tasks.

Approach MNLI QQP QNLI SST-2 Avg.

MLM-25% 77.8 85.7 85.8 87.2 84.1
MLM-100% 76.9 85.7 86.2 89.0 84.5
TACO-25% 77.8 85.7 86.1 88.4 84.5
TACO-100% 77.9 86.1 86.5 88.9 84.9

Table 2: TACO trained on 25% data achieves competi-
tive results with MLM trained on full data. All results
are reported on GLUE validation sets with BERT-small.
Here we sample 4 tasks with the largest amount of train-
ing data.

et al. (2020). We directly compare TACO with the377

results reported in their paper.378

4.2 Results on BERT-Small379

Table 1 and Figure 5 show the results of TACO380

on BERT-small. As we can see, compared with381

MLM with 250k training steps ( convergence steps),382

TACO achieves comparable performance with only383

1/5 computation budget. By modeling global de-384

pendencies, TACO can significantly improve the385

efficiency of contextualized representation learning.386

In addition, when pre-trained with the same steps,387

TACO outperforms MLM with 1.2 average score388

improvement on the validation set.389

In addition to convergence, we also compare390

TACO and MLM on fewer training data. The re-391

sults are shown in Table 2. We sample 4 tasks with392

the largest amount of training data for evaluation.393

As we can see, TACO trained on 25% data can394

achieve competitive results with MLM trained on395

full data. These results also verify the data effi-396

ciency of our method, TACO.397

4.3 Results on BERT-Base398

We also compare TACO with MLM on base-sized399

models, which are the most commonly used mod-400

els according to the download data from Hugging-401

face5 (Wolf et al., 2020). First, from Table 3,402

5https://huggingface.co/models

Figure 5: Results on BERT-small. All results are re-
ported on GLUE validation sets. TACO achieves better
results and 5× speedup than MLM.

we can see that TACO consistently outperforms 403

MLM under all pre-training computation budgets. 404

Notably, TACO-250k achieves comparable perfor- 405

mance with MLM-500k, which saves 2x computa- 406

tions. Similar results are observed on TACO-100k 407

and BERT-250k. These results demonstrate that 408

TACO can achieve better acceleration over MLM. 409

It is also a significant improvement compared to 410

previous methods (Gong et al., 2019) focusing on 411

accelerating BERT but only with slight speedups. 412

In addition, as shown in Table 4, TACO achieves 413

competitive results compared to BERT-NCE and 414

INFOWORD, two similar contrastive methods. 415

5 Discussion 416

5.1 TACO and MLM 417

To better understand how TACO works, we con- 418

duct a quantitative comparison on the learning dy- 419

namic for BERT and TACO. Similar to Section 2.2, 420

we plot the Cosine similarity among contextual- 421

ized representations of tokens in the same context 422

(intra-context) and different contexts (inter-context) 423

in Figure 6. We find that the learning dynamic 424

of TACO significantly differs from that of MLM. 425

6
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Approach MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

MLM-100k 80.7 86.4 89.3 90.5 47.4 86.0 85.0 56.6 77.7
MLM-250k 83.0 87.4 90.4 91.8 48.6 87.1 87.5 57.8 79.2
MLM-500k 84.2 87.9 91.1 92.1 51.1 87.9 89.8 63.4 80.9

TACO-100k 81.5 87.4 89.4 90.3 46.4 87.2 87.8 62.8 79.1
TACO-250k 83.8 87.9 90.2 91.4 50.7 87.9 89.3 63.5 80.6
TACO-500k 84.6 88.1 90.8 92.3 53.4 88.5 90.7 66.3 81.8

Table 3: Results on BERT-base. All results are reported on GLUE validation sets. For all results, we run 4
experiments with different seeds and report the average score. The MNLI-matched score is reported here. The best
results are shown in bold. TACO outperforms MLM with 2× speedup and 0.9 point improvement.

Approach MNLI(m/mm) QQP QNLI SST-2 Avg.

BERT-NCE 83.2 / 83.0 70.5 90.9 93.0 84.1
INFOWORD 83.7 / 82.4 71.0 91.4 92.5 84.2
TACO 84.5 / 83.5 71.7 91.6 93.2 84.9

Table 4: TACO achieves the best among contrastive-based methods. All results are reported on GLUE test sets
with BERT-base. For each task, we report test results of the checkpoint performing best on validation sets.

Specifically, for TACO, the intra-context represen-426

tation similarity remains high and the gap between427

intra-context similarity and inter-context similarity428

remains large at the later stage of training. This con-429

firms that TACO can better fulfill global semantics,430

which may contribute to the superior downstream431

performance.432

5.2 Ablation Study433

TACO is implemented as a token-level contrastive434

loss associated with the MLM objective. The im-435

provement might come from two parts, including436

1) more supervision signals from all token losses437

and 2) the contrastive loss to strengthen global de-438

pendencies. It is helpful to figure out which factor439

is more important for TACO. To this end, we in-440

troduce two variants, one is a concentrated-version441

TACO, where the contrastive loss is only built on442

15% masked positions. The other is an extended443

MLM, where not only 15% masked positions are444

asked to recover the original token, so do the rest445

85% unmasked positions. The results on small446

models are shown in Figure 6.447

As we can see, the performance of TACO de-448

creases if we sample a part of token positions to449

implement TC objectives. It shows that more su-450

pervision signals benefit the final performance of451

TACO. However, simply adding more supervision452

signals by predicting unmasked tokens does not453

help MLM too much. Even equipped with the ex-454

tra 85% token prediction (TP) loss, MLM+TP does455

not show significant improvements and it is notice-456

able that the performance of MLM+TP starts to457

drop after 150k steps. This further confirms the 458

effectiveness of TC loss by strengthening global 459

dependencies. 460

6 Related Work 461

6.1 Language Representation Learning 462

Classic language representation learning meth- 463

ods (Mikolov et al., 2013; Pennington et al., 2014) 464

aims to learn context-independent representation 465

of words, i.e., word embeddings. They gener- 466

ally follow the distributional hypothesis (Harris, 467

1954). Recently, the pre-training then fine-tuning 468

paradigm has become a common practice in NLP 469

because of the success of pre-trained language 470

models like BERT (Devlin et al., 2019). Context- 471

dependent (or contextualized) representations are 472

the basic characteristic of these methods. Many 473

existing contextualized models are based on the 474

masked language modeling objective, which ran- 475

domly masks a portion of tokens in a text sequence 476

and trains the model to recover the masked tokens. 477

Many previous studies prove that pre-training with 478

the MLM objective helps the models learn syntac- 479

tical and semantic knowledge (Clark et al., 2019). 480

There have been numerous extensions to MLM. For 481

example, XLNet (Yang et al., 2019) introduced the 482

permutated language modeling objective, which 483

predicts the words one by one in a permutated or- 484

der. BART (Lewis et al., 2020) and T5 (Raffel et al., 485

2020) investigated several denoising objectives and 486

pre-trained an encoder-decoder architecture with 487

the mask span infilling objective. In this work, we 488
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Figure 6: The left figure (a) shows the intra-context similarity and inter-context similarity during pre-training.
The right figure (b) shows two ablations of TACO: a concentrated-version TACO (MLM and TC on the same
15% positions) and a token-level MLM version (predicting the original tokens on 15% masked positions and the
remained 85% unmasked positions).

focus on the key MLM objective and aim to explore489

how MLM objective helps learn contextualized rep-490

resentation.491

6.2 Contrastive-based SSL492

Apart from denoising-based objectives, contrastive493

learning is another promising way to obtain self-494

supervision. In contrastive-based self-supervised495

learning, the models are asked to distinguish the496

positive samples from the negative ones for a given497

anchor. Contrastive-based SSL method was first498

introduced in NLP for efficient learning of word499

representations by negative sampling, i.e., SGNS500

(Word2Vec (Mikolov et al., 2013)). Later, simi-501

lar ideas were brought into CV field for learning502

image representation and got prevalent, such as503

MoCo (He et al., 2020), SimCLR (He et al., 2020),504

BYOL (Caron et al., 2020), etc.505

In the recent two years, there have been many506

studies targeting at reviving contrastive learning507

for contextual representation learning in NLP. For508

instance, CERT (Fang et al., 2020) utilized back-509

translation to generate positive pairs. CAPT (Luo510

et al., 2020) applied masks to the original sentence511

and considered the masked sentence and its origi-512

nal version as the positive pair. DeCLUTR (Giorgi513

et al., 2020) samples nearby even overlapping spans514

as positive pairs. INFOWORD (Kong et al., 2020)515

treated two complementary parts of a sentence as516

the positive pair. However, the aforementioned517

methods mainly focus on sentence-level or span-518

level contrast and may not provide dense self-519

supervision to improve efficiency. Unlike these520

approaches, TACO regards the global semantics521

hidden in contextualized token representations as 522

the positive pair. The token-level contrastive loss 523

can be built on all input tokens, which provides a 524

dense self-supervised signal. 525

Another related work is ELECTRA (Clark et al., 526

2020). ELECTRA samples machine-generated to- 527

kens from a separate generator model and trains the 528

model to discriminate between machine-generated 529

tokens and original tokens. Their construction 530

of positive pairs is mostly heuristic. Unlike this 531

method, TACO does not require architectural modi- 532

fications and can serve as a plug-and-play auxiliary 533

objective, largely improving pre-training efficiency. 534

7 Conclusion 535

In this paper, we propose a simple yet effective ob- 536

jective to learn contextualized representation. Tak- 537

ing MLM as an example, we investigate whether 538

and how current language model pre-training ob- 539

jectives learn contextualized representation. We 540

find that the MLM objective mainly focuses on 541

local anchors to align contextualized representa- 542

tions, which harms global dependencies modeling 543

due to an “embedding bias” problem. Motivated 544

by these problems, we propose TACO to directly 545

model global semantics. It can be easily combined 546

with existing LM objectives. By combining lo- 547

cal and global anchors, TACO achieves up to 5× 548

speedups and up to 1.2 improvements on GLUE 549

score. This demonstrates the potential of TACO 550

to serve as a plug-and-play approach to improve 551

contextualized representation learning. 552
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A Experiment Details770

A.1 Pre-training Hyper-parameters771

All pre-training approaches involved in experi-772

ments use the same pre-training hyper-parameters773

but do not include BERT-NCE and INFOWORD.774

Results of BERT-NCE and INFOWORD are di-775

rectly cited from the original paper (Kong et al.,776

2020). Following Liu et al. (2019), we use dy-777

namic token masking where the masked positions778

are decided on-the-fly.779

TACO introduces three extra hyper-parameters,780

including negative sample size K, window size W781

and temperature τ . We set the temperature τ as a782

small value, 0.07, following Fang et al. (2020). By783

searching for the best K out of {10, 50} and W784

out of {3, 5, 10, 50} on the small TACO model,785

we found that TACO with K = 50 and W = 5786

performs relatively well, so we also apply these787

hyper-parameter choices for base-sized TACO. The788

full set of pre-training hyper-parameters are listed789

in Table 5.790

A.2 Fine-tuning Details791

For small-sized models, we fine-tune all saved792

checkpoints (5k, 10k, 20k, 30k, 40k, 50k, 100k,793

150k, 200k, 250k-step) of different pre-trained794

models (TACO and its ablations) with the same795

hyper-parameters on each task. And we repeat fine-796

tunning 4 times with different random seeds and797

report the average score in Table 1. This setting798

helps make a fair comparison among models and799

avoids a large amount of grid search runs. The task-800

specific hyper-parameters for small-sized models801

are listed in Table 7.802

For base-sized models, we save models at 100k803

steps, 250k steps, and 500k steps, respectively. Dur-804

ing fine-tunning, we conduct multiple fine-tuning805

runs with different task-specific hyper-parameter806

combinations as shown in Table 8. Concretely, we807

randomly sample 6 combinations of task-specific808

hyper-parameters and report the average score.809

Then we select the best-performing run of 500k-810

step checkpoints (converged) for testing.811

A.3 Statistic Details812

Embedding Similarity We calculate Cosine813

similarity of all pairs of frequently co-occurrent814

words labeled by human annotators to plot the sim-815

ilarity curve in Figure 3(b).816

Intra-/Inter-context Similarity For every token 817

wi in the text, we randomly sample a positive to- 818

ken wj 6=i within the same context (sentence) and 819

another token wk from other sentences. As men- 820

tioned in Section 2.2, we take BERT (Devlin et al., 821

2019) as our encoder to get contextualized represen- 822

tations for h. We mainly adopt the Cosine similar- 823

ity as the measurement and calculate intra-context 824

similarity (between hi and hj) and inter-context 825

similarity (between hi and hk) over the training 826

corpus. 827
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Pre-training Hyper-parameters Small Base

Parameters Shared by
All Approaches

Number of Layers 4 12
Hidden Size 512 768
Hidden Layer Activation Function gelu gelu
FFN Inner Hidden Size 2,048 3,072
Attention Heads 8 12
Attention Head Size 64 64
Embedding Size 512 768
Vocab Size 30,522 30,522
Max Position Embeddings 512 512
Max Sequence Length 256 256
Attention Dropout 0.1 0.1
Dropout 0.1 0.1
Initializer Range 0.02 0.02
Learning Rate Decay Linear Linear
Learning Rate 1e-4 1e-4
Max Gradient Norm 1.0 1.0
Adam ε 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Weight Decay 0.01 0.01
Batch Size 1,280 1,280
Train Steps 250k 500k
Warm-up Steps 2,500 10,000
FP16 True True
Mask Percentage 15 15

TACO
Only

Negative Sample Size K 50 50
Positive Sample Window Size W 5 5
Temperature Parameter τ 0.07 0.07

Table 5: Hyper-parameters during pre-training.

Fine-tuning Hyper-parameters Small/Base

Parameters Shared by
All Models

Max Sequence Length 128
Attention Dropout 0.1
Dropout 0.1
Initializer Range 0.02
Learning Rate Decay Linear
Max Gradient Norm 1.0
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Weight Decay 0.0
FP16 False

Table 6: Hyper-parameters during fine-tuning.

Task Learning Rate Batch Size Train Epochs Warm-up Steps

MNLI 5e-5 64 6 2,000
QQP 5e-5 64 6 2,000
QNLI 5e-5 64 4 200
SST-2 5e-5 64 4 200
CoLA 5e-5 32 4 100
STS-B 5e-5 32 4 100
MRPC 5e-5 32 4 100
RTE 5e-5 32 4 100

Table 7: Task-specific hyper-parameters for small models during fine-tuning.
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Task Learning Rate Batch Size Train Epochs Warm-up Steps

MNLI {1e-5, 2e-5, 3e-5, 5e-5} {32, 64, 128} {4, 6, 8} {1000, 2000}
QQP {1e-5, 2e-5, 3e-5, 5e-5} {32, 64, 128} {4, 6, 8} {1000, 2000}
QNLI {1e-5, 2e-5, 3e-5, 5e-5} {32, 64} {4, 6} {100, 200, 1000}
SST-2 {1e-5, 2e-5, 3e-5, 5e-5} {16, 32, 64} {4, 6} 200
CoLA {1e-5, 2e-5, 3e-5, 5e-5} {16, 32, 64} {4, 6} 100
STS-B {1e-5, 2e-5, 3e-5, 5e-5} {16, 32, 64} {4, 6} 100
MRPC {1e-5, 2e-5, 3e-5, 5e-5} {16, 32, 64} {4, 6} 100
RTE {1e-5, 2e-5, 3e-5, 5e-5} {16, 32, 64} {4, 6, 8} 100

Table 8: Task-specific hyper-parameters for base models during fine-tuning.
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