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Abstract

While various multi-agent reinforcement learning methods have been proposed1

in cooperative settings, few works investigate how self-interested learning agents2

achieve mutual coordination in decentralized general-sum games and generalize3

pre-trained policies to non-cooperative opponents during execution. In this paper,4

we present a generalizable and sample efficient algorithm for multi-agent coor-5

dination in decentralized general-sum games without any access to other agents’6

rewards or observations. Specifically, we first learn the distributions over the return7

of individuals and estimate a dynamic risk-seeking bonus to encourage agents to8

discover risky coordination strategies. Furthermore, to avoid overfitting opponents’9

coordination strategies during training, we propose an auxiliary opponent modeling10

task so that agents can infer their opponents’ type and dynamically alter corre-11

sponding strategies during execution. Empirically, we show that agents trained12

via our method can achieve mutual coordination during training and avoid being13

exploited by non-cooperative opponents during execution, which outperforms other14

baseline methods and reaches the state-of-the-art.15

1 Introduction16

Inspired by advances in deep reinforcement learning (DRL)[1–3], many researchers recently focus17

on utilizing DRL methods to tackle multi-agent problems[4–6]. However, most of these works either18

consider the fully cooperative multi-agent reinforcement learning (MARL) settings [7–11] or general-19

sum games but make restrictive assumptions about opponents[12–14], e.g., either stationary[13]20

or altruistic [15, 16]. Considering future applications of MARL, such as self-driving cars[17] and21

human-robot interactions [18], multiple learning agents optimize their own rewards independently in22

general-sum games where win-win outcomes are only achieved through coordination which often23

coupled with risk[19, 12, 20] (“Risk” refers to the uncertainty of future outcomes[21]), and their24

pre-trained policies should generalize to non-cooperative opponents during execution.25

To achieve coordination alongside other learning agents and generalize learned policies to non-26

cooperative opponents, the agent must be willing to undertake a certain amount of risk and identify27

the opponents’ type efficiently. One set of approaches use explicit reward shaping to force agents to28

coordinate[22, 16, 15], which can be viewed as an approach to shape the risk degree of coordination29

strategies. To learn generalizable policies, [15, 20] propose to train an adaptive agent with population-30

based training methods. Other works either treat the other agents as stationary[13, 23, 24, 20], or31

directly access to opponent’s policy parameters[12].32
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By contrast, we are interested in a less restrictive setting where we do not assume access opponents’33

rewards, observations, or policy parameters, instead, each agent can infer other agents’ current34

strategies from the past behaviors of other agents. In this paper, one key insight is that learning from35

opponent’s past behaviors allows the agent to infer the opponent’s type and dynamically alter his36

strategy between different modes, e.g., either cooperate or compete, during execution. Moreover,37

given that the other learning agents are non-stationary, decision-making over the agent’s return38

distributions enables the agent to tackle uncertainties resulting from other agents’ behaviors and39

alter his risk preference, i.e., from risk-neutral to risk-seeking, to discover coordination strategies.40

Motivated by the analysis above, we propose GRSP, a Generalizable Risk-Sensitive MARL algorithm41

and our contributions are summarized as follows:42

Leading to mutual coordination in decentralized general-sum games. We estimate a dynamic risk-43

seeking bonus using a complete distortion risk measure Wang’s Transform (WT)[25] to encourage44

agents to discover risky cooperative strategies. The risk-seeking bonus only affects the action selection45

procedure instead of shaping environment rewards and decreases throughout training, leading to an46

unbiased policy.47

Generalizing pre-trained policies to non-cooperative opponents during execution. Policies48

learned independently can overfit to the other agents’ policies during training, failing to sufficiently49

generalize during execution[26]. We further propose to train each learning agent with two objectives:50

a standard Quantile Regression objective[27, 28] and a supervised agent modeling objective, which51

models the behaviors of opponent, applied on intermediate representation of the value network. The52

auxiliary opponent modeling task allows the policy to be influenced by opponent’s past behaviors,53

forcing the intermediate representation to adapt to the new opponent.54

Evaluating in multi-agent settings. We evaluate GRSP in four different Markov games: Monster-55

Hunt[15, 29], Escalation[15, 16], Iterated Prisoners’ Dilemma (IPD)[12, 20] and Iterated Stag Hunt56

(ISH)[19, 15]. Compared with several baseline methods, including MADDPG[30], MAPPO[31],57

LIAM[13], IAC[32] and LOLA[12], GRSP learns substantially faster, achieves mutual coordina-58

tion during training and can generalize to the non-cooperative opponent during execution, which59

outperforms other baseline methods and reaches the state-of-the-art.60

2 Related Work61

Risk-sensitive RL. Risk-sensitive policies, which depend upon more than mean of the outcomes,62

enable agents to handle the intrinsic uncertainty arising from the stochasticity of the environment. In63

MARL, the intrinsic uncertainties are amplified due to the non-stationarity and partial observability64

created by other agents that change their policies during the learning procedure[33–35]. Distributional65

RL[36, 28] provides a new perspective for optimizing policy under different risk preferences within a66

unified framework[21, 37]. With distributions of return, it is able to approximate value function under67

different risk measures, such as Conditional Value at Risk (CVaR)[38, 39] and WT[25], and thus68

produce risk-averse or risk-seeking policies. Qiu et al.[11] propose RMIX with the CVaR measure69

as risk-averse policies. Similar ideas are proposed in D4PG[40] and DFAC[41]. In contrast with70

these works that focus on the fully cooperative settings and do not consider generalization, this paper71

proposes the first algorithm that leverages risk-seeking policies to achieve coordination strategies in72

general-sum games and generalizable to non-cooperative opponents during testing phase.73

Generalization across different opponents. Many real world scenarios require agents to adapt to74

different opponents during execution. However, most of existing works focus on learning a fixed75

and team-dependent policy in fully cooperative setting[42, 8, 9, 11, 10] which can not generalize76

to slightly altered environments or new opponents. Other works either use a population-based77

training method to train an adaptive agent[15], or adapt to different opponents under the Tit-for-Tat78

principle[20, 43]. Our work is closely related to test-time training methods[44, 45]. However, they79

focus on image recognition or single agent policy adaption. Ad hoc teamwork[46, 47] also requires80

agents to generalize to new teams, but they focus on cooperative games and has different concerns81

with us.82
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Opponent modeling. Our approach to learning generalizable policies can be viewed as a kind83

of opponent modeling method[48]. These approaches either model intention[49, 50], assume an84

assignment of roles[51] or exploit opponent learning dynamics[12, 52]. Our approach is similar85

to policy reconstruction methods[50] which make explicit predictions about opponent’s actions.86

However, instead of predicting the opponent’s future actions, we learn from opponent’s past behaviors87

to update the belief, i.e., parameters of value network, of the opponent’s type.88

3 Preliminaries89

Stochastic games. In this work, we consider multiple self-interested learning agents interact with90

each other. We model the problem as a Partially-Observable Stochastic Game (POSG)[53, 54], which91

consists of N agents, a state space S describing the possible configurations of all agents, a set of92

actions A1, . . . ,AN and a set of observations O1, . . . ,ON for each agent. At each time step, each93

agent i receives his own observation oi ∈ Oi, and selects an action ai ∈ Ai based on a stochastic94

policy πi : Oi × Ai 7→ [0, 1], which results in a joint action vector a. The environment then95

transitions to a new state s′ based on the transition function P (s′|s,a). Each agent i obtains rewards96

as a function of the state and his action Ri : S × Ai 7→ R. The initial states are determined by a97

distribution ρ : S 7→ [0, 1]. We treat the reward "function" Ri of each agent as a random variable to98

emphasize its stochasticity, and use Zπ
i

(s, ai) =
∑T
t=0 γ

tRi(st, a
i
t) to denote the random variable99

of the cumulative discounted rewards where S0 = s, Ai0 = ai,γ is a discount factor and T is the time100

horizon.101

Distorted expectation. Distorted expectation is a risk weighted expectation of value distribution102

under a specific distortion function[55]. A function g : [0, 1] 7→ [0, 1] is a distortion function if it is103

non-decreasing and satisfies g(0) = 0 and g(1) = 1[56]. The distorted expectation of Z under g is104

defined as Ψ(Z) =
∫ 1

0
F−1
Z (τ)dg(τ) =

∫ 1

0
g′(τ)F−1

Z (τ)dτ , where F−1
Z is the quantile function at105

τ ∈ [0, 1] for the random variable Z. We introduce two common distortion functions as follow:106

• CVaR is the expectation of the lower or upper tail of the value distribution, corresponding to107

risk-averse or risk-seeking policy respectively. Its distortion function is g(τ) = min(τ/α, 1)108

(risk-averse) or max (0, 1− (1− τ)/α) (risk-seeking), α ∈ (0, 1) denotes confidence level.109

• WT is proposed by Wang[25]: gλ(τ) = Φ
(
Φ−1(τ) + λ

)
, where Φ is the distribution of a standard110

normal. The parameter λ is called the market price of risk and reflects systematic risk. λ > 0 for111

risk-averse and λ < 0 for risk-seeking.112

CVaRα assigns a 0-value to all percentiles below the α or above 1− α significance level which leads113

to erroneous decisions in some cases[56]. Instead, WT is a complete distortion risk measure and114

ensures using all the information in the original loss distribution which makes training much more115

stable, and we will empirically demonstrate it in Sec. 5.116

4 Methods117

In this section, we describe our proposed GRSP method. We first introduce the risk-seeking bonus118

used to encourage agents to discover coordination strategies in Sec. 4.1 and then propose the auxiliary119

opponent modeling task to learn generalizable policies in Sec. 4.2. Finally, we provide the details of120

test-time policy adaptation under different opponents in Sec. 4.3.121

4.1 Risk-Seeking Bonus122

In this section, we first provide an illustrative example for the insight behind risk-seeking bonus and123

then describe its details. Consider a two-player 10 steps Sequential matrix game Stag Hunt, where124

each player should decide whether to hunt stag (S) or hunt hare (H) in each round. If both agents125

choose S they will receive the highest payoff 2. However, if one agent defects, he will receive a126
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descent reward 1 for eating the hare alone while the other agent with an S action will suffer from a127

big loss -10. If both agents choose H they will receive payoff 1.128

Figure 1: Quantile value distribution of
cooperation and defection in Sequential
Stag Hunt weighted by WT compared
with risk-neutral policy.

Even state of the art RL algorithms fail to discover the129

“risky” cooperation strategies[15, 16, 19]. One important130

reason is that the expected, i.e., risk-neutral, Q value ig-131

nores the complete distribution information, especially the132

upper and lower tail information when the learned distribu-133

tion is asymmetric. Another reason is that when the risk is134

high, i.e., a high loss for being betrayed, the probability of135

finding the S-S (Cooperation) strategy via policy gradient136

is very low[15].137

Therefore, we adopt the distributional RL method to model138

the whole distribution of Q value. Fig.1 left part shows139

the quantile distribution of cooperation and defection of140

risk-neutral policy learned by QR-DQN[28]. The mean141

value of defection is higher than that of cooperation, but the quantile value distribution of cooperation142

has a longer upper tail which means that it has a higher potential payoff.143

We propose to use WT distortion function to reweight the expectation of quantile distribution. By144

following [28], we first represent the return distribution of each agent i with policy πi by a uniform145

mix of M supporting quantiles:146

Zπ
i

θ (oi, ai)
.
=

1

M

M∑
k=1

δ
θπ

i

k (oi,ai)
(1)

where δx denotes a Dirac Delta functions at x ∈ R, and each θπ
i

k is an estimation of the quantile147

corresponding to the quantile fractions τ̂k
.
= τk−1+τk

2 with τk
.
= k

M for 0 ≤ k ≤M . The state-action148

value Qπ
i

(oi, ai) can then be approximated by 1
M

∑M
k=1 θ

πi

k (oi, ai).149

Furthermore, the risk-seeking bonus for agent i is defined as:150

Ψ(Zπ
i

θ ) =

∫ 1

0

g′λ(τ)F
−1

Zπi

θ

(τ)dτ ≈ 1

M

M∑
k=1

g′λ(τ̂k)θ
i
k, (2)

where g′λ(τ) is the derivatives of WT distortion function at τ ∈ [0, 1], and λ controls the risk-seeking151

level. Fig.1 right part shows the WT weighted quantile distribution in which the upper quantile values152

are multiplied by bigger weights and lower quantile values are multiplied by smaller weights to153

encourage agents to adopt risky coordination strategies.154

A naive approach to exploration would be to use the variance of the estimated distribution as a bonus.155

[57] shows that the exploration bonus from truncated variance outperforms bonus from the variance.156

Specifically, the Right Truncated Variance tells about lower tail variability and the Left Truncated157

Variance tells about upper tail variability. For instantiating optimism in the face of uncertainty, the158

upper tail variability is more relevant than the lower tail, especially if the estimated distribution is159

asymmetric. So we adopt the Left Truncated Variance of quantile distribution to further leverage the160

intrinsic uncertainty for efficient exploration. The left truncated variance is defined as161

σ2
+ =

1

2M

M∑
j=M

2

(
θM

2
− θj

)2

, (3)

and analysed in [57]. The index starts from the median, i.e., M/2, rather than the mean due to its well-162

known statistical robustness[58, 59]. We anneal the two exploration bonuses dynamically so that in163

the end we produce unbiased policies. The anneal coefficients are defined as ctj = cj

√
log t
t , j = 1, 2164

which is the parametric uncertainty decay rate[60], and cj is a constant factor. This approach leads to165
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Figure 2: Left: Diagram of GRSP architecture during training. Outputs of Eϕ are fed into Dψa and
Dψs , so features are shared between policy and auxiliary opponent modeling. The prediction head
Dψs outputs other agents’ actions. Right: Test-Time policy adaptation. The agent can not receive
environment rewards during testing, so we only optimize the auxiliary opponent modeling objective.

choosing the action such that166

ai∗ = arg max
ai∈Ai

(
Qπ

i

(oi, ai) + ct1Ψ(Zπ
i

(oi, ai)) + ct2

√
σ2
+(o

i, ai)

)
(4)

These quantile estimates are trained using the Huber[61] quantile regression loss. The loss of the167

quantile value network of each agent i at time step t is then given by168

J
(
oit, a

i
t, r

i
t, o

i
t+1; θ

i
)
=

1

M

M−1∑
k=0

M−1∑
j=0

ρκτ̂k
(
δtikj

)
(5)

where δtikj
.
= rit + γθij

(
oit+1, π

i
(
oit+1

))
− θik(o

i
t, a

i
t), and ρκτ̂k(x)

.
= |τ̂k − I {x < 0}| Lκ(x)

κ where I169

is the indicator function and Lκ(x) is the Huber loss:170

Lκ(x)
.
=

{
1
2x

2 if x ≤ κ

κ
(
|x| − 1

2κ
)

otherwise
(6)

4.2 Auxiliary Opponent Modeling Task171

In order to alter the agent’s strategies under different opponents, we share parameters between policy172

and auxiliary opponent modeling task. Specifically, we split the Q value network into two parts:173

feature extractor Eϕ and decision maker Dψa
. The parameters of the Q value network Qθi for agent i174

are sequentially divided into ϕi and ψia, i.e., θi = (ϕi, ψia). The auxiliary opponent modeling task175

shares a common feature extractor Eϕi with the value network. We can update the parameters of176

Eϕi during execution using gradients from the auxiliary opponent modeling task, such that πθi can177

generalize to different opponents. The supervised prediction head and its specific parameters are Dψi
s

178

with ψis. The details of our network architecture are shown in Fig. 2.179

During training, the agent i can collect a set of transitions {(oit, oit+1,a
−i
t )}Tt=0 where a−it indicates180

the joint actions of other agents except i at time step t. We use the embeddings of agent i’s observations181

oit and oit+1 to predict the joint actions a−it , i.e., the Dψi
s

is a multi-head neural network whose outputs182

are multiple soft-max distributions over the discrete action space or predicted continuous actions183

of each other agent, and the objective function of the auxiliary opponent modeling task can be184

formulated as185

L
(
oit, o

i
t+1,a

−i
t ;ϕi, ψis

)
=

1

N − 1

N∑
j=1,j ̸=i

ℓ
(
ajt ,Dψi

s

(
Eϕi

(
oit
)
, Eϕi

(
oit+1

))j)
, (7)
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where ℓ(·) is the cross-entropy loss function for discrete actions or mean squared error for continuous186

actions. The strategies of opponents will change constantly during the procedure of multi-agent187

exploration and thus various strategies will emerge. The agent can leverage them to gain some188

experience about how to make the best response by jointly optimizing the auxiliary opponent189

modeling task and quantile value distribution. The joint training problem is therefore190

min
ϕi,ψi

s,ψ
i
a

J
(
oit, a

i
t, r

i
t, o

i
t+1;ϕ

i, ψia
)
+ L

(
oit, o

i
t+1,a

−i
t ;ϕi, ψis

)
(8)

4.3 Test-Time Policy Adaptation under Different Opponents191

During testing time, we can not optimize J anymore since the reward is unavailable, but we assume192

the agent can observe actions made by his opponents during execution, then we can continue193

optimizing J to update the parameters of feature extractor Eϕ. Learning from opponents’ past194

behaviors at test time makes the agent generalize his policy to different opponents efficiently. The195

can be formulated as196

min
ϕi,ψi

s

L
(
oit, o

i
t+1,a

−i
t ;ϕi, ψis

)
(9)

5 Experiments197

In this section, we empirically evaluate our method on four multi-agent environments. In sec. 5.1 we198

introduce the four environments we use for experiments and training settings. In sec. 5.2 we compare199

the performance of GRSP with other baselines. In sec. 5.3 we evaluate the generalization ability of200

GRSP under different opponents during execution. The ablations are studied in sec. 5.4. Further201

understanding of GRSP is presented in sec. 5.5. More details can be found in Appendix C.202

5.1 Environment Setup203

Repeated games. We consider two kinds of repeated matrix games: Iterated Stag Hunt (ISH) and204

Iterated Prisoners’ Dilemma (IPD). Both of them consist two agents and a constant episode length of205

10 time steps[12, 15, 19]. At each time step, the agents can choose either cooperation or defection.206

If both agents choose to cooperate simultaneously, they both get a bonus of 2. However, if a single207

agent choose to cooperate, he gets a penalty of -10 in ISH and -1 in IPD, and the other agent get a208

bonus of 1 and 3, respectively. If both agents choose to defection, they get a bonus of 1 in ISH and 0209

in IPD. The optimal strategy in ISH and IPD is to cooperate at each time step, and the highest global210

payoffs of two agents are 40, i.e., 20 for each of them.211

Figure 3: Monster-Hunt.

Monster-Hunt. The environment is a 5 × 5 grid-world, consisting of212

two agents, two apples and one monster. The apples are static while the213

monster keeps moving towards its closest agent. When a single agent214

meets the monster, he gets a penalty of -10. If two agents catch the mon-215

ster together, they both get a bonus of 5. If a single agent meets an apple,216

he get a bonus of 2. Whenever an apple is eaten or the monster meets217

an agent, the entity will respawn randomly. The optimal strategy, i.e.,218

both agents move towards and catch the monster, is a risky coordination219

strategy since an agent will receive a penalty if the other agent deceives.220

Figure 4: Escalation.

Escalation. Escalation is a 5 × 5 grid-world with sparse rewards, con-221

sisting of two agents and a static light. If both agents step on the light222

simultaneously, they receive a bonus of 1, and then the light moves to223

a random adjacent grid. If only one agent steps on the light, he gets224

a penalty of 1.5L, where L denotes the latest consecutive cooperation225

steps, and the light will respawn randomly. To maximize their individ-226

ual payoffs and global rewards, agents must coordinate to stay together227

and step on the light grid. For each integer L, there is a corresponding228
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coordination strategy where each agent follows the light for L steps then229

simultaneously stop coordination.230

Training. We carry out our experiments on one NVIDIA RTX 3080 Ti and Intel i9-11900K.231

Figure 5: Mean evaluation returns for GRSP, MADDPG, MAPPO, IAC, LIAM and LOLA on two
repeated matrix games. The average global rewards equal to 40 means that all agents have learned
coordination strategy, i.e., cooperating at each time step.

5.2 Evaluation of Returns232

In this subsection, we evaluate all methods on four multi-agent environments and use 5 different233

random seeds to train each method. We pause training every 50 episodes and run 30 independent234

episodes with each agent performing greedy action selection to evaluate the average performance of235

each method.236

5.2.1 Iterated Games237

Fig. 5 shows the average global rewards, i.e., the summation of all agents’ average returns, of all238

methods evaluated during training in ISH and IPD environments. The shadowed part represents a239

95% confidence interval. The average global rewards equal to 40 means that all agents have learned240

coordination strategy, i.e., cooperating at each time step. We can find that agents trained with our241

method can achieve mutual coordination in a sample efficient way in two repeated matrix games with242

high risk while other methods only converge to safe non-cooperative strategies though some of them243

have much more restrictive assumptions.244

5.2.2 Grid-Worlds245

We further show the effectiveness of GRSP in two grid-world games, Monster-Hunt and246

Escalation[15], both of which have high payoff but risky cooperation strategies for agents to converge247

to. Fig. 6. shows that, compared with other baseline methods, GRSP constantly and significantly248

outperform baselines with higher sample efficiency over the whole training process both in global249

rewards and agent’s individual rewards. Specifically, in Monster-Hunt, GRSP agents efficiently find250

one of the risky cooperation strategies where two agents stay together and wait for the monster.251

Furthermore, the policies learned by each agent are very stable and neither would like to deviate from252

the cooperative strategy. However, other baseline methods only converge to safe non-cooperative253

strategies and get low payoff due to their poor exploration. It seems that LOLA can not learn254

useful strategies in more complex environments. In Escalation, GRSP outperforms other baselines255

significantly and both agents have achieved coordination in a decentralized paradigm.256

5.3 Generalization Study257

This subsection investigates how well the pre-trained GRSP agent can generalize to different oppo-258

nents, i.e., cooperation or defection, during execution. The cooperative opponents are trained by259

GRSP method while the non-cooperative opponents are trained by MADDPG. During evaluation,260

random seeds of four environments are different from that during training, and hyperparameters261
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Figure 6: Mean evaluation returns for GRSP, MADDPG, MAPPO, IAC, LIAM and LOLA on
Monster-Hunt and Escalation. Global rewards are summation of both agents rewards.

Table 1: Mean evaluation return of GRSP with and without auxiliary opponent modeling task on four
multi-agent encironments.

Oppo: Coop(Defect) ISH IPD M-H Escalation
GRSP-No-Aom 20(−100) 20(−5) 20.62(−15.03) 9.45(−0.545)
GRSP-Aom 20(0.65) 20(−1.08) 21.36(−12.07) 11.3(0.175)

of the GRSP are same and fixed between different opponent types. Furthermore, the pre-trained262

coordinated agents can not access to the rewards to update their policies anymore and they must263

utilize the auxiliary opponent modeling task to force them to adapt to different opponents. The264

network details and hyperparameters can be found in Appendix B.265

Table 1 shows the mean evaluation return of GRSP agent with and without the auxiliary opponent266

modeling task on four multi-agent environments when interacting with different opponents. All267

returns are averaged on 100 episodes. The performance of the GRSP-Aom agent that utilizes the268

auxiliary opponent modeling task to adapt to different opponents outperforms that of the GRSP-No-269

Aom agent significantly, especially when interacting with non-cooperative opponents. Specifically,270

the GRSP-Aom agent using history behaviors of its opponents to update its policy can learn to alter271

its strategy from coordination to not when encountering a non-cooperative opponent. The empirical272

results further demonstrate that policies learned independently can overfit to the other agents’ policies273

during training, and our auxiliary opponent modeling task provides a method to tackle this problem.274

5.4 Ablations275

In this subsection, we perform an ablation study to examine the components of GRSP to better276

understand our method. GRSP is based on QR-DQN and has three components: the risk-seeking277

exploration bonus, the left truncated variance (Tv) and the auxiliary opponent modeling task (Aom).278

We design and evaluate six different ablations of GRSP in two grid-world environments, as show in279

Fig. 7. The performance of GRSP-No-Aom which we ablate the Aom module and retain all other280

features of our method is a little lower than that of GRSP but has a much higher variance, indicating281

that learning from opponent’s behaviors can stable training and improve performance. Moreover,282

the GRSP-No-Aom is a completely decentralized method whose training without any opponent283

information, and the ablation results of GRSP-No-Aom show that our risk-seeking bonus is essential284

for agents to achieve mutual coordination in general-sum games. We observe that ablating the left285

truncated variance module leads to a significantly lower return than the GRSP in the Escalation286
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Figure 7: Mean evaluation return of GRSP compared with other ablation methods in two grid-world
multi-agent environments.

but no difference in the Monster-Hunt. Furthermore, ablating the risk-seeking bonus increases the287

training variance, leads to slower convergence and perform worse than the GRSP. It is noteworthy288

that the Escalation is a sparse reward and hard-exploration multi-agent environment since our two289

decentralized agents can get a reward only if they navigate to and step on the light simultaneously290

and constantly. These two ablations indicate that the exploration ability of left truncated variance291

is important to our method and the risk-seeking bonus can encourage agents to coordinate with292

each other stably and converge to high-risky cooperation strategies efficiently. We also implement293

our risk-seeking bonus by CVaR instead of WT, and the results are shown as GRSP-CVaR. The294

GRSP-CVaR performs worse than our method and has a higher training variance. Finally, we ablate295

all components of the GRSP and use ϵ-greedy policy for exploration which leads to the IQR-DQN296

algorithm. As shown in Fig. 7, IQR-DQN can not learn effective policies in the Monster-Hunt and297

perform badly in the Escalation.298

5.5 Understanding GRSP299

The action whose value distribution has a long upper tail means that taking this action may receive300

higher potential payoffs. However, its mean value may be lower than other actions since its distribution301

has a longer lower tail, as shown in Fig. 1 Neutral-Coop, indicating higher risk. So agents with302

the expected RL method will not select this action. In GRSP, the risk-seeking exploration bonus303

encourages agents to pay more attention to actions whose distribution has a longer upper tail. So304

agents with GRSP method will be less likely to defect their opponents since defects bring lower305

future returns, more likely to coordinate with other agents, and more tolerant of the risk. Furthermore,306

the auxiliary opponent modeling task can alter the agent’s strategy from cooperation to defection if it307

pairs with a non-cooperative opponent. Empirically, the two components can constitute a kind of308

equilibrium strategies, e.g., tit-for-tat[20], between agents.309

6 Discussion310

Conclusion. While various MARL methods have been proposed in cooperative settings, few works311

investigate how self-interested learning agents can achieve mutual coordination which is coupled312

with risk in decentralized general-sum games and generalize learned policies to non-cooperative313

opponents during execution. In this paper, we present GRSP, a novel decentralized MARL algorithm314

with estimated risk-seeking bonus and auxiliary opponent modeling task. Empirically, we show that315

agents trained via GRSP can not only achieve mutual coordination during training with high sample316

efficiency but generalize learned policies to non-cooperative opponents during execution, while other317

baseline methods can not.318

Limitations and future work. The risk-seeking bonus in GRSP is estimated using WT distorted319

expectation and its risk-sensitive level is a hyperparameter that can not dynamically change throughout320

training. Developing a method that can adjust agents’ risk-sensitive levels dynamically by utilizing321

their observation, rewards, or opponents’ information is the direction of our future work.322
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