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ABSTRACT

Explainability of machine learning models has gained considerable attention
within our research community given the importance of deploying more reliable
machine-learning systems. Explanability can also be helpful for model debugging.
In computer vision applications, most methods explain models by displaying the
regions in the input image that they focus on for their prediction, but it is dif-
ficult to improve models based on these explanations since they do not indicate
why the model fail. Counterfactual methods, on the other hand, indicate how
to perturb the input to change the model prediction, providing details about the
model’s decision-making. Unfortunately, current counterfactual methods make
ambiguous interpretations as they combine multiple biases of the model and the
data in a single counterfactual interpretation of the model’s decision. Moreover,
these methods tend to generate trivial counterfactuals about the model’s decision,
as they often suggest to exaggerate or remove the presence of the attribute be-
ing classified. Trivial counterfactuals are usually not valuable, since the informa-
tion they provide is often already known to the system’s designer. In this work,
we propose a counterfactual method that learns a perturbation in a disentangled
latent space that is constrained using a diversity-enforcing loss to uncover mul-
tiple valuable explanations about the model’s prediction. Further, we introduce
a mechanism to prevent the model from producing trivial explanations. Experi-
ments on CelebA and Synbols demonstrate that our model improves the success
rate of producing high-quality valuable explanations when compared to previous
state-of-the-art methods. We will make the code public.

1 INTRODUCTION

Consider a face authentication system for unlocking a device. In case of non-authentications (pos-
sible false-negative predictions), this system could provide generic advices to its user such as “face
the camera” or “remove any face occlusions”. However, these may not explain the reason for the
possible malfunction. To provide more insights regarding its decisions, the system could instead
provide information specific to the captured image (its input data). It might list the input features
that most contributed to its decision (e.g., a region of the input image), but this feature could be
“face”, which is trivial and does not suggest an alternative action to its user. Further, it provides
little useful information about the model. Instead, non-trivial explanations may be key for better
understanding and diagnosing the system— including the data it was trained on— and improving its
reliability. Such explanations might improve systems across a wide variety of domains including in
medical imaging [58]], automated driving systems [48], and quality control in manufacturing [[22].

The explainability literature aims to understand the decisions made by a machine learning (ML)
model such as the aformentionned face authentication system. Counterfactual explanation meth-
ods [L1}13}4] can help discover the limitations of a ML model by uncovering data and model biases.
The counterfactual explanation methods provide perturbed versions of the input data that emphasize
features that contributed most to the ML model’s output. For example, if an authentication system
is not recognizing a user wearing sunglasses then the system could generate an alternative image of
the user’s face without sunglasses that would be correctly recognized. This is different from other
types of explainability methods such as feature importance methods [50, 51}, 4] and boundary ap-
proximation methods [47, 37]]. The former highlight salient regions of the input but do not indicate
how the ML model could achieve a different prediction. The second family of methods produce
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explanations that are limited to linear approximations of the ML model. Unfortunately, these linear
approximations are often inaccurate. In contrast, counterfactual methods suggest changes in the in-
put that would lead to a change in the corresponding output, providing information not only about
where the change should be but also what the change should be.

Counterfactual explanations should be actionable, i.e., a user should be able to act on it. An action-
able explanation would suggest feasible changes like removing sunglasses instead of unrealistic ones
like adding more eyes to the user’s face. Counterfactual explanations that are valid, proximal, and
sparse are more likely to be actionable [38]]. That is, a counterfactual explanation that changes
the outcome of the ML model (valid) by changing the minimal number of input features (sparse),
while remaining close to the input (proximal). Generating a set of diverse explanations increases the
likelihood of finding an actionable explanation [38]. A set of counterfactuals is diverse if each
one proposes to change a different set of attributes. Intuitively, each of these explanations shed light
on a different action that user can take to change the ML model’s outcome.

Current counterfactual generation methods like xGEM [26] generates a single explanation that is far
from the input. Thus, it fails to be proximal, sparse, and diverse. Progressive Exaggeration (PE) [533]]
provides higher-quality explanations more proximal than xGEM, but it still fails to provide a diverse
set of explanations. In addition, the image generator of PE is trained on the same data as the ML
model in order to detect biases thereby limiting their applicability. Moreover, like the previous
methods in the literature, these two methods tend to produce trivial explanations. For instance, an
explanation that suggests to increase the ‘smile’ attribute of a ‘smile’ classifier for an already-smiling
face is trivial and it does not explain why a misclassification occurred. In this work, we focus on
diverse valuable explanations (DiVE), that is, valid, proximal, sparse, and non-trivial.

We propose Diverse Valuable Explanations (DiVE), an explainability method that can interpret a
ML model by identifying sets of valuable attributes that have the most effect on the ML model’s
output. DiVE produces multiple counterfactual explanations which are enforced to be valuable,
and diverse resulting in more actionable explanations than the previous literature. Our method
first learns a generative model of the data using a S-TCVAE [3] to obtain a disentangled latent
representation which leads to more proximal and sparse explanations. In addition, the VAE is not
required to be trained on the same dataset as the ML model to be explained. DiVE then learns a latent
perturbation using constraints to enforce diversity, sparsity, and proximity. In order to generate non-
trivial explanations, DiVE leverages the Fisher information matrix of its latent space to focus its
search on the less influential factors of variation of the ML model. This mechanism enables the
discovery of spurious correlations learned by the ML model.

We provide experiments to assess whether our explanations are more valuable and diverse than
current state-of-the-art. First, we assess their validity on the CelebA dataset and provide quan-
titative and qualitative results on a bias detection benchmark [53]]. Second, we show that the gen-
erated explanations are more proximal in terms of Fréchet Inception Distance (FID) [19], which is
a measure of similarity between two datasets of images commonly used to evaluate the generation
quality of GAN. In addition, we evaluate the latent space closeness and face verification accuracy,
as reported by Singla et al. [53]]. Third, we assess the sparsity of the generated counterfactuals by
computing the average change in facial attributes. Fourth, we show that DiVE is more successful
at finding more non-trivial explanations than previous methods and baselines. In the supplementary
material we provide additional results on the out-of-distribution performance of DiVE.

We summarize the contributions of this work as follows: 1) We propose DiVE, an explainability
method that can interpret a ML model by identifying the attributes that have the most effect on
its output. 2) DiVE achieves state of the art in terms of the validity, proximity, and sparsity of its
explanations, detecting biases on the datasets, and producing multiple explanations for an image. 3)
We identify the importance of finding non-trivial explanations and we propose a new benchmark
to evaluate how valuable the explanations are. 4) We propose to leverage the Fisher information
matrix of the latent space for finding spurious features that produce non-trivial explanations.

2 RELATED WORK

Explainable artificial intelligence (XAI) is a suite of techniques developed to make either the con-
struction or interpretation of model decisions more accessible and meaningful. Broadly speaking,
there are two branches of work in XAl, ad-hoc and post-hoc. Ad-hoc methods focus on making mod-
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els interpretable, by imbuing model components or parameters with interpretations that are rooted
in the data themselves [45} 139} 25]. Unfortunately, most successful machine learning methods, in-
cluding deep learning ones, are uninterpretable [6} 32} 18] 24].

Post-hoc methods aim to explain the decisions of non interpretable models. These methods can
be categorized as non-generative and generative. Non-generative methods use information from a
ML model to identify the features most responsible for an outcome for a given input. Approaches
like [47, 37 |41]] interpret ML model decisions by using derived information to fit a locally in-
terpretable model. Others use the gradient of the ML model parameters to perform feature attri-
bution [59} 160, 152} 1541 [50; [1} 51]], sometimes by employing a reference distribution for the fea-
tures [51L[11]]. This has the advantage of identifying alternative feature values that when substituted
for the observed values would result in a different mode outcome. These methods are limited to
small contiguous regions of features with high influence on the target model outcome. In so doing,
they can struggle to provide plausible changes of the input that are actionable by an user in order to
correct a certain output or bias of the model. Generative methods such as [7, 15, 4] propose plausible
modifications of the input that change the model decision. However the generated perturbations
are usually found in pixel space and thus are bound to masking small regions of the image without
necessarily having a semantic meaning. Closest to our work are generative counterfactual expla-
nation methods [26] 9} [15] [53]] which synthesize perturbed versions of observed data that result in
a corresponding change of the model prediction. While these methods provide valid and proximal
explanations for a model outcome, they fail to provide a diverse set of non-trivial explanations.
Mothilal et al. [38]] addressed the diversity problem by introducing a diversity constraint between
a set of randomly initialized counterfactuals (DICE). However, DICE shares the same problems as
[7, 4] since perturbations are directly performed on the observed feature space, and does not take
into account trivial explanations.

In this work we propose DiVE, a counterfactual explanation method that generates a diverse set
of valid, proximal, sparse, and non-trivial explanations. Appendix [A] provides a more exhaustive
review of the related work.

3 PROPOSED METHOD

We propose DiVE, an explainability method that can interpret a ML model by identifying the latent
attributes that have the most effect on its output. Summarized in Figure [I] DiVE uses an encoder,
a decoder, and a fixed weight ML model. The ML model could be any function for which we have
access to its gradients. In this work, we focus on a binary image classifier in order to produce visual
explanations. DiVE consists of two main steps. First, the encoder and the decoder are trained in
an unsupervised manner to approximate the data distribution on which the ML model was trained.
Unlike PE [53]], our encoder-decoder model does not need to train on the same dataset that the ML
model was trained on. Second, we optimize a set of vectors €; to perturb the latent representation z
generated by the trained encoder. The details of the optimization procedure are provided in Algo-
rithm[T]in the Appendix. We use the following 3 main losses for this optimization: a counterfactual
loss Lcr that attempts to fool the ML model, an proximity loss Ly.ox that constrains the expla-
nations with respect to the number of changing attributes, and a diversity loss Lq;, that enforces
the explainer to generate diverse explanations with only one confounding factor for each of them.
Finally, we propose several strategies to mask subsets of dimensions in the latent space to prevent
the explainer from producing trivial explanations. Next we explain the methodology in more detail.

3.1 OBTAINING MEANINGFUL REPRESENTATIONS.

Given a data sample x € X, its corresponding target y € {0,1}, and a potentially biased ML
model f(x) that approximates p(y|x), our method finds a perturbed version of the same input X that
produces a desired probabilistic outcome 7 € [0, 1], so that f(X) = 7. In order to produce semanti-
cally meaningful counterfactual explanations, perturbations are performed on a latent representation
z € Z C R? of the input x. Ideally, each dimension in Z represents a different semantic concept of
the data, i.e., the different dimensions are disentangled.

For training the encoder-decoder architecture we use 3-TCVAE [3] since it has been shown to obtain
competitive disentanglement performance [34]. It follows the same encoder-decoder structure as the
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Figure 1: DiVE encodes the input image (left) to explain into a latent representation z. Then z
is perturbed by € and decoded as counterfactual examples. During training, Lcr finds the set of
e that change the ML model classifier outcome while Lg;, and Ly« enforce that the samples are
diverse while staying proximal. These are four valid counterfactuals generated from the experiment
in Section @ However, only the bottom row contains counterfactuals where the man is still bald
as indicated by the oracle or a human. These counterfactuals identify a weakness in the ML model.

VAE [30], i.e., the input data is first encoded by a neural network g, (z|x) parameterized by ¢. Then,
the input data is recovered by a decoder neural network py(x|z), parameterized by 6. Using a prior
p(z) and a uniform distribution over the indexes of the dataset p(i), the original VAE loss is:

Ly ag = Ep)Eq(zix,) [log po(xi]2)] — Epiy Dk (q4(2]%4)|p(2)) )]

where the first term is the reconstruction loss and the second is the average divergence from the
prior. The core difference of 5-TCVAE is the decomposition of this average divergence:

Ep(s) D (g6 (2[xi)[1p(2)) = Dk (a6(2, %:)las (2)pe (xi)) + 32, D (46 (25)lp(25))
+ 8- D (a6 (2)|TT;40(25)) 2

where the arrow represents a modification of the left terms and equality is obtained when 5 = 1.
The third term on the right hand side is called total correlation and measures the shared information
between all empirical marginals g4 (2;) = Ep(;yq¢(2;|x;:). By using 8 > 1, this part is amplified and
encourages further decorrelations between the latent variables and leads to better disentanglement.

In addition to 8-TCVAE, we use the perceptual reconstruction loss from Hou et al. [20]. This
replaces the pixel-wise reconstruction loss in Equation [T|by a perceptual reconstruction loss, using
the hidden representation of a pre-trained neural network R. Specifically, we learn a decoder Dy
generating an image i.e., X = Dy(z), and this image is re-encoded in a hidden representation:
h = R(X), and compared to the original image in the same space using a normal distribution. The
reconstruction loss of Equation[I|now becomes:

Ep(i)Eq(alx,) log N (R(x;); R(Dg(2)), I)], 3)

Once trained, the weights of the encoder-decoder are fixed for the rest of the steps of our algorithm.

3.2 INTERPRETING THE ML MODEL

In order to find weaknesses in the ML model, DiVE searches for a collection of n latent perturbation
{€;}7_, such that the decoded output X; = Dy(z+E¢;) yields a specific response from the ML model,
i.e., f(X) = g for any chosen § € [0, 1]. We optimize €;’s by minimizing:

Loive(X, J,{€}iz1) = > Lor(X,0,€) + A D0 Lorox(X, €) + a- Law({€i}in,), @)

where )\, and « determine the relative importance of the losses. The minimization is performed with
gradient descent and the complete algorithm can be found in Algorithm [T]in Appendix [D] We now
describe the different loss terms.

Counterfactual loss. The goal of this loss function is to identify a change of latent attributes that
will cause the ML model f to change it’s prediction. For example, in face recognition, if the classifier
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detects that there is a smile present whenever the hair is brown, then this loss function is likely to
change the hair color attribute. This is achieved by sampling from the decoder X = Dy(z + €), and
optimizing the binary cross-entropy between the target § and the prediction f(X):

Lor(x, 7, €) =g -log(f(X)) + (1 = g) - log(1 - f(X)). (5)

Proximity loss. The goal of this loss function is to constrain the reconstruction produced by the
decoder to be similar in appearance and attributes as the input. It consists of the following two terms,

Lprox(x, €) = [[x = X[[1 +7 - |le]]1, (6)
where ~y is a scalar weighting the relative importance of the two terms. The first term ensures that
the explanations can be related to the input by constraining the input and the output to be similar.
The second term aims to identify a sparse perturbation to the latent space Z that confounds the

ML model. This constrains the explainer to identify the least amount of attributes that affect the
classifier’s decision in order to produce sparse explanations.

Diversity loss. This loss prevents the multiple explanations of the model from being identical. For
instance, if gender and hair color are spuriously correlated with smile, the model should provide
images either with different gender or different hair color. To achieve this, we jointly optimize for a
collection of n perturbations {e€;}?_; and minimize their pairwise similarity:

Law({e}y) = Z( §_ ) @)

7 \lleill2 llesll2

The method resulting of optimizing Eq. ] (DiVE) results in diverse counterfactuals that are more
valid, proximal, and sparse. However, it may still produce trivial explanations, such as exaggerating
a smile to explain a smile classifier without considering other valuable biases in the ML model such
as hair color. While the diversity loss encourages the orthogonality of the explanations, there might
still be several latent variables required to represent all variations of smile.

Beyond trivial counterfactual explanations. To find non-trivial explanations, we propose to pre-
vent DiVE from perturbing the most influential latent factors of Z on the ML model. We estimate
the influence of each of the latent factors with the average Fisher information matrix:

F =By By, (2 Ep(y]z) V2 0 p(y]2) Vo Inp(ylz)”, (8)

where p(y = 1|z) = f(Dp(z)), and p(y = 0|z) = 1 — f(Dgy(z)). The diagonal values of F express
the relative influence of each of the latent dimensions on the classifier output. Since the most influ-
ential dimensions are likely to be related to the main attribute used by the classifier, we propose to
prevent Eq. ] from perturbing them in order to find more surprising explanations. Thus when pro-
ducing n explanations, we sort Z by the magnitude of the diagonal, we partition it into n contiguous
chunks that will be optimized for each of the explanations. We call this method DiVEgigher-

However, DiVE ;5 does not guarantee that the different partitions of Z all the factors concerning
a trivial attribute are grouped together. Thus, we propose to partition Z into subsets of latent factors
that interact with each other when changing the predictions of the ML model. Such interaction can
be estimated using F' as an affinity measure. We use spectral clustering [55] to obtain a partition of
Z. This partition is represented as a collection of mask {m;}?_,, where m; € {0, 1}¢ represents
which dimensions of Z are part of cluster i. Finally, these masks are used in Equation 4] to bound
each €; to its subspace i.e., €, = €; o m,, where o represents element wise multiplication. Since
these masks are orthogonal, this effectively replaces Laqiy. In Section[d] we highlight the benefits of
this clustering approach by comparing to other baselines. We call this method DiVEgisherspectral -

4 EXPERIMENTAL RESULTS

In this section, we evaluate the described methods on 5 different aspects: (1) the validity of the
generated explanations as well as the ability to discover biases within the ML model and the data
(Section @; (2) their proximity in terms of FID, latent space closeness, and face verification accu-
racy (Section @; (3) the sparsity of the generated counterfactuals (Section @); and (4) the ability
to identify diverse non-trivial explanations for image misclassifications made by the ML model
(Section @); (5) the out-of-distribution performance of DiVE (Section @)
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Table 1: Bias detection experiment. Ratio of

generated counterfactuals classified as “Smiling” Table 2: FID of DiVE compared to xGEM [26]],
and “Non-Smiling” for a classifier biased on gen- Progressive Exaggeration (PE) [53], xGEM
der (fyiasea) and an unbiased classifier (fumpiaseq). trained with our backbone (xGEM+), and DiVE

Bold indicates Overall closest to the Ground truth. trained without the perceptual loss (DiVE--)

Target label Target Attribute|[ XGEM PE xGEM+ DiVE-- DiVE
ML model Smiling Non-Smiling ‘ Smiling
model PE xGEM+ DiVE PE xGEM+ DiVE 06
Present 111.0 469 67.2 54.9 .
Male 052 094 089 0.18 024 0.16
fowed | Female 048 006 0.11 082 077 084 Absent 1129 563 778 623  33.6
Overall 0.12 029 022 035 033 036 Overall 106.3 358 66.9 559 294
Ground truth 0.75 0.67 ‘ Young
Male 048 041 042 047 038 044
Junbiased Female 052 0.59 058 053 062 057 Present 1152 67.6 68.3 572 318
Overall 0.7 013 010 008 015 007 Absent 1703 744 76.1 51.1 457
Ground truth 0.04 0.00 Overall 1179 534 595 47.7 33.8

Experimental Setup. As common procedure [26} 9] 53], we perform experiments on the CelebA
database [33]]. CelebA is a large-scale dataset containing more than 200K celebrity facial images.
Each image is annotated with 40 binary attributes such as “Smiling”, “Male”, and “Eyeglasses”.
These attributes allow us to evaluate counterfactual explanations by determining whether they could
highlight spurious correlations between multiple attributes such as “lipstick” and “smile”. In this
setup, explainability methods are trained in the training set and ML models are explained on the
validation set. The hyperparameters of the explainer are searched by cross-validation on the training
set. We use the same train and validaton splits as PE [S3[]. Explainers do not have access to the
labeled attributes during training.

We test the out-of-distribution (OOD) performance of DiVE with the Synbols dataset [31]]. Synbols
is an image generator with characters from the Unicode standard and the wide range of artistic fonts
provided by the open font community. This provides us to better control on the features present in
each set when compared to CelebA. We generate 100K black and white of 32x32 images from 48
characters in the latin alphabet and more than 1K fonts. We use the character type to create disjoint
sets for OOD training and we use the fonts to introduce biases in the data. We provide a sample of
the dataset in Figure[8]in Appendix [I]

We compare four versions of our method to three existing methods. DiVE, resulting of optimizing
Eq.[] DiVEFiser, which extends DiVE by using the Fisher information matrix introduced in Eq. [§]
DiVEFisherspectral, Which extends DiVEFigne, with spectral clustering. We introduce two additional
ablations of our method, DiVE-- and DiVERandom. DiVE—- is equivalent to DiVE but using a pixel-
based reconstruction loss instead of the perceptual loss. DiVEgangom uses random masks instead of
using the Fisher information. Finally, we compare our baselines with xGEM as described in Joshi
et al. [26], xGEM+, which is the same as xGem but uses the same auto-encoding architecture as
DiVE, and PE as described by Singla et al. [53]]. For our methods, we provide implementation
details, architecture description, and algorithm in Appendix [D]

4.1 VALIDITY AND BIAS DETECTION

We evaluate DiVE’s ability to detect biases in the data. We follow the same procedure as PE [53]],
and train two binary classifiers for the attribute “Smiling”. The first one is trained on a biased version
of CelebA where all the male celebrities are smiling and all the female are not smiling (fp;qseq). The
second one is trained on the unbiased version of the data ( f,piaseq). Both classifiers are evaluated
on the CelebA validation set. Also following Singla et al. [S3]], we train an oracle classifier (foracle)
based on VGGFace2 [3] which obtains perfect accuracy on the gender attribute. The hypothesis
is that if “Smiling” and gender are confounded by the classifier, so should be the explanations.
Therefore, we could identify biases when the generated examples not only change the target attribute
but also the confounded one. To generate the counterfactuals, DiVE produces perturbations until it
changes the original prediction of the classifier (e.g. “Smiling” to “Non-Smiling”).

We follow the procedure introduced in [26} |53]] and report a confounding metric for bias detection
in In Table [} The columns Smiling and Non-Smiling indicate the target class for counterfactual
generation. The rows Male and Female contain the proportion of counterfactuals that are classified
by the oracle as Male and Female. We can see that the generated explanations for fy;aseq are classified
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Table 3: Average number attributes changed per explanation and percentage of non-trivial explana-
tions. This experiment evaluates the counterfactuals generated by different methods for a ML model
trained on the attribute “Young’ of the CelebA dataset. xGEM++ is xGEM+ using 3-TCVAE as
generator.

| PE [53] | XGEM+ [26] | xGEM++ | DiVE | DiVEgisher | DiVErisherspectral

03.74 06.92 06.70 |04.81| 04.82 04.58
05.12 18.56 34.62 |43.51] 4299 51.07

Attr. change
Non-trivial (%)

more often as Male when the target attribute is Smiling and Female when the target attribute is Non-
Smiling. The confounding metric, denoted as overall, is the fraction of generated explanations for
which the gender was changed with respect to the original image. It thus reflect the magnitude of
the the bias as approximated by the explainers.

Singla et al. [53]] consider that a model is better than another if the confounding metric is the highest
on fpiasea and the lowest on fynpiased- However, they assume that fy,;,seq always predicts the Gender
based on Smile. Instead, we propose to evaluate the confounding metric by comparing it to the
empirical bias of the model, denoted as ground truth in the Table[I] Details provided in Appendix [l]

We observe that DiVE is more successful than PE at detecting biases although the generative model
of DiVE was not trained with the biased data. While xGEM+ has a higher success rate at detecting
biases in some cases, it produces lower-quality images that are far from the input. In Figure [5]in
Appendix Bl we provide samples generated by our method with the two classifiers and compare
them to PE and xGEM+. We found that gender changes with the “Smiling” attribute with fyiased
while for fypbiased it stayed the same. In addition, we also observed that for fyiaseq the correlation
between “Smile” and “Gender” is higher than for PE. It can also be observed that xGEM+ fails to
retain the identity of the person in x when compared to PE and our method.

4.2 COUNTERFACTUAL EXPLANATION PROXIMITY

We evaluate the proximity of the counterfactual explanations using FID scores [19] as described
by Singla et al. [S3]]. The scores are based on the target attributes “Smiling” and “Young”, and
are divided into 3 categories: Present, Absent, and Overall. Present considers explanations for
which the ML model outputs a probability greater than 0.9 for the target attribute. Absent refers to
explanations with a probability lower than 0.1. Overall considers all the successful counterfactuals,
which changed the original prediction of the ML model.

We report these scores in Table[2|for all 3 categories. DiVE produces the best quality counterfactuals,
surpassing PE by 6.3 FID points for the “Smiling” target and 19.6 FID points for the “Young” target
in the Overall category. DiVE obtains lower FID than xGEM+ which shows that the improvement
not only comes from the superior architecture of our method. Further, there are two other factors that
explain the improvement of DiVE’s FID. First, the S-TCVAE decomposition of the KL divergence
improves the disentanglement ability of the model while suffering less reconstruction degradation
than the VAE. Second, the perceptual loss makes the image quality constructed by DiVE to be
comparable with that of the GAN used in PE. In addition, Table[din the Appendix shows that DiVE
is more successful at preserving the identity of the faces than PE and xGEM and thus at producing
feasible explanations. These results suggest that the combination of disentangled latent features and
the regularization of the latent features help DiVE to produce the minimal perturbations of the input
that produce a successful counterfactual.

In Figure 5] in Appendix [B] we show qualitative results obtained by targeting different probability
ranges for the output of the ML model as described in PE. As seen in Figure 5] DiVE produces
more natural-looking facial expressions than XGEM+ and PE. Additional results for “Smiling” and
“Young” are provided in Figures [3|and [ in the Appendix

4.3 COUNTERFACTUAL EXPLANATION SPARSITY

Explanations that produce sparse changes in the attributes of the image are more probable to be
actionable. In this section we quantitatively compare the amount of valid and sparse counterfactuals
provided by different baselines. Table [3] shows the results for a classifier model trained on the at-
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tribute Young of the CelebA datasetﬂ The first row shows the number of attributes that each method
change in average to generate a valid counterfactual. Methods that require to change less attributes
are likely to be more actionable. We observe that DiVE changes less attributes on average than
XxGEM-+. We also observe that DiVEFisnerspectrat 15 the method that changes less attributes among all
the baselines. To better understand the effect of disentangled representations, we also report results
for a version of xGEM+ with the S-TCVAE backbone (xGEM++). We do not observe significant
effects on the sparsity of the counterfactuals. In fact, a fine-grained decomposition of concepts in
the latent space could lead to lower the sparsity.

4.4 BEYOND TRIVIAL EXPLANATIONS

Previous works on counterfactual generations tend to produce trivial input perturbations to change
the output of the ML model. That is, they tend to increase/decrease the presence of the attribute that
the classifier is predicting. For instance, in Figure[5]all the explainers put a smile on the input face in
order to increase the probability for “smile”. While that is correct, this explanation does not provide
much insight about the potential weaknesses of the ML model. Instead, in this work we emphasize
producing non-trivial explanations, that are different from the main attribute that the ML model has
been trained to identify. These kind of explanations provide more insight about the factors that affect
the classifier and thus provide cues on how to improve the model or how to fix incorrect predictions.

To evaluate this, we propose a new benchmark that measures a method’s ability to generate valuable
explanations. For an explanation to be valuable, it should 1) be misclassified by the ML model
(valid), 2) not modify the main attribute being classified (non-trivial), and 3) not have diverged too
much from the original sample (proximal). A misclassification provides insights into the weaknesses
of the model. However, the counterfactual is even more insightful when it stays close to the original
image as it singles-out spurious correlations learned by the ML model. Because it is costly to provide
human evaluation of an automatic benchmark, we approximate both the proximity and the real class
with the VGGFace2-based oracle. We choose the VGGFace2 model as it is less likely to share the
same biases as the ML model, since it was trained for a different task than the ML model with an
order of magnitude more data. We conduct a human evaluation experiment in Appendix [F and we
find a significant correlation between the oracle and the human predictions. For 1) and 2) we deem
that an explanation is successful if the ML model and the oracle make different predictions about
the counterfactual. E.g., the top counterfactuals in Figure[I]are not deemed successful explanations
because both the ML model and the oracle agree on its class, however the two in the bottom row are
successful because only the oracle made the correct prediction. These explanations where generated
by DiVEFisherspectral- As for 3) we measure the proximity with the cosine distance between the sample
and the counterfactual in the feature space of the oracle.

We test all methods from Section[d]on a subset of the CelebA validation set described in Appendix [E}
We report the results of the full hyperparameter search (see Appendix [E)) in Figure[2a] The vertical
axis shows the success rate of the explainers, i.e., the ratio of valid explanations that are non-trivial.
This is the misclassification rate of the ML model on the explanations. The dots denote the mean
performances and the curves are computed with Kernel Density Estimation (KDE). On average,
DiVE improves the similarity metric over xGEM+ highlighting the importance of disentangled rep-
resentations for identity preservation. Moreover, using information from the diagonal of the Fisher
Information Matrix as described in Eq. [§] further improves the explanations as shown by the higher
success rate of DiVEFpisper over DiVE and DiVERandom. Thus, preventing the model from perturbing
the most influential latent factors helps to uncover spurious correlations that affect the ML model.
Finally, the proposed spectral clustering of the full Fisher Matrix attains the best performance vali-
dating that the latent space partition can guide the gradient-based search towards better explanations.
We reach the same conclusions in Table 3] where we provide a comparison with PE for the attribute
Young. In addition, we provide results for a version of xGEM+ with more disentangled latent factos
(XxGEM++). We find that disentangled representations provide the explainer with a more precise
control on the semantic concepts being perturbed, which increases the success rate of the explainer
by 16%.

Out-of-distribution generalization. In the previous experiments, the generative model of DiVE
was trained on the same data distribution (i.e., CelebA faces) as the ML model. We test the out-

'The code and pre-trained models of PE are only available for the attribute Young.
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Figure 2: Beyond trivial explanations. The rate of successful explanations (y-axis) plotted against
embedding similarity (x-axis) for all methods. For both metrics, higher is better, i.e., the most valu-
able explanations are in the top-right corner. For each method, we ran an hyperparameter sweep
and denote the mean of the performances with a dot. The curves are computed with KDE. The
left plot shows the performance on CelebA and the other two plots shows the performance for in-
distribution (ID) and out-of-distribution (OOD) experiments on Synbols . All DiVE methods outper-
form xGEM+ on both metrics simultaneously when conditioning on successful counterfactuals. In
both experiments, DiVEFigher and DiVEFgigherspectral improve the performance over both DiVERandom
and DiVE.

of-distribution performance of DiVE by training its auto-encoder on a subset of the latin alphabet
of the Synbols dataset [31]]. Then, counterfactual explanations are produced for a different disjoint
subset of the alphabet. To evaluate the effectiveness of DiVE in finding biases on the ML model,
we introduce spurious correlations in the data. Concretely, we assign different fonts to each of
the letters in the alphabet as detailed in Appendix [l In-distribution (ID) results are reported in
Figure [2b] for reference, and OD results are reported in Figure We observe that DiVE is able
to find valuable countefactuals even when the VAE was not trained on the same data distribution.
Moreover, results are consistent with the CelebA experiment, with DiVE outperforming xGEM+
and Fiser information-based methods outperforming the rest.

5 LIMITATIONS AND FUTURE WORK

This work shows that a good generative model can provide interesting insights on the biases of a ML
model. However, this relies on a properly disentangled representation. In the case where the gener-
ative model would be heavily entangled it would fail to produce explanations with a sparse amount
of features. However, our approach can still tolerate a small amount of entanglement, yielding a
small decrease in interpretability. We expect that progress in identifiability 33 28] will increase the
quality of representations. With a perfectly disentangled model, our approach could still miss some
explanations or biases. E.g., with the spectral clustering of the Fisher, we group latent variables and
only produce a single explanation per group in order to present explanations that are conceptually
different. This may leave behind some important explanations, but the user can simply increase the
number of clusters or the number of explanation per clusters for a more in-depth analysis.

In addition to the challenge of achieving disentangled representations, finding the optimal hyperpa-
rameters for the VAE and their generalization out of the training distribution is an open problem.
Moreover, if the generative model is trained on biased data, one could expect the counterfactuals to
be biased as well. However, as we show in Figure our model still finds non-trivial explanations
when applied out of distribution. In that way, it could be trained on a larger unlabeled dataset to
overcome possible biases caused by the lack of annotated data.

Although the generative model plays an important role to produce actionable counterfactuals in the
computer vision domain domain, our work could be extended to other domains. For example, Eq. 4]
could be applied to find non-trivial explanations on tabular data by directly optimizing the observed
features instead of the latent factors of the VAE. However, further work would be needed to adapt
the DiVE loss functions to produce perturbations on discrete and categorical variables.
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APPENDIX

A EXTENDED RELATED WORK

Counterfactual explanation lies inside a more broadly-connected body of work for explaining clas-
sifier decisions. Different lines of work share this goal but vary in the assumptions they make about
what elements of the model and data to emphasize as way of explanation.

Model-agnostic counterfactual explanation. Like [47,37], these models make no assumptions
about model structure, and interact solely with its label predictions. Karimi et al. [27] develop a
model agnostic, as well as metric agnostic approach. They reduce the search for counterfactual ex-
planations (along with user-provided constraints) into a series of satisfiability problems to be solved
with off-the-shelf SAT solvers. Similar in spirit to [47], Guidotti et al. [[16] first construct a local
neighbourhood around test instances, finding both positive and negative exemplars within the neigh-
bourhood. These are used to learn a shallow decision tree, and explanations are provided in terms
of the inspection of its nodes and structure. Subsequent work builds on this local neighbourhood
idea [17], but specializes to medical diagnostic images. They use a VAE to generate both positive
and negative samples, then use random heuristic search to arrive at a balanced set. The generated
explanatory samples are used to produce a saliency feature map for the test data point by considering
the median absolute deviation of pixel-wise differences between the test point, and the positive and
negative example sets.

Gradient based feature attribution. These methods identify input features responsible for the
greatest change in the loss function, as measured by the magnitude of the gradient with respect to
the inputs. Early work in this area focused on how methodological improvements for object detec-
tion in images could be re-purposed for feature attribution [S9} |60]], followed by work summarized
gradient information in different ways [52, 154, |50]. Closer inspection identified pitfalls of gradient-
based methods, including induced bias due to gradient saturation or network structure [1], as well as
discontinuity due to activation functions [51]]. These methods typically produce dense feature maps,
which are difficult to interpret. In our work we address this by constraining the generative process
of our counterfactual explanations.

Reference based feature attribution. These methods focus instead on measuring the differences
observed by substituting observed input values with ones drawn from some reference distribution,
and accumulating the effects of these changes as they are back-propagated to the input features.
Shrikumar et al. [51]] use a modified back-propagation approach to gracefully handle zero gradients
and negative contributions, but leave the reference to be specified by the user. Fong & Vedaldi
[L1] propose three different heuristics for reference values: replacement with a constant, addition of
noise, and blurring. Other recent efforts have focused on more complex proposals of the reference
distribution. Chen et al. [S]] construct a probabilistic model that acts as a lower bound on the mutual
information between inputs and the predicted class, and choose zero values for regions deemed
uninformative. Building on desiderata proposed by Dabkowski & Gal [7], Chang et al. [4] use a
generative model to marginalize over latent values of relevant regions, drawing plausible values for
each. These methods typically either do not identify changes that would alter a classifier decision,
or they do not consider the plausibility of those changes.

Counterfactual explanations. Rather than identify a set of features, counterfactual explanation
methods instead generate perturbed versions of observed data that result in a corresponding change
in model prediction. These methods usually assume both more access to model output and pa-
rameters, as well as constructing a generative model of the data to find trajectories of variation that
elucidate model behaviour for a given test instance.

Joshi et al. [26] propose a gradient guided search in latent space (via a learned encoder model),
where they progressively take gradient steps with respect to a regularized loss that combines a term
for plausibility of the generated data, and the loss of the ML model. Denton et al. [9]] use a Generative
Adpversarial Network (GAN) [14] for detecting bias present in multi-label datasets. They modify the
generator to obtain latent codes for different data points and learn a linear decision boundary in the
latent space for each class attribute. By sampling generated data points along the vector orthogonal
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to the decision boundary, they observe how crossing the boundary for one attribute causes undesired
changes in others. Some counterfactual estimation methods forego a generative model by instead
solving a surrogate editing problem. Given an original image (with some predicted class), and an
image with a desired class prediction value, Goyal et al. [15] produce a counterfactual explanation
through a series of edits to the original image by value substitutions in the learned representations
of both images. Similar in spirit are Dhurandhar et al. [10] and Van Looveren & Klaise [57]. The
former propose a search over features to highlight subsets of those present in each test data point
that are typically present in the assigned class, as well as features usually absent in examples from
adjacent classes (instances of which are easily confused with the label for the test point predicted
by the model). The latter generate counterfactual data that is proximal to z;est, with a sparse set
of changes, and close to the training distribution. Their innovation is to use class prototypes to
serve as an additional regularization term in the optimization problem whose solution produces a
counterfactual.

Several methods go beyond providing counterfactually generated data for explaining model deci-
sions, by additionally qualifying the effect of proposed changed between a test data point and each
counterfactual. Mothilal et al. [38] focus on tabular data, and generate sets of counterfactual expla-
nations through iterative gradient based improvement, measuring the cost of each counterfactual by
either distance in feature space, or the sparsity of the set of changes (while also allowing domain
expertise to be applied). Poyiadzi et al. [44]] construct a weighted graph between each pair of data
point, and identify counterfactuals (within the training data) by finding the shortest paths from a test
data point to data points with opposing classes. Pawelczyk et al. [42] focus on modelling the density
of the data to provide ’attainable’ counterfactuals, defined to be proximal to test data points, yet not
lying in low-density sub-spaces of the data. They further propose to weigh each counterfactual by
the changes in percentiles of the cumulative distribution function for each feature, relative to the
value of a test data point.
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B QUALITATIVE RESULTS

In Figure 5| we show qualitative results obtained by targeting different probability ranges for the
output of the ML model as described in PE. Note that PE directly optimizes the generative model
to take an input variable § € R that defines the desired output probability § = f(x) + J. To ob-
tain explanations at different probability targets, we train a second order spline on the trajectory
of perturbations produced during the gradient descent steps of our method. Thus, given the set
of perturbations {€;}, Vt € 1..r, obtained during 7 gradient steps, and the corresponding black-
box outputs {f(y|€;)}, the spline obtains the €; for a target output ¢ by interpolation. As seen in
Figure 5| DiVE produces more natural-looking facial expressions than xGEM+ and PE. Although
DiVE is not explicitly trained to produce exemplars at intermediate target probabilities, our expla-
nations are more correlated with the target probabilities than PE. Additional results for “Smiling”
and “Young” are provided in Figure [3]4]

Figure 3] present counterfactual explanations for additional persons and attributes. The results
show that DiVE achieves higher quality reconstructions compared to other methods. Further, the
reconstructions made by DiVE are more correlated with the desired target for the ML model output
f(z). In Figure |5} we provide samples generated by our method with a gender-biased classifier
Soiasea @and an unbiased classifier fypiasea- We compare DiVE to PE and xGEM+. We found that
gender changes with the “Smiling” attribute with fijueq While for fuppiased it stayed the same. In
addition, we also observed that for fy;aseq the correlation between “Smile” and “Gender” is higher
than for PE. It can also be observed that xGEM+ fails to retain the identity of the person in x when
compared to PE and our method. Finally, Figure [6] shows successful counterfactuals for different
instantiations of DiVE.
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Figure 3: Qualitative results of DiVE, Progressive Exaggeration (PE) [33]], and xGEM for the
“Smiling” attribute. Each column shows the explanations generated for a target probability output

of the ML model. The numbers on top of each row show the actual output of the ML model.
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Query Image Generated Visual Explanations

Desired f(x) [0-0.1) [0.2-0.3) [0.3-0.4) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.9-1.0)
Young

f(x) 0.96 f(x) 0.1 0.18 0.28 0.46 0.45 0.75 0.97

PE Ours XGEM+ PE

XGEM+

Ours

Figure 4: Qualitative results of DiVE, Progressive Exaggeration (PE) [53], and xGEM+ for the
“Young” attribute. Each column shows the explanations generated for a target probability output of
the ML model. The numbers on top of each row show the actual output of the ML model.
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Query Image Generated Visual Explanations

Desired f(x): [0.0-0.1) [0.2-0.3) [0.3-0.4) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.9-01.0]
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Vi
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Figure 5: Bias detection experiment. Each column presents an explanation for a target “Smiling”
probability interval. Rows contain explanations produced by PE [53]], xGEM+ and our DiVE. (a) of a
gender-unbiased classifier, and (b) corresponds to explanations of a gender-biased “Smile” classifier.
The classifier output probability is displayed on top of the images while the oracle prediction for
gender is displayed at the bottom.
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Figure 6: Successful counterfactual generations for different instantions of DiVE. Here, the original
image was misclassified as non-smiling. All methodologies were able to correctly add a smile to the
woman.

20



Under review as a conference paper at ICLR 2021

C IDENTITY PRESERVATION

As argued, valuable explanations should remain proximal to the original image. Accordingly, per-
formed the identity preservation experiment found in [53]] to benchmark the methodologies against
each other. Specifically, use the VGGFace2-based [3] oracle to extract latent codes for the original
images as well as for the explanations and report latent space closeness as the fraction of time the
explanations’ latent codes are the closest to their respective original image latent codes’ compared
to the explanations on different original images. Further, we report face verification accuracy which
consist of the fraction of time the cosine distance between the aforementioned latent codes is below
0.5.

Table @] presents both metrics for DiVE and its baselines on the ”Smilling” and ”Young” classifica-
tion tasks. We find that DiVE outperforms all other methods on the ”Young” classification task and
almost all on the ”Smiling” task.

CelebA:Smiling CelebA:Young
xGEM PE xGEM+ DiVE (ours) xGEM PE xGEM+ DiVE (ours)
Latent Space Closeness 88.2 88.0 99.8 98.7 89.5 81.6 97.5 99.1
Face Verification Accuracy 0.0 85.3 91.2 97.3 0.0 722 97.4 98.2

Table 4: Identity preserving performance on two prediction tasks.

21



Under review as a conference paper at ICLR 2021

D IMPLEMENTATION DETAILS
In this Section, we provide provide the details to ensure the that our method is reproducible.

Architecture details. DiVE’s architecture is a variation BigGAN [2] as shown in Table @ We
chose this architecture because it achieved impressive FID results on the ImageNet [8]]. The decoder
(Table [6b) is a simplified version of the 128 x 128 BigGAN’s residual generator, without non-
local blocks nor feature concatenation. We use InstanceNorm [56] instead of BatchNorm [23] to
obtain consistent outputs at inference time without the need of an additional mechanism such as
recomputing statistics [2]. All the InstanceNorm operations of the decoder are conditioned on the
input code z in the same way as FILM layers [43]]. The encoder (Table[6a) follows the same structure
as the BigGAN 128 x 128 discriminator with the same simplifications done to our generator. We
use the Swish non-linearity [46] in all layers except for the output of the decoder, which uses a Tanh
activation.

For all experiments we use a latent feature space of 128 dimensions. The ELBO has a natural princi-
pled way of selecting the dimensionality of the latent representation. If d is larger than necessary, it
will not enhance the reconstruction error and the optimization of the ELBO will make the posterior
equal to the prior for these extra dimensions. More can be found on the topic in [36]]. In practice, we
experimented with d = {64, 128,256} and found that with d = 128 we achieved a slightly lower
ELBO.

To project the 2d features produced by the encoder to a flat vector (i, log (62)), and to project the
sampled codes z to a 2d space for the decoder, we use 3-layer MLPs. For the face attribute classifiers,
we use the same DenseNet [21]] architecture as described in Progressive Exaggeration [53].

Optimization details. All the models are optimized with Adam [29] with a batch size of 256.
During the training step, the auto-encoders are optimized for 400 epochs with a learning rate of
4 -10~*. The classifiers are optimized for 100 epochs with a learning rate of 10~%. To prevent the
auto-encoders from suffering KL vanishing, we adopt the cyclical annealing schedule proposed by
Fu et al. [[12] on the third term of Equation |Zl

Counterfactual inference details. At inference time, the perturbations are optimized with Adam
until the ML model output for the generated explanation f(X) only differs from the target output
¢ by a margin § or when a maximum number of iterations 7 is reached. We set 7 = 20 for all
the experiments since more than 90% of the counterfactuals are found after that many iterations.
The different €; are initialized by sampling from a normal distribution A” ~ (0,0.01). For the
DiVEF;sher baseline, to identify the most valuable explanations, we sort € by the magnitude of
f = diag(F). Then, we divide the dimensions of the sorted € into N contiguous partitions of
size k = %, where D is the dimensionality of Z. Formally, let e® be € sorted by £, then e is

constrained as follows,
0, ifjel(i—1) ki -k
' € j, otherwise
where ¢« € 1..N indexes each of the multiple €, and 5 € 1..D indexes the dimensions of €. As a
result we obtain partitions with different order of complexity. Masking the first partition results in
explanations that are most implicit within the model and the data. On the other hand, masking the

last partition results in explanations that are more explicit.

To compare with Singla et al. [53] in Figure B}f5] we produced counterfactuals at arbitrary target
values y of the output of the ML model classifier. One way to achieve this would be to opti-
mize L for each of the target probabilities. However, these successive optimizations would slow
down the process of counterfactual generation. Instead, we propose to directly maximize the target
class probability and then interpolate between the points obtained in the gradient descent trajectory
to obtain the latent factors of the different target probabilities. Thus, given the set of perturba-
tions {e;}, V¢ € 1..7, obtained during 7 gradient steps, and the corresponding ML model outputs
{f(y|e:)}, we obtain the €5 for a target output § by interpolation. We do such interpolation by
fitting a piecewise quadratic polynomial on the latent trajectory, commonly known as Spline in the
computer graphics literature.
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E BEYOND TRIVIAL EXPLANATIONS EXPERIMENTAL SETUP

The experimental benchmark proposed in Section {.4]is performed on a subset of the validation set
of CelebA. This subset is composed of 4 images for each CelebA attribute. From these 4 images, 2
were correctly classified by the ML model, while the other 2 were misclassified. The two correctly
classified images are chosen so that one was classified with a high confidence of 0.9 and the other
one with low confidence of 0.1. The 2 misclassifications were chosen with the same criterion. The
total size of the dataset is of 320 images. For each of these images we generate k counterfactual
explanations. From these counterfactuals, we report the ratio of successful explanations.

Here are the specific values we tried in our hyperparameter search: v € [0.0,0.001,0.1,1.0], @ €
[0.0,0.001,0.1,1.0], A € [0.0001, 0.0005, 0.001], number of explanations 2 to 15 and learning rate
€ [0.05,0.1]. Be xGEM+ doesn’t have a v nor « parameter, we increased its learning rate span to
[0.01,0.05,0.1] to reduce the gap in its search space compared with DiVE. We also changed the
ranomd seeds and ran a total of 256 trials.
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F HUMAN EVALUATION

Human # ML Classifier
Method (real non-trivial) Correlation | p-value
xGEM+ [26] 38.37% 0.37 0.000
DiVE 38.65% 0.25 0.002
DiVERandom 38.89% 0.24 0.001
DiVEFisher 40.56% 0.17 0.023
DiVE-Fisherspectral 41.90% 0.23 0.001

Table 5: Human evaluation. The first column contains the percentage of non-trivial counterfactuals
from the perspective of the human oracle. These counterfactuals confuse the ML classifier without
changing the main attribute being classified from the perspective of a human. The second column
contains the Pearson correlation between the human and the oracle’s predictions. The third column
contains the p-value for a t-test with the null hypothesis of the human and oracle predictions being
uncorrelated.

We built a web-based human evaluation task to assess if DiVE is more successful at finding non-
trivial counterfactuals than previous state of the art and the effectiveness of the VGG-based oracle,
see Figure [7] For that, we present humans with valid counterfactuals and ask them whether the
main attribute being classified by the ML model is present in the image or not. We use a subset of
CelebA containing a random sample of 4 images per attribute, each one classified by the VGGggee
oracle as containing the attribute with the following levels of confidence: [0.1,0.4,0.6,0.9]. From
each of these 160 images, we generated counterfactuals with xGEM+ [26], DiVE, DiVERangom,
DiVEFisher, and DiVEFisherspeciral and show the valid counterfactuals to the human annotators. Results
are reported in Table[5] In the left column we observe that leveraging the Fisher information results
in finding more non-trivial counterfactuals, which confuse the ML model without changing the
main attribute being classified. In the second column we report the Pearson correlation between
the oracle and the classifier predictions. A statistical inference test reveals a significant correlation
(p-value<0.02).

presents the attribute Do you see the following facial attribute? Straight_Hair:

5 - The image most represents the attribute

6 - Impossible to Tell

DISCARD IMAGE | | LABELLATER  SUBMIT IMAGE

Figure 7: Labelling interface. The user is presented with a counterfactual image and has to choose
if the target attribute is present or not in the image.
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G MODEL ARCHITECTURE

Table[6] presents the architecture of the encoder and decoder used in DiVE.

Table 6: DiCe architecture for 128 x 128 images. ch represents the channel width multiplier in each
network.

RIQSX 128x3

RGB image = €
ResBlock down 3ch — 16¢h
ResBlock 16ch — 32ch
ResBlock down 32ch — 32ch
ResBlock 32ch — 64ch
ResBlock down 64ch — 64ch
ResBlock 64ch — 128ch
ResBlock down 128ch — 128ch
ResBlock 128ch — 128ch
ResBlock down 128ch — 128ch
IN, Swish, Linear 128ch x 4 x 4 — 128ch
IN, Swish, Linear 128ch — 128ch
IN, Swish, Linear 128ch — 128ch x 2
z~N(ueR? o c R

» € R128
Linear 128ch — 128ch
Linear 128ch — 128ch

Linear 128ch — 128ch x 4 x 4

ResBlock up 128ch — 64ch
ResBlock up 64ch — 32ch
ResBlock 32ch — 16¢h
ResBlock up 16ch — 16¢ch
ResBlock 16ch — 16¢ch
ResBlock up 16ch — 16¢ch
ResBlock 16¢ch — 16¢h

IN, Swish, Conv 16ch — 3
tanh

(b) Decoder

(a) Encoder
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H MODEL ALGORITHM

Algorithm [I| presents the steps needed for DiVE to generate explanations for a given ML model

using a sample input image.

Algorithm 1: Generating Explanations

Input : Sample image =, ML model f(-)
Output : Generated Conterfactuals x

Initialize the perturbations matrix parameter of size n. X d
Y« randn(p = 0,0 = 0.01)

Get the original output from the ML model

y < flz)

Extract the latent features of the original input
z 4+ gg()

Obtain fisher information on z
[+ F(2)

Obtain k partitions using spectral clustering
P + SpectralClustering(f.)

Initialize counter
140

while i < 7 do

for each e,p € (X, P) do
Perturb the latent features
X+ po(z+€)

Pass the perturbed image through the ML model
g f(x)
Learn to reconstruct Y from'Y

L < compute Eq. 4

Update € while masking a subset of the gradients
€< €+ %—f -p

end
Update counter
1 1+1

end
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I OUT-OF-DISTRIBUTION EXPERIMENT

Figure 8: Sample of the synbols dataset.

We test the out-of-distribution (OOD) performance of DiVE with the Synbols dataset [31]. Syn-
bols is an image generator with characters from the Unicode standard and the wide range of
artistic fonts provided by the open font community. This provides us to better control on the
features present in each set when compared to CelebA. We generate 100K black and white of
32x32 images from 48 characters in the latin alphabet and more than 1K fonts (Figure [§). In
order to train the VAE on a different disjoint character set, we randomly select the follow-
ing 32 training characters: {a, b, d, ¢, £, g, i, j, 1, m, n, p, 9, ©, t, y, 2z, a,
&, &, &, &, &, &, &, 1, n, o, &, u, u, 0u}. Counterfactuals are then generated for the
remaining 16 characters: {c, h, k, o, s, u, v, w, x, &, i, i, 1, &6, &, i}

Figure 9: Successful counterfactuals for four different synbols in the OOD regime. Each sample con-
sists of the original image in bigger size, five different counterfactuals generated by DiVEFgisherspectral»
and the difference in pixel space with respect to the original image (gray background). The header
in each sample indicates the target class, e.g., I, u, w. All the counterfactuals are predicted by the
ML model as belonging to the target class and differ from the oracle (non-trivial).

DiVE’s objective is to discover biases on the ML model and the data. Thus, we use the font attribute
in order to bias each of the characters on small disjoint subsets of fonts. Font subsets are chosen
so that they are visually similar. In order to assess their similarity, we train a ResNetl2 [40] to
classify the fonts of the 100K images and calculate similarity in embedding space. Concretely, we
use K-Means to obtain 16 clusters which are associated with each of the 16 characters used for
counterfactual generation. The font assignments are reported in Table [/} Results for four different
random counterfactuals are displayed in Figure E} DiVEFgisherspectral Successfuly confuses the ML
model without changing the oracle prediction, revealing biases of the ML model.
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Script, Meddon, Meie Script, Mervale Script, Miama, Miniver, Miss Fajardose, Monsieur La Doulaise, Montez, Mr Bedfort, Mr Dafoe, Mr De Haviland, Mrs Saint Delafield,
Norican, Nothing You Could Do, Parisienne, Petit Formal Script, Pinyon Script, Playball, Promocyja, Quintessential, Qwigley, Rochester, Romanesco, Rouge Script, Ruthie,
Satisfy, Seaweed Script, Srisakdi, Vengeance

Aclonica, Alegreya, Alegreya SC, Andada SC, Artifika, Averia Serif Libre, Balthazar, Bentham, Bitter, Cantata One, Crimson Pro, Croissant One, DM Serif Display, Eczar,
Emilys Candy, Enriqueta, Faustina, Federant, Girassol, Grenze, Halant, Henny Penny, Hermeneus One, IBM Plex Serif, IBM Plex Serif Medium, IM FELL Double Pica, IM
FELL Double Pica SC, IM FELL English, IM FELL Great Primer SC, Inknut Antiqua, Jacques Francois, Judges, Kameron, Laila, Lateef, Literata, Lora, Maitree, Markazi Text,
Marko One, Monteiro Lobato, Original Surfer, Psicopatologia de la Vida Cotidiana, Radley, Rasa, Ribeye, Roboto Slab, Rokkitt, Rozha One, Sahitya, Sansita, Simonetta, Source
Serif Pro, Spirax, Stardos Stencil, Stoke, Sumana, Uncial Antiqua, Vidaloka, Volkhov, Vollkorn, Vollkorn SC

Table 7: Font clusters assigned to each character.
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J DETAILS ON THE BIAS DETECTION METRIC

In Table |1} we follow the procedure in first developped in [26] and adapted in [53] and report a
confounding metric for bias detection. Namely, the “Male” and “Female” is the accuracy of the
oracle on those class conditioned on the target label of the original image. For example, we can
see that the generated explanations for the the biased classifier, most methods generated an higher
amount of Non-smiling females and smiling males, which was expected. The confounding metric,
denoted as overall, is the fraction of generated explanations for which the gender was changed with
respect to the original image. It thus reflect the magnitude of the the bias as approximated by the
explainers. Singla et al. [53]] consider that a model is better than another if the confounding metric
is the highest on fyiaseq and the lowest on fnpiased-

This is however not entirely true. There is no guarantee that fyiaseq Will perfectly latch on the spurious
correlation. In that case, an explainer’s ratio could potentially be too high which would reflect an
overestimation of the bias. We thus need to a way to quantify the gender bias in each model. To
do so, we look at the difference between the classifiers accuracy on “Smiling” when the image is of
a “Male” versus a “Female”. Intuitively, the magnitude of this difference approximates how much
the classifier latched on the “Male” attribute to make its smiling predictions. We compute the same
metric for in the non-smiling case. We average both of them, which we refer as ground truth in
Table |1} As expected, this value is high for the fyiseq and low for fygpiasea- Formally, the ground
truth is computed as

Eanp(a) [Ez,yw(x,y\a) [|1ly = f(2)la = a1] — L[y = f(z)]a = az]l]} (10)

where a represents the attribute, in this case the gender.
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