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Abstract001

Tokenization plays a pivotal role in multilin-002
gual NLP. However, existing tokenizers are of-003
ten skewed towards high-resource languages,004
limiting their effectiveness for linguistically di-005
verse and morphologically rich languages such006
as those in the Indian subcontinent. This pa-007
per presents a comprehensive intrinsic evalu-008
ation of tokenization strategies across 17 In-009
dian languages. We quantify the trade-offs010
between bottom-up and top-down tokenizer011
algorithms (BPE and Unigram LM), effects012
of vocabulary sizes, and compare strategies013
of multilingual vocabulary construction such014
as joint and cluster-based training. We also015
show that extremely low-resource languages016
can benefit from tokenizers trained on related017
high-resource languages. Our study provides018
practical insights for building more fair, effi-019
cient, and linguistically informed tokenizers020
for multilingual NLP.021

1 Introduction022

Tokenization is the process of segmenting raw text023

into smaller units/tokens (words, subwords, char-024

acters, etc.) which can help in efficient process-025

ing by the computational models, particularly in026

Large Language Models (LLMs). Tokenizer step027

forms a fundamental step in any Natural Language028

Processing (NLP) task, and hence the quality of029

the tokenizer impacts the model accuracy, training030

speed, especially in multilingual settings. This step031

further influences how well a model understands032

the linguistic structure and semantics of the input033

and how well it handles the vocabulary coverage.034

Most of the widely used tokenizers are designed035

primarily based on English because of the large-036

scale data availability and research conducted on037

English. These tokenizers are optimized for the038

linguistic structure, morphology, spacing and lim-039

ited inflective properties of English and other re-040

lated languages. There’s a widespread tendency to041

reuse the same tokenization configurations across 042

Indic languages, despite their distinct characteris- 043

tics. Such an English-centric design for a tokenizer 044

poses a challenge when applied to various other lan- 045

guages, especially those with rich morphology, ag- 046

glutinative properties, and complex scripts. Given 047

the significance of a good quality tokenizer, it is 048

important to perform a detailed study of the work- 049

ing and the influence of various types of tokenizers 050

on language models and other downstream tasks. 051

Zouhar et al. (2023) and Ali et al. (2024) conduct 052

an extensive study to understand the influence of 053

tokenization with the help of various intrinsic and 054

extrinsic evaluation metrics. 055

While previous works Rust et al. (2021); Lim- 056

isiewicz et al. (2023) have addressed tokenizer eval- 057

uation in multilingual contexts, they have largely 058

overlooked Indic languages. To the best of our 059

knowledge, this is the first large-scale intrinsic eval- 060

uation focusing on tokenization behavior across 061

a typologically and script-wise diverse set of 17 062

Indian languages. Given the rich morphological 063

and lexical characteristics of Indian languages and 064

the script diversity, it’s crucial to study how well 065

the tokenizers are able to capture these character- 066

istics effectively. In this work, we present differ- 067

ent methods of tokenizer training and vocabulary 068

building, with a focus on multilingual Indian lan- 069

guages, and perform various intrinsic evaluations 070

to understand the tokenizer’s ability to capture the 071

above-mentioned characteristics of the languages. 072

We particularly focus on the most widely used to- 073

kenizers viz., Byte Pair Encoding (BPE) (Sennrich 074

et al., 2016) and Unigram Language Model (Kudo, 075

2018)1, with vocabulary size ranging from 32K to 076

256K. 077

Our contributions are: (1) we investigate the per- 078

formance and impact of multilingual tokenization 079

for 17 Indic languages from 2 language families, 080

1https://github.com/google/sentencepiece
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viz., Indo-European and Dravidian, (2) analyse the081

impact of Indian language character normalization082

on the tokenizer efficiency, and (3) study the trans-083

fer capability of multilingual tokenizers on similar,084

but extremely low-resource languages.085

2 Subword Tokenization086

Subword tokenization is a fundamental technique087

in modern NLP, particularly for LLMs. Recent088

work has highlighted the critical roles of tokeniza-089

tion in multilingual settings with implications for090

both model performance and token fairness (Petrov091

et al., 2023; Ali et al., 2024). This issue is espe-092

cially pronounced for Indic languages, which cover093

large languages with diverse scripts, rich morphol-094

ogy, and limited representation in the pretraining095

corpus. To investigate the multilingual tokenization096

for Indic languages, we conduct an evaluation of097

various methods and algorithms.098

2.1 Data099

We utilize the Sangraha corpus (Khan et al., 2024),100

which offers higher-quality verified data. We sam-101

ple 10% of the verified data and retain only the lan-102

guages with more than 10k rows, resulting in a se-103

lection of 17 Indic languages from Indo-European104

and Dravidian language families. Further, we ex-105

clude sentences containing more than ten words106

written in Roman script as these are likely code-107

mixed or non-standard. To ensure a balanced mul-108

tilingual training corpus, we follow the sampling109

strategy of (Conneau and Lample, 2019), with a110

temperature parameter α = 0.3. (Refer Appendix111

A for detailed statistics)112

2.2 Approaches113

To obtain multilingual tokenizers, we adopt two114

methods: joint training and cluster-based training.115

2.2.1 Joint116

In this method, the data for all languages is con-117

catenated into a single corpus, and the tokenizer118

is trained on this combined data. This method is119

straightforward and widely used. However, it may120

disproportionally favor high-resource languages121

during training, leading to under-representation of122

tokens from low-resource languages.123

2.2.2 Cluster124

In cluster-based method (Chung et al., 2020), lan-125

guages that are typologically or script-wise similar126

are grouped into clusters Separate tokenizers are127

trained for each cluster, and the resulting vocabu- 128

lary is then merged to get a final multilingual vocab- 129

ulary. This approach reduces over-segmentation in 130

low-resource languages by preserving vocabulary 131

in each cluster. (Refer Appendix B). 132

3 Experiments and Results 133

We train a total of ten tokenizers for 17 Indian lan- 134

guages using existing algorithms: BPE and ULM. 135

To assess the quality of tokenization for each lan- 136

guage individually, we use a parallel corpus com- 137

prising 997 sentences from the FLORES-200 dev 138

set (NLLB Team, 2022). Recent work by Ali et al. 139

(2024) highlights that the implementation of BPE 140

varies across tokenization libraries such as Hug- 141

gingface2 and SentencePiece. Based on their find- 142

ing3, we train all tokenizers in our experiments 143

using SentencePiece library. The details of the hy- 144

perparameter settings used are presented in Table 145

7. 146

Tokenization quality can be evaluated intrinsi- 147

cally or extrinsically. Intrinsic evaluation involves 148

the metrics that can be applied directly to the to- 149

kenized output and are computed independently 150

of downstream tasks. Whereas, extrinsic evalua- 151

tion is the process of measuring the tokenizer’s 152

quality based on downstream tasks, which can be 153

computationally expensive and may have conflat- 154

ing effects with model capacity and tasks consid- 155

ered. In this work, we focus on intrinsic evaluation 156

methods, given the simplicity, speed of computa- 157

tion, generalizability, and coverage of a large num- 158

ber of languages. In addition, these metrics allow 159

for early feedback for any underlying model be- 160

cause of their task-agnostic nature. Following are 161

the intrinsic evaluation metrics considered in this 162

study. (i) Fertility (Ali et al., 2024) (ii) Character 163

Per Token (CPT) (Limisiewicz et al., 2023) (iii) 164

IndicMorphScore (iv) Word Fragmentation Rate, 165

(v) Parity Ratio (Petrov et al., 2023). 4 166

3.1 Impact of Normalization 167

To investigate the impact of Indic script-specific 168

normalization, we trained tokenizers on both nor- 169

malized and non-normalized corpora using the joint 170

training approach. We apply script-level normal- 171

ization on the sampled corpus using the Indic- 172

2https://github.com/huggingface/tokenizers
3Their findings indicate that SentencePiece generally

yields better results than Huggingface implementation.
4Considering the space limitation, we have added the defi-

nitions of each of the metrics in Appendix D.2
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Algorithm Vocab
128k 256k

NN N NN N

BPE 1.717 1.701 1.568 1.552
ULM 1.695 1.680 1.575 1.563

Table 1: Average fertility scores reported across 17 lan-
guages in a joint setting. Here, NN and N represent
Non-normalized and normalized corpora, respectively.
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Figure 1: IndicMorphScore

NLP library (Kunchukuttan, 2020), which stan-173

dardizes Unicode characters and diacritics across174

Indic scripts. Additionally, we apply a custom175

normalization rule to convert words with anusvāra176

into the corresponding nasal consonant for all lan-177

guages. This ensures that the training corpus is178

standardized and with fewer character variations.179

Table 1 presents the average fertility scores across180

17 languages for tokenizers trained using two sub-181

word segmentation algorithms: BPE and ULM.182

For both 128k and 256k vocabulary sizes, tokeniz-183

ers trained on normalized corpora achieved lower184

fertility scores compared to non-normalized data.185

Detailed per-language fertility scores for 32k, 64k,186

128k, and 256k vocabulary are provided in Table 8.187

Findings: Normalization plays an important role188

in building a multilingual tokenizer for Indian lan-189

guages, with language-specific rules–such as con-190

version of anusvāra into a nasal consonant form–191

improving tokenization quality.192

3.2 Vocabulary size193

There exists a trade-off between monolingual and194

multilingual tokenizers as discussed in Section D.6.195

While monolingual tokenizers outperform multilin-196

gual tokenizers on intrinsic metrics such as fertility,197

characters per token, and average sequence length,198

multilingual tokenizers allow vocabulary from mul-199

tiple languages, facilitating cross-lingual transfer.200

Increasing the vocab size in multilingual tokenizers 201

from 32k to 256k achieves better scores in terms 202

of fertility, characters per token, and fragmentation 203

rate as reported in Table 2. However, a larger vo- 204

cabulary comes with an added cost of computation 205

during the modeling of large language models. 206

Variance in Token count 207

Table 3 shows the percentage of vocabulary over- 208

lap for different tokenizer pairs. Interestingly, the 209

percentage overlap increases consistently from 32k 210

to 128k, but then decreases for the 256k vocabulary. 211

This trend is seen in all 4 cases. Our hypothesis for 212

this change in trend is that, with the vocab size of 213

128k, the tokenizer captures most of the frequent 214

tokens from all the languages under consideration, 215

after which the inclusion of additional tokens be- 216

comes increasingly arbitrary, leading to a decrease 217

in overlap across independently trained tokenizers. 218

When we use a multilingual tokenizer to tokenize 219

parallel sentences in different languages, ideally, 220

the total number of tokens across the languages 221

should be equal. Considering this idea, we use the 222

variance of the total token count of all languages as 223

another evaluation metric to measure how consis- 224

tently the tokenizer segments parallel content repre- 225

senting the same concept. Table 10 show variance 226

using 2 metrics viz., Gini coefficient and normal- 227

ized variance. Findings: This section indicates the 228

importance of carefully balancing tokenizer vocab- 229

ulary size. 230

3.3 Morphological alignment 231

Works like (Bostrom and Durrett, 2020; Arnett and 232

Bergen, 2025) have studied BPE and ULM for mor- 233

phological alignment. We use IndicMorphScore 234

descibed in Section D.2 on two large-scale morpho- 235

logically segmented datasets available for Hindi 236

and Marathi (Brahma et al., 2025). The results of 237

BPE and ULM for varying vocabulary size are il- 238

lustrated in Figure 1. Finding: Results suggest that 239

ULM adheres more to the morphological segmen- 240

tation compared to BPE, which is in line with the 241

findings by Bostrom and Durrett (2020). 242

3.4 Joint vs. Cluster 243

We measure the parity and WFR for ULM tokeniz- 244

ers in joint and cluster settings. We observe that for 245

Assamese, Bengali, Kannada, Malayalam, Oriya, 246

Punjabi, Tamil, and Telugu trained using cluster 247

grouping have lower WFR compared to joint set- 248

tings. This is likely due to the fairer allocation 249
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Algorithm Vocab
32k 64k 128k 256k

F CPT WFR F CPT WFR F CPT WFR F CPT WFR

BPE 2.173 3.153 58.756 1.910 3.574 50.250 1.701 4.017 42.305 1.552 4.398 35.770
ULM 2.132 3.214 56.397 1.879 3.642 48.880 1.680 4.066 42.067 1.563 4.365 38.973

Table 2: Average fertility (F), character per token (CPT), and word fragmentation rate (WFR) across in a joint
setting. Note: Lower fertility and WFR indicate better segmentation quality. Higher CPT suggests tokens are more
semantically meaningful and compact.

Algorithm Vocabulary Overlap (in %) for vocab sizes

32k 64k 128k 256k

ULM (NN) vs BPE (NN) 65.40 68.19 74.32 68.35
ULM (N) vs BPE (N) 65.48 68.15 74.28 67.74
BPE (N) vs BPE (NN) 92.95 92.72 92.25 91.95

ULM (N) vs ULM (NN) 93.35 93.14 92.87 92.36

Table 3: Percentage of vocabulary overlap across tok-
enizers.

of language-specific vocabulary units in the clus-250

ter method. Additionally, we observe lower parity251

scores for the cluster method. However, similar252

trends are not seen for a vocabulary size of 128k,253

suggesting that the vocabulary size affects the per-254

formance gaps of the joint and cluster methods.255

The detailed scores for all languages are reported256

in Appendix D.5. Findings: cluster-based creation257

of multilingual tokenization has its own merit with258

reduction of the word fragmentation rate and fairer259

splits as compared to the joint method. However, it260

seems to be sensitive to the formation of clusters261

and careful consideration of languages per cluster262

is warranted.263

Lang. Method
Joint Cluster

Parity WFR Parity WFR

asm 1.027 44.267 0.916 37.489
ben 0.886 32.379 0.802 27.143
kan 0.966 55.078 0.843 47.469
mal 1.003 62.834 0.868 55.426
ory 0.990 38.990 0.843 29.886
pan 1.100 27.223 1.005 22.660
tam 0.940 51.460 0.841 45.442
tel 0.966 48.864 0.848 41.677

Table 4: Parity and WFR for a joint and cluster setting.
Results reported are for the ULM algorithm for 256k
vocab size. The parity scores are reported with respect
to Hindi.

3.5 Lexically similar languages264

There are many languages that can be categorized265

as extremely low-resource and do not have suffi-266

cient data to train a tokenizer effectively. In this267

section, we investigate whether tokenizers trained268

on high-resource languages, which either belong to269

the same language family or share a large vocabu- 270

lary with low-resource languages, can transfer the 271

tokenization ability to segment these low-resource 272

languages efficiently. The detailed scores are pre- 273

sented under the Appendix section (Table 13) in a 274

zero-shot setting, using a tokenizer trained on all 17 275

languages considered in this paper. We apply the 276

tokenizers on low-resource languages viz., Awadhi, 277

Bhojpuri, Chhattisgarhi, and Magahi. We observe 278

that tokenizers trained on related Indo-European 279

languages perform reasonably well on these low- 280

resource languages in terms of fertility and CPT, 281

indicating promising transfer potential in zero-shot 282

settings. 283

4 Conclusion and Future Work 284

In this work, we focus on the intrinsic evaluation 285

of tokenizers for 17 Indic languages, considering 286

the tokenization algorithms: BPE and Unigram 287

language model and combining methods, such as 288

joint and cluster. The goal of this work is specifi- 289

cally focused on providing insights for multilingual 290

tokenizers for Indic languages. 291

Our findings offer practical guidance for design- 292

ing fair and effective multilingual tokenizers for 293

underrepresented language families. While our 294

focus is on Indian languages, the methodologies 295

and insights are broadly applicable to other low- 296

resource, morphologically complex language set- 297

tings and toward region-specific LLM programs 298

(Ng et al., 2025; Gala et al., 2024). Future work 299

will involve extrinsic evaluations and deeper explo- 300

ration of tokenizer impact on downstream multilin- 301

gual LLM performance. Determining the optimal 302

vocabulary size that balances tokenization quality 303

and computational efficiency is also left as future 304

work. Furthermore, exploring the correlation be- 305

tween vocabulary size and extrinsic downstream 306

performance would provide valuable insights. 307
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Limitations308

While our evaluation focused on the performance309

of multilingual tokenizers using intrinsic metrics,310

the influences of cross-lingual transfers among lan-311

guages remain unexplored. A comprehensive ex-312

trinsic evaluation by training multilingual language313

models of varying model parameters is necessary314

to understand the various tokenizer performances315

in downstream tasks.316

Ethics Statement317

We do not foresee any ethical concerns with this318

work.319
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A Tokenizer Training Corpus 451

Table 5 shows the detailed statistics of the tokenizer training corpus, totaling 39GB of data with 7.46M 452

rows. 453

Language Code # Rows (M) # Filtered (M) 10% Sub-sampled (M) # Training Corpus (M)
Hindi hin 17.42 15.15 1.52 0.74
Assamese asm 0.33 0.28 0.03 0.22
Bengali ben 11.50 10.66 1.07 0.67
Konkani gom 0.01 0.01 0.00 0.08
Gujarati guj 3.97 3.57 0.36 0.48
Kannada kan 3.63 3.15 0.32 0.46
Maithili mai 0.02 0.02 0.00 0.10
Malayalam mal 6.37 5.99 0.60 0.56
Marathi mar 5.87 4.99 0.50 0.53
Nepali nep 8.59 8.37 0.84 0.62
Oriya ori 2.00 1.90 0.19 0.40
Punjabi pan 1.74 1.50 0.15 0.37
Sanskrit san 0.91 0.83 0.08 0.31
Sindhi snd 0.54 0.40 0.04 0.25
Tamil tam 7.83 6.47 0.65 0.57
Urdu urd 5.44 5.17 0.52 0.54
Telugu tel 7.08 6.10 0.61 0.56
Total 7.46

Table 5: Per-language statistics for tokenizer training data: number of raw and filtered rows, 10% sub-sampled
entries, and final corpus sizes in millions (M).

The equation for data sampling is presented below: 454

qi =
fα
i∑N

j=1 f
α
j

fi =
ni∑N

k=1 nk

455

Here, ni denotes the number of sentences in language i, and qi is the probability of sampling a sentence 456

from that language. 457

B Language Clusters 458

To find clusters, we follow the Chung et al. (2020) method. We first train monolingual tokenizers for 17 459

languages using the Unigram Language Model and take the union of all the vocabularies Uv. We then 460

create a language-specific vector by marking entries with 1 if the token is present in its vocabulary, else 461

we mark it as 0. We then train a K-means clustering algorithm using the vector as input. The clusters are 462

formed as presented in Table 6. We then train individual tokenizers for each cluster. Finally, we merge the 463

tokenizers to get the final vocabulary. 464

Cluster Languages

1 pan, tam, mal, kan, tel
2 gom, guj, san, mai, hin, mar, nep
3 urd, snd
4 ori
5 asm, ben

Table 6: Clusters formed
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C Tokenizer465

In our experiments, we use SentencePiece library (Kudo and Richardson, 2018). The settings we used are466

listed in Table 7. The settings that are not presented in the Table 7 are considered to their default values467

Hyper-parameter Value(s)

model_type BPE | Unigram
vocab_size 32k | 64k | 128k | 256k
split_by_unicode_script True
split_by_number True
split_by_whitespace True
split_digits False
train_extremely_large_corpus True

Table 7: SentencePiece settings we used for training our tokenizers. All other options or flags are the default values.

D Results468

D.1 Normalization Effect469

The detailed fertility scores for non-normalized and normalized training corpus for 32k, 64, 128k, and470

256k vocabulary are presented in Table 8.471

D.2 Evaluation Metrics472

Following are the intrinsic evaluation metrics considered in this study.473

Fertility: Average number of tokens per word. A better fertility score (lower value) is often considered a474

necessary condition for better tokenization (Ali et al., 2024).475

Character Per Token (CPT): Measures the average number of characters per token. Higher CPT476

indicates longer and more meaningful tokens (Limisiewicz et al., 2023).477

Morphological Alignment: To measure whether the generated tokens adheres to the morphological478

boundaries of a language, we use IndicMorphScore (Brahma et al., 2025), calculated as an average of the479

morphological correctness segments.480

Parity Ratio (Petrov et al., 2023): Parity measures the fairness among tokenizers for equivalent sentences481

in different languages. To measure the parity ratio, we consider Hindi as the pivot, as it has the largest482

training data, i.e., we measure the parity ratio of each language with respect to Hindi. We use FLORES-200483

devset for the parallel data.484

D.3 MorphScore485

We evaluate MorphScore for Gujarati and Tamil on the corpus presented by Ali et al. (2024). The scores486

are presented in Table 9 for both BPE and ULM on varying vocab sizes of 32k, 64k, 128k, and 256k. For487

Gujarati, we observe ULM to perform better than BPE. Similar observation is made of Tamil. However,488

surprisingly for Tamil, we observe a decrease in MorphScore as the vocabulary increases. We suggest that489

the results may not be representative of the actual morphological alignment for these languages. Reason:490

The dataset divides the words into exactly two segments, but morphologically rich Indian languages can491

have multiple meaningful subwords for a given word, which may include prefix(es), lemma and suffix(es).492

The dataset enforces a binary segmentation, which oversimplifies the rich morphological structure of493

Indic languages. For example, complex inflections and compound derivations are inadequately captured,494

leading to underestimated alignment scores. Hence we use the dataset provided by Brahma et al. (2025),495

with morphologically alligned word-splits, to calculate a variant of MorphScore viz., IndicMorphScore496

(reported in Section ??).497

D.4 Variance498

The variance score for token count is presented in Table 10.499
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Lang. code Algorithm Vocab
32k 64k 128k 256k

NN N NN N NN N NN N

hin
BPE 1.533 1.523 1.404 1.309 1.301 1.394 1.244 1.236
UnigramLM 1.517 1.509 1.394 1.387 1.303 1.296 1.257 1.252

mai
BPE 1.655 1.649 1.484 1.477 1.378 1.373 1.307 1.302
UnigramLM 1.681 1.674 1.524 1.518 1.401 1.399 1.320 1.317

mar
BPE 2.107 1.998 1.785 1.770 1.698 1.593 1.473 1.462
UnigramLM 1.963 1.956 1.746 1.733 1.573 1.566 1.482 1.472

npi
BPE 1.955 1.924 1.735 1.710 1.576 1.557 1.450 1.435
UnigramLM 1.921 1.895 1.717 1.697 1.565 1.549 1.470 1.457

gom
BPE 2.376 2.378 2.082 2.086 1.854 1.853 1.673 1.671
UnigramLM 2.337 2.342 2.068 2.064 1.815 1.813 1.685 1.684

san
BPE 2.446 2.428 2.206 2.180 2.011 1.994 1.862 1.845
UnigramLM 2.418 2.400 2.186 2.170 1.986 1.971 1.840 1.831

snd
BPE 2.327 2.347 2.182 2.191 2.029 2.028 1.905 1.908
UnigramLM 2.327 2.351 2.184 2.203 1.992 2.024 1.875 1.892

pan
BPE 1.829 1.825 1.595 1.590 1.435 1.433 1.331 1.329
UnigramLM 1.776 1.774 1.561 1.558 1.420 1.417 1.363 1.363

ben
BPE 1.937 1.935 1.692 1.689 1.506 1.503 1.390 1.387
UnigramLM 1.872 1.878 1.659 1.657 1.489 1.487 1.393 1.393

asm
BPE 2.285 2.278 1.992 1.988 1.757 1.752 1.620 1.598
UnigramLM 2.244 2.235 1.956 1.951 1.744 1.740 1.618 1.617

kan
BPE 2.761 2.745 2.367 2.358 2.048 2.034 1.800 1.788
UnigramLM 2.699 2.680 2.309 2.294 1.993 1.997 1.801 1.786

tel
BPE 2.580 2.571 2.205 2.201 1.897 1.889 1.681 1.676
UnigramLM 2.546 2.531 2.164 2.152 1.870 1.863 1.701 1.693

mal
BPE 3.075 3.052 2.645 2.616 2.280 2.241 1.995 1.957
UnigramLM 3.014 2.983 2.581 2.552 2.244 2.202 1.993 1.954

tam
BPE 2.488 2.485 2.158 2.156 1.884 1.882 1.691 1.690
UnigramLM 2.400 2.399 2.075 2.073 1.840 1.836 1.675 1.677

guj
BPE 2.067 2.067 1.798 1.797 1.599 1.595 1.457 1.455
UnigramLM 2.000 1.995 1.755 1.752 1.840 1.836 1.675 1.677

ory
BPE 2.284 2.264 1.960 1.942 1.703 1.683 1.534 1.515
UnigramLM 2.240 2.217 1.912 1.891 1.680 1.655 1.550 1.532

urd
BPE 1.619 1.474 1.453 1.321 1.330 1.207 1.251 1.136
UnigramLM 1.568 1.432 1.424 1.295 1.316 1.197 1.278 1.164

Table 8: Fertility scores comparison between normalized and non-normalized text. Here, NN and N represent
Non-normalized and normalized, respectively.

Lang. BPE ULM
32k 64k 128k 256k 32k 64k 128k 256k

Gujarati 0.0586 0.0797 0.0962 0.989 0.0751 0.1154 0.1291 0.1758
Tamil 0.2031 0.2059 0.1912 0.1578 0.3117 0.3020 0.2602 0.1957

Table 9: MorphScore results for Gujarati and Tamil.

D.5 Joint vs. Cluster 500

The joint and cluster for the remaining languages are reported in Table 11. 501

D.6 Monolingual verses Multilingual 502

To assess the impact of multilingual training on the tokenization quality of a language, we compare 503

the Word Fragmentation Rate (WFR) using the segments tokenized by each language’s monolingual 504

tokenizer and multilingual tokenizers respectively. Monolingual tokenizers are trained on data from a 505

single language while multilingual tokenizers are trained on a shared fixed vocabulary budget across 506
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Lang. BPE ULM
32k 64k 128k 256k 32k 64k 128k 256k

Gini Coefficient 0.039 0.034 0.034 0.042 0.038 0.033 0.036 0.045
Normalized variance 0.071 0.063 0.063 0.073 0.069 0.062 0.065 0.078

Table 10: Token count variance

Lang. Method
Joint Cluster

Parity WFR Parity WFR

gom 1.078 49.791 1.173 56.399
guj 0.972 34.447 1.013 39.124
hin 1.000 19.690 1.000 22.469
mar 0.875 36.363 0.917 42.596
nep 0.854 34.734 0.889 41.133
san 0.247 55.543 1.063 61.970

Table 11: Parity and WFR for a joint and cluster setting. The results reported are for the ULM algorithm with a
vocab size of 256k. The parity scores are reported with respect to Hindi.

multiple languages. This forces the tokenizer to allocate vocabulary across multiple languages with507

diverse scripts, leading to a reduction in language-specific subword units.508

We trained monolingual tokenizers for 32k and 64k vocab sizes with the ULM algorithm in the joint509

setting. We then measure the average WFR and the CPT (Refer Table 12). Monolingual tokenizer510

achieves a lower fragmentation rate and higher CPT compared to multilingual tokenizers. We observe a511

significantly high WFR for the multilingual tokenizer compared to monolingual ones.512

Findings: (i) There’s an inherent trade-off between multilingual and monolingual tokenizers. Though513

Monolingual tokenizers require larger data requirement for training, they achieve a low WFR compared514

to multilingual tokenizers. (ii) increasing the vocabulary capacity of the multilingual tokenizers seems to515

reduce the gap.516

Tokenizers Vocab
32k 64k

WFR CPT WFR CPT

Multilingual 57.28 3.18 48.50 3.62
Monolingual 33.02 4.60 28.08 4.87

Table 12: Average WFR and CPT across 17 languages (Tokenizers trained in joint setting).

32k 64k 128k 256k
Lang. Fertility Parity CPT Fertility Parity CPT Fertility Parity CPT Fertility Parity CPT

awa 1.606 1.076 3.157 1.460 3.472 1.064 1.351 3.752 1.052 1.307 3.880 1.052
bho 1.758 1.172 2.890 1.593 3.190 1.155 1.457 3.487 1.129 1.394 3.646 1.116
hne 1.764 1.396 2.820 1.605 3.099 1.377 1.500 3.315 1.379 1.434 3.468 1.360
mag 1.695 1.107 3.019 1.523 3.360 1.080 1.395 3.668 1.059 1.345 3.806 1.055

Table 13: Zero-shot intrinsic evaluation of Awadhi (awa), Bhojpuri (bho), Chhattisgarhi (hne), and Magahi (mag)
on multilingual tokenizer trained using ULM algorithm in a joint setting.
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