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ABSTRACT

The structure learning problem consists of fitting data generated by a Directed
Acyclic Graph (DAG) to correctly reconstruct its arcs. In this context, differentiable
approaches constrain or regularize an optimization problem with a continuous
relaxation of the acyclicity property. The computational cost of evaluating graph
acyclicity is cubic on the number of nodes and significantly affects scalability. In
this paper, we introduce COSMO, a constraint-free continuous optimization scheme
for acyclic structure learning. At the core of our method lies a novel differentiable
approximation of an orientation matrix parameterized by a single priority vector.
Differently from previous works, our parameterization fits a smooth orientation
matrix and the resulting acyclic adjacency matrix without evaluating acyclicity
at any step. Despite this absence, we prove that COSMO always converges to an
acyclic solution. In addition to being asymptotically faster, our empirical analysis
highlights how COSMO performance on graph reconstruction compares favorably
with competing structure learning methods.

1 INTRODUCTION

Directed Acyclic Graphs (DAGs) are a fundamental tool in several fields to represent probabilistic or
causal information about the world (Koller & Friedman, 2009; Pearl, 2009). A fundamental problem
in this context concerns the retrieval of the underlying structure between a set of variables, i.e., the
problem of identifying which arcs exist between nodes associated to the variables of interest (Spirtes
et al., 2000). In recent years, applications of structure learning to causal discovery led to growing
interest in tackling the problem using gradient-based methods that optimize a smooth representation of
a DAG (Vowels et al., 2022). For instance, while not suitable for causal discovery per se (Reisach et al.,
2021), acyclic structure learners are fundamental components of most state-of-the-art continuous
causal discovery algorithms (Lachapelle et al., 2020; Brouillard et al., 2020; Lorch et al., 2022). A
well-established technique, popularized by NOTEARS (Zheng et al., 2018), consists of computing
the trace of the matrix-exponential of the adjacency matrix, which is differentiable and provably
zero if and only if the corresponding graph is acyclic. However, despite their widespread adoption,
NOTEARS-like acyclicity constraints impose a cubic number of operations in the number of nodes per
optimization step and substantially prevent scalable and applicable continuous discovery algorithms.

In this context, we propose a novel formulation and optimization scheme for learning acyclic graphs
that avoids evaluating the acyclicity of the solution in any optimization step. Notably, our proposal
does not sacrifice theoretical guarantees of asymptotic convergence to acyclic solutions which apply
to existing structure learning methods (Ng et al., 2022a). At the core of our scheme lies a novel
definition of smooth orientation matrix, i.e., a differentiable approximation of an orientation matrix
parameterized by a priority vector on the graph nodes. The priority vector represents a discrete
orientation where each node has an outgoing arc to all nodes with higher priority. We define our
smooth orientation matrix by applying a tempered sigmoid to the pair-wise priority differences,
which equals the discrete orientation in the limit of the sigmoid temperature to zero. By annealing
temperature during training, we prove that we are effectively decreasing an upper bound on the
acyclicity of the solution. Further, we show that the parameterization represents the space of DAGs as
a differentiable function of a directed graph and our smooth orientation matrix. Since our approach
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Figure 1: In COSMO we propose to optimize an acyclic adjacency matrix W ∈ Rd×d (right) by
learning a directed graph H ∈ Rd×d (left) and a priority vector p ∈ Rd on the nodes (top). To this
end, we introduce a smooth acyclic orientation matrix St,ε(p) (center), a differentiable function of
the priority vector where each lower-priority node approximately feeds into each higher-priority node.
Gray dashed arrows denote arcs with approximately zero weight. By annealing its temperature during
training, the smooth orientation matrix St,ε converges to a discrete orientation and, consequently, the
overall adjacency matrix W converges to a DAG.

only requires a quadratic number of operations per optimization step, its constraint-free scheme
can be used as a direct and faster replacement for the NOTEARS constrained optimization problem.
Overall, we propose a methodology to perform constraint-free structure learning with smooth acyclic
orientations, which we name COSMO (Figure 1).

Contributions. We summarize the key contributions of this paper as follows:

• We introduce a differentiable relaxation of an acyclic orientation matrix, which we name
smooth orientation matrix (Definition 1). The matrix depends on a temperature value that
controls the approximation of the discrete orientation matrix. We prove that we can represent
all and only DAGs as the element-wise multiplication of a weighted adjacency matrix and
our novel smooth orientation matrix (Theorem 1).

• We propose COSMO, an unconstrained optimization approach that learns a DAG entirely
avoiding acyclicity constraints (Section 4.2). COSMO represents DAGs through a smooth
orientation matrix and requires solving a unique optimization problem while annealing the
temperature. Since reconstructing the DAG requires a number of operations quadratic on the
number of nodes, COSMO is an order of magnitude faster than cubic-expensive constrained
methods in literature.

• We connect our proposed scheme to existing constrained approaches and prove that annealing
the temperature during training effectively decreases an upper bound on the acyclicity of the
smooth orientation matrix (Theorem 2).

• We perform a thorough experimental comparison of COSMO and competing structure learn-
ing approaches (Section 5). The empirical results report how COSMO achieves comparable
structure recovery performances in significantly less time. Further, we highlight how COSMO
consistently outperforms previous partially unconstrained structure learning proposals. For
reproducibility purposes, we release the necessary code to replicate our experiments.

In the following, we discuss related works in Section 2 and report the necessary background on graph
theory and structure learning in Section 3. Then, we introduce COSMO and our original contributions
in Section 4. Finally, we report and discuss our empirical analysis in Section 5.
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Table 1: Summary comparison of our proposal, COSMO, with competing approaches. We propose
a parameterization that enables unconstrained learning of an acyclic graph without trading off on
the adjacency matrix rank or the exactness of the acyclicity constraint. To express computational
complexity, we define d as the number of nodes and k as the maximum length of iterative approaches.
[†]: NOCURL requires a preliminary solution obtained by partially solving a cubic-expensive con-
strained optimization problem.

Method Complexity Constraint

NOTEARS (Zheng et al., 2018) O(d3) Exact
DAGMA (Bello et al., 2022) O(d3) Exact
NOBEARS (Lee et al., 2019) O(kd2) Approximated
TMPI (Zhang et al., 2022) O(kd2) Approximated
NOCURL (Yu et al., 2021) O(d2)† Partial
COSMO O(d2) None

2 RELATED WORKS

Both combinatorial and score-based structure learning approaches must deal with the number of
possible DAGs, which grows exponentially with the number of variables (Spirtes & Zhang, 2016).
To avoid this issue, a more recent line of research treats the space of DAGs as a continuous space
and addresses the structure learning problem as an optimization task (Vowels et al., 2022). In this
section, we report related works aiming to improve, approximate, or avoid altogether the constrained
optimization scheme firstly introduced by NOTEARS (Zheng et al., 2018), as we summarize in Table 1.
Given the shared intuition, we also briefly discuss classical and continuous order learning approaches.

Low-Rank Approximation. Several works extended NOTEARS by assuming that the adjacency
matrix of the underlying graph does not have full rank either to reduce the number of trainable
parameters (Fang et al., 2023) or to improve computational complexity (Lopez et al., 2022). In this
work, we deal with possibly full-rank matrices and do not directly compare with low-rank solutions.

Constraint Reformulation. NOBEARS (Lee et al., 2019) proposes to estimate the acyclicity con-
straint by approximating the spectral radius of the adjacency matrix. Given a maximum number k of
iterations, the constraint can then be evaluated on a graph with d nodes in O(kd2) time. Similarly,
TMPI (Zhang et al., 2022) proposes an iterative approximation of the constraint that also results in
O(kd2) computational complexity. Finally, DAGMA (Bello et al., 2022) reformulates the acyclicity
constraint as the log-determinant of a linear transformation of the adjacency matrix. While still
asymptotically cubic in complexity, the use of log-determinant is significantly faster in practice
because of widespread optimizations in common linear algebra libraries (Bello et al., 2022, pp.19).

Unconstrained Methods. To tackle the exponential size of the space of DAGs, several works follow
the intuition of separately fitting the graph orientation and its adjacencies (Friedman & Koller, 2003;
Teyssier & Koller, 2012; Bernstein et al., 2020; Deng et al., 2023). In the context of differentiable
approaches, of particular interest are causal discovery methods that avoid acyclicity constraints by
fitting a distribution over permutations parameterized either explicitly (Cundy et al., 2021; Charpentier
et al., 2022) or through their topological ordering (Zantedeschi et al., 2022). While sharing the overall
intuition of fitting DAGs through their orientation, we propose a parameterization and an optimization
scheme to fastly optimize acyclic adjacencies that could be then easily integrated in causal discovery
methods. For this reason, we focus our analysis on competing acyclic optimization methods. However,
we discuss the comparison with a more complete approach, namely DAGUERREOTYPE (Zantedeschi
et al., 2022), in Appendix E.19. Always in the context of causal discovery, ENCO (Lippe et al., 2022)
decouples a DAG in an adjacency matrix and an edge orientation matrix. The authors explicitly
parameterize the orientation matrix and prove that it converges to an acyclic orientation whenever the
training dataset contains a sufficient number of interventions. Our structure learning proposal tackles
instead non-intervened datasets and ensures acyclicity by construction. Similarly to us, NOCURL (Yu
et al., 2021) proposes a model that decouples the topological ordering from the adjacencies of an
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acyclic graph. However, the proposed optimization schemes are significantly different. Firstly,
their approach extracts the nodes ordering from a preliminary solution obtained by partially solving
the NOTEARS constrained optimization problem. Then, they fix the ordering and unconstrainedly
optimize only the direct adjacency matrix. On the other hand, COSMO jointly learns priorities and
adjacencies avoiding entirely acyclicity evaluations. Finally, GOLEM proposes an unconstrained
optimization problem regularized with the NOTEARS acyclicity constraint, which still needs to be
evaluated on each optimization step and might nonetheless lead to cyclic DAGs (Ng et al., a). We
report further discussion on the theoretical comparison with ENCO and NOCURL in Appendix D and
we carefully empirically compare with NOCURL in Section 5.

3 BACKGROUND

Graph Theory. A directed graph is a pair D = (V,A) of vertices V = {1, . . . , d} and arcs between
them A ⊆ V × V . A directed acyclic graph (DAG) is a directed graph whose arcs follow a strict
partial order on the vertices. In a DAG, the parents of a vertex v ∈ V are the set of incoming nodes
such that pa(v) = {u ∈ V | (u, v) ∈ A} (Bondy & Murty, 2008). We represent a directed graph as a
binary adjacency matrix A ∈ {0, 1}d×d, where Auv ̸= 0 ⇐⇒ (u, v) ∈ A. Similarly, we define a
weighted adjacency matrix as the real matrix W ∈ Rd×d, where Wuv ̸= 0 ⇐⇒ (u, v) ∈ A.

Structure Learning. A Structural Equation Model (SEM) models a data-generating process as a set
of functions f = {f1, . . . , fd}, where fv : R|pa(v)| → R for each variable v ∈ V in the DAG (Pearl,
2009). Given a class of functions F and a loss L, NOTEARS (Zheng et al., 2020) formalizes non-linear
acyclic structure learning through the following constrained optimization problem

min
f∈F

L(f) s.t. tr(eW (f)◦W (f))− d = 0, (1)

where W (f) ∈ Rd×d is the adjacency matrix representing parent relations between variables in f . In
particular, the constraint equals zero if and only if the adjacency matrix W (f) is acyclic. The authors
propose to solve the problem using the Augmented Lagrangian method (Nocedal & Wright, 1999),
which in turn requires to solve multiple unconstrained problems and to compute the constraint value
at each optimization step. Notably, any causal interpretation of the identified arcs depends on several
assumptions on both the function class F and the loss function L (van de Geer & Bühlmann, 2013;
Loh & Bühlmann, 2014).

4 LEARNING ACYCLIC ORIENTATIONS WITH COSMO

In Subsection 4.1, we propose to parameterize a weighted adjacency matrix as a function of a direct
matrix and a smooth orientation matrix. In this way, we effectively express the discrete space of
DAGs in a continuous and differentiable manner. Then, in Subsection 4.2, we introduce COSMO,
an unconstrained optimization approach to learn acyclic DAGs. Furthermore, we prove an upper
bound on the acyclicity of the smooth orientation matrix that connects our formulation to constrained
approaches. To ease the presentation, we initially assume linear relations between variables. By doing
so, the weighted adjacency matrix is the unique parameter of the problem. However, as with previous
structure learning approaches, our proposal easily extends to non-linear models by jointly optimizing
a non-linear model and an adjacency matrix either weighting or masking variables dependencies. We
report one possible extension of COSMO to non-linear relations in Appendix C.3.

4.1 SMOOTH ACYCLIC ORIENTATIONS

To continuously represent the space of DAGs with d = |V | nodes, we introduce a priority vector
p ∈ Rd on its vertices. Consequently, given the priority vector p and a strictly positive threshold
ε > 0, we define the following strict partial order ≺p,ε on the vertex set V

∀(u, v) ∈ V × V : u ≺p,ε v ⇐⇒ pv − pu ≥ ε. (2)

In other terms, a vertex u precedes another vertex v if and only if the priority of v is sufficiently
larger than the priority of the vertex u. Notably, with a zero threshold ε = 0, the relation would
be symmetric and thus not a strict order. On the other hand, whenever ε is strictly positive, we can
represent a subset of all strict partial orders sufficient to express all possible DAGs.
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Figure 2: (left) With infinite temperature, the sigmoid function is constant and connects all vertices.
(center) Given two nodes, for positive temperatures the smooth orientation matrix has larger values
on the arcs respecting the priority ordering. (right) In the limit of the temperature to zero, the smooth
orientation matrix contains non-zero entries if and only if the arc respects the order, i.e., it directs a
node to another with sufficiently higher priority.

Lemma 1. Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency
matrix of a DAG if and only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such
that

W = H ◦T≺p,ε
, (3)

where T≺p,ε
∈ {0, 1}d×d is a binary orientation matrix such that

T≺p,ε [uv] =

{
1 if u ≺p,ε v

0 otherwise,
(4)

for any u, v ∈ V .

Proof. We report the proof in Appendix A.1.

While priority vectors enable the representation of strict partial orders in a continuous space, the
construction of the orientation matrix still requires the non-differentiable evaluation of the inequality
between priority differences from Equation 2. To this end, we approximate the comparison of
the difference against the threshold ε, using a tempered sigmoidal function. We refer to such
approximation of the orientation matrix as the smooth orientation matrix.
Definition 1 (Smooth Orientation Matrix). Let p ∈ Rd be a priority vector, ε > 0 be a strictly
positive threshold, and t > 0 be a strictly positive temperature. Then, the smooth orientation matrix
of the strict partial order ≺p,ε is the real matrix St,ε(p) ∈ Rd×d such that, for any u, v ∈ V , it holds

St,ε(p)uv = σt,ε(pv − pu), (5)
where σt,ε is the ε-centered tempered sigmoid, defined as

σt,ε(x) =
1

1 + e−(x−ε)/t
. (6)

Intuitively, the threshold ε shifts the center of the sigmoid and breaks the symmetry whenever two
variables approximately have the same priority. The temperature parameter t > 0 regulates instead
the steepness of the sigmoid. Because of the asymmetry introduced by the threshold, in the limit of
the temperature to zero, the zero-entries of a smooth orientation matrix coincide with the zero-entries
of the corresponding orientation matrix (Figure 2). Therefore, we prove that any directed acyclic
graph can be represented as the element-wise product of a directed adjacency matrix and a smooth
orientation. Further, any directed graph resulting from this decomposition is acyclic.
Theorem 1. Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency
matrix of a DAG if and only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such
that

W = H ◦ lim
t→0

St,ε(p), (7)

where St,ε(p) is the smooth orientation matrix of ≺p,ε.

Proof. We report the proof in Appendix A.2.
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4.2 LEARNING ADJACENCIES AND ORIENTATIONS

Given our definition of smooth acyclic orientation (Definition 1), we can effectively parameterize the
space of DAGs as a continuous function of a weighted adjacency matrix H ∈ Rd×d and a priority
vector p ∈ Rd. Therefore, the computational complexity of our solution reduces to the construction
of the adjacency matrix W = H ◦ St,ε(p), which can be achieved in O(d2) time and space per
optimization step by computing each arc as Wuv = Huv · σ((pv − pu − ε)/t). In the literature,
NOCURL proposed a similar model where each arc has form Wuv = Huv · ReLU(pv − pu). Despite
the similarity, NOCURL is trained with a significantly different optimization scheme, as we also
discuss in Appendix D.2. In fact, to avoid a significant performance drop, their formulation requires
a preliminary solution from a constrained optimization problem and does not jointly learn the
parameters corresponding to our adjacencies and priorities. In the following, we describe how
COSMO effectively reduces to an unconstrained problem and avoids evaluating acyclicity altogether.

Temperature Annealing. The smooth orientation matrix St,ε(p) represents an acyclic orientation
only in the limit of the temperature t → 0. Nonetheless, the gradient loss vanishes whenever the
temperature tends to zero. In fact, for an arbitrary loss function L, we can decompose the gradient of
each component pu of the priority vector as follows

∂L(W)

∂pu

=
∑
v∈V

∂L(W)

∂Wuv
· ∂Wuv

∂pu

+
∂L(W)

∂Wvu
· ∂Wvu

∂pu

, (8)

∂Wuv

∂pu

= −Huv

t
σt,ε(pv − pu)(1− σt,ε(pv − pu)) (9)

∂Wvu

∂pu

=
Hvu

t
σt,ε(pv − pu)(1− σt,ε(pv − pu)). (10)

Therefore, by property of the sigmoidal function σt,ε it holds that both ∂Wvu/∂pu and ∂Wvu/∂pu
tend to zero for t → 0. To handle this issue, we tackle the optimization problem by progressively
reducing the temperature during training. In practice, we perform cosine annealing from an initial
positive value tstart to a significantly lower target value tend ≈ 0. We further motivate our choice by
showing the existence of an upper bound on the acyclicity of the orientation matrix that is a monotone
increasing function of the temperature. Therefore, temperature annealing effectively decreases the
acyclicity upper bound during training of the smooth orientation and, consequently, of the adjacencies.
Theorem 2. Let p ∈ Rd be a priority vector, ε > 0 be a strictly positive threshold, and t > 0 be a
strictly positive temperature. Then, given the smooth orientation matrix St,ε(p) ∈ Rd×d, it holds

h(St,ε(p)) ≤ edα − 1, (11)

where h(St,ε(p)) = tr(eSt,ε(p))− d is the NOTEARS acyclicity constraint and α = σ(−ε/t).

Proof. We report the proof in Appendix B.

Direct Matrix Regularization. To contrast the discovery of spurious arcs we perform feature
selection by applying L1 regularization on the adjacency matrix H. Further, during the annealing
procedure, even if a vertex u precedes v in the partial order ≺p,ε, the weight of the opposite arc
v → u in the smooth orientation matrix will only be approximately zero. Therefore, sufficiently
large values of the weighted adjacency matrix H, might still lead to undesirable cyclic paths during
training. To avoid this issue, we regularize the L2-norm of the non-oriented adjacency matrix.

Priority Vector Regularization. Other than for small temperature values, the partial derivatives
in Equations 9 and 10 tend to zero whenever the priorities distances |pv − pu| tend to infinity.
Therefore, we regularize the L2-norm of the priority vector. For the same reason, we initialize each
component from the normal distribution pu ∼ N (0, ε2/2), so that each difference follows the normal
distribution pv − pu ∼ N (0, ε2). We provide further details on initialization in Appendix A.3.

Optimization Problem. We formalize COSMO as the differentiable and unconstrained problem

min
H∈Rd×d,p∈Rd

L(H ◦ St,ε(p)) + λ1∥H∥1 + λ2∥H∥2 + λp∥p∥2, (12)
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where λ1, λ2, λp are the regularization coefficients for the adjacencies and the priorities. As the
regularization coefficients λ = {λ1, λ2, λp}, the initial temperature tstart, the target temperature tend,
and the shift ε are hyperparameters of our proposal, whose choice we discuss in Appendix C.4.
Notably, Theorem 2 can also guide the choice of the final temperature value and the shift to guarantee
a maximum tolerance on the acyclicity of the smooth orientation matrix.

5 EXPERIMENTS

We present an experimental comparison of COSMO against related acyclic structure learning ap-
proaches. Our method operates on possibly full-rank graphs and ensures the exact acyclicity of the
solution. Therefore, we focus on algorithms providing the same guarantees and under the same
conditions. Namely, we confront with the structure learning performance and execution time of
NOTEARS (Zheng et al., 2018), NOCURL (Yu et al., 2021), and DAGMA (Bello et al., 2022). As
previously discussed, NOCURL proposes a similar model with a substantially different optimization
scheme. To highlight the importance of both our parameterization and optimization scheme, we also
compare with an entirely unconstrained variant of the algorithm where we directly train the variables
ordering without any preliminary solution. In the results, we refer to this variant as NOCURL-U.

We base our empirical analysis on the testbed originally introduced by Zheng et al. (2018) and then
adopted as a benchmark by all followup methods. In particular, we test continuous approaches on
randomly generated Erdös-Rényi (ER) and scale-free (SF) graphs of increasing size and for different
exogenous noise types. For each method, we perform structure learning by minimizing the Mean
Squared Error (MSE) of a model on a synthetic dataset using the Adam optimizer (Kingma & Ba,
2015). In Appendix C, we report further details on the implementation of COSMO, the baselines, and
the datasets. We include the code to reproduce our experiments in the Supplementary Materials.1

5.1 EVALUATION OVERVIEW

In line with previous work, we retrieve the binary adjacency matrix by thresholding the learned
weights against a small threshold ω = 0.3 (Zheng et al., 2018). While COSMO guarantees the solution
to be acyclic, we maintain the thresholding step to prune correctly oriented but spurious arcs. Then,
we measure the Normalized Hamming Distance (NHD) between the solution and the ground-truth
as the sum of missing, extra, or incorrect edges divided by the number of nodes. In general, testing
weights against a fixed threshold might limit the retrieval of significant arcs with small coefficients
in the true model (Xu et al., 2022). For this reason, we also compute the Area under the ROC
curve (AUC), which describes the trade-off between the True Positive Rate (TPR) and the False
Positive Rate (FPR) for increasing values of the weight threshold (Heinze-Deml et al., 2018). Due to
space limitations, we only report in the main body the AUC results, which is the most comprehensive
score. We provide detailed results for other metrics, including NHD, in Appendix E.

5.2 RESULTS DISCUSSION

By looking at the AUC of the learned graphs, we observe that COSMO consistently achieves results
that are comparable and competitive with those from constrained-optimization solutions such as
DAGMA or NOTEARS across different graph sizes and noise types (Table 2). This empirically confirms
the approximation properties of COSMO, which can reliably discover DAGs without resorting to
explicit acyclicity constraints.

Furthermore, COSMO performs better than NOCURL on most datasets. We recall that the latter is the
only existing structure learning approach combining constrained and unconstrained optimization. As
pointed out in Yu et al. (2021), we also observe that the discovery performance of NOCURL drops
when optimizing the variable ordering instead of inferring it from a preliminary solution. The fact
that COSMO outperforms NOCURL-U on all datasets highlights the substantial role and effect of our
smooth orientation formulation and our optimization scheme for learning the topological ordering of
variables from data in an unconstrained way. Overall, our proposal achieves, on average, the best or
the second-best result for the AUC metric across all the analyzed datasets and correctly classifies arcs
also for large graphs (Figure 3). Further, as we extensively report in Appendix E for different graph

1https://github.com/rmassidda/cosmo
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Table 2: Experimental results on linear ER-4 acyclic graphs with different noise terms and sizes. For
each algorithm, we report mean and standard deviation over five independent runs of the AUC metric
and the time in seconds. We highlight in bold the best result and in italic bold the second best result.
The reported duration of NOCURL includes the time to retrieve the necessary preliminary solution
using an acyclicity constraint. We denote as NOCURL-U the quadratic version of NOCURL. Complete
results on additional metrics and graph types are in Appendix E.

Gauss Exp Gumbel

d Algorithm AUC Time AUC Time AUC Time

30

COSMO 0.984 ± 0.02 88 ± 2 0.989 ± 0.01 89 ± 3 0.914 ± 0.10 87 ± 2
DAGMA 0.985 ± 0.01 781 ± 192 0.986 ± 0.02 744 ± 75 0.973 ± 0.02 787 ± 86
NOCURL 0.967 ± 0.01 822 ± 15 0.956 ± 0.02 826 ± 24 0.915 ± 0.04 826 ± 17
NOCURL-U 0.694 ± 0.06 226 ± 5 0.694 ± 0.05 212 ± 5 0.678 ± 0.05 212 ± 5
NOTEARS 0.973 ± 0.02 5193 ± 170 0.966 ± 0.03 5579 ± 284 0.981 ± 0.01 5229 ± 338

100

COSMO 0.961 ± 0.03 99 ± 2 0.985 ± 0.01 99 ± 2 0.973 ± 0.01 98 ± 1
DAGMA 0.982 ± 0.01 660 ± 141 0.986 ± 0.01 733 ± 109 0.986 ± 0.01 858 ± 101
NOCURL 0.962 ± 0.01 1664 ± 14 0.950 ± 0.02 1655 ± 28 0.962 ± 0.01 1675 ± 34
NOCURL-U 0.682 ± 0.05 267 ± 10 0.693 ± 0.05 242 ± 4 0.663 ± 0.04 247 ± 9
NOTEARS 0.963 ± 0.01 11000 ± 339 0.972 ± 0.01 10880 ± 366 0.969 ± 0.00 11889 ± 343

500
COSMO 0.933 ± 0.01 436 ± 81 0.986 ± 0.00 390 ± 102 0.982 ± 0.01 410 ± 106
DAGMA 0.980 ± 0.00 2485 ± 365 0.984 ± 0.01 2575 ± 469 0.980 ± 0.00 2853 ± 218
NOCURL-U 0.683 ± 0.05 1546 ± 304 0.715 ± 0.03 1488 ± 249 0.728 ± 0.05 1342 ± 209

Figure 3: Visualization of the weighted adjacency matrix learned by COSMO (ER4, Gaussian noise,
100 nodes) against the ground truth. We also report the difference between the ground-truth and the
learned weights. By thresholding the learned weighted adjacency matrix, COSMO correctly classifies
most true (TPR = 0.96) and non-existing arcs (FPR = 0.01), resulting in a limited number of errors
(NHD = 0.93) due to the narrow difference in the retrieved weights.

size and noise terms, our non-linear extension obtains comparable performances with DAGMA-MLP
in significantly less time.

Unsurprisingly, due to its quadratic computational complexity, COSMO is significantly faster than
constrained methods on all datasets, especially for increasing graph sizes. Notably, despite employing
early stopping conditions for convergence, all competing methods incur in the cost of solving
multiple optimization problems with higher computational cost per step (Figure 4). In particular,
while the unconstrained variant NOCURL-U has a comparable per-epoch average time cost, for a
substantially worse graph recovery performance, NOCURL overall pays the need for a preliminary
solution computed with an acyclicity constraint. Therefore, already for graphs with 500 nodes, only
COSMO, DAGMA, and NOCURL-U return a solution before hitting our wall time limit. Finally, we
observe that the cubic computational complexity of DAGMA significantly emerges when dealing
with large graphs. Therefore, despite the effective underlying optimizations on the log-determinant
computation, DAGMA’s acyclicity constraint still affects scalability.

Given the proposed parameterization, COSMO requires particular care in the choice of the regulariza-
tion hyperparameters. In particular, we carefully considered the importance of regularizing the priority
vector, which constitutes one of our main differences with previous structure learning approaches.
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Table 3: Ablation test of the priority regularization term λp on DAGs with different noise terms and
sizes. We name the configuration without priority regularization as COSMO-NP and report mean and
standard deviation over five independent runs. For each configuration, the best result is in bold.

Graph d Algorithm NHD TPR AUC

ER4
30 COSMO 0.867 ± 1.01 0.953 ± 0.04 0.984 ± 0.02

COSMO-NP 1.893 ± 0.92 0.870 ± 0.07 0.937 ± 0.05

100 COSMO 1.388 ± 0.69 0.917 ± 0.04 0.961 ± 0.03
COSMO-NP 1.570 ± 0.56 0.935 ± 0.04 0.974 ± 0.02

ER6
30 COSMO 4.087 ± 1.12 0.838 ± 0.06 0.921 ± 0.04

COSMO-NP 4.153 ± 2.38 0.819 ± 0.12 0.885 ± 0.09

100 COSMO 9.476 ± 3.01 0.771 ± 0.08 0.911 ± 0.05
COSMO-NP 9.804 ± 2.90 0.848 ± 0.05 0.941 ± 0.03
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Figure 4: Average duration of a training epoch
for an increasing number of nodes on five
independent runs on random ER-4 DAGs.

We found that our hyperparameter search procedure
consistently returned relatively low priority regular-
ization values (λp ≈ 1e-3). However, while it might
benefit structure learning for larger graphs, ablating
priority regularization results in a non-negligible per-
formance drop for smaller graphs (Table 3).

Another important aspect of our proposal is the tem-
perature annealing procedure. While we proved that
in the limit of the temperature to zero the resulting
model will be acyclic, the same procedure might lead
to zero-gradients effectively impeding the optimiza-
tion. In Appendix G, we show that COSMO consis-
tently reaches acyclic solutions before completely
annealing the temperature and thus that optimization
continues even in the last epochs. Finally, we also
find empirical evidence that our L2 regularization
scheme on the directed adjacency matrix effectively
contains acyclicity during training (Appendix F).

6 CONCLUSION

We introduced COSMO, an unconstrained and continuous approach for recovering DAGs from data.
Our novel definition of smooth orientation matrix ensures the acyclicity of the solution without
requiring the evaluation of computationally expensive constraints. Furthermore, we prove that
annealing the temperature of our smooth acyclic orientation corresponds to decreasing an upper
bound on the widely adopted acyclicity relaxation from NOTEARS. Overall, our empirical analysis
showed that COSMO performs comparably to constrained methods in significantly less time. Notably,
our proposal significantly outperforms the only existing work partially optimizing in the space of
DAGs, NOCURL, and its completely unconstrained variant NOCURL-U. Experimental results highlight
the role of our parameterization, which does not incur the necessity of preliminary solutions and
provably returns a DAG without ever evaluating acyclicity.

In recent years, several authors debated using continuous acyclic learners as full-fledged causal
discovery algorithms (Reisach et al., 2021; Kaiser & Sipos, 2022; Ng et al., b). In this context, our
empirical analysis of COSMO shares the same limitations of existing baselines and, exactly like them,
might not be significant in the causal discovery scenario. However, acyclic optimization techniques
are a fundamental component of continuous discovery approaches (Brouillard et al., 2020; Lorch
et al., 2022). By reducing by an order of magnitude the necessary time to optimize an acyclic causal
graph, COSMO opens up more scalable continuous causal discovery strategies without sacrificing —
as demonstrated in this work — the theoretical guarantees on DAGs approximation capabilities.
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A DEFERRED PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1 Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency
matrix of a DAG if and only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such
that

W = H ◦T≺p,ε
, (13)

where T≺p,ε ∈ {0, 1}d×d is a binary orientation matrix such that

T≺p,ε [uv] =

{
1 if u ≺p,ε v

0 otherwise,
(14)

for any u, v ∈ V .

Proof. Firstly, we prove the existence of a priority vector p and an adjacency matrix H for each
weighted acyclic matrix W of a directed acyclic graph D = (V,A). Being a DAG, the arcs follow a
strict partial order ≺ on the vertices V = {1, . . . , d}. Therefore, it holds that

A ⊆ {(u, v) | u ≺ v}. (15)

Consequently, for an arbitrary topological ordering of the variables π : V → {1, . . . , d}, which
always exists on DAGs, we define the vector p ∈ Rd such that

pu = επ(u). (16)

Given the following implications

u ≺ v =⇒ π(v) > π(u) (17)
=⇒ pv − pu = ε(π(v)− π(u)) ≥ ε (18)
⇐⇒ u ≺p,ε v, (19)

it holds that the order ≺p,ε contains the order ≺. Finally, we can define the adjacency matrix as
H = W, where W = H ◦T≺p,ε

holds since T≺p,ε
[u, v] = 0 only if (u, v) ̸∈ A.

To prove that any priority vector p and adjacency matrix H represent a DAG, we first notice that,
since the arcs follow a strict partial order, the orientation T≺p,ε is acyclic. Then, by element-wise
multiplying any matrix H we obtain a sub-graph of a DAG, which is acyclic by definition.

A.2 PROOF OF THEOREM 1

Theorem 1 Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency
matrix of a DAG if and only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such
that

W = H ◦ lim
t→0

St,ε(p), (20)

where St,ε(p) is the smooth orientation matrix of ≺p,ε.

Proof. By Lemma 1, we know that for any acyclic weighted adjacency matrix W there exist a priority
vector p and a real matrix H such that W = H ◦T≺p,ε

. Further, by Definition 1, the inner limit of
Equation 20 solves to

lim
t→0

St,ε(p)uv =


1 pv − pu > ε

1/2 pv − pu = ε

0 pv − pu < ε.

(21)

Therefore, we can define H′ ∈ Rd×d such that

Huv =

{
2H′

uv pv − pu = ε,

H′
uv otherwise.

, (22)
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from which

W = H ◦T≺p,ε
= H′ ◦ lim

t→0
St,ε(p). (23)

Then, to prove the counter-implication of Theorem 1, we notice that

lim
t→0

St,ε(p)uv = 0 ⇐⇒ pv − pu < ε ⇐⇒ u ̸≺p,ε v. (24)

Therefore, since the smooth orientation contains an arc if and only if the vertex respect the strict
partial order ≺p,ε, it is acyclic. Consequently, as in Lemma 1, the element-wise product with an
acyclic matrix results in a sub-graph of a DAG, which is also acyclic by definition.

A.3 PRIORITY VECTOR INITIALIZATION

By independently sampling each priority component from a Normal distribution N (µ, s2/2), each
difference is consequently sampled from the distribution N (0, s2). Therefore, we seek a value for
the standard deviation s that maximizes the partial derivative

∂Wuv

∂pu

=
Huv

t
σt,ε(pv − pu)(1− σt,ε(pv − pu)). (25)

for arbitrary vertices u, v. Given the definition of the tempered-shifted sigmoid function, this object
has maximum in pv − pu = ε. Therefore, by setting the variance as s2 = ε2, we maximize the
density function of the point pv − pu = ε in the distribution N (0, s2).

B SMOOTH ACYCLIC ORIENTATIONS AND THE ACYCLICITY CONSTRAINT

In this section, we present the proof for the upper bound on the acyclicity of a smooth acyclic
orientation matrix. To this end, we introduce two auxiliary and novel lemmas. Firstly, we introduce
a lemma which binds the product of a sigmoid on a sequence of values with zero sum (Lemma 2).
Then, we introduce another lemma on the sum of the priority differences in a cyclic path (Lemma 3).
Finally, we are able to prove the acyclicity upper bound from Theorem 2.

Lemma 2. (Sigmoid Product Upper Bound) Let {xi} be a sequence of n real numbers such that
n∑

i=1

xi = 0.

Then, for any temperature t > 0 and shift ε ≥ 0, it holds that
n∏

i=1

σt,ε(xi) ≤ αn,

where α = σ(−ε/t) is the value of the tempered and shifted sigmoid in zero.

Proof. Before starting, we invite the reader to notice that, for any temperature t > 0, if the sum
of the sequence {xi} is zero, then also the sequence {xi/t} sums to zero. Therefore, we omit the
temperature in the following proof, and assume to divide beforehand all elements of the sequence by
the temperature t. Further, we explicitly denote the shifted sigmoid by using the notation σ(xi − ε).

Firstly, we formulate the left-side of the inequality as
n∏

i=1

σ(xi − ε) =

n∏
i=1

exi−ε

1 + exi−ε
=

∏n
i=1 e

xi−ε∏n
i=1 1 + exi−ε

=
e
∑n

i=1 xi−ε∏n
i=1 1 + exi−ε

=
e−nε∏n

i=1 1 + exi−ε
.

Similarly, we rewrite the right side as

αn = σ(−ε)
n
=

(
e−ε

1 + e−ε

)n

=
e−nε

(1 + e−ε)n
.
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Therefore, proving the left-side smaller or equal than the right-side, reduces to proving the left-
denominator is larger than the right-denominator. Formally,

n∏
i=1

1 + exi−ε ≥
(
1 + e−ε

)n
,

or equivalently, by applying the logarithmic function,
n∑

i=1

log(1 + exi−ε) ≥ n log(1 + e−ε). (26)

To further ease the notation, we refer to the left side of inequality 26, as the target function

T (x) =

n∑
i=1

log(1 + exi−ε).

In particular, to prove 26, we show that

min
x

T (x) = n log(1 + e−ε), (27)

for x = 0⃗, which is the only stationary point due to the convexity of the target function.

Without loss of generality, we derive the partial derivative of the component x1 on the target
function T (x). To constraint the components sum to zero, we consider the components {xi} for i > 2
as free, and then x2 = −x1 −

∑n
i=3 xi as a function of the remaining. The choice of x1, x2 is

independent from the components ordering, and thus applies to any possible pair. Consequently,

∂T (x)

∂x1
=

∂(log(1 + ex1−ε) + log(1 + e−x1−
∑n

i=3 xi−ε) +
∑n

i=3 log(1 + exi−ε))

∂x1
(28)

=
∂(log(1 + ex1−ε) + log(1 + e−x1−

∑n
i=3 xi−ε)

∂x1
(29)

= σ(x1 − ε)− σ(−x1 −
n∑

i=3

xi − ε). (30)

Since σ(−ε) = σ(−ε), the equation is satisfied, for any component xi, by x = 0⃗,

We finally prove Inequality 26, by showing that the value of the target function T (x), in its only
stationary point x = 0⃗, equals the bound. Formally,

T (⃗0) =

n∑
i=1

log(1 + e−ε) (31)

= n log(1 + e−ε). (32)

Lemma 3. (Sum of Differences in Cycle) Let {pi} be a sequence of n+ 1 real numbers such that
p1 = pn+1. Then, let {δi} be a sequence of n numbers such that δi = pi+1 − pi. Then,

n∑
i=1

δi = 0. (33)

Proof. The proof is immediate from the following sequence of equations:
n∑

i=1

δi =

n∑
i=1

pi+1 − pi = −p1 +

n∑
i=2

pi − pi + pn+1 = 0.
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Theorem 2. Let p ∈ Rd be a priority vector, ε > 0 be a strictly positive threshold, and t > 0 be a
strictly positive temperature. Then, given the smooth orientation matrix St,ε(p) ∈ Rd×d, it holds

h(St,ε(p)) ≤ edα − 1, (34)

where h(St,ε(p)) = tr(eSt,ε(p))− d is the NOTEARS acyclicity constraint and α = σ(−ε/t).

Proof. The left side of Inequality 34 corresponds to the following infinite series

tr(eP)− d =

∞∑
k=0

1

k!
tr(P(k))− d

=

∞∑
k=1

1

k!
tr(P(k))

where P(k) is the matrix power defined as P(k) = P(k−1)P and P0 = I.

By definition of matrix power, the u-th element on the diagonal of P(k) equals to

P(k)
uu =

∑
v1∈V

P(k−1)
v1,u Pu,v1

=
∑
v1∈V

· · ·
∑

vk−1∈V

Pu,v1

(
k−2∏
i=1

Pvi,vi+1

)
Pvk−1,u.

Intuitively, the u-th element on the diagonal of P(k) amounts to the sum of all possible paths starting
and ending in the variable Xu. Therefore, being the same node, the priority of the first and the last
node in the path are equal by definition. Consequently, by Lemma 3, the difference between the
priorities sums to zero. For this reason, given Lemma 2, it holds that the product of the corresponding
sigmoids is smaller or equal than αk. Therefore,

P(k)
uu =

∑
v1∈V

· · ·
∑

vk−1∈V

Pu,v1

(
k−2∏
i=1

Pvi,vi+1

)
Pvk−1,u

≤
∑
v1∈V

· · ·
∑

vk−1∈V

αk

= dk−1αk.

Consequently, we upper bound the trace of the orientation matrix power as

tr(P(k)) =

d∑
u=1

P(k)
uu ≤ dkαk.

Finally, we are able to prove the Theorem as

tr(eP)− d =

∞∑
k=0

1

k!
tr(P(k))− d

=

∞∑
k=1

1

k!
tr(P(k))

≤
∞∑
k=1

1

k!
dkαk

= −1 + edα,

where the last passage is due to the Taylor series of the exponential function.
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C IMPLEMENTATION DETAILS

In this section, we discuss the significant aspects of our implementation. We run all the experiments
on our internal cluster of Intel(R) Xeon(R) Gold 5120 processors, totaling 56 CPUs per machine.
The necessary code and instructions are in the Supplementary Materials. We report details on the
evaluation (C.1), the data generation procedure (C.2), and the models (C.4).

C.1 EVALUATION PROCEDURE

We ensure a fair comparison by selecting the best hyperparameters for each implemented method on
each dataset. We describe the hyperparameter space for each algorithm in the following subsections.
Firstly, we sample fifty random configurations from the hyperparameter space. Since the hyperparam-
eter space of COSMO also includes temperature and shift values, we extract more hyperparameters
(200 – 800). Due to the significant speedup of COSMO, hyperparameter searches take a comparable
amount of time, with NOTEARS being significantly longer on small graphs as well. Then, we test
each configuration on five randomly sampled DAGs. We select the best hyperparameters according
to the average AUC value. Finally, we perform a validation step by running the best configuration on
five new random graphs.

To report the duration of each method, we track the time difference from the start of the fitting
procedure up to the evaluation process, excluded. For constrained methods, this includes all the
necessary adjustments between different problems. For COSMO, it contains the annealing of the
temperature between training epochs.

Following previous work, we recover the binary adjacency matrix A of the retrieved graph by
thresholding the learned weights W with a small constant ω = 0.3. Formally, A = |W| > ω.

C.2 SYNTHETIC DATA

We include in our code the exact data generation process from the original implementation of
NOTEARS.2 Therefore, the dataset generation procedure firstly produces a DAG with either the
Erdős–Rényi (ER) or the scale-free Barabási-Albert (SF) models. Then, it samples 1000 independent
observations. In the linear case, the generator simulates equations of the form

fi(x) = W⊤
i x+ zi, (35)

where we sample each weight Wij from the uniform distribution U(−2,−0.5) ∪ (0.5, 2) and each
noise term zi from either the Normal, Exponential (λ = 1), or Gumbel (µ = 0, β = 1) distributions.
In the non-linear case, we simulate an additive noise model with form

fi(x) = gi(x) + zi, (36)

where gi is a randomly initialized Multilayer Perceptron (MLP) with 100 hidden units and the noise
term zi is sampled from the Normal Distribution N (0, 1).

C.3 NON-LINEAR RELATIONS

We generalize COSMO to represent non-linear relations between variables. To ease the comparison,
we follow the non-linear design of NOTEARS-MLP (Zheng et al., 2020) and DAGMA-MLP (Bello
et al., 2022). However, it is worth mentioning that this is only one of the possible approaches for
non-linear relations and that COSMO parameterization could be easily extended to mask the input
of a neural network instead of the weights, as done by Ng et al. (2022b) or Brouillard et al. (2020).
Similarly to NOTEARS (Zheng et al., 2020), we model the outcome of each variable Xu with a
neural network fu : R

d → R, where we distinguish between the first-layer weights Hu ∈ Rd×h,
for h distinct neurons, and the remaining parameters Φu. We ensure acyclicity by considering each
weight matrix Hu as the u-th slice on the first dimension of a tensor H ∈ Rd×d×h. Intuitively,
each entry Hu

vi represents the weight from the variable Xu to the i-th neuron in the first layer of the

2NOTEARS implementation is published with Apache license at https://github.com/xunzheng/
notears.
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Table 4: Hyperparameter ranges and values for NOTEARS, NOCURL, and DAGMA.

Hyperparameter Range/Value

Learning Rate (1e-3, 1e-2)
λ1 (1e-4, 1e-3)
λ2 (1e-3, 5e-3)
λp (1e-3, 3e-3)
tstart 0.45
tend (5e-4, 1e-3)
ε (5e-3, 2e-2)

(a) COSMO

Hyperparameter Range/Value

Learning Rate (1e-4, 1e-3)
Regularization (1e-4, 1e-1)
Initial Penalty 1.0
Penalty Factor 10.0
Max Penalty 1e+16
Multiplier 1.0
DAGness Tolerance 1e-8
Progress Rate 0.25
Max Iterations 100

(b) NOTEARS

Hyperparameter Range/Value

Learning Rate (1e-4, 1e-3)
Regularization (1e-4, 1e-1)
Initial Path Coefficient 1.0
Path Decay Factor 0.1
Log-Det Parameter (1.0, 0.9, 0.8, 0.7)
Max Steps 4

(c) DAGMA

Hyperparameter Range/Value

Learning Rate (1e-4, 1e-3)
Regularization (1e-4, 1e-1)
Multiplier (10.0, 1000.0)
Prethreshold 0.3
Progress Rate 0.25

(d) NOCURL

MLP fv . Then, we broadcast the element-wise multiplication of a smooth orientation matrix on the
hidden dimensions. Formally, we model the structural equation of each variable Xu as

fu(x) = gu(φ(x
⊤ [H ◦ St,ε(p)]

u
); Φu), (37)

where φ is an activation function and gu is a Multilayer Perceptron (MLP) with weights Φu. By
applying each MLP fu to each variable Xu, we define the overall SEM as the function f : Rd → Rd,
which depends on the parameters Φ = {Φu}, on the weight tensor H, and the priority vector p.
Therefore, we formalize the non-linear extension of COSMO as the following problem

min
H∈Rd×d,p∈Rd,Φ

L(H ◦ St,ε(p),Φ) + λ1∥H∥1 + λ2∥H∥2 + λp∥p∥2. (38)

C.4 MODELS

Since we focus on the role of acyclic learners as a building block within more comprehensive
discovery solutions, we slightly detach from experimental setups considering such algorithms as
standalone structure learners. Therefore, instead of dealing with full-batch optimization, we perform
mini-batch optimization with batch size B = 64. Similarly, instead of explicitly computing the
gradient of the loss function, we implement all methods in PyTorch to exploit automatic differentiation.
By avoiding differentiation and other overhead sources, the time expenses results are not directly
comparable between our implementations and the results reported in the original papers. However,
our implementation choices are common to works that employed NOTEARS et similia to ensure the
acyclicity of the solution (Lachapelle et al., 2020; Brouillard et al., 2020; Lopez et al., 2022).

By checking the convergence of the model, both NOTEARS, DAGMA, and NOCURL can dynamically
stop the optimization procedure. On the other hand, COSMO requires a fixed number of epochs in
which to anneal the temperature value. For a fair comparison, while we stop optimization problems
after a maximum of 5000 training iterations, we do not disable early-stopping conditions on the
baselines. Therefore, when sufficiently large, the maximum number of epochs should not affect
the overall execution time of the methods. For COSMO, we interrupt the optimization after 2000
epochs. For the non-linear version of DAGMA, we increased the maximum epochs to 7000. Overall,
we interrupt the execution of an algorithm whenever it hits a wall time limit of 20000 seconds.

As previously discussed in Subsection C.1, we perform a hyperparameter search on each model
for each dataset. In particular, we sampled the learning rate from the range (1e-4, 1e-2) and the

18



Published as a conference paper at ICLR 2024

regularization coefficients from the interval (1e-4, 1e-1). For the specific constrained optimization
parameters, such as the number of problems or decay factors, we replicated the baseline parameters,
for which we point the reader to the original papers or our implementation. For COSMO, we sample
hyperparameters from the ranges in Table 4, given our theoretical findings on the relation between
acyclicity and temperature (Theorem 2), we ensure sufficiently small acyclicity values. In the
non-linear variant, we employ Multilayer Perceptrons with h = 10 hidden units for each variable.

D DETAILED COMPARISON WITH RELATED WORKS

D.1 COMPARISON WITH ENCO

Lippe et al. (2022) propose to learn a directed acyclic graph by jointly learning the probability of an
arc being present and of the arc direction. The overall method, named ENCO, defines the probability
of a direct edge Xu → Xv as

Wuv = σ(Huv) · σ(Puv), (39)

where H ∈ Rd×d and P ∈ Rd×d are free parameters and σ is the sigmoid function. Although
similar to our formulation, ENCO defines arc orientations as a matrix that might be cyclic. In fact, the
matrix P does not ensure the transitivity property that an orientation matrix grants instead. However,
the authors proved that, in the limit of the number of samples from the interventional distribution,
ENCO will converge to a directed acyclic graph. In comparison, our formulation always converges to
a directed acyclic graph and is thus adapt to perform structure learning in the observational context.

D.2 COMPARISON WITH NOCURL

Motivated by Hodge theory (Hodge, 1989), NOCURL (Yu et al., 2021) proposes to parameterize a
DAG as a function of a d-dimensional vector and a directed possibly cyclic graph. By adopting our
notation, introduced in Section 4, we could report their decomposition as

Wuv = Huv · ReLU(pv − pu), (40)

for an arbitrary weight from node Xu to node Xv . Compared to our definition, the use ReLU does not
correspond to the approximation of an orientation matrix. In fact, the distance between the priorities
directly affects the weight. Instead, by employing the shifted-tempered sigmoid in the definition of
smooth acyclic orientation, in COSMO the priorities only determine whether an arc is present between
two variables. Further, NOCURL requires a preliminary solution from which to extract the topological
ordering of the variables. In turn, such preliminary solution requires the use of an acyclicity constraint
in multiple optimization problems. Therefore, in practice, NOCURL does not learn the variables
ordering in an unconstrained way and adjusts adjacency weights in the last optimization problem.

E ADDITIONAL RESULTS

In this section, we report further results on simulated DAGs with different noise terms, graph types,
and increasing numbers of nodes. For each algorithm, we present the mean and standard deviation of
each metric on five independent runs. We report the Area under the ROC Curve (AUC), the True Pos-
itive Ratio (TPR), and the Structural Hamming Distance normalized by the number of nodes (NHD).
The reported duration of NOCURL includes the time to retrieve the necessary preliminary solution
through two optimization problems regularized with the NOTEARS acyclicity constraint. We denote
as NOCURL-U the variation of NOCURL that solves a unique unconstrained optimization problem
without preliminary solution. When not immediate, we highlight in bold the best result and in italic
bold the second best result. We do not report methods exceeding our wall time limit of 20000 seconds.
For completeness, we report and discuss results on variance normalized datasets (Section E.18) and
further comparisons with GOLEM (Section E.17) and DAGUERREOTYPE (Section E.19).

19



Published as a conference paper at ICLR 2024

E.1 ER4 - GAUSSIAN NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.867 ± 1.01 0.953 ± 0.04 0.984 ± 0.02 88 ± 3
DAGMA 0.707 ± 0.57 0.940 ± 0.04 0.985 ± 0.01 781 ± 193
NOCURL 1.653 ± 0.17 0.942 ± 0.02 0.967 ± 0.01 822 ± 15
NOCURL-U 5.623 ± 0.92 0.492 ± 0.08 0.694 ± 0.06 227 ± 5
NOTEARS 0.913 ± 0.60 0.940 ± 0.05 0.973 ± 0.02 5193 ± 170

100

COSMO 1.388 ± 0.69 0.917 ± 0.04 0.961 ± 0.03 99 ± 2
DAGMA 1.026 ± 0.40 0.876 ± 0.02 0.982 ± 0.01 661 ± 142
NOCURL 5.226 ± 1.34 0.921 ± 0.02 0.962 ± 0.01 1664 ± 15
NOCURL-U 10.108 ± 4.11 0.427 ± 0.05 0.682 ± 0.05 267 ± 10
NOTEARS 2.380 ± 2.10 0.898 ± 0.03 0.963 ± 0.01 11001 ± 340

500
COSMO 4.149 ± 1.14 0.819 ± 0.02 0.933 ± 0.01 437 ± 81
DAGMA 2.246 ± 0.40 0.882 ± 0.01 0.980 ± 0.00 2485 ± 366
NOCURL-U 27.675 ± 16.52 0.410 ± 0.04 0.683 ± 0.05 1546 ± 304

E.2 ER4 - EXPONENTIAL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.600 ± 0.54 0.970 ± 0.02 0.989 ± 0.01 89 ± 3
DAGMA 0.613 ± 0.91 0.958 ± 0.05 0.986 ± 0.02 744 ± 75
NOCURL 2.300 ± 0.97 0.918 ± 0.04 0.956 ± 0.02 826 ± 24
NOCURL-U 5.313 ± 0.17 0.423 ± 0.05 0.694 ± 0.05 212 ± 5
NOTEARS 1.320 ± 0.67 0.880 ± 0.10 0.966 ± 0.03 5579 ± 284

100

COSMO 1.642 ± 0.26 0.952 ± 0.02 0.985 ± 0.01 99 ± 2
DAGMA 1.294 ± 0.52 0.944 ± 0.02 0.986 ± 0.01 733 ± 109
NOCURL 5.652 ± 1.35 0.854 ± 0.03 0.950 ± 0.02 1655 ± 28
NOCURL-U 11.642 ± 4.34 0.478 ± 0.05 0.693 ± 0.05 242 ± 4
NOTEARS 1.156 ± 0.44 0.904 ± 0.03 0.972 ± 0.01 10880 ± 366

500
COSMO 2.342 ± 0.86 0.944 ± 0.02 0.986 ± 0.00 390 ± 102
DAGMA 2.147 ± 1.08 0.902 ± 0.04 0.984 ± 0.01 2575 ± 469
NOCURL-U 20.183 ± 7.43 0.437 ± 0.03 0.715 ± 0.03 1488 ± 249

E.3 ER4 - GUMBEL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 2.220 ± 1.65 0.862 ± 0.14 0.914 ± 0.10 87 ± 2
DAGMA 1.680 ± 0.73 0.937 ± 0.03 0.973 ± 0.02 787 ± 86
NOCURL 3.873 ± 1.26 0.853 ± 0.08 0.915 ± 0.04 826 ± 17
NOCURL-U 5.260 ± 0.57 0.475 ± 0.08 0.678 ± 0.05 212 ± 5
NOTEARS 0.587 ± 0.38 0.962 ± 0.03 0.981 ± 0.01 5229 ± 338

100

COSMO 2.398 ± 0.70 0.936 ± 0.02 0.973 ± 0.01 98 ± 1
DAGMA 1.132 ± 0.79 0.921 ± 0.04 0.986 ± 0.01 858 ± 101
NOCURL 4.714 ± 1.77 0.905 ± 0.03 0.962 ± 0.01 1675 ± 34
NOCURL-U 6.914 ± 0.80 0.383 ± 0.04 0.663 ± 0.04 247 ± 9
NOTEARS 1.402 ± 0.40 0.869 ± 0.04 0.969 ± 0.00 11889 ± 343

500
COSMO 3.574 ± 1.44 0.932 ± 0.02 0.982 ± 0.01 410 ± 106
DAGMA 1.737 ± 0.64 0.871 ± 0.03 0.980 ± 0.00 2853 ± 218
NOCURL-U 18.182 ± 9.28 0.462 ± 0.06 0.728 ± 0.05 1342 ± 209
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E.4 SF4 - GAUSSIAN NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.300 ± 0.09 0.973 ± 0.01 0.997 ± 0.00 89 ± 5
DAGMA 0.360 ± 0.30 0.973 ± 0.02 0.996 ± 0.01 653 ± 198
NOCURL 0.967 ± 0.43 0.893 ± 0.03 0.983 ± 0.01 828 ± 23
NOCURL-U 4.410 ± 0.72 0.566 ± 0.11 0.741 ± 0.08 226 ± 7
NOTEARS 0.553 ± 0.54 0.944 ± 0.06 0.984 ± 0.02 5292 ± 261

100

COSMO 0.482 ± 0.31 0.962 ± 0.02 0.991 ± 0.01 99 ± 3
DAGMA 0.712 ± 0.33 0.951 ± 0.02 0.995 ± 0.00 479 ± 75
NOCURL 2.030 ± 0.46 0.883 ± 0.03 0.982 ± 0.01 1667 ± 25
NOCURL-U 5.521 ± 0.61 0.596 ± 0.09 0.788 ± 0.06 269 ± 9
NOTEARS 0.280 ± 0.35 0.972 ± 0.04 0.993 ± 0.01 10112 ± 492

500
COSMO 1.566 ± 0.68 0.953 ± 0.02 0.989 ± 0.01 541 ± 15
DAGMA 1.343 ± 0.46 0.915 ± 0.04 0.992 ± 0.00 1345 ± 33
NOCURL-U 7.146 ± 3.19 0.504 ± 0.08 0.780 ± 0.07 1394 ± 217

E.5 SF4 - EXPONENTIAL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.613 ± 0.39 0.965 ± 0.02 0.985 ± 0.02 87 ± 2
DAGMA 0.127 ± 0.20 0.991 ± 0.01 0.999 ± 0.00 592 ± 200
NOCURL 0.887 ± 0.21 0.845 ± 0.02 0.985 ± 0.01 824 ± 25
NOCURL-U 4.067 ± 0.73 0.460 ± 0.15 0.685 ± 0.09 212 ± 7
NOTEARS 0.513 ± 0.30 0.962 ± 0.03 0.984 ± 0.01 5189 ± 271

100

COSMO 0.724 ± 0.71 0.963 ± 0.04 0.985 ± 0.02 100 ± 2
DAGMA 0.586 ± 0.56 0.969 ± 0.03 0.995 ± 0.00 395 ± 108
NOCURL 1.998 ± 0.40 0.907 ± 0.03 0.980 ± 0.00 1670 ± 28
NOCURL-U 5.912 ± 1.54 0.575 ± 0.06 0.783 ± 0.04 245 ± 7
NOTEARS 0.910 ± 0.43 0.962 ± 0.02 0.991 ± 0.01 10243 ± 723

500
COSMO 1.445 ± 0.58 0.950 ± 0.03 0.990 ± 0.01 517 ± 108
DAGMA 1.653 ± 0.91 0.873 ± 0.08 0.988 ± 0.01 1466 ± 247
NOCURL-U 12.140 ± 7.84 0.482 ± 0.08 0.727 ± 0.06 1205 ± 257

E.6 SF4 - GUMBEL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.467 ± 0.51 0.962 ± 0.05 0.990 ± 0.02 88 ± 2
DAGMA 0.487 ± 0.20 0.956 ± 0.03 0.990 ± 0.01 754 ± 179
NOCURL 0.747 ± 0.19 0.938 ± 0.02 0.989 ± 0.00 826 ± 32
NOCURL-U 3.107 ± 0.64 0.460 ± 0.06 0.737 ± 0.04 213 ± 5
NOTEARS 0.860 ± 0.76 0.924 ± 0.06 0.975 ± 0.02 5199 ± 130

100

COSMO 0.864 ± 0.24 0.968 ± 0.01 0.992 ± 0.01 98 ± 2
DAGMA 0.388 ± 0.30 0.975 ± 0.02 0.997 ± 0.00 422 ± 103
NOCURL 1.806 ± 0.40 0.898 ± 0.03 0.982 ± 0.01 1676 ± 31
NOCURL-U 8.756 ± 2.65 0.550 ± 0.05 0.757 ± 0.03 245 ± 7
NOTEARS 1.134 ± 0.81 0.894 ± 0.08 0.989 ± 0.01 11618 ± 1309

500
COSMO 1.426 ± 0.53 0.951 ± 0.03 0.994 ± 0.00 524 ± 22
DAGMA 1.384 ± 0.38 0.849 ± 0.04 0.991 ± 0.00 1359 ± 34
NOCURL-U 8.931 ± 7.05 0.430 ± 0.10 0.741 ± 0.08 1193 ± 229
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E.7 ER6 - GAUSSIAN NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 4.087 ± 1.12 0.838 ± 0.06 0.921 ± 0.04 89 ± 4
DAGMA 2.367 ± 0.63 0.847 ± 0.03 0.958 ± 0.01 665 ± 249
NOCURL 4.480 ± 0.92 0.869 ± 0.03 0.908 ± 0.03 909 ± 18
NOCURL-U 7.490 ± 1.18 0.459 ± 0.08 0.672 ± 0.06 226 ± 6
NOTEARS 3.327 ± 1.65 0.840 ± 0.07 0.922 ± 0.04 5239 ± 427

100

COSMO 9.476 ± 3.01 0.771 ± 0.08 0.911 ± 0.05 98 ± 2
DAGMA 10.740 ± 2.83 0.709 ± 0.13 0.902 ± 0.04 761 ± 134
NOCURL 15.044 ± 1.60 0.785 ± 0.04 0.888 ± 0.02 1687 ± 26
NOCURL-U 30.719 ± 5.20 0.435 ± 0.03 0.580 ± 0.04 268 ± 9
NOTEARS 6.556 ± 3.10 0.842 ± 0.05 0.944 ± 0.02 12053 ± 940

500
COSMO 25.443 ± 4.47 0.736 ± 0.01 0.937 ± 0.01 526 ± 100
DAGMA 15.952 ± 1.67 0.553 ± 0.05 0.925 ± 0.01 3207 ± 271
NOCURL-U 165.465 ± 20.86 0.433 ± 0.02 0.558 ± 0.03 1226 ± 293

E.8 ER6 - EXPONENTIAL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 3.300 ± 0.95 0.897 ± 0.05 0.947 ± 0.03 89 ± 2
DAGMA 3.480 ± 1.42 0.861 ± 0.06 0.945 ± 0.03 672 ± 177
NOCURL 4.573 ± 0.78 0.846 ± 0.05 0.902 ± 0.03 897 ± 13
NOCURL-U 8.700 ± 0.89 0.426 ± 0.07 0.615 ± 0.06 226 ± 9
NOTEARS 2.313 ± 1.55 0.881 ± 0.09 0.953 ± 0.04 5516 ± 652

100

COSMO 10.170 ± 2.74 0.768 ± 0.09 0.919 ± 0.04 99 ± 3
DAGMA 8.118 ± 3.10 0.793 ± 0.11 0.934 ± 0.04 681 ± 149
NOCURL 14.860 ± 4.67 0.685 ± 0.10 0.863 ± 0.06 1735 ± 39
NOCURL-U 30.600 ± 4.34 0.450 ± 0.04 0.591 ± 0.04 267 ± 8
NOTEARS 5.208 ± 2.54 0.796 ± 0.09 0.943 ± 0.03 12663 ± 1555

500
COSMO 25.854 ± 4.28 0.741 ± 0.04 0.943 ± 0.01 460 ± 123
DAGMA 16.417 ± 4.45 0.571 ± 0.11 0.925 ± 0.02 4069 ± 580
NOCURL-U 152.336 ± 31.97 0.425 ± 0.02 0.567 ± 0.03 1363 ± 306

E.9 ER6 - GUMBEL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 2.840 ± 1.08 0.906 ± 0.04 0.954 ± 0.03 89 ± 3
DAGMA 2.727 ± 0.83 0.906 ± 0.02 0.964 ± 0.02 634 ± 194
NOCURL 5.003 ± 0.72 0.811 ± 0.04 0.891 ± 0.03 902 ± 9
NOCURL-U 8.153 ± 0.96 0.422 ± 0.07 0.629 ± 0.04 226 ± 6
NOTEARS 2.740 ± 1.61 0.791 ± 0.10 0.938 ± 0.04 5416 ± 446

100

COSMO 10.048 ± 3.15 0.780 ± 0.07 0.899 ± 0.06 100 ± 3
DAGMA 7.910 ± 3.05 0.805 ± 0.09 0.935 ± 0.04 715 ± 203
NOCURL 11.932 ± 2.68 0.742 ± 0.04 0.894 ± 0.03 1688 ± 34
NOCURL-U 27.401 ± 4.42 0.431 ± 0.05 0.600 ± 0.04 266 ± 4
NOTEARS 4.884 ± 0.45 0.833 ± 0.05 0.951 ± 0.01 12634 ± 639

500
COSMO 26.148 ± 4.86 0.740 ± 0.04 0.941 ± 0.02 418 ± 106
DAGMA 16.358 ± 4.94 0.563 ± 0.07 0.921 ± 0.02 3527 ± 241
NOCURL-U 125.858 ± 36.61 0.367 ± 0.06 0.571 ± 0.02 1612 ± 27
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E.10 SF6 - GAUSSIAN NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.273 ± 1.07 0.907 ± 0.10 0.963 ± 0.06 89 ± 2
DAGMA 1.107 ± 0.37 0.930 ± 0.03 0.985 ± 0.01 456 ± 39
NOCURL 1.573 ± 0.46 0.864 ± 0.04 0.973 ± 0.01 823 ± 14
NOCURL-U 4.997 ± 0.98 0.506 ± 0.05 0.732 ± 0.05 226 ± 8
NOTEARS 0.933 ± 0.71 0.919 ± 0.05 0.984 ± 0.02 5313 ± 184

100

COSMO 4.478 ± 2.88 0.776 ± 0.15 0.874 ± 0.11 99 ± 2
DAGMA 2.024 ± 0.71 0.914 ± 0.02 0.987 ± 0.00 396 ± 53
NOCURL 2.824 ± 0.39 0.818 ± 0.02 0.980 ± 0.00 1679 ± 27
NOCURL-U 10.556 ± 6.00 0.542 ± 0.07 0.751 ± 0.08 266 ± 5
NOTEARS 1.412 ± 0.59 0.939 ± 0.03 0.990 ± 0.01 11156 ± 170

500
COSMO 4.670 ± 1.99 0.912 ± 0.02 0.984 ± 0.00 460 ± 70
DAGMA 3.825 ± 0.19 0.746 ± 0.03 0.982 ± 0.00 1418 ± 54
NOCURL-U 19.793 ± 11.03 0.368 ± 0.04 0.698 ± 0.04 1137 ± 231

E.11 SF6 - EXPONENTIAL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.393 ± 1.24 0.926 ± 0.05 0.975 ± 0.03 88 ± 1
DAGMA 1.147 ± 0.48 0.943 ± 0.03 0.982 ± 0.01 578 ± 173
NOCURL 1.987 ± 0.54 0.757 ± 0.08 0.967 ± 0.01 820 ± 8
NOCURL-U 4.787 ± 0.99 0.534 ± 0.07 0.761 ± 0.06 227 ± 7
NOTEARS 0.753 ± 0.49 0.943 ± 0.04 0.986 ± 0.01 5312 ± 258

100

COSMO 3.836 ± 2.75 0.864 ± 0.09 0.944 ± 0.05 98 ± 2
DAGMA 1.532 ± 0.61 0.887 ± 0.04 0.988 ± 0.00 373 ± 88
NOCURL 2.890 ± 0.61 0.910 ± 0.02 0.977 ± 0.00 1692 ± 28
NOCURL-U 6.607 ± 1.05 0.474 ± 0.06 0.760 ± 0.06 266 ± 2
NOTEARS 1.784 ± 0.52 0.939 ± 0.02 0.988 ± 0.00 11369 ± 519

500
COSMO 3.144 ± 0.47 0.919 ± 0.02 0.989 ± 0.00 457 ± 81
DAGMA 3.854 ± 0.34 0.750 ± 0.01 0.977 ± 0.01 1384 ± 33
NOCURL-U 13.763 ± 8.79 0.389 ± 0.05 0.728 ± 0.06 1436 ± 230

E.12 SF6 - GUMBEL NOISE

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.047 ± 0.42 0.938 ± 0.03 0.984 ± 0.01 88 ± 1
DAGMA 1.347 ± 0.63 0.933 ± 0.02 0.981 ± 0.01 528 ± 67
NOCURL 1.787 ± 0.52 0.898 ± 0.02 0.969 ± 0.01 822 ± 29
NOCURL-U 5.577 ± 0.43 0.549 ± 0.06 0.733 ± 0.05 225 ± 4
NOTEARS 1.053 ± 0.59 0.911 ± 0.04 0.978 ± 0.02 5429 ± 251

100

COSMO 3.486 ± 2.62 0.879 ± 0.10 0.947 ± 0.06 99 ± 2
DAGMA 1.418 ± 0.34 0.910 ± 0.03 0.990 ± 0.00 424 ± 90
NOCURL 3.074 ± 0.50 0.893 ± 0.02 0.976 ± 0.00 1682 ± 22
NOCURL-U 9.643 ± 4.59 0.464 ± 0.08 0.712 ± 0.10 267 ± 9
NOTEARS 1.586 ± 1.39 0.913 ± 0.06 0.987 ± 0.01 11820 ± 985

500
COSMO 3.288 ± 0.50 0.931 ± 0.01 0.992 ± 0.00 429 ± 87
DAGMA 4.055 ± 0.88 0.802 ± 0.03 0.981 ± 0.00 1465 ± 138
NOCURL-U 56.103 ± 41.06 0.420 ± 0.06 0.648 ± 0.07 1201 ± 253
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E.13 ER4 - NON-LINEAR MLP

d Algorithm NHD TPR AUC Time (s)

20
COSMO 2.530 ± 0.45 0.752 ± 0.06 0.923 ± 0.03 154 ± 2
DAGMA-MLP 2.853 ± 0.37 0.810 ± 0.15 0.932 ± 0.04 2252 ± 40
NOTEARS-MLP 3.270 ± 0.52 0.904 ± 0.07 0.956 ± 0.02 3554 ± 154

40 COSMO 3.295 ± 0.45 0.712 ± 0.05 0.925 ± 0.02 177 ± 2
DAGMA-MLP 3.633 ± 0.81 0.804 ± 0.10 0.942 ± 0.03 2622 ± 28

100 COSMO 5.164 ± 1.38 0.582 ± 0.04 0.895 ± 0.02 311 ± 10
DAGMA-MLP 2.337 ± 0.18 0.506 ± 0.05 0.912 ± 0.01 4866 ± 69

E.14 SF4 - NON-LINEAR MLP

d Algorithm NHD TPR AUC Time (s)

20
COSMO 1.525 ± 0.18 0.743 ± 0.05 0.954 ± 0.03 155 ± 3
DAGMA-MLP 1.408 ± 0.26 0.746 ± 0.11 0.968 ± 0.01 2270 ± 27
NOTEARS-MLP 1.040 ± 0.33 0.922 ± 0.08 0.980 ± 0.02 3400 ± 184

40 COSMO 2.271 ± 0.24 0.583 ± 0.05 0.953 ± 0.01 174 ± 5
DAGMA-MLP 1.875 ± 0.34 0.744 ± 0.10 0.972 ± 0.01 2588 ± 45

100 COSMO 3.144 ± 0.23 0.455 ± 0.04 0.945 ± 0.01 313 ± 6
DAGMA-MLP 3.051 ± 0.14 0.260 ± 0.04 0.961 ± 0.01 4883 ± 77

E.15 ER6 - NON-LINEAR MLP

d Algorithm NHD TPR AUC Time (s)

20
COSMO 2.995 ± 0.45 0.667 ± 0.07 0.919 ± 0.03 155 ± 2
DAGMA-MLP 2.992 ± 0.39 0.712 ± 0.08 0.917 ± 0.02 2252 ± 35
NOTEARS-MLP 2.895 ± 0.47 0.862 ± 0.08 0.949 ± 0.02 3557 ± 130

40 COSMO 4.837 ± 0.66 0.598 ± 0.07 0.891 ± 0.02 174 ± 3
DAGMA-MLP 3.732 ± 0.71 0.633 ± 0.13 0.919 ± 0.02 2570 ± 44

100 COSMO 6.049 ± 0.91 0.501 ± 0.04 0.875 ± 0.02 308 ± 4
DAGMA-MLP 3.790 ± 0.24 0.535 ± 0.05 0.908 ± 0.01 4807 ± 80

E.16 SF6 - NON-LINEAR MLP

d Algorithm NHD TPR AUC Time (s)

20
COSMO 1.855 ± 0.28 0.748 ± 0.06 0.959 ± 0.01 154 ± 2
DAGMA-MLP 1.833 ± 0.52 0.766 ± 0.13 0.957 ± 0.03 2249 ± 40
NOTEARS-MLP 1.355 ± 0.39 0.926 ± 0.08 0.980 ± 0.01 3512 ± 193

40 COSMO 3.394 ± 0.25 0.501 ± 0.06 0.946 ± 0.01 174 ± 4
DAGMA-MLP 2.720 ± 0.38 0.724 ± 0.08 0.967 ± 0.01 2572 ± 100

100 COSMO 4.744 ± 0.21 0.342 ± 0.04 0.931 ± 0.01 308 ± 6
DAGMA-MLP 4.149 ± 0.17 0.391 ± 0.06 0.968 ± 0.01 4699 ± 338
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Graph d Algorithm NHD TPR AUC h(W ) Time (s)

ER4
30 COSMO 0.867 ± 1.01 0.953 ± 0.04 0.984 ± 0.02 0.000 ± 0.00 88 ± 3

GOLEM 0.833 ± 1.14 0.933 ± 0.09 0.975 ± 0.04 0.025 ± 0.03 305 ± 4

100 COSMO 1.388 ± 0.69 0.917 ± 0.04 0.961 ± 0.03 0.000 ± 0.00 99 ± 2
GOLEM 4.874 ± 1.02 0.802 ± 0.04 0.936 ± 0.01 0.548 ± 0.22 660 ± 11

ER6
30 COSMO 4.087 ± 1.12 0.838 ± 0.06 0.921 ± 0.04 0.000 ± 0.00 89 ± 4

GOLEM 6.153 ± 0.56 0.496 ± 0.13 0.749 ± 0.10 0.382 ± 0.14 306 ± 9

100 COSMO 9.476 ± 3.01 0.771 ± 0.08 0.911 ± 0.05 0.000 ± 0.00 98 ± 2
GOLEM 9.572 ± 2.32 0.423 ± 0.08 0.794 ± 0.07 4.654 ± 1.34 664 ± 9

Table 5: Experimental comparison with GOLEM (Ng et al., a).

E.17 GOLEM (NG ET AL., A)

GOLEM (Ng et al., a) is an unconstrained approach for continuous structure learning that employs
the NOTEARS acylicity constraint as a regularization term. Given this strategy, GOLEM does not
ensure DAG convergence and instead requires a final pruning step to iteratively remove arcs until the
resulting adjacency matrix is acyclic. As stated in the Related Works (Section 2), we focus our main
empirical comparison on methods ensuring the acyclicity of the solution. Therefore, in the following
table, we only briefly report an empirical analysis of GOLEM. Notably, on small and sparse graphs
(d = 30, ER4), the resulting acyclicity might be tolerable, but the value is significant on both larger
(d = 100) and denser (ER6) ones. We also report COSMO results on the same graph types to recall
that our proposal achieves acyclicity zero by construction (Table 5).

E.18 NORMALIZED VARIANCE RESULTS

As we remarked in the main body, the choice of optimizing an adjacency matrix by minimizing the
MSE is known to exploit the variance of the variables (Loh & Bühlmann, 2014) and might not be
significant outside of this assumption (Reisach et al., 2021; Kaiser & Sipos, 2022; Ng et al., b). In
general, variance normalization is enough to induce a significant performance drop in approaches
adopting this loss function. However, it is worth remarking that structure learning formulations
derived from NOTEARS, like ours, are loss-agnostic and have been used in several continuous causal
discovery methods with different but appropriate loss functions (Brouillard et al., 2020; Lorch et al.,
2022; Hägele et al., 2023). Defining function classes, appropriate losses, and identifiability results are
important requirements for causal discovery solutions, but are out of the scope of the current work.
However, for clarity, we show that, when fitting a DAG through the MSE loss, COSMO is equally
affected by variance normalization as competing approaches (Table 6).

Reisach et al. (2021) proposes a simple baseline named SORTNREGRESS to evaluate whether the
variables order follow their variance in non-normalized datasets. The algorithm consists of two steps:
(i.) sorting the nodes according to their variance and (ii.) regressing variables on their predecessors.
In datasets where there is a strict relation between the topological ordering and the nodes’ variance,
the SORTNREGRESS baseline is expected to perform consistently well. To better contextualize our
work, we show that in the simulated test bed adopted by NOTEARS, DAGMA, NOCURL, and COSMO,
the baseline performs well as expected (Table 7). Notably, it is evident how, for larger graphs, our
parameterization is still faster the SORTNREGRESS baseline, despite the simplicity of the latter.

E.19 DAGUERREOTYPE (ZANTEDESCHI ET AL., 2022)

DAGUERREOTYPE (Zantedeschi et al., 2022) proposes an end-to-end differentiable model for causal
DAG discovery that parameterize the underlying causal ordering over the polytope of permutation
vectors. In practice, the model fits a distribution over possible permutations parameterized by a score
vector analogous to the priority vector p used by COSMO. The differentiable transformation from the
score vector to the permutation can be realized by either the SparseMAP (Niculae et al., 2018) or the
Top-k sparsemax (Correia et al., 2020) operators. Further, the scores and the functional relations —
adjacencies in the linear case — can be either learned jointly or with a bi-level optimization scheme.
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Graph d Algorithm NHD TPR AUC h(W )

ER4 30

COSMO 4.637 ± 0.43 0.095 ± 0.04 0.440 ± 0.06 0.000 ± 0.00
DAGMA 4.967 ± 0.41 0.102 ± 0.04 0.475 ± 0.08 0.000 ± 0.00
NOCURL 4.910 ± 0.53 0.059 ± 0.04 0.429 ± 0.07 0.000 ± 0.00
NOCURL-U 4.950 ± 0.31 0.092 ± 0.03 0.530 ± 0.05 0.000 ± 0.00
NOTEARS 4.920 ± 0.36 0.098 ± 0.04 0.473 ± 0.06 0.000 ± 0.00

ER4 100

COSMO 4.150 ± 0.05 0.036 ± 0.01 0.533 ± 0.02 0.000 ± 0.00
DAGMA 4.205 ± 0.10 0.120 ± 0.02 0.571 ± 0.02 0.000 ± 0.00
NOCURL 4.412 ± 0.09 0.054 ± 0.01 0.501 ± 0.03 0.000 ± 0.00
NOCURL-U 4.720 ± 0.10 0.038 ± 0.02 0.513 ± 0.03 0.000 ± 0.00
NOTEARS 4.221 ± 0.10 0.121 ± 0.02 0.613 ± 0.02 0.000 ± 0.00

ER6 30

COSMO 6.643 ± 0.29 0.039 ± 0.02 0.420 ± 0.05 0.000 ± 0.00
DAGMA 6.837 ± 0.34 0.062 ± 0.02 0.465 ± 0.04 0.000 ± 0.00
NOCURL 6.820 ± 0.26 0.032 ± 0.02 0.368 ± 0.06 0.000 ± 0.00
NOCURL-U 6.947 ± 0.25 0.055 ± 0.02 0.492 ± 0.02 0.000 ± 0.00
NOTEARS 6.917 ± 0.37 0.056 ± 0.03 0.497 ± 0.04 0.000 ± 0.00

ER6 100

COSMO 6.130 ± 0.06 0.010 ± 0.00 0.513 ± 0.02 0.000 ± 0.00
DAGMA 6.570 ± 0.09 0.046 ± 0.01 0.499 ± 0.01 0.000 ± 0.00
NOCURL 6.505 ± 0.11 0.018 ± 0.01 0.428 ± 0.04 0.000 ± 0.00
NOCURL-U 6.884 ± 0.09 0.020 ± 0.01 0.504 ± 0.03 0.000 ± 0.00
NOTEARS 6.533 ± 0.14 0.049 ± 0.01 0.532 ± 0.02 0.000 ± 0.00

Table 6: Experimental comparison on variance-normalized datasets.

Graph d Algorithm NHD TPR AUC Time (s)

ER4 30 COSMO 0.867 ± 1.01 0.953 ± 0.04 0.984 ± 0.02 88 ± 3
SORTNREGRESS 1.973 ± 0.76 0.890 ± 0.05 0.938 ± 0.03 11 ± 1

ER4 100 COSMO 1.388 ± 0.69 0.917 ± 0.04 0.961 ± 0.03 99 ± 2
SORTNREGRESS 1.747 ± 0.85 0.937 ± 0.03 0.972 ± 0.01 98 ± 5

ER4 500 COSMO 4.149 ± 1.14 0.819 ± 0.02 0.933 ± 0.01 437 ± 81
SORTNREGRESS 1.557 ± 0.39 0.942 ± 0.02 0.978 ± 0.01 3825 ± 171

SF4 30 COSMO 0.300 ± 0.09 0.973 ± 0.01 0.997 ± 0.00 89 ± 5
SORTNREGRESS 0.517 ± 0.39 0.966 ± 0.03 0.987 ± 0.01 15 ± 1

SF4 100 COSMO 0.482 ± 0.31 0.962 ± 0.02 0.991 ± 0.01 99 ± 3
SORTNREGRESS 0.765 ± 0.33 0.958 ± 0.02 0.989 ± 0.01 99 ± 6

SF4 500 COSMO 1.566 ± 0.68 0.953 ± 0.02 0.989 ± 0.01 541 ± 15
SORTNREGRESS 0.788 ± 0.36 0.955 ± 0.03 0.986 ± 0.01 5373 ± 101

Table 7: Experimental comparison with SORTNREGRESS (Reisach et al., 2021).
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Graph d Algorithm NHD TPR Time (s)

ER4 30

COSMO 0.867 ± 1.01 0.953 ± 0.04 88 ± 3
DGT-SPMAP-JOINT 5.793 ± 0.75 0.282 ± 0.12 91 ± 23
DGT-SPMAX-JOINT 6.353 ± 0.80 0.398 ± 0.09 140 ± 15
DGT-SPMAP 6.087 ± 0.97 0.290 ± 0.14 1829 ± 896
DGT-SPMAX 5.727 ± 0.82 0.198 ± 0.10 2006 ± 559

ER4 100

COSMO 1.388 ± 0.69 0.917 ± 0.04 99 ± 2
DGT-SPMAP-JOINT 9.460 ± 0.81 0.190 ± 0.04 847 ± 297
DGT-SPMAX-JOINT 8.724 ± 1.92 0.187 ± 0.10 1261 ± 429
DGT-SPMAP 8.506 ± 0.91 0.149 ± 0.07 20200 ± 12514
DGT-SPMAX 8.152 ± 0.75 0.128 ± 0.05 24554 ± 13113

SF4 30

COSMO 0.300 ± 0.09 0.973 ± 0.01 89 ± 5
DGT-SPMAP-JOINT 3.813 ± 0.35 0.382 ± 0.08 72 ± 17
DGT-SPMAX-JOINT 3.787 ± 0.80 0.624 ± 0.14 157 ± 34
DGT-SPMAP 3.820 ± 0.39 0.365 ± 0.11 2246 ± 701
DGT-SPMAX 3.740 ± 0.24 0.333 ± 0.12 2825 ± 1218

SF4 100

COSMO 0.482 ± 0.31 0.962 ± 0.02 99 ± 3
DGT-SPMAP-JOINT 4.686 ± 0.73 0.317 ± 0.16 946 ± 249
DGT-SPMAX-JOINT 4.662 ± 0.68 0.351 ± 0.19 935 ± 296
DGT-SPMAP 4.686 ± 0.77 0.293 ± 0.19 12688 ± 11499
DGT-SPMAX 4.268 ± 0.43 0.137 ± 0.04 9812 ± 5257

Table 8: Experimental comparison with DAGUERREOTYPE (Zantedeschi et al., 2022).

As a further comparison, we present empirical results on our testbed of DAGUERREOTYPE in its four
main configurations: joint optimization with SparseMAP (DGT-SPMAP-JOINT), joint optimization
with Top-k (DGT-SPMAX-JOINT), bi-level optimization with SparseMAP (DGT-SPMAP), and bi-level
optimization with Top-k (DGT-SPMAX). In all experiments runs we assume Gaussian noise terms,
employ default hyperparameters from the original implementation3, and fix the sparse operator
parameter K = 10, as reported for the synthetic evaluation in Zantedeschi et al. (2022, Appendix D).

As highlighted by the original authors, joint optimization is significantly faster than bi-level opti-
mization, which in turn takes significantly more time than COSMO on larger graphs (Table 8). On
all analyzed configurations, the result highlights the scalability issues of DAGUERREOTYPE when
compared to simpler optimization schemes. Further, the empirical results confirm the expectation
in terms of computational complexity; COSMO has quadratic complexity on the number of nodes,
while DGT-SPMAP has complexity O(Kd2) and DGT-SPMAX has complexity O(K2d2). Further, the
higher variance of the computational time results of DAGUERREOTYPE might be explained by the
use of early stopping on model convergence. As expected, bi-level optimization generally improves
performance of DAGUERREOTYPE but we still notice a non-negligible performance degradation
compared to sparser ER2 and SF2 graphs reported in Zantedeschi et al. (2022).

F L2 REGULARIZATION

To ensure sparsity of the solution, most continuous structure learning approaches apply L1 regulariza-
tion to the weighted adjacency matrix (Ng et al., b). As reported in Section 4, we adopt the same
approach only on the direct matrix H to avoid influencing the priority vector p. Apart from this, we
found beneficial to also apply L2 regularization to the direct matrix H. Intuitively, this avoids that
the directed matrix “constrast” small values of the smooth orientation matrix given by arcs opposed
to the partial order. In Figure 5, we offer a visualization of the acyclicity during training against
the number of epochs. In particular, non-regularized matrices tend to be more acyclic (Figure 5a)
and reach acyclicity later in the optimization process at parity of temperature (Figure 5b). In prac-

3https://github.com/vzantedeschi/DAGuerreotype
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Figure 5: We plot the acyclicity of the learned adjacency matrix W against the temperature t for
different regularization terms λ2 on the directed adjacency matrix H. Results are obtained over ten
independent iterations of COSMO on an ER4 graph with Gaussian noise. In Subfigure (a) we plot the
whole optimization process, while we zoom on the last epochs in Subfigure (b).
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Figure 6: We report the values of (a) temperature, (b) acyclicity, (c) normalized Hamming distance,
(d) and ROC-AUC against each optimization epoch of a run of COSMO on 1000 samples from
an ER4 graph with 30 nodes and Gaussian noise. Notably, the model reaches an acyclic solution
(≈ Epoch 1700) and keeps improving before the temperature reaches zero in the last epoch.

tice, our hyperparameter search consistently awarded non-negligible L2 regularization coefficients
(λ2 ≈ 2e-2).
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G TEMPERATURE ANNEALING AND MODEL OPTIMIZATION

In this section, we highlight the interaction between the temperature value and the acyclicity of the
solution, together with the performance metrics on graph reconstruction. We consistently observe
that the solution passes across two distinct phases (Figure 6). In all the reported metrics, after an
initial convergence, the model settles with a preliminary solution. Then, after the temperature hits a
sufficiently low value the acyclicity of the model rapidly decreases and the performance increase. In
particular, it is worth noticing that the model reaches an acyclic solution before hitting the minimum
value of the temperature and that performance metrics still vary at acyclicity zero.

In Figure 7, we propose a more detailed visualization of the evolution of the parameters during the
training of COSMO, where the same phenomenom can be observed. In fact, after a first phase (Epochs
1–500) where the parameters substantially vary, the optimization is substantially stable (Epochs
500–1500) until a sufficient decrease in temperature (Epochs 1500-1700). As before, since the model
converges to an acyclic solution before the temperature reaching zero (Epochs 1800–1999), we can
notice that optimization continues even in this final phase, mostly increasing sparsity of the graph.
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Figure 7: We report the adjacency matrices learned by COSMO at significant epochs of a run on 1000
samples from an ER4 graph with 30 nodes and Gaussian noise. As in the main body, we indicate
positive values in blue and negative values in red.
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