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Abstract

Transferability scores quantify the aptness of the pre-trained models for a downstream task
and help in selecting an optimal pre-trained model for transfer learning. This work aims
to draw attention to the significant shortcomings of state-of-the-art transferability scores.
To this aim, we propose neural collapse-based transferability scores that analyse intra-
class variability collapse and inter-class discriminative ability of the penultimate embedding
space of a pre-trained model. The experimentation across the image and audio domains
demonstrates that such a simple variability analysis of the feature space is sufficient to
satisfy the current definition of transferability scores, and there is a requirement for a new
generic definition of transferability. Further, building on these results, we highlight new
research directions and postulate characteristics of an ideal transferability measure that
will be helpful in streamlining future studies targeting this problem.
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1. Introduction

Deep learning has shown remarkable performance across multiple domains, including image,
audio and speech processing tasks Goodfellow et al. (2016); Amodei et al. (2016); Abefer
(2020). The success of deep learning can be attributed to the availability of a large amount
of training data. However, many classification tasks (such as in bioacoustics and healthcare)
often suffer from the scarcity of the labelled training data and hence, deep neural networks
(DNNs) trained in data-scarce scenarios are usually prone to over-fitting Thakur et al.
(2019); Viksit and Abrol (2023). Although recent advances in few-shot or deep metric
learning Schroff et al. (2015) have been made to address this problem, the generalisation
capability of such few-shot models has recently been shown to be questionable Wang et al.
(2020).

In contrast, transfer learning allows a neural network to exploit the weak prior knowledge
obtained from other tasks to learn new or downstream tasks Van Den Oord et al. (2014);
Nguyen et al. (2020a). This weak prior knowledge is “embedded” in the parameters of the
pre-trained models, and it might be possible to adapt or fine-tune these parameters to learn
downstream tasks using only a handful of training examples Thakur et al. (2022). Moreover,
few-shot learning frameworks can also benefit from exploiting weak prior knowledge in the
form of pre-trained models Wang et al. (2020); Pons et al. (2019). The first challenge in
exploiting transfer learning for a downstream task is to select an appropriate model from a
large collection of candidate pre-trained models. For example, predicting COVID-19 from
X-ray images of the lungs presents the challenge of selecting a CNN model that could be
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pre-trained on natural images or other X-ray images. However, the choice of an optimal
pre-trained model and, hence, the appropriate pre-trained tasks or modalities has been a
subject of contention in multiple domains such as audio analysis. Some studies have used
CNNs trained on natural images to classify audio spectrograms Zhou et al. (2018); Shin
et al. (2021). Whereas the other studies have focused on transferring knowledge from audio-
based pre-trained models for capturing richer domain or task-specific richer characteristics
Koike et al. (2020). This suggests that existing attempts for optimal pre-trained model
selection for transfer learning are mainly anecdotal. As a result, there is a requirement for
transferability scores that can quantify the appropriateness of a pre-trained model for a
given task without training/fine-tuning the model itself.

Although existing studies have shown some success in the optimal ranking of pre-trained
models for classification tasks, we argue that these methods essentially oversimplify the con-
cept of neural transferability to indirectly measure the discriminative nature of embedding
from a pre-trained model. This oversimplification is justified if we are using pre-trained
models as feature extractors to train a classifier for the downstream task. However, in
most transfer learning settings, such as re-training with pre-trained weights or freezing/re-
training some pre-defined layers, this oversimplification is not enough to correctly identify
the optimum pre-trained models. This is mainly because the model complexity and the
sample complexity are not taken into consideration while defining such scores.

To further shed light on pitfalls of state-of-the-art neural transferability scores, this pa-
per introduces neural collapse based transferability scores to obtain essential insights into
the resonance of a pre-trained model with the downstream classification task. Neural col-
lapse defines the behaviour of a DNN during the terminal stage of its supervised training
with cross-entropy loss Papyan et al. (2020). It characterises the presence of a simple geo-
metric structure, i.e. class-specific variability collapse among penultimate layer embedding
of downstream training examples. We argue that this can also be used to infer a model’s
suitability for the intended downstream task. In other words, the proposed scores express
the degree of neural transferability in terms of the discriminative nature of DNN’s embed-
ding space. Experimental results highlight that the proposed score, while being simple and
efficient, performs either comparable or better than existing methods.

The success of the proposed neural collapse scores upheld the previously mentioned
oversimplification claim in existing state-of-the-art and questions their appropriateness for
wider deep transfer learning. Based on these observations, this paper also postulates char-
acteristics of an ideal transferability measure, such as sensitivity towards model & data
complexity and support for the wider downstream tasks (data generation, image/audio seg-
mentation and clustering). The realisation of this postulated transferability score can have
wider implications for different and less explored frontiers of applied transfer learning, such
as healthcare informatics and accelerated drug discovery. The major highlights of this paper
are as follows:

e Deviating from anecdotal reasoning, this paper introduces a neural collapse-inspired
quantification measure to select the optimal pre-trained model for transfer learning.

e The simplistic nature of the proposed scores draws attention towards the pitfalls in
the current state-of-the-art as well as the widely accepted definition of transferability
scores.
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e This paper highlights new research directions and postulates characteristics of an ideal
transferability measure that will be helpful in streamlining future studies.

2. Background
2.1. Prior Art

Model-agnostic transferability of pre-trained models to a downstream task is a scarcely
studied area in deep learning literature. Most of the existing methods have only been lim-
ited to evaluating the pre-trained models for classification tasks. In Nguyen et al. (2020b),
Nguyen et al. proposed one of the first methods for quantifying the transferability of the
pre-trained models for a given downstream task. Given the downstream training data, this
method computes the predictions using the pre-trained model and estimates a joint distri-
bution over the predicted labels and true labels to construct an empirical predictor. The
log expectation of this predictor (LEEP) Nguyen et al. (2020b) is used as a measure for
determining resonance between the pre-trained model and the downstream task. Building
on this work, You et al. (2021) proposed to exploit the log of the maximum value of la-
bel evidence (LogME) given embedding extracted from pre-trained models as a measure of
transferability. Unlike LEEP, LogME is generic in nature and can be used for both classi-
fication and regression tasks. Apart from these methods, some earlier studies Achille et al.
(2019); Zamir et al. (2018) proposed the use of expensive optimisation of the pre-trained
model over the downstream dataset to evaluate transferability. In another line of investi-
gation, Suresh et al. (2023) proposed to exploit the topology of feature embedding space to
quantify the transferability in a variety of neural architectures. Compared to LogME and
LEEP, which require only one forward pass over the pre-trained models, existing studies
are computationally very expensive to use in practice.

Comparison with the proposed method Both LEEP Nguyen et al. (2020b) and LogME
You et al. (2021) quantify transferability of pre-trained models from a probabilistic stand-
point. In contrast, the proposed method analyses the geometric structure of embedding
space of a pre-trained model to quantify its transferability. Unlike the existing methods,
the proposed scores don’t require any complex distribution estimations. Moreover, the anal-
ysis of neural collapse-based geometric properties of embedding space is straightforward and
computationally efficient. The proposed scores, as well as these existing methods, quan-
tify transferability by analysing the discriminative nature of embedding/features generated
by the pre-trained models for the downstream classification tasks. However, the proposed
scores directly measure the discriminative characteristics of embedding while studying the
geometric characteristics of the embedding space. On the other hand, both LEEP and
LogME indirectly evaluate the discriminative nature of pre-trained embedding for down-
stream tasks.

2.2. Neural collapse

Neural collapse defines the characteristics observed in the penultimate layer embedding and
the classification layer weights during the terminal stages of supervised training, and the
same has been studied in the context of cross-entropy Papyan et al. (2020) and mean square
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Figure 1: Penultimate layer embedding obtained from a convolutional recurrent neural net-
work (CRNN) during (a) first and (b) last epoch of training for music genre
classification. The last epoch exhibits variability collapse. All embeddings con-
verge nearly to their class-specific embedding mean.

error loss functions Han et al. (2021). These characteristics are listed below, and the authors
encourage the reader to follow Papyan et al. (2020); Han et al. (2021) for more details:

e As the training progresses, within-class variances of penultimate layer embedding
decrease. During terminal stages, these embeddings collapse to their respective class
means. This behaviour is also known as variability collapse. Figure 1 illustrates the
variability collapse observed during the training of a convolutional recurrent neural
network (CRNN) for the task of music genre classification.

e The class mean embedding (centred with global embedding mean) converges to a
simplex equiangular tight frame in the terminal stages.

e The re-scaled class mean embedding and linear classifiers (in the classification or last
layer) converge in terminal stages, even though they lie in dual-vector spaces.

e The classification layer converges to the nearest neighbour classifier and assigns the
class to an embedding whose class mean (of training data embedding) is nearest to it.

3. Neural Collapse Scores

3.1. Problem statement

Given a set of N pre-trained models {f,}2_; and training data D = {(x;,v;)}X, for the
downstream task, P, represents the performance of f,, on downstream task (such as accuracy
or area under ROC curve) after fine-tuning. We need to compute transferability score S,
for each f, such that {S,}»_, and {P,}Y_, correlate (either positively or negatively) with
each other. Once we have obtained these transferability scores that are supposed to be
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positively correlated with the performance, an optimal pre-trained model f. € { fn}fyzl
can be selected as:

nx = argmax{S, }_; = argmax{P,}Y_,. (1)
n n

Here, argmax is replaced with argmin if transferability scores are supposed to be negatively
correlated with model performance.

3.2. Neural collapse-inspired transferability scores

The proposed transferability scores are mainly derived from the variability collapse. For a
given downstream task dataset D and a pre-trained model f,, the transferability score S,
can be computed as:

D P
S0 (g 2 1) = pacll2)
ZV(QCI) | |”‘l’c - I“l’cl | |2

S, = (2)

where fn(xz) is the embedding obtained after penultimate layer, C' is the number of classes,
D, and p, are the set of examples & mean embedding belonging to class ¢, respectively.

The proposed transferability score .S, measures the degree of variability collapse ob-
served in the penultimate layer embedding of pre-trained model f,, for the downstream
training data D (without f,, being trained for the downstream task). As discussed earlier,
a trained model is expected to exhibit variability collapse, i.e. all embedding of class ¢
converge to class embedding means p.. Hence, the degree of variability collapse quantifies
the deviation from this optimal structure, and the proposed score favours the pre-trained
models that exhibit a lesser degree of variability collapse. Moreover, the proposed trans-
ferability score also penalises a pre-trained model if the average distance between class
embedding means is much less. As a result, it favours the optimal pre-trained model that
can generate semantically rich embedding for the downstream task. The proposed scores
are always positive; a lesser score implies better transferability.

Although the variability collapse for the original dataset is observed only in the penul-
timate layers of the model, the same might occur at shallower depths for the downstream
dataset. Hence, the proposed score is defined to be not restrictive to the embedding or fea-
tures extracted from any specific model layer. Since we are conflating variability collapse to
an embedding space, the proposed scores are generic and can be applied to any pre-trained
model (supervised or unsupervised) or features.

4. Experimental Details
4.1. Datasets

We evaluate the proposed scores for the downstream tasks of image classification using the
CIFAR-10 dataset and cough sounds-based COVID-19 prediction using the COSWARA
dataset Bhattacharya et al. (2023). We sample cough sounds from patients for whom the
PCR test information was available as the meta-data. Overall, we selected 960 positive
audio samples and 428 negative samples. The audio recordings are approximately 3 — 8
seconds long, mono and sampled at 48kHz. Following Bhattacharya et al. (2023); we use
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Table 1: Characteristics of the pre-trained models used for COVID-19 prediction.

Pre-trained Class-
Model # Parameters _ification task
DCASE. 2018 4.31 M Acoustic scenes
baseline
CNN 0.43 M Music genres
Speech commands
CRNN 0.53 M Music genres
Speech commands

a 64 log mel-bands Mel-spectrogram as input representation, extracted using a short-term
Fourier transform (STFT) with an FFT window of 100ms with 50% overlap.

4.2. Pre-trained models and transfer learning

For CIFAR-10, we used ResnetNet-50, EffiecientNet-B0, Xception, DenseNet-121, NasNet-
Mobile and MobileNet-V2 (trained on ImageNet dataset) as the pre-trained models mod
(2022). On the other hand, Table 1 documents the pre-trained models used for COVID-19
detection. We have used a CNN baseline provided in Kong et al. (2018) for DCASE 2018
challenge dca (2018), a smaller version of this baseline model (CNN) with lesser layers and
a CRNN that is derived from CNN by adding a GRU or recurrent layer after convolutional
layers. DCASE architecture is pre-trained on DCASE 2018 acoustic scene classification
(DCASE-ASC) dca (2018). CRNN and CNN are trained on speech command classifica-
tion dataset Warden (2018) and GTZAN, a music genre classification dataset Tzanetakis
et al. (2001). For acoustic scenes, music and speech signals, we have used 40 ms, 40 ms and
30 ms frames (50% overlap), respectively.

For transfer learning, we removed the last layer from the pre-trained models and added
a linear classification layer for the downstream tasks. We train these models in two ways:
training only the newly added classification layer while keeping the pre-trained layers frozen
and training both newly added and the pre-trained layers. The performance trends of
different pre-trained models on a downstream task are expected to be consistent across the
transfer learning strategies You et al. (2021). Our implementation of neural collapse scores
is publicly available!.

4.3. Comparative methods and parameter setting

We compare the proposed transferability score against the LogME You et al. (2021) and
LEEP Nguyen et al. (2020b) scores (see Section 2). We rank all the pre-trained models
based on their transferability scores with respect to the downstream task. Note that, unlike
neural collapse scores, the larger values of LEEP or LogME indicate better models.

The cough sounds dataset is divided into train (70%), test (15%) and validation (15%)
sets. The number of images in training, validation and test sets is 40K, 10K and 10K,

1. https://github.com/AnshThakur/NC_Scores_Demo
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Figure 2: Relationship observed between transferability scores and model performance on
CIFAR-10: (a) with training only the classification layer, the absolute Pearson
coefficient between accuracy and LEEP, LogME, or neural collapse scores is 0.44,
0.76 and 0.93, respectively. (b) with fine-tuning the whole pretrained model,
the absolute Pearson coefficient between accuracy and LEEP, LogME, or neural
collapse scores is 0.47, 0.79 and 0.91, respectively.

respectively, for the CIFAR-10 dataset. Each model is trained or fine-tuned for 250 epochs
using a batch size of 32, cross-entropy loss and Adam optimiser with a learning rate set
to 0.0001. Classification accuracy for the image classification task and area under the
ROC curve (AUROC) for the COVID-19 detection task is used as a performance metric.
Model checkpoints are used to find the best-performing model parameters on the validation
sets. Note that the initialisation of the newly added classification layer is kept constant
across all models for each comparative run. We perform each comparative experiment with
10 different initialisation seeds, and the average of 10 runs is presented here as the final
performance.

5. Results and Discussion

Figure 2 illustrates relationships between the comparative transferability scores and the
performance of different models on CIFAR-10 obtained by training only the classification
head and re-training all layers, respectively. Similarly, Figure 3 reports the performance of
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different models for COVID-19 detection obtained by training only the classification head
and re-training all layers, respectively. The analysis of these figures highlights the following:

e There is a near perfect correlation between the neural collapse scores of the pre-trained
models and their performance after transfer learning on both CIFAR-10 and COVID-
19 datasets. Based on the proposed scores, we can successfully pre-empt the better
and the worst-performing models after transfer learning.

e Similar to the proposed scores, LEEP and LogME scores also exhibit good perfor-
mance trends. These scores have been able to discriminate between the transferable
and non-transferable models to a great extent. Although the absolute correlation be-
tween scores and model performance is better for the neural collapse, the performance
of LogME is comparable across all experiments.

e Although DenseNet-121 has been identified as one of the best-performing models
on CIFAR-10 by all the scores, they were not able to identify DenseNet-121 as the
best-performing model.

e Both LogME and the proposed scores outlined DCASE-ASC as the best performing
model for COVID-19 detection. However, this model was outperformed by CNN-
music, which was considered the second best by these scores. As mentioned earlier,
despite these nuances, the proposed and existing scores have been able to capture
performance trends with great success.

5.1. Caveats in neural transferability scores

The success of the proposed neural collapse scores and experimental results highlight some
major drawbacks in the outlook being followed by current state-of-the-art in addressing
neural transferability. These drawbacks are discussed below:

e Current neural transferability definition is mainly concerned with classification tasks.
As a result, the discriminative nature of embedding space can be considered a valid
transferability measure. One can directly measure this discriminative nature using
simple variability analysis (as done by neural collapse scores). Hence, it is obvious to
question the requirement of complex probabilistic estimations (as performed in the
current state-of-the-art) to measure neural transferability.

e Transfer learning often surpasses the classification problems and has been used in a
wider range of applications such as generative modelling, clustering and segmenta-
tion tasks. In such applications, the desired semantic meaning-fullness of embedding
space goes beyond just a simple measure of class discrimination. Hence, the current
transferability scores are not suitable for measuring generic neural transferability.

e All transferability scores are computed from the training data of the downstream
task. A good transferability score on the training data may not resonate with the
performance on the validation or test dataset. In case of training data scarcity or
over-fitting, this behaviour is likely to be amplified. We witnessed this behaviour with
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Figure 3: Relationship observed between transferability scores and model performance on
COVID-19 detection: (a) with training only the classification layer, the absolute
Pearson coefficient between accuracy and LEEP, LogME or neural collapse scores
is 0.68, 0.84 and 0.86, respectively. (b) with fine-tuning the whole pretrained
model, the absolute Pearson coefficient between accuracy and LEEP, LogME or
neural collapse scores is 0.61, 0.83 and 0.85, respectively.
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DCASE-ASC model on the COVID-19 dataset. Despite being deemed the best model
(see Figure 3) by LogME and neural collapse scores, the performance of DCASE-
ASC was second to CNN-music. On analysing the training loss and validation scores
obtained during fine-tuning of DCASE-ASC and CNN-music models (see Figure 4),
note that DCASE-ASC model exhibited faster and better convergence. However,
DCASE-ASC model failed to exhibit better generalisation on validation and test
datasets. The lack of generalisation could be attributed to the scarcity of training
data (only 971 training examples).

e Current transferability scores do not take into consideration the model size or com-
plexity. In many applications, a smaller model would be preferred over a larger model
if both of them provide similar scores.

5.2. An ideal transferability measure

Based on the above-mentioned drawbacks, we can postulate an ideal transferability score
that is characterised by the following properties:
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Figure 4: Training dynamics of DCASE-ASC and CNN-music models observed during fine-
tuning for COVID-19 detection using cough sounds.

e [t should be generic in nature or agnostic to the type of downstream task.

e It should consider model complexity or the number of model parameters while deter-
mining the optimal model.

e [t should exploit both training and validation data to get better estimates of general-
isation for the downstream tasks.

e It should be significantly more computationally efficient than the trivial brute-force
approach (fine-tuning all models and analysing their performance).

6. Conclusion

This work highlighted the major flaws in current neural transferability literature by equating
state-of-the-art transferability measures to simple discrimination of embedding generated
by the pre-trained models. As a tool to highlight these flaws, this work proposed neural
collapse based transferability scores that exhibited either comparable or better performance
in pre-empting the best-performing pre-trained model after transfer learning for classifica-
tion tasks. The simplicity of the proposed scores highlighted that neural transferability for
classification tasks is straightforward, and the community should strive for generic and prac-
tical transferability measures. We concluded this work by hypothesising the characteristics
of an ideal transferability measure that could overcome most of the pitfalls of the current
state-of-the-art. In future, we will be working towards the realisation of this hypothesised
ideal transferability measure.
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