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ABSTRACT

In this paper, we investigate the problem of bit allocation in Neural Video Com-
pression (NVC). First, we reveal that a recent bit allocation approach claimed to
be optimal is, in fact, sub-optimal due to its implementation. Specifically, we find
that its sub-optimality lies in the improper application of semi-amortized varia-
tional inference (SAVI) on latent with non-factorized variational posterior. Then,
we show that the corrected version of SAVI on non-factorized latent requires re-
cursively applying back-propagating through gradient ascent, based on which we
derive the corrected optimal bit allocation algorithm. Due to the computational
in-feasibility of the corrected bit allocation, we design an efficient approximation
to make it tractable. Empirical results show that our proposed correction signif-
icantly improves the incorrect bit allocation in terms of R-D performance and
bitrate error, and outperforms all other bit allocation methods by a large margin.
The source code is provided in the supplementary material.

1 INTRODUCTION

Recently, bit allocation for Neural Video Compression (NVC) has drawn growing attention thanks
to its great potential in boosting compression performance. Due to the frame reference structure
in video coding, it is sub-optimal to use the same R-D (Rate-Distortion) trade-off parameter λ for
all frames. In bit allocation task, bitrate is allocated to different frames/regions to minimize R-D
cost R + λD, where R is total bitrate, D is total distortion, and λ is the Lagrangian multiplier
controlling R-D trade-off. Li et al. (2022) are the pioneer of bit allocation for NVC, who improve
the empirical R-D (Rate-Distortion) model from traditional video codec (Li et al., 2014; 2016) and
solve the per-frame Lagrangian multiplier λ. Other concurrent works adopt simple heuristics for
coarse bit allocation (Cetin et al., 2022; Hu et al., 2022).

Most recently, BAO (Bit Allocation using Optimization) (Xu et al., 2022) proposes to formulate bit
allocation as semi-amortized variational inference (SAVI) (Kim et al., 2018; Marino et al., 2018) and
solves it by gradient-based optimization. Specifically, it directly optimizes the variational posterior
parameter to be quantized and encoded by gradient ascent, aiming at maximizing the minus overall
R-D cost, which is also the evident lowerbound (ELBO). BAO does not rely on any empirical R-
D model and thus outperforms previous work. Further, BAO shows its optimality by proving its
equivalence to bit allocation with precise R-D model.

In this paper, we first show that BAO (Xu et al., 2022) is in fact, sub-optimal due to its implementa-
tion. Specifically, we find that it abuses SAVI (Kim et al., 2018; Marino et al., 2018) on latent with
non-factorized variational posterior, which brings incorrect gradient signal during optimization. To
solve this problem, we first extend SAVI to non-factorized latent by back-propagating through gra-
dient ascent (Domke, 2012). Then based on that, we correct the sub-optimal bit allocation in BAO
to produce true optimal bit allocation for NVC. Furthermore, we propose a computational feasible
approximation to such correct but intractable bit allocation method. And we show that our approxi-
mation outperforms the incorrect bit allocation (BAO) in terms of R-D performance and bitrate error,
and performs better than all other bit allocation methods.

To summarize, our contributions are as follows:

• We demonstrate that a previously claimed optimal bit allocation method is actually sub-
optimal. We find that its sub-optimality comes from the improper application of SAVI to
non-factorized latent.
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• We present the correct way to conduct SAVI on non-factorized latent by recursively ap-
plying back-propagation through gradient ascent. Based on this, we derive the corrected
optimal bit allocation algorithm for NVC.

• Furthermore, we propose a computational efficient approximation of the optimal bit al-
location to make it feasible. Our proposed approach improves the R-D performance and
bitrate error over the incorrect bit allocation (BAO), and outperforms all other bit allocation
methods for NVC.

2 PRELIMINARIES

2.1 NEURAL VIDEO COMPRESSION

The input of NVC is a GoP (Group of Picture) x1:T , where xi ∈ RH×W is the ith frame with
H ×W pixels, and T is the number of frame inside the GoP. Most of the works in NVC follow a
latent variable model with temporal autoregressive relationship (Yang et al., 2020a). Specifically,
to encode xi, we first extract the motion latent wi = fw

ϕ (xi,x
′
i) from current frame xi and pre-

vious reconstructed frame x′
i−1, where fw

ϕ (·) is the motion encoder parameterized by ϕ1. Then,
we encode the quantized latent w̃i = ⌊wi⌉ with the probability mass function (pmf) estimator
Pθ(w̃i|w̃<i, ỹ<i) parameterized by θ, where ⌊·⌉ is the rounding. Then, we obtain the residual latent
yi = fy

ϕ(x,x
′, w̃), where fy

ϕ(·) is the residual encoder. Then, similar to how we treat wi, we en-
code the quantized latent ỹi = ⌊yi⌉with pmf Pθ(ỹi|w̃≤i, ỹ<i). Finally, we obtain the reconstructed
frame x′

i = gxθ (x
′
i−1, w̃i, ỹi), where gxθ (·) is the decoder parameterized by θ.

As only the motion latent w̃i and residual latent ỹi exist in the bitstream, the above process can be
simplified as Eq. 1 and Eq. 2, where fϕ(·) is the generalized encoder and gθ(·) is the generalized
decoder. The target of NVC is to minimize the per-frame R-D cost Ri + λiDi (Eq. 3), where Ri

is the bitrate, Di is the distortion and λi is the Lagrangian multiplier controlling R-D trade-off.
The bitrate Ri and distortion Di is computed as Eq. 2, where d(·, ·) is the distortion metric. And
λiDi can be further interpreted as the data likelihood term − log pθ(xi|w̃≤i, ỹ≤i) so long as we
treat λiDi as the energy function of a Gibbs distribution (Minnen et al., 2018). Specifically, when
d(·, ·) is MSE, we can interpret λiDi = − log pθ(xi|w̃≤i, ỹ≤i) + const, where pθ(xi|w̃≤i, ỹ≤i) is
a Gaussian distribution N (x̂i, 1/2λiI).

wi = fϕ(xi, w̃<i, ỹ<i),yi = fϕ(xi, w̃≤i, ỹ<i), where w̃i = ⌊wi⌉, ỹi = ⌊yi⌉ (1)
Ri = logPθ(w̃i, ỹi|w̃<i, ỹ<i), Di = d(xi, gθ(w̃≤i, ỹ≤i)) (2)

max−(Ri + λiDi) (3)

On the other hand, NVC is also closely related to Variational Autoencoder (VAE) (Kingma &
Welling, 2013). As the rounding ⌊·⌉ is not differentiable, Ballé et al. (2016); Theis et al. (2017)
propose to relax it by additive uniform noise (AUN), and replace w̃i = ⌊wi⌉, ỹi = ⌊yi⌉ with
w̃i = wi + U(−0.5, 0.5), ỹi = yi + U(−0.5, 0.5). Under such formulation, the above encoding-
decoding process becomes a VAE on graphic model w̃≤i, ỹ≤i → xi with variational posterior as
Eq. 4, where wi,yi plays the role of variational posterior parameter. Then, minimizing the overall
R-D cost (Eq. 3) is equivalent to maximizing the evident lowerbound (ELBO) (Eq. 5).

qϕ(w̃i|xi, w̃<i, ỹ<i) = U(wi − 0.5,wi + 0.5), qϕ(ỹi|xi, w̃≤i, ỹ<i) = U(yi − 0.5,yi + 0.5) (4)
−(Ri + λiDi) = Eqϕ [logPθ(w̃i, ỹi|w̃<i, ỹ<i)︸ ︷︷ ︸

−Ri

+ log pθ(xi|w̃≤i, ỹ≤i)︸ ︷︷ ︸
−λiDi

����− log qϕ︸ ︷︷ ︸
bits-back bitrate: 0

] (5)

2.2 BIT ALLOCATION FOR NEURAL VIDEO COMPRESSION

It is well known to video coding community that using the same R-D trade-off parameter λi to
optimize R-D cost in Eq. 3 for all T frames inside a GoP is suboptimal (Li et al., 2014; 2016).
This sub-optimality comes from the frame reference structure and is explained in detail by Li et al.
(2022); Xu et al. (2022). The target of bit allocation is to maximize the minus of overall R-D cost

1Following previous works in deep generative modeling (Kingma & Welling, 2013; Kim et al., 2018), we
denote all parameters related to encoder as ϕ, and all parameters related to decoder and prior as θ.
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(ELBO) L as Eq. 6 given the overall R-D trade-off parameter λ0, instead of maximizing Li of each
frame i separately.

The pioneer work of bit allocation in NVC (Li et al., 2022) follows bit allocation for traditional video
codec (Li et al., 2016). Specifically, it adopts empirical models to approximate the relationship of
the rate dependency ∂Ri+1/∂Ri and distortion dependency ∂Di+1/∂Di between frames. Then it
takes those models into Eq. 6 to solve λ∗

1:T explicitly as Eq. 7.left. However, its performance heavily
relies on the accuracy of empirical models.

maxL =

T∑
i=1

Li, where Li = −(Ri + λ0Di) (6)

λ∗
1:T ← argmax

λ1:T

L(λ1:T ), versus w∗
1:T ,y

∗
1:T ← arg max

w1:T ,y1:T

L(w1:T ,y1:T ) (7)

On the other hand, BAO (Xu et al., 2022) does not solve λ∗
1:T explicitly. Instead, it adopts

SAVI (Kim et al., 2018; Marino et al., 2018) to achieve implicit bit allocation. To be specific,
it initializes the variational posterior parameter w0

1:T ,y
0
1:T from fully amortized variational in-

ference (FAVI) as Eq. 1. Then, it optimizes w1:T ,y1:T via gradient ascent to maximize L as
Eq. 7.right. During this procedure, no empirical model is required. BAO further proofs that opti-
mizing Eq. 7.right is equivalent to optimizing Eq. 7.left with precise rate and distortion dependency
model ∂Ri+1/∂Ri, ∂Di+1/∂Di (See Thm. 1, Thm. 2 in Xu et al. (2022)). Thus, BAO claims that it
is optimal assuming gradient ascent achieves global maximum. However, in next section, we show
that BAO (Xu et al., 2022) is in fact suboptimal due to its implementation.

3 WHY BAO IS SUP-OPTIMAL

BAO (Xu et al., 2022) achieves the SAVI (Kim et al., 2018; Marino et al., 2018) target in Eq. 7.right
by gradient-based optimization. More specifically, its update rule is described as Eq. 8 and Eq. 9,
where K is the total number of gradient ascent steps, and wk

i ,y
k
i is the posterior parameter wi,yi

after k steps of gradient ascent. In the original paper of BAO, the authors also find that directly
optimizing wi,yi simultaneously by Eq. 8 and Eq. 9 performs worse than optimizing yi alone
using Eq. 9, but they have not offered any explanation. It is obvious that optimizing yi alone is
sub-optimal. However, it is not obvious why jointly optimizing wi,yi with Eq. 8 and Eq. 9 fails.

wk+1
i ← wk

i + α
dL(wk

1:T ,y
k
1:T )

dwk
i

, where
dL(wk

1:T ,y
k
1:T )

dwk
i

=

T∑
j=i

∂Lj(w
k
1:j ,y

k
1:j)

∂wk
i

(8)

yk+1
i ← yk

i + α
dL(wk

1:T ,y
k
1:T )

dyk
i

, where
dL(wk

1:T ,y
k
1:T )

dyk
i

=

T∑
j=i

∂Lj(w
k
1:j ,y

k
1:j)

∂yk
i

(9)

In fact, the update rule in Eq. 8 and Eq. 9 is exactly the SAVI (Kim et al., 2018; Marino et al.,
2018) when wi,yi fully factorizes (e.g. the full factorization used in mean-field (Blei et al., 2017)).
However, in NVC the wi,yi has complicated auto-regressive relationships (See Eq. 1 and Fig. 1.(a)).
Abusing SAVI on non-factorized latent causes gradient error in two aspects: (1). The total derivative
dL/dwi, dL/dyi is incomplete. (2). The total derivative dL/dwi, dL/dyi and partial derivative
∂Lj/∂wi, ∂Lj/∂yi is evaluated at wrong value. In next two sections, we elaborate those two issues
with wi related equations in main text and yi related equations in Appendix. A.2.

Figure 1: (a). The gradient structure of NVC without SAVI. (b). After k step of SAVI/gradient
ascent, the gradient structure of NVC is broken. (c). The proposed approach using back-propagating
through gradient ascent. We mark the difference between (b) and (c) in red.
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3.1 INCOMPLETE TOTAL DERIVATIVE EVALUATION

According to the latent generation procedure described by Eq. 1 and Eq. 2, we draw the compu-
tational graph to describe the latent dependency as Fig. 1.(a). Based on that, we expand the total
derivative dL/dwi, dL/dyi as Eq. 10 and Eq. 22.

dL(w1:T ,y1:T )

dwi
=

T∑
j=i

dLj(w1:j ,y1:j)

dwi

dLj(w1:j ,y1:j)

dwi
=

j∑
l=i+1

∂wl

∂wi

dLj(w1:j ,y1:j)

dwl
+

j∑
l=i

∂yl

∂wi

dLj(w1:j ,y1:j)

dyl︸ ︷︷ ︸
ignored by BAO

+
∂Lj(w1:j ,y1:j)

∂wi︸ ︷︷ ︸
considered by BAO

(10)

As shown in Eq. 8, Eq. 9 and Fig. 1.(b), BAO (Xu et al., 2022) treats the total derivative
dL/dwi, dL/dyi as the sum of the frame level partial derivative ∂Lj/∂wi, ∂Lj/∂yi, which is the
direct contribution of frame ith latent wi,yi to jth frame’s R-D cost Lj (as marked in Eq. 10 and
Eq. 22). This incomplete evaluation of gradient signal brings sub-optimality. Further, it is not pos-
sible to correct BAO by simply including other parts of gradient into consideration. As BAO jointly
updates all the latent w1:T ,y1:T , the relationship of Eq. 2 only holds for the initial latent parameters
w0

1:T ,y
0
1:T produced by FAVI. And this important relationship is broken for parameters wk

1:T ,y
k
1:T

after k ≥ 1 steps of update.

3.2 INCORRECT VALUE TO EVALUATE GRADIENT

As shown in Eq. 8 and Eq. 9, BAO (Xu et al., 2022) simultaneously updates all the posterior pa-
rameter w1:T ,y1:T with gradient evaluated at the same gradient ascent step wk

1:T ,y
k
1:T . However,

as we show later in Sec. 4.1 and Fig. 1.(c), this is sub-optimal as all the descendant latent w>i,y≥i

of wi should already complete all K steps of gradient ascent before the gradient of wi is evaluated.
Moreover, w>i,y≥i should be initialized by FAVI using precedents latent. Similar rule applies to
yi. Specifically, the correct value to evaluate the gradient is as Eq. 11 and Eq. 23, where wki

i denotes

the latent wi after ki steps of update, and y
k′
j

i denotes the latent yi after k′i steps of update.

wki+1
i ← wki

i + α
dL(wk1

1 , ...,wki
i ,wK

>i,y
k′
1

1 , ...,y
k′
i−1

i−1 ,yK
≥i)

dwki
i

,

where w0
>i,y

0
≥i = f(x,wk1

1 , ...,wki
i ,y

k′
1

1 , ...,y
k′
i−1

i−1 ) (11)

Similar to the incomplete total derivative evaluation, this problem does not have a simple solution.
In next section, we show how to correct both of the above-mentioned issues by recursively applying
back-propagating through gradient ascent (Domke, 2012).

4 CORRECTING THE SUB-OPTIMAL BIT ALLOCATION

In this section, we first extend the generic SAVI Kim et al. (2018); Marino et al. (2018) to 2-level
non-factorized latent. Then we further extend this result to latent with any dependency that can be
described by a DAG (Directed Acyclic Graph). And finally, we correct the sub-optimal bit allocation
by applying the result in DAG latent to NVC.

4.1 SAVI ON 2-LEVEL NON-FACTORIZED LATENT

In this section, we extend the SAVI on 1-level latent (Kim et al., 2018) to 2-level non-factorized
latent. We denote x as evidence, a as the variational posterior parameter of the first level latent ã,
b as the variational posterior parameter of the second level latent b̃, and the ELBO to maximize as
L(a, b). The posterior q(ã, b̃|x) factorizes as q(ã|x)q(b̃|ã,x), which means that b depends on a.
Given a is fixed, we can directly follow Kim et al. (2018); Marino et al. (2018) to optimize b to
maximize ELBO by SAVI. However, it requires some tricks to optimize a.
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Algorithm 1: SAVI on 2-level Latent

1 procedure solve-2-level(x,ak)
2 initialize a0 ← f(x) from FAVI
3 for k = 0, ...,K − 1 do
4

dL(ak,bK)
dak = grad-2-level(x,ak)

5 ak+1 ← ak + αdL(ak,bK)
dak

6 return aK , bK

7 procedure grad-2-level(x,ak)
8 b0 ← f(x,ak) from FAVI
9 for k′ = 0, ...,K − 1 do

10 bk
′+1 ← bk

′
+ αdL(ak,bk′

)

dbk′

11
←−a ← ∂L(ak,bK)

∂ak

12
←−
bK ← dL(ak,bK)

dbK

13 for k′ = K − 1, ..., 0 do

14
←−a ←←−a + α∂2L(ak,bk′

)

∂ak∂bk′

←−−−
bk

′+1

15
←−
bk

′ ←
←−
bk

′
+ α∂2L(ak,bk′

)

∂bk′∂bk′

←−−−
bk

′+1

16
←−a =←−a + ∂b0

∂ak

←−
b0

17 return dL(ak,bK)
dak =←−a

Algorithm 2: SAVI on DAG Latent
1 procedure solve-dag(x)
2 sort a1, ...,aN in topological order
3 for aj with parent P(aj) = ∅
4 add aj to fake node a0’s children C(a0)
5 grad-dag(x,a0

0)
6 return aK

1 , ...,aK
N

7 procedure grad-dag(x,ak0
0 , ...,aki

i )
8 for aj ∈ C(ai) in topological order do
9 a0

j ← f(x,ak0
0 , ...,a

k<j

<j ) from FAVI
10 for kj = 0, ...,K − 1 do

11
dL(a

k0
0 ,...,a

kj
j ,aK

>j)

da
kj
j

← grad-dag(x,ak0
0 , ...,a

kj

j )

12 a
kj+1
j ← a

kj

j + α
dL(a

k0
0 ,...,a

kj
j ,aK

>j)

da
kj
j

13
←−ai ←

∂L(a
k0
0 ,...,a

ki
i ,aK

>i)

∂a
ki
i

14 for aj ∈ C(ai) do

15
←−aj ← 0,

←−
aK
j ←

dL(a
k0
0 ,...,a

ki
i ,aK

>i)

daK
j

16 for kj = K − 1, ..., 0 do

17
←−aj ←←−aj + α

∂2L(a
k0
0 ,...,a

kj
j ,aK

>j)

∂a
ki
i ∂a

kj
j

←−−−
a
kj+1
j

18

←−
a
kj

j ←
←−−−
a
kj+1
j + α

∂2L(a
k0
0 ,...,a

kj
j ,aK

>j)

∂a
kj
j ∂a

kj
j

←−−−
a
kj+1
j

19
←−ai ←←−ai +

←−aj +
∂a0

j

∂a
ki
i

←−
a0
j

20 returndL(a
k0
0 ,...,a

ki
i ,aK

>i)

da
ki
i

=←−ai

The intuition is, we do not want to find a a that maximizes L(a, b) given a fixed b (or we have the
gradient issue described in Sec. 3). Instead, we want to find a a, whose maxb L(a, b) is maximum.
This translates to the optimization problem as Eq. 12. In fact, Eq. 12 is a variant of setup in back-
propagating through gradient ascent (Samuel & Tappen, 2009; Domke, 2012). The difference is,
our a also contributes directly to optimization target L(a, b). From this perspective, Eq. 12 is more
closely connected to Kim et al. (2018), if we treat a as the model parameter and b as latent.

a← argmax
a
L(a, b∗(a)), where b∗(a)← argmax

b
L(a, b) (12)

And as SAVI on 1-level latent (Kim et al., 2018; Marino et al., 2018), we need to solve Eq. 12 using
gradient ascent. Specifically, denote α as step size (learning rate), K as the total gradient ascent
steps, ak as the a after k step update, bk

′
as the b after k′ step update, and f(.) as FAVI procedure

generating initial posterior parameters a0, b0, the optimization problem as Eq. 12 translates into
the update rule as Eq. 13. Eq. 13 is the guidance for designing optimization algorithm, and it also
explains why the gradient of BAO (Xu et al., 2022) is evaluated at wrong value (See Sec. 3.2).

ak+1 ← ak + α
dL(ak, bK)

dak
, bk

′+1 ← bk
′
+ α

dL(ak, bk
′
)

dbk′ , where b0 = f(x,ak) (13)

To solve Eq. 13, we note that although dL(ak, bk
′
)/dbk

′
is directly computed, dL(ak, bK)/dak

is not straightforward. Resorting to previous works (Samuel & Tappen, 2009; Domke, 2012) in
implicit differentiation and extending the results in Kim et al. (2018) from model parameters to
variational posterior parameters, we implement Eq. 13 as Alg. 1. Specifically, we first initialize a0

from FAVI. Then we conduct gradient ascent on a with gradient dL(ak, bK)/dak computed from
the procedure grad-2-level(x,ak). And inside grad-2-level(x,ak), b is also updated by gradient
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ascent, the above procedure corresponds to Eq. 13. The key of Alg. 1 is the evaluation of gradient
dL(ak, bK)/dak. Formally, we have:
Theorem 1. After grad-2-level(x,ak) of Alg. 1 executes, we have the return value
dL(ak, bK)/dak =←−a . (See proof in Appendix. A.1.)

4.2 SAVI ON DAG-DEFINED NON-FACTORIZED LATENT

In this section, we extend the result from previous section to SAVI on general non-factorized la-
tent with dependency described by any DAG. This DAG is the computational graph during network
inference, and it is also the directed graphical model (DGM) (Koller & Friedman, 2009) defining
the factorization of latent variables during inference. This is the general case covering all depen-
dency that can be described by DGM. This extension is necessary to perform SAVI on latent with
complicated dependency (e.g. bit allocation of NVC).

Similar to the 2-level latent setup, we consider performing SAVI on N variational posterior pa-
rameter a1, ...,aN with their dependency defined by a computational graph G, i.e., their corre-
sponding latent variable ã1, ..., ãN ’s posterior distribution factorizes as G. Specifically, we denote
aj ∈ C(ai),ai ∈ P(aj) if an edge exists from ai to aj . This indicates that ãj conditions on ãi.
Without loss of generality, we assume a1, ...,aN is sorted in topological order. This means that if
aj ∈ C(ai),ai ∈ P(aj), then i < j. Each latent is optimized by K-step gradient ascent, and aki

i
denotes the latent ai after ki steps of update. Then, similar to 2-level latent, we have the update rule
as Eq. 14:

aki+1
i ← aki

i + α
dL(ak1

1 , ...,aki
i ,aK

>i)

daki
, where a0

>i = f(x,ak1
1 , ...,aki

i ) (14)

, which can be translated into Alg. 2. Specifically, we first sort the latent in topological order.
Then, we add a fake latent a0 to the front of all as. Its children are all the as with 0 in-degree.
Then, we can solve the SAVI on a1, ...,aN using gradient ascent by executing the procedure grad-
dag(x,ak0

0 , ...,aki
i ) in Alg. 2 recursively. Inside procedure grad-dag(x,ak0

0 , ...,aki
i ), the gradient

to update ai relies on the convergence of its children aj ∈ C(ai), which is implemented by the re-
cursive depth-first search (DFS) in line 11. And upon the completion of procedure grad-dag(x,a0

0),
all the latent converges to aK

1 , ...,aK
N . Similar to the 2-level latent case, the key of Alg. 2 is the

evaluation of gradient dL(ak0
0 , ...,aki

i ,aK
>i)/da

ki
i . Formally, we have:

Theorem 2. After the procedure grad-dag(x,ak0
0 , ...,aki

i ) in Alg. 2 executes, we have the return
value dL(ak0

0 , ...,aki
i ,aK

>i)/da
ki
i =←−ai. (See proof in Appendix. A.1.)

To better understand how Alg. 2 works, we provide a detailed example in Fig. 5 of Appendix. A.3.

4.3 CORRECTING THE SUB-OPTIMAL BIT ALLOCATION USING SAVI ON DAG

With the result in previous section, correcting BAO (Xu et al., 2022) seems to be trivial. We
only need to sort the latent in topological order as w1,y1, ...,wT ,yT , treat them as a1, ...,a2T+1

and run Alg. 2 to obtain the optimized latent parameters wK
1 ,yK

1 , ...,wK
T ,yK

T . And the gradient
dL(ak0

0 , ...,aki
i ,aK

>i)/da
ki
i computed in Alg. 2 resolves the issue of BAO described in Sec. 3.1 and

Sec. 3.2. However, an evident problem is the temporal complexity. Given the latent number N and
gradient ascent step number K, Alg. 2 has temporal complexity of Θ(KN ). NVC with GoP size 10
has approximately N = 20 latent, and the SAVI on NVC (Xu et al., 2022) takes around K = 2000
step to converge. For bit allocation, the complexity of Alg. 2 is ≈ 200020, which is intractable. On
the other hand, BAO’s complexity is reasonable (Θ(KN) ≈ 4 × 104). Thus, in next section, we
provide a feasible approximation to such intractable corrected bit allocation.

4.4 FEASIBLE APPROXIMATION TO THE CORRECTED BIT ALLOCATION

In order to solve problem with practical size such as bit allocation on NVC, we provide an ap-
proximation to the SAVI (Kim et al., 2018; Marino et al., 2018) on DAG described in Sec. 4.2. The
general idea is that, when being applied to bit allocation of NVC, the accurate SAVI on DAG (Alg. 2)
satisfies both requirement on gradient signal described in Sec. 3.1 and Sec. 3.2. We can not make it
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tractable without breaking them. Thus, we break one of them and achieve a reasonable complexity,
while maintain a superior performance compared with BAO (Xu et al., 2022).

We consider the approximation in Eq. 15 which breaks the requirement for gradient evaluation in
Sec. 3.2. Based on Eq. 15 and the requirement in Sec. 3.1, we design an approximation of accurate
SAVI as Alg. 4. When being applied to bit allocation in NVC, it satisfies the gradient requirement
in Sec. 3.1 while maintaining a temporal complexity of Θ(KN) as BAO.

dL(ak0
0 , ...,aki

i ,aK
>i)

daki
i

≈
dL(ak0

0 , ...,aki
i ,a0

>i)

daki
i

(15)

Specifically, with the approximation in Eq. 15, the recurrent gradient computation in Alg. 2 be-
comes unnecessary as the right hand side of Eq. 15 does not require aK

>i. However, to maintain
the dependency of latent described in Sec. 3.1, as Alg. 2, we still need to ensure that the chil-
dren node aj ∈ C(ai) are re-initialized by FAVI every-time when ai is updated. Therefore, a
reasonable approach is to traverse the graph in topological order. We keep the children node aj

untouched until all its parent node ai ∈ P(aj)’s gradient ascent is completed and aK
i is known.

And the resulting approximate SAVI algorithm is as Alg. 4. When applied to bit allocation, it
satisfies the gradient requirement in Sec. 3.1, and as BAO, its temporal complexity is Θ(KN).

Algorithm 3: BAO on DAG Latent
1 procedure solve-bao(x)
2 a0

1, ...,a
0
N ← f(x) from FAVI

3 for k = 0, ...,K − 1 do
4 for i = 1, ..., N do
5 ak+1

i ← ak
i + α

∂L(ak
1 ,...,a

k
N )

∂ak
i

6 return aK1 , ..., aKN

Algorithm 4: Approximate SAVI on DAG latent
1 procedure solve-approx-dag(x)
2 sort a1, ...,aN in topological order
3 for i = 1, ..., N do
4 a0

i , ...,a
0
N ← f(x,aK

<i) from FAVI
5 for k = 0, ...,K − 1 do

6
dL(aK

<i,a
k
i ,a

K
>i)

dak
i

≈ dL(aK
<i,a

k
i ,a

0
>i)

dak
i

7 ak+1
i ← ak

i + α
dL(aK

<i,a
k
i ,a

K
>i)

dak
i

8 return aK1 , ..., aKN

To better understand BAO (Xu et al., 2022) in SAVI context, we rewrite it by general SAVI notation
instead of NVC notation in Alg. 3. We highlight the difference between BAO (Alg. 3) (Xu et al.,
2022), the accurate SAVI on DAG latent (Alg. 2) and the approximate SAVI on DAG latent (Alg. 4)
from several aspects:

• Graph Traversal Order: BAO performs gradient ascent on a1:T all together. The accurate
SAVI only updates ai when a>i’s update is complete and aK

>i is known. The approximate
SAVI only updates ai when a<i’s update is complete and aK

<i is known.
• Gradient Correctness: When being applied to bit allocation in NVC, BAO violates the

gradient rule in Sec. 3.1 and Sec. 3.2, accurate SAVI satisfies both rules, approximate SAVI
satisfies Sec. 3.1 and violates Sec. 3.2.

• Temporal Complexity: With the latent number N and steps of gradient ascent K, the com-
plexity of BAO is Θ(KN), the complexity of accurate SAVI is Θ(KN ) and the complexity
of approximate SAVI is Θ(KN).

Then we can simply apply Alg. 4 to bit allocation in NVC to obtain a feasible approximation of
the corrected optimal bit allocation. And in Sec. 6.2, we empirically show that our approximation
improves the R-D performance over BAO (Xu et al., 2022) with even smaller number of updates.

5 RELATED WORK: BIT ALLOCATION & SAVI FOR NEURAL COMPRESSION

Li et al. (2022) are the pioneer of bit allocation for NVC and their work is elaborated in Sec. 2.2.
Other recent works that consider bit allocation for NVC only adopt simple heuristic such as inserting
1 high quality frame per 4 frames (Hu et al., 2022; Cetin et al., 2022). On the other hand, OEU (Lu
et al., 2020) is also recognised as frame-level bit allocation while its performance is inferior than
BAO (Xu et al., 2022). BAO is the most recent work with best R-D performance. It is elaborated in
Sec. 2.2 and Sec. 3, and corrected in the previous section.

7
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Semi-Amortized Variational Inference (SAVI) is proposed by Kim et al. (2018); Marino et al. (2018).
The idea is that works following Kingma & Welling (2013) use fully amortized inference parameter
ϕ for all data, which leads to the amortization gap (Cremer et al., 2018). SAVI reduces this gap by
optimizing the variational posterior parameter after initializing it with inference network. It adopts
back-propagating through gradient ascent (Domke, 2012) to evaluate the gradient of model param-
eters. We adopt a similar method to extend SAVI to non-factorized latent. When applying SAVI to
practical neural codec, researchers abandon the nested model parameter update for efficiency. Prior
works (Djelouah & Schroers, 2019; Yang et al., 2020b; Zhao et al., 2021; Gao et al., 2022) adopt
SAVI to boost R-D performance and achieve variable bitrate in image compression. And BAO (Xu
et al., 2022) is the first to consider SAVI for bit allocation.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We implement our approach in PyTorch 1.9 with CUDA 11.2, and run the experiments on
NVIDIA(R) A100 GPU. Most of the other settings are intentionally kept the same as BAO (Xu
et al., 2022). Specifically, we adopt HEVC Common Testing Condition (CTC) (Bossen et al., 2013)
and UVG dataset (Mercat et al., 2020). And we measure the R-D performance in Bjontegaard-
Bitrate (BD-BR) and BD-PSNR (Bjontegaard, 2001). For baseline NVC (Lu et al., 2019; Li et al.,
2021), we adopt the official pre-trained models. And we select target λ0 = {256, 512, 1024, 2048}.
For gradient ascent, we adopt Adam (Kingma & Ba, 2014) optimizer with lr = 1 × 10−3. We set
the gradient ascent step K = 2000 for the first frame and K = 400 for other frames. More details
are presented in Appendix. A.5.

6.2 QUANTITATIVE RESULTS

As shown in Tab. 1, our method consistently improves the R-D performance in terms of BD-BR over
BAO (Xu et al., 2022) on both baseline methods and all datasets. Moreover, this improvement is
especially significant (more than 10% in BD-BR) when the baseline is DCVC (Li et al., 2021). And
both BAO and our proposed correction significantly outperform other approaches. It is also note-
worthy that with our bit allocation, DVC (the SOTA method in 2019) already outperforms DCVC
(the SOTA method in 2021) by large margin (See the red solid line and black dash line in Fig. 2).

BD-BR (%) ↓
Method Class B Class C Class D Class E UVG

DVC (Lu et al., 2019) as Baseline
Li et al. (2016)1 20.21 17.13 13.71 10.32 16.69
Li et al. (2022)1 -6.80 -2.96 0.48 -6.85 -4.12
OEU (Lu et al., 2020)2 -13.57 -11.29 -18.97 -12.43 -13.78
BAO (Xu et al., 2022)2 -28.55 -26.82 -25.37 -32.54 -27.68
Proposed -32.10 -31.71 -35.86 -32.93 -30.92

DCVC (Li et al., 2021) as Baseline
OEU (Lu et al., 2020)2 -10.75 -14.34 -16.30 -7.15 -16.07
BAO (Xu et al., 2022)2 -20.59 -19.69 -20.60 -23.33 -25.22
Proposed -32.89 -33.10 -32.01 -36.88 -39.66

Table 1: The BD-BR of our approach compared with others. 1 comes
from Li et al. (2022). 2 comes from Xu et al. (2022).

Figure 2: The R-D curve on
HEVC Class D.

Other than R-D performance, the bitrate error of our approach is also significantly smaller than BAO
(Xu et al., 2022) (See Tab. 2). The bitrate error is measured as the relative bitrate difference before
and after bit allocation. The smaller it is, the easier it is to achieve the desired bitrate accurately. For
complexity, our approach only performs 920 steps of gradient ascent per-frame, while BAO requires
2000 steps.

See more quantitative results (BD-PSNR & R-D curves) in Appendix. A.6.
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6.3 ABLATION STUDY, ANALYSIS & QUALITATIVE RESULTS

Tab. 3 shows that for BAO (Xu et al., 2022), jointly optimizing w1:T ,y1:T performs worse than
optimizing y1:T or w1:T alone. This counter-intuitive phenomena comes from its incorrect estima-
tion of gradient signal. For the proposed approach that corrects this, jointly optimizing w1:T ,y1:T

performs better than optimizing y1:T or w1:T alone, which is aligned with our intuition.

Bitrate-Error (%) ↓
Method Class B Class C Class D Class E UVG

DVC (Lu et al., 2019) as Baseline
BAO (Xu et al., 2022)2 8.41 12.86 21.39 5.94 3.73
Proposed 3.16 4.27 1.81 6.14 1.73

DCVC (Li et al., 2021) as Baseline
BAO (Xu et al., 2022)2 25.67 23.90 23.74 24.88 21.86
Proposed 4.27 7.29 5.73 8.03 3.06

Table 2: The bitrate error of our approach compared with BAO.

Method BD-BR (%) ↓
BAO (y) -25.37
BAO (w) -22.24
BAO (y,w) -14.76
Proposed (y) -32.60
Proposed (w) -31.56
Proposed (y,w) -35.86

Table 3: Ablation study with
HEVC Class D and DVC (Lu
et al., 2019).

To better understand why our method works, we present the R-D cost, distortion and rate versus
frame/latent index for different methods in Fig. 3: top-left shows that the R-D cost of our approach
consistently decreases according to SAVI stage. Moreover, it outperforms BAO after 4th frame;
top-right shows that for each frame the R-D cost of our method is lower than BAO; bottom-left
shows that the distortion part of R-D cost of our approach is approximately the same as BAO.
While bottom-right shows that the advantage of our approach over BAO lies in the bitrate. More
specifically, BAO increases the bitrate of yis after SAVI, while our correction decreases it.

See more analysis in Appendix. A.9 and qualitative results in Appendix. A.10.

Figure 3: top-left. R-D cost vs. SAVI stage. top-right. R-D cost vs. frame index. bottom-left. PSNR
vs. frame index. bottom-right. bpp vs. latent index. See enlarged-version in Appendix. A.9.

7 DISCUSSION & CONCLUSION

Despite our correction is already more efficient than original BAO (Xu et al., 2022), its encoding
speed remains far from real-time. Thus, it is limited to scenarios where R-D performance matters
much more than encoding time (e.g. video on demand). See more discussion in Appendix. A.11.

To conclude, we show that a previous bit allocation method for NVC is sub-optimal as it abuses SAVI
on non-factorized latent. Then, we propose the correct SAVI on general non-factorized latent by
back-propagating through gradient ascent, and we further propose a feasible approximation to make
it tractable for bit allocation. Experimental results show that our correction significantly improves
the R-D performance.

9
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ETHICS STATEMENT

Improving the R-D performance of NVC has positive social value, in terms of reducing carbon
emission by saving the resources required to transfer and store videos. Moreover, unlike traditional
codecs such as H.266 (Bross et al., 2021), neural video codec does not require dedicated hardware.
Instead, it can be deployed with general neural accelerators. Improving the R-D performance of
NVC prompts the practical deployment of video codecs that are independent of dedicated hardware,
and lowers the hardware-barrier of playing multi-media contents.

REPRODUCIBILITY STATEMENT

For theoretical results, both of the two theorems are followed by proof in Appendix. A.1. For a rela-
tively complicated novel algorithm (Alg. 2), we provide an illustration of the step by step execution
procedure in Appendix. A.3. For experiment, both of the two datasets are publicly accessible. In Ap-
pendix. A.5, we provide more implementation details including all the hyper-parameters. Moreover,
we provide our source code for reproducing the empirical results in supplementary material.
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A APPENDIX

A.1 PROOF OF THM 1 AND THM 2

Theorem 1. After the procedure grad-2-level(x,ak) of Alg. 1 executes, we have the return value
dL(ak, bK)/dak =←−a .

Proof. This proof extends the proof of Thm. 1 in Domke (2012), and it also serves as a formal
justification of Alg. 1 in Kim et al. (2018). Note that our paper and Kim et al. (2018) are subtly
different from Samuel & Tappen (2009); Domke (2012) as our high level parameter w not only
generate low level parameter y, but also directly contributes to optimization target (See Fig. 4).

Figure 4: The computational graph corresponding to Eq. 16

As the computational graph in Fig. 4 shows, we can expand dL(ak, bK)/dak as Eq. 16, with each
term solved in Eq. 18 and Eq. 19.

dL(ak, bK)

dak
=

∂L(ak, bK)

∂ak︸ ︷︷ ︸
known

+

K∑
k′=0

∂bk
′

∂ak︸ ︷︷ ︸
Eq. 18

dL(ak, bK)

dbk′︸ ︷︷ ︸
Eq. 19

(16)

To solve Eq. 16, we first note that ∂L(ak, bK)/∂ak, dL(ak, bK)/dbK , ∂b0/∂ak is naturally
known. Then, by taking partial derivative of the update rule of gradient ascent bk

′+1 ← bk
′
+

αdL(ak, bk
′
)/dbk

′
with regard to ak, bk

′
, we have Eq. 17 and Eq. 18. Note that Eq. 18 is the par-

tial derivative ∂bk
′+1/∂ak instead of total derivative dbk

′+1/dak = (∂bk
′+1/∂bk

′
)(dbk

′
/dak) +

∂bk
′+1/∂ak.

∂bk
′+1

∂bk′ = I + α
∂2L(ak, bk

′
)

∂bk′∂bk′ (17)

∂bk
′+1

∂ak
= α

∂2L(ak, bk
′
)

∂ak∂bk′ (18)

And those second order terms can either be directly evaluated or approximated via finite difference
as Eq. 20. As Eq. 18 already solves the first term on the right hand side of Eq. 16, the remaining
issue is dL(ak, bK)/dbk

′
. To solve this term, we expand it recursively as Eq. 19 and take Eq. 17

into it.

dL(ak, bK)

dbk′ =
∂bk

′+1

∂bk′

dL(ak, bK)

dbk′+1
(19)

And the above solving process can be described by the procedure grad-2-level(x,ak) of Alg. 1.

Specifically, the iterative update of
←−−−
bk

′+1 in line 15 corresponds to recursively expanding Eq. 19 with
Eq. 17, and the iterative update of ←−a in line 14 corresponds to recursively expanding Eq. 16 with
Eq. 18 and Eq. 19. Upon the return of grad-2-level(x,ak) of Alg. 1, we have←−a = dL(ak, bK)/dbk.

The complexity of the Hessian-vector product in line 14 and 15 of Alg. 1 may be reduced using
finite difference following (Domke, 2012) as Eq. 20.

∂2L(ak, bk
′
)

∂ak∂bk′ v= lim
r→0

1

r
(
dL(ak, bk

′
+ rv)

dak
− dL(ak, bk

′
)

dak
)

∂2L(ak, bk
′
)

∂bk′∂bk′ v = lim
r→0

1

r
(
dL(ak, bk

′
+ rv)

dbk′ − dL(ak, bk
′
)

dbk′ ) (20)
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Theorem 2. After the procedure grad-dag(x,ak0
0 , ...,aki

i ) in Alg. 2 executes, we have the return
value dL(ak0

0 , ...,aki
i ,aK

>i)/da
ki
i =←−ai.

Proof. Consider computing the target gradient with DAG G. The ak
i ’s gradient is composed of its

own contribution to L in addition to the gradient from its children aj ∈ C(ai). Further, as we are
considering the optimized children aK

j , we expand the children node aj as Fig. 4. Then, we have:

dL(ak0
0 , ...,aki

i ,aK
>i)

daki
i

=
∂L(ak0

0 , ...,aki
i ,aK

>i)

∂aki
i︸ ︷︷ ︸

known

+
∑

aj∈C(ai)

(

K∑
kj=0

∂a
kj

j

∂aki
i︸ ︷︷ ︸

Eq. 18

dL(ak0
0 , ...,a

kj−1

j−1 ,aK
≥j)

da
kj

j︸ ︷︷ ︸
Eq. 19

)

(21)

The first term on the right-hand side of Eq. 21 can be trivially evaluated. The ∂a
kj

j /∂aki
i can be

evaluated as Eq. 18. And the dL(ak0
0 , ...,a

kj−1

j−1 ,aK
≥j)/da

kj

j can be iteratively expanded as Eq. 19.
We highlight several key differences between Alg. 2 and Alg. 1 which are reflected in the imple-
mentation of Alg. 2:

• The gradient evaluation of current node yi requires gradient of its plural direct children
aj ∈ C(ai), instead of the single child in 2-level case. The children traversal part of Eq. 19
corresponds to the two extra for loop in line 8 and 14 of Alg. 2.

• The gradient ascent update of child latent parameter a
kj+1
j ← a

kj

j +

αdL(ak0
0 , ...,a

kj

j ,aK
>j)/da

kj

j can be conducted trivially only if C(aj) is empty, oth-
erwise the gradient has to be evaluated recursively using Eq. 21. And this part corresponds
to the recursive call in line 11 of Alg. 2.

And the other part of Alg. 2 is the same as Alg. 1. So the rest of the proof follows Thm. 1. Similarly,
the Hessian-vector product in line 17 and 18 of Alg. 2 may be approximated as Eq. 20. However,
this does not save Alg. 2 from an overall complexity of Θ(KN ).

A.2 THE COMPLETE FORMULA FOR SEC. 3.1 AND SEC. 3.2

In this section, we provide the complete formula on yi related gradient for Sec. 3.1 and Sec. 3.2.
Specifically, Eq. 22 is paired with Eq. 10, and Eq. 23 is paired with Eq. 11.

dL(w1:T ,y1:T )

dyi
=

T∑
j=i

dLj(w1:j ,y1:j)

dyi

dLj(w1:j ,y1:j)

dyi
=

j∑
l=i+1

(
∂yl

∂yi

dLj(w1:j ,y1:j)

dyl
+

∂wl

∂yi

dLj(w1:j ,y1:j)

dwl
)︸ ︷︷ ︸

ignored by BAO

+
∂Lj(w1:j ,y1:j)

∂yi︸ ︷︷ ︸
considered by BAO

(22)

y
k′
i+1

i ← yk′
i + α

dL(wk1
1 , ...,wki

i ,wK
>i,y

k′
1

1 , ...,y
k′
i

i ,yK
>i)

dy
k′
i

i

,

where w0
>i,y

0
>i = f(x,wk1

1 , ...,wki
i ,y

k′
1

1 , ...,y
k′
i

i ) (23)

A.3 AN EXAMPLE OF EXECUTION OF ALG. 2

In this section, we provide an example of the full procedure of execution of Alg. 2 in Fig. 5. The
setup is as Fig. 5.(0): we have N = 3 latent a1,a2,a3 and gradient ascent step K = 2, connected
by a DAG shown in the figure.
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Figure 5: (0). The example setup. (1).-(27). The execution procedure. The number in the circle
indicates the gradient step ki of each node yi. The bold blue/red arrow indicates that the current
node is under initialization/gradient ascent.

A.4 EXTENDING THE ANALYSIS SEC. 3 TO GENERAL DAG CASE

As the Alg. 2 and Alg. 4 are applicable to general SAVI (Kim et al., 2018; Marino et al., 2018)
beyond bit allocation, it is helpful to understand their merit to extend the analysis in Sec. 3 from bit
allocation to general DAG scenario. In this section, we consider the same problem setup as Sec. 4.2.
Similar to bit allocation case, BAO has the gradient incomplete and gradient value incorrect problem.
The gradient incomplete issue is presented as Eq. 24, and gradient value incorrect issue is presented
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as Eq. 25.

dL(ak0
0 , ...,aki

i ,aK
>i)

daki
i

=
∂L(ak0

0 , ...,aki
i ,aK

>i)

∂aki
i︸ ︷︷ ︸

considered by BAO

+
∑

aj∈C(ai)

(

K∑
kj=0

∂a
kj

j

∂aki
i

dL(ak0
0 , ...,a

kj−1

j−1 ,aK
≥j)

da
kj

j
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(25)

A.5 MORE IMPLEMENTATION DETAILS

In the main text, we use yi as all the latent variable related to residual. In practice, it is divided
into yi, zi,∆

y
i , which refer to the first level latent of residual, second level latent of residual and

quantization step size of first level latent of residual respectively. In practice, as BAO (Xu et al.,
2022), all of the 3 parts are involved in SAVI jointly. We note that this is not a problem as they
fully factorize. And for DVC (Lu et al., 2019), wi indeed represent the latent of motion. As for
DVC, the motion has only one level of latent. However for DCVC (Li et al., 2021), wi is divided
into wi,vi,∆

w
i , which refer to the first level latent of motion, second level latent of motion and

quantization step size of first level latent of motion respectively. Similar to yi, all of the 3 parts are
involved in SAVI jointly, and this is not a problem as they fully factorize.

Following BAO (Xu et al., 2022), we set the target λ0 = {256, 512, 1024, 2048}, which also follows
the baselines (Lu et al., 2019; Li et al., 2021). We adopt the official pre-train models for both
of the baseline methods (Lu et al., 2019; Li et al., 2021). We do not have a training dataset or
implementation details for training amortized encoder / decoder as all the experiments are performed
on official pre-trained models. For gradient ascent, we set K = 2000 for the first I frame and
K = 400 for all other P frames. On average, the gradient ascent steps for each frame is 920, which
is smaller than 2000 in BAO.

A.6 MORE QUANTITATIVE RESULTS

In this section we present more quantitative results. In Tab. 4 we show the BD-PSNR of our proposed
method and other methods as a supplementary to the BD-BR results (Tab. 1). Furthermore, in Fig. 6,
we present R-D curve on all classes of HEVC CTC and UVG dataset as a supplementary to the
HEVC Class D plot (Fig. 2).

BD-PSNR (dB) ↑
Method Cls B Cls C Cls D Cls E UVG

DVC (Lu et al., 2019) as Baseline
Li et al. (2016)1 -0.54 - - -0.32 -0.47
Li et al. (2022)1 0.19 - - 0.28 0.14
OEU (Lu et al., 2020) 0.39 0.49 0.83 0.48 0.48
BAO (Xu et al., 2022)2 0.87 1.11 1.17 1.35 0.98
Proposed 1.03 1.38 1.67 1.41 1.15

DCVC (Li et al., 2021) as Baseline
OEU (Lu et al., 2020) 0.30 0.58 0.74 0.29 0.50
BAO (Xu et al., 2022)2 0.52 0.76 0.96 0.96 0.69
Proposed 0.91 1.37 1.55 1.58 1.18

Table 4: The BD-PSNR of our approach compared with baselines (w/o bit allocation) and other bit
allocation approaches. 1 comes from Li et al. (2022). 2 comes from (Xu et al., 2022).
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Figure 6: The R-D performance of our approach compared with baselines (w/o bit allocation) and
other bit allocation approaches.

A.7 COMPLEXITY & SCALABILITY

Figure 7: Spatial temporal complexity analysis comparing BAO (Xu et al., 2022), the proposed
approach and a fast approximation of the proposed approach. The analysis is done on DVC baseline
and HEVC Class D dataset.

We perform additional evaluation to compare the proposed method with BAO (Xu et al., 2022) in
terms of temporal complexity and memory cost. The evaluation result can be found in Fig. 7. The
general result is that our approach is ≈ 2.8 times slower and cost ≈ 2.0 times memory than BAO,
despite the optimization stepsize is smaller. This extra complexity comes from the cost of sequential
optimization of latent. And our current method in its naı̈ve form is slower than BAO while performs
better. Jointly consider RD performance, time and memory, our method does not dominate BAO.

However, as our approach enables a sequential style semi-amortized variational inference (SAVI)
(Kim et al., 2018; Marino et al., 2018) on latents, there exists a very simple trick to speed it up.
Moreover, this trick also resolves the scalability issue. Specifically, to optimize the ith frame’s
latent, we do not compute the R-D cost of all the frames after it as we do now. Instead, we limit the
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R-D cost computation to a small fixed size of frames. Formally, we approximate the gradient as:

dL(w1:T ,y1:T )

dwi
≈

i+C∑
j=i

dLj(w1:j ,y1:j)

dwi
,
dL(w1:T ,y1:T )

dyi
=

i+C∑
j=i

dLj(w1:j ,y1:j)

dyi
(26)

, where C is a preset constant indicating the number of future frames we included for consideration.
With this trick, our algorithm approach cost only ≈ 50% of time and ≈ 60% of memory compared
with BAO, while remains a superior performance (≈ 5% better in BDBR) (Ours (fast) in Fig. 7, the
results are based on DVC Class D c = 2). With this trick, jointly consider RD performance, time and
memory, our approach clearly dominates BAO. Furthermore, with this trick, the scalability issue of

Figure 8: Scalability analysis comparing BAO (Xu et al., 2022), the proposed approach and the fast
approximation of the proposed approach. The analysis is done on DVC baseline and HEVC Class
D dataset.

our approach is significantly ellivated. As shown in Fig. 8, the memory cost our approach with this
trick is constant to GoP size, while that of BAO and our approach without this trick grows linearly
with GoP size. This means that with this trick, our approach becomes scalable to any GoP, which is
superior than BAO.

A.8 IMPACT ON OEU

Figure 9: Replace the joint update of OEU (Lu et al., 2020) by our sequential update (Alg. 4). The
analysis is done on DVC baseline and HEVC Class D dataset.

Another interesting question to ask is whether the sequential updating algorithm (Alg. 4) benefits
the OEU (Lu et al., 2020). Indeed, OEU (Lu et al., 2020) and BAO (Xu et al., 2022) are quite
similar at the first glance. However, it is important to note that the theoretical foundation of BAO
and this paper is SAVI (Kim et al., 2018; Marino et al., 2018). However, OEU does not fit into SAVI
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framework. More specifically, its encoder parameter to be updated does not factorizes as the DAG
defined by variational posterior. Thus, applying Alg. 4 is incorrect. To verify this empirically, we
change the OEU from BAO’s joint optimization to ours sequential optimization (Alg. 4), and the
results show that this change degrades R-D performance (See COEU line in Fig. 9).

A.9 MORE ANALYSIS

In this section, we extend the analysis on why the proposed approach works and what is the differ-
ence between the proposed approach and BAO (Xu et al., 2022). In the approximate SAVI on DAG
latent (Alg. 4), we solve SAVI approximately latent by latent in topological order. For bit allocation
of NVC with 10 frames, this topological order is y0,w1,y1, ...,w9,y9, where y0 is the latent of I
frame, wi is the motion latent of ith P frame and yi is the residual latent of ith P frame. In Fig. 10,
we show the relationship between R-D cost and the stage of approximate SAVI. We can see that
the R-D cost reduces almost consistently with the growing of SAVI stage, which indicates that our
approximate SAVI on DAG (Alg. 4) is successful. Specifically, despite our approach is inferior to
BAO (Xu et al., 2022) upon the convergence of y3, it attains significant advantage over BAO after
y9 converges.

In Fig. 11, we compare the distribution of R-D cost, PSNR and Bpp across frame and latent of the
baseline DVC (Lu et al., 2019), BAO Xu et al. (2022) and the proposed approach. For R-D cost, it
is obvious that our proposed approach’s R-D cost is lower than BAO and baseline, which indicates
a better R-D performance. For bpp, it is interesting to observe that despite all three methods have
similar bpp of motion related latent w1:T , the bpp of residual related latent y1:T is quite different.
Specifically, BAO increases the bpp of y1:T compared with baseline, while our approach decreases
the bpp of y1:T compared with baseline. This explains why our approach has lower bitrate compared
with BAO, and also explains why our approach has significantly less bitrate error. For the PSNR
metric, both our approach and BAO significantly improve the baseline. And the difference between
proposed approach and BAO is not obvious. We can conclude that the benefits of the proposed
approach over BAO comes from the bitrate saving instead of quality enhancing.

A.10 QUALITATIVE RESULTS

In Fig. 12, Fig. 13, Fig. 14 and Fig. 15, we present the qualitative result of our approach compared
with the baseline approach. We note that compared with the reconstruction frame of baseline ap-
proach, the reconstruction frame of our proposed approach preserves significantly more details with
lower bitrate, and looks much more similar to the original frame. We intentionally omit the qualita-
tive comparison with BAO (Xu et al., 2022) as it is not quite informative. Specifically, from Fig. 2 we
can observe that the PSNR difference of BAO and our approach is very small (within±0.1dB). And
our main advantage over BAO comes from bitrate saving instead of quality improvement. Thus the
qualitative difference between the proposed method and BAO is likely to fall below just noticeable
difference (JND).

A.11 MORE DISCUSSION

Other weakness includes scalability. Our method requires jointly considering all the frame inside
the GoP, which is impossible when the GoP size is large or when GoP size is unknown for live
streaming tasks. Furthermore, currently the gradient ascent step number is merely chosen as an
empirical sweet spot between speed and performance. A thorough grid search is desired to better
understand its effect on performance.
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Figure 10: The R-D cost versus SAVI Stage. Experiment is conducted with DVC (Lu et al., 2019)
as baseline and BasketballPass of HEVC Class D as data.

Figure 11: The R-D cost, bpp and PSNR versus frame/latent index. Experiment is conducted with
DVC (Lu et al., 2019) as baseline and BasketballPass of HEVC Class D as data.
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Figure 12: Qualitative results using BasketballPass of HEVC Class D. Top. Original frame. Middle.
Baseline codec (DVC)’s reconstruction result with bpp = 0.148 and PSNR = 33.06dB. Bottom.
Proposed method’s reconstruction result with bpp = 0.103 and PSNR = 34.91dB.
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Figure 13: Qualitative results using BlowingBubbles of HEVC Class D. Top. Original frame. Mid-
dle. Baseline codec (DVC)’s reconstruction result with bpp = 0.206 and PSNR = 30.71dB. Bottom.
Proposed method’s reconstruction result with bpp = 0.129 and PSNR = 32.34dB.
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Figure 14: Qualitative results using BQSquare of HEVC Class D. Top. Original frame. Middle.
Baseline codec (DVC)’s reconstruction result with bpp = 0.232 and PSNR = 28.72dB. Bottom.
Proposed method’s reconstruction result with bpp = 0.128 and PSNR = 30.87dB.
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Figure 15: Qualitative results using RaceHorses of HEVC Class D. Top. Original frame. Middle.
Baseline codec (DVC)’s reconstruction result with bpp = 0.448 and PSNR = 30.48dB. Bottom.
Proposed method’s reconstruction result with bpp = 0.379 and PSNR = 31.92dB.
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