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ABSTRACT

We consider a multi-task contextual bandit setting, where the learner is given a
graph encoding relations between the bandit tasks. The tasks’ preference vectors
are assumed to be piecewise constant over the graph, forming clusters. At ev-
ery round, we estimate the preference vectors by solving an online network lasso
problem with a suitably chosen, time-dependent regularization parameter. We es-
tablish a novel oracle inequality relying on a convenient restricted eigenvalue as-
sumption. Our theoretical findings highlight the importance of dense intra-cluster
connections and sparse inter-cluster ones. That results in a sublinear regret bound
significantly lower than its counterpart in the independent task learning setting.
Finally, we support our theoretical findings by experimental evaluation against
graph bandit multi-task learning and online clustering of bandits algorithms.

1 INTRODUCTION

Online commercial websites aim to recommend their products to their customers properly, and the
performance of these recommendations depends on the knowledge of users’ preferences. Unlike
traditional collaborative-filtering-based methods (Su & Khoshgoftaar, 2009), such knowledge is ini-
tially unavailable. Therefore, the online recommender systems need to recommend various items to
the users and observe their ratings to explore their preferences. At the same time, the recommender
system should be able to recommend items that attract users’ attention and receive high ratings by
exploiting the learned knowledge. The contextual bandit frameworks (Li et al., 2010) have been
popularly used to formalize and address this exploration-exploitation trade-off.

However, the classical form of contextual bandits (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori
et al., 2011) ignores the availability of social networks amongst users and solves the problem for each
user separately. Consequently, such algorithms have some drawbacks when applied to problems
with a large number of users. First, such a large number hinders their computational efficiency.
Second, the partial feedback of the bandit settings exposes the algorithms to having weak estimations
and impairing their decision-making ability (Yang et al., 2020). Consequently, to improve bandit
algorithms’ performance for large-scale applications, structural assumptions that link the different
users are usually integrated within bandit algorithms (Cesa-Bianchi et al., 2013; Gentile et al., 2014;
Li et al., 2019; Herbster et al., 2021).

Cesa-Bianchi et al. (2013) and yang2020laplacian the prior knowledge of social networks into their
contextual bandit algorithms. Both papers propose UCB-style algorithms and exhibit the importance
of using the social network graph to achieve lower regrets using Laplacian regularization. The latter
regularization promotes smoothness among the preference vectors of users, allowing the transfer of
the collected information between them. However, the Laplacian regularization does not account
for the smoothness heterogeneity introduced by a piecewise constant behavior over the graph (Wang
et al., 2016). On the other hand, algorithms of online clustering of bandits (Gentile et al., 2014;
Li et al., 2019) tackle such a piecewise constant behavior by explicitly estimating user clusters.
However, their clustering can cause overconfidence in the constructed clusters, potentially leading
to error accumulation.

In this paper, we assume access to a graph encoding relations between bandit tasks, and that the
task parameter vectors are piecewise constant over the graph. We propose an algorithm that inte-
grates the prior knowledge of the piecewise constant structure to update tasks rather than finding the
clusters explicitly. That way, we mitigate the limitations mentioned above: the piecewise constant
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smoothness is naturally integrated into our regularizer, and we do not estimate the clusters so our
algorithm does not suffer from overconfidence drawbacks.

More precisely, we provide the following contributions

• We analyze an instance of the Network Lasso problem (Hallac et al., 2015), estimating
every vertex’s preference vector using data generated during the interaction between users
and the bandit. We provide the first oracle inequality in this setting and link it to fundamen-
tal quantities characterizing the relation between the graph and the true preference vectors
of the users. Our result relies on our novel restricted eigenvalue (RE) condition, which we
assume for our setting. This result is of independent interest and can be applied to i.i.d.
data as a special case.

• We prove that the empirical multi-task Gram matrix of the data inherits the RE condition
from its true counterpart. Both this result and the previous one depend on the sparsity of
inter-cluster connections and the density of intra-cluster ones.

• We provide a regret upper bound for our setting. Our bound highlights the advantage of
our algorithm in high dimensional settings, and for large graphs.

• We support our theoretical findings by extensive numerical experiments on simulated data
that prove the advantage of our algorithm over other related approaches.

The rest of the paper is organized as follows. Section 2 discusses the relation of our work to the
literature. We formulate our problem and state some of our assumptions in Section 3, then present
our bandit algorithm in Section 4. We analyze the problem theoretically in Section 5 and demonstrate
its practical interest experimentally in Section 6.

2 RELATED WORK

Lasso contextual bandits. To address the high dimensional setting for linear bandits, several
multi-armed bandit papers solve a LASSO (Tibshirani, 1996) problem under different assumptions
(Bastani & Bayati, 2019; Kim & Paik, 2019; Oh et al., 2021; Ariu et al., 2022). They all rely
on a previously established compatibility or RE condition (Bühlmann & van de Geer, 2011), that
they adapt to the non-i.i.d case resulting from the context selection procedure across rounds. Such
assumptions were also used in the multi-task setting by Cella & Pontil (2021) with a Group Lasso
regularization (Yuan & Lin, 2006), and to impose a low-rank structure on the task preference vectors
in Cella et al. (2023). In our case, we establish a novel oracle inequality, rather than only generalize
an existing one to the non-i.i.d setting, with a newly introduced RE assumption, which can be of
independent interest.

Clustering of bandits. Gentile et al. (2014) introduced sequential clustering of bandits with the
CLUB algorithm. The latter starts with a fully connected graph, and then an iterative graph learn-
ing process is performed, where edges between users are deleted if their preference vectors are
significantly different. As a result, any connected component is seen as a cluster and only one rec-
ommendation per cluster is developed. The SCLUB algorithm of Li et al. (2019) generalizes CLUB
via including merging operations in addition to splitting. In contrast to these approaches, Nguyen &
Lauw (2014) groups users via K-means clustering, and Cheng et al. (2023) rely on hedonic games
for online clustering of bandits. Furthermore, Yang & Toni (2018) make use of community detection
techniques on graphs to find user clusters. Gentile et al. (2017) study the clustering of the contextual
bandit problem where their proposed algorithm, named CAB, adaptively matches user preferences
in the face of constantly evolving items. Our work fundamentally differs from the previous ones
on two aspects. First, we assume access to a graph encoding relations between users, which is
more informative than a complete graph. Second, we do not keep track of a model for each cluster,
but rather we integrate a prior over the graph via a graph total variation regularizer that enforces a
piecewise constant behavior for the estimated preference vectors.

Multi-task learning. Several contributions assume that the bandit tasks share some underlying
structure. In Cella & Pontil (2021), task preference vectors are assumed to be sparse and to share
their sparsity support, implying that they lie in a low-dimensional subspace with dimensions aligning
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with the canonical basis vectors. This idea is further generalized in Cella et al. (2023), where the
tasks are assumed to be confined to an arbitrary unknown low-dimensional subspace. That work
improves upon Hu et al. (2021) by not requiring the knowledge of the small dimension of the task
space. It can be considered to solve our problem if the number of clusters is smaller than the
dimension, resulting in a low-rank structure. However, our work does not rely on any assumption
between the number of clusters and the dimension. The underlying structure linking tasks can also
be a graph encoding relations between them (Cesa-Bianchi et al., 2013; Yang & Toni, 2018), which
is our case. However, while they assume smoothness as a prior, we assume piecewise constant
behavior.

3 PROBLEM SETTING

We consider a linear bandit setting, with a finite number of tasks representing users in a recommen-
dation system for example. For each task the agent has to choose among K arms, each associated to
a d-dimensional context vector. All interactions over a horizon of T time steps. We further assume
that we have access to an undirected graph G = (V, E), with vertex set V representing the tasks and
edge set E encoding the relationships between them. We identify the vertex set V with the set of
vertex indices [|V|]. Thus, we consider E to be a subset of V2, where every edge (m,n) ∈ E has
weight wmn > 0, with m < n. The tasks’ preference vectors are denoted by {θm}m∈V ⊂ Rd

verifying ∥θm∥ ≤ 1 ∀m ∈ V , which we concatenate as row vectors into matrix Θ ∈ R|V|×d. The
latter represents a graph vector signal, assumed to be piecewise constant over G.

At a round t ∈ N⋆, a user m(t) ∈ V is selected uniformly at random and served an arm
with context vector x(t) from a finite action set A(t) ⊂ Rd with size K, depending on their
estimated preference vector θ̂m(t)(t) ∈ Rd. We assume the expected reward to be linear,
with an additive, σ-sub-Gaussian noise conditionally on the past. Formally, denoting by F0

the trivial sigma-algebra, and for all t ≥ 1, by Ft the sigma-algebra generated by history set
{m(1),x(1), y(1), · · · ,m(t),x(t), y(t),m(t + 1)}, the received reward y(t) is given by y(t) =〈
θm(t)(t),x(t)

〉
+ η(t), where η(t) is Ft−measurable and

E [η(t)|Ft−1] = 0, E [exp(sη(t))|Ft−1] ≤ exp

(
1

2
σ2s2

)
∀t ≥ 1,∀s ∈ R. (1)

At the end of a round t, all preference vectors are updated into a new estimation Θ̂(t) while lever-
aging the structure of graph G, formally by solving the following optimization problem:

Θ̂(t) = argmin
Θ̃∈R|V|×d

1

2t

t∑
τ=1

(〈
θ̃m(τ),x(τ)

〉
− y(τ)

)2
+ α(t)

∑
(m,n)∈E

wmn

∥∥∥θ̃m − θ̃n

∥∥∥, (2)

where ∥·∥ denotes the Euclidean norm for vectors. The performance of our policy is assessed by the
expected regret over the T interaction rounds for all tasks:

R(T ) = E

[
T∑

t=1

max
x̃∈A(t)

〈
θm(t), x̃

〉
−
〈
θm(t),x(t)

〉]
. (3)

The Optimization problem in equation 2 is an instance of the Network Lasso (Hallac et al., 2015).
Several instances of the same type were studied by Jung et al. (2018); Jung & Vesselinova (2019);
Jung (2020); He et al. (2019). The objective is characterized by its second term which, while being
just the Laplacian regularization without squaring the norms, promotes a piecewise constant behav-
ior rather than smoothness. For real-valued signals (d = 1), this regularization has been extensively
studied for image and graph signal denoising, for the problem of trend filtering on graphs (Wang
et al., 2016). According to Wang et al. (2016), that regularization better adapts to the heterogeneity
of smoothness of the signal and induces a cluster structure in the data: similar users will not only
have similar models but the same model, which offers a compression of the overall model over the
graph. Note that our setting is cluster agnostic; our algorithm does not aim to learn the cluster struc-
ture explicitly but to exploit it implicitly using the total variation semi-norm as regularization. The
latter’s strength is controlled via a time-dependent regularization coefficient α(t), which we will
express later in the analysis.
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We formalize our assumption on the context generation as follows.

Assumption 1 (i.i.d action sets). Context sets {A(t)}Tt=1 are generated i.i.d. from a distribution p
over RK×d, such that ∥x∥ ≤ 1∀ x ∈ A(t) ∀t ≥ 1.

In addition to the i.i.d assumption, we assume more regularity.

Assumption 2 (Relaxed symmetry and balanced covariance). There exists a constant ν ≥ 1 such
that for all X ∈ RK×d, p(−X) ≤ νp(X). Furthermore, there exists ω > 0, such that for any
permutation (a1, · · · , aK) of [K], for any i ∈ {2, · · · ,K − 1}, w ∈ Rd, we have

E
[
xaix

⊤
ai
[w⊤xa1 < · · · < w⊤xaK

]
]
≼ ωE

[
(xa1x

⊤
a1

+ xaK
x⊤
aK

)[w⊤xa1 < · · · < w⊤xaK
]
]
,

where M ≼ N means that N −M is a PSD matrix.

This assumption was introduced in Oh et al. (2021), and has already been used in a multi-task setting
by Cella et al. (2023). Parameter ν controls the skewness, as ν = 1 corresponds to a symmetric
distribution. ω decreases with increasing positive correlation between arms. It verifies ω = O(1)
for multi-variate Gaussians and uniform distributions over the unit sphere (Oh et al., 2021). The
piecewise constant behavior of the graph signal Θ is formalized in the next assumption.

Assumption 3 (Piecewise constant signal). There exists a partition P of V , such that for any cluster
C ∈ P , signal Θ is constant on C, and the graph obtained by taking the vertices in C and the edges
linking them is connected.

Assumption 3 basically states that the true preference vectors are clustered and that the given graph
induces the cluster structure. It is required for our approach to be beneficial, as we will detail in the
analysis section. For the sake of clarity, we defer the statement of other technical assumptions to
Section 5.

4 ALGORITHM

Our policy in Algorithm 1 follows a greedy arm selection rule in a multi-task setting, in the same
vein as those presented in Oh et al. (2021); Cella et al. (2023). Indeed, as pointed out in Oh et al.
(2021), exploration is implicitly incorporated into regularization parameter α(t)’s time dependence.
It has the following expression

α(t) :=
α0σ

t

√√√√t+

√
2
∑
m∈V

|Tm(t)|2 log 1

δ(t)
+ 2max

m∈V
|Tm(t)| log 1

δ(t)
, (4)

where the set of time steps a task m has been selected up to time t is denoted by Tm(t). At each
time step the network Lasso problem is solved via the primal-dual algorithm (Jung, 2020).

Algorithm 1: Network Lasso Policy
Input : T, α0 > 0,G, function δ

Initialization : Θ̂(0) = 0 ∈ R|V|×d

for t ∈ [1, T ] do
1. Draw a user m(t) ∈ V uniformly at random
2. Observe context set A(t)

3. Select x(t) ∈ argmaxx̃∈A(t)

〈
θ̂m(t−1), x̃

〉
, breaking ties arbitrarily

4. Receive payoff y(t)
5. Update α(t) via Equation (4)

6. Update Θ̂(t) equation 2

end

4
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5 ANALYSIS

This section provides the main steps of the analysis. One of the paper’s contribution lies in finding
an oracle inequality of the network lasso problem given a restricted eigenvalue condition holding
for the true multi-task Gram matrix. In this regard, the next major challenge and contribution is to
show that the empirical multi-task Gram matrix, estimated in the algorithm, satisfies the restricted
eigenvalue condition. We start by proving an oracle inequality for the estimation error of Θ. Then,
we prove that the latter assumption holds with high probability given that the true multi-task Gram
matrix satisfies it. We end this section by establishing a regret bound for our algorithm.

5.1 NOTATION AND TECHNICAL ASSUMPTIONS

We provide additional notations required for the analysis. We denote by ∂P the set of all edges
in E connecting vertices from different clusters from partition P (Assumption 3), and we call it
the boundary of P . Thus, ∂Pc, the complementary set of ∂P , is formed by edges connecting ver-
tices of the same cluster. The total weight of the boundary, i.e.the sum of its edges’ weights, is
referred to as w(∂P). Given a signal Z ∈ R|V|×d, we denote by ZP the signal obtained by set-
ting row vectors of Z to their mean-per-cluster value w.r.t. P . For any edge subset I ⊆ E , we
denote the following norms: ∥·∥F as the Frobenius norm and ∥Θ∥I :=

∑
(m,n)∈I wmn∥θm − θn∥

as the total variation semi-norm of Θ ∈ R|V|×d over I . Thus, the regularization term of Prob-
lem equation 2 is equal to ∥Θ∥E . Also, we define the incidence matrix BI ⊂ R|E|×|V|restricted
to I ⊆ E to be null except at rows with index i ∈ I corresponding to edge (m,n), where
it equals wmn(em − en), where em is the mth canonical basis vector of R|V|. We define
AV(t) := diag

(
X1(t)

⊤X1(t), . . . ,X|V|(t)
⊤X|V|(t)

)
∈ Rd|V|×d|V|, and subsequently the em-

pirical multi-task Gram matrix up to time step t is given by 1
tAV(t). The following definition

introduces quantities related to the clusters defined by partition P , with crucial roles that we will
elucidate throughout the analysis.
Definition 1 (Cluster content constants). Let C ∈ P be a cluster.

• We denote by ∂vC the inner boundary of C, i.e.the vertices of C that are connected to its comple-
mentary. We define the inner isoperimetric ratio of C as ιG(C) := |∂vC|

|C| .

• By abuse of notation, we denote as BC the incidence matrix restricted to edges linking vertices
of C, its associated Laplacian matrix by LC := B⊤

C BC , and its pseudo-inverse by L†
C . The

topological centrality index of node m ∈ C w.r.t C is equal to (L†
C)

−1
mm. We define the topological

centrality index of C by cG(C) := minm∈C(L
†
C)

−1
mm.

The inner isoperimetric ratio of a cluster measures how many “interior” nodes a cluster contains,
in the sense that they are not connected to its complementary. It is at most equal to the isoperi-
metric ratio for weightless graphs as the size of the inner boundary is at most equal to that of the
edge boundary, the latter being connected to the algebraic connectivity via the Cheeger inequality
(Cheeger, 1970).

The topological centrality index measures the overall connectedness of a vertex in a network and
indicates how robust a node is to edge failures (Ranjan & Zhang, 2013). Also, it can be tied to
electricity spreading in a network according to Van Mieghem et al. (2017). We refer the interested
reader to the two previously mentioned works for a detailed account of the properties of the topo-
logical centrality index. In the appendix, we show that for binary weights graphs the minimum
topological centrality index is at least equal to the algebraic connectivity theoretically and experi-
mentally, where we showcase that the difference between the two can be significant.

To proceed, we will need the following definition that introduces several notations to reduce the
clutter.
Definition 2 (Restricted Eigenvalue (RE) condition and norm). A PSD matrix M ∈ Rd|V|×d|V|

verifies the RE condition with constants κ ≥ 1 and ϕ > 0 if

ϕ2∥Z∥RE ≤ vec(Z⊤)⊤M vec(Z⊤) ∀Z ∈ S, (5)
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where S is the cone defined by:

S := {Z ∈ R|V|×d; a1(G,Θ)∥Z∥∂Pc ≤ a2(G,Θ)
∥∥ZP

∥∥
F
},

a1(G,Θ) := 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

, a2(G,Θ) :=
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C),

and the RE semi-norm is defined by ∥Z∥RE :=
∥∥ZP

∥∥
F

.

For our main results, we cover the case of κ ≥ 1 but treat the more general case κ > 0 in the proofs
in the supplementary material. For such a simplification to be valid, we assume that min

C∈P

√
cG(C) >

2w(∂P).

To explain the RE condition, if we had S = R|V|×d and ∥·∥RE = ∥·∥F , then M would be invertible
with minimum eigenvalue at least ϕ2. In comparison, our requirement is weaker since it holds
only for signals Z ∈ S and for the ∥·∥RE semi-norm. It has the same form as the compatibility
assumption for the Lasso problem in (Bühlmann & van de Geer, 2011; Oh et al., 2021) or the
restricted strong convexity assumption (Cella et al., 2023).

We further make the following assumption on the true multi-task Gram matrix:

Assumption 4 (RE condition for the true multi-task Gram matrix). For k ∈ [K], let Σk :=
E
[
xkx

⊤
k

]
be the Gram matrix of the kth context vector’s marginal distribution, let ΣV be the true

multi-task Gram matrix of the context vector generating distribution, given by

ΣV := I|V| ⊗Σ, where Σ =
1

K

K∑
k=1

Σk. (6)

We assume that ΣV verifies RE condition (Definition 2) with some problem dependent constants

κ ∈
[
1, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0.

This assumption is common to several Lasso-like bandit problems (Oh et al., 2021; Ariu et al., 2022;
Cella et al., 2023). We will later show that it can be transferred to the empirical multi-task Gram
matrix.

5.2 ORACLE INEQUALITY

This section is dedicated to provide a bound on the estimation error of the Network Lasso problem
given in Equation (2) at a particular step t of Algorithm 1.We assume fixed design, meaning that
the context vectors are given and fixed, and we are not concerned by their randomness (due to the
context generating distribution), nor by the randomness of their number for each user (due to random
selection at each time step).

For a time step t, we deliver the oracle inequality controlling the deviation between the estimated
preference vectors Θ̂(t) and the true ones Θ.

Theorem 1 (Oracle inequality). Assume that the RE assumption holds for the empirical multi-task

Gram matrix
1

t
AV(t) with constants κ ∈

[
1, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0. Suppose that

maxm∈V |Tm(t)| ≤ bt for some b > 0. Then, with a probability at least 1− δ(t), we have

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤ 2

σ

ϕ2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where

f(G,Θ) := α0a2(G,Θ)

 a2(G,Θ)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

6
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The proof relies on decomposing the estimation error signal into a sum of two terms. The first term
amounts to taking its mean per cluster, that is, every node within the same cluster is mapped to
the mean estimation error of its cluster. The second term is proven to be related to the incidence
matrices of each cluster. The probabilistic statement comes from a high probability bound on the
Euclidean norm of an empirical vector process associated with our problem, using a generalization
of the Hanson-Wright inequality to the subgaussian case (Hsu et al., 2012, Theorem 2.1). Compared
to the bound of Jung (2020, Theorem 1), we bound a norm of the estimation error rather than just the
total variation semi-norm. Besides, due to the expressions of a1(Θ,G) and a2(Θ,G), the bound sig-
nificantly decreases with the products w(∂P)minC∈P

√
ι(C) and w(∂P)maxC∈P cG(C)−

1
2 , which

are small enough for dense intra-cluster edge links and sparse inter-cluster ones. The bound on the
oracle inequality clearly grows with κ, thus it is most beneficial if κ is close to 1.

5.3 RE CONDITION FOR THE EMPIRICAL MULTI-TASK GRAM MATRIX

To establish the oracle inequality, we assumed that the RE condition holds for the empirical multi-
task Gram matrix. In this section, we prove that this holds with high probability. To this end, we
use the same strategy as in Oh et al. (2021); Cella et al. (2023). We prove that on the one hand,
the empirical multi-task Gram matrix inherits the RE condition from its adapted counterpart since
it concentrates around it. On the other hand, we show that the adapted Gram matrix verifies the RE
condition due to Assumption 1, 2 and 4.

Theorem 2 (RE condition holding for the empirical multi-task Gram matrix). Under assumptions 2
and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4. Assume that maxm∈V |Tm(t)| ≤

bt. Then, for any γ ∈
(
0,
(
1 + a2(G,Θ)

a1(G,Θ)

)−2
)

, the empirical multi-task Gram matrix
1

t
AV(t) veri-

fies the RE condition with constants κ and ϕ̂, where

ϕ̂ = ϕ̃

√
1− γ

(
1 +

a2(G,Θ)

a1(G,Θ)

)2

, (7)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .

The proof follows the same approach as in Oh et al. (2021); Cella et al. (2023); we prove that the RE
condition transfers from the true multi-task Gram matrix to its adapted counterpart VV(t), defined
as follows:

VV(t) = diag
(
V1(t), · · · ,V|V|(t)

)
, (8)

where

Vm(t) =
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
. (9)

This transfer relies on the work of Oh et al. (2021, lemma 10). The other step of the proof is
showing that the empirical multi-task Gram matrix and VV(t) become close to each other with
high probability after sufficiently many time steps, in the sense of a matrix norm induced by the
RE semi-norm and the restriction to set S (Definition 2). The bound showcases a dependence on
minC∈P cG(C) ∧ |C|, which is of the same order as |C| for a fully connected cluster with vertices C.
It is also clear that the probability of satisfying the RE condition increases with a higher minimum
centrality of a cluster.

5.4 REGRET BOUND

To bound the regret, we bound the expected instantaneous regret for each round t ≥ 1. This bound
relies on the oracle inequality holding and the RE condition being satisfied for the empirical Gram
matrix, both with high probability. Thanks to Theorem 1 and Theorem 2, these two conditions are
ensured.

7
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Theorem 3. Let the mean horizon per node be T = T
|V| . Under assumptions1 to 4, the expected

regret of the Network Lasso Bandit algorithm is upper bounded as follows:

R(T ) ≤ O

(
νωf(G,Θ)

√
T

ϕ2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

))
+

1

A
log(d|V|) +

√
|V|

)
,

with A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+
√
2γ

and γ = 1
2

(
1 +

a2(G,Θ)

a1(G,Θ)

)−2

.

Our regret is mainly formed of two parts. The first one is the sublinear time-dependent term and
represents the bulk of horizon dependence. Interestingly, it decreases as the topological centrality
index grows with the graph size, which proves the importance of intra-cluster high connectivity.

The second significant term comes from ensuring the RE condition for the empirical multi-task Gram
matrix, and can be interpreted as the number of time steps necessary for it to hold, as pointed out
by Oh et al. (2021). It has a logarithmic dependence in the graph size and in the dimension, which
is a characteristic of regret bound of the ”lasso type”. Also noteworthy is that the regret grows with
log(d) only in the time-independent term, making our policy useful in high-dimensional settings.

Corollary 1. Let h1 :=
√
2κw(∂P)maxC∈P

√
ιG(C), h2 := minC∈P

√
cG(C) − 2κw(∂P). If

we set α0 = 1
h2

(
1 +

√
1 + h2

h1

)
then f(Θ,G) is minimized. Assume further that min

C∈P

√
cG(C) ≫

κw(∂P) and that max
C∈P

√
ιG(C) ≤ 1. If |V| ≫ log T and |V| = O(T ), the expected regret can be

simplified as follows:

R(T ) = O



νω

(
1 +

√
κw(∂P)maxC∈P

√
ιG(C)

minC∈P
√
cG(C)

)
ϕ2

+ 1


√

T |V|+ 1

A
log(d|V|)


The simplified bound in Corollary 1 exhibits the typical multi-task learning dependency

√
T |V|

rather than the independent task learning case |V|
√
T .

6 EXPERIMENTS

We compare our algorithm with α0 = 1 to several baselines of the literature. On the one hand, we
consider baselines relying on a given graph, GOBLin (Cesa-Bianchi et al., 2013) and GraphUCB
(Yang et al., 2020) that use the Laplacian to smooth the preference vectors. On the other hand,
we compare to clustering of bandits baselines, namely CLUB (Gentile et al., 2014), SCLUB (Li
et al., 2019) and LOCB (Ban & He, 2021). We provided CLUB with graph G rather than a fully
connected graph for a fair comparison. We also include the trace norm bandit algorithm ((Cella
et al., 2023)), which is relevant when the number of clusters is smaller than d (we explain this
point in the appendix). As a sanity check, we compare to the independent task learning case with
LinUCB (LinUcbITL) where each task is solved independently. The graph used is weightless and
generated using a stochastic block model to ensure a cluster structure, where an edge is constructed
with probability p within clusters and q between clusters.

Experimentally, we found that normalizing the weights as wmn = (deg(m) deg(n))−
1
2 , where

deg(m) denotes the degree of node m, yields significantly better results. Indeed, such a normal-
ization makes the algorithm focus more on edges between low-degree nodes, which improves the
propagation of the collected information within the graph.

Our results clearly showcase an improvement compared to the other baselines. Apart from the oracle
that has complete knowledge of all clusters from the beginning, our policy performs significantly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
time steps

0

200

400

600

800

1000

cu
m

u
la

ti
ve

re
gr

et

CLUB

GOBLin

GraphUCB

LOCB

LinUcbITL

NetLasso

OLS-ITL

SCLUB

Trace-Norm

(a) |V| = 100, |P| = 8, d = 20, p = 0.4, q = 0.1
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(b) |V| = 100, |P| = 8, d = 10, p = 0.5, q = 0.1
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(c) |V| = 50, |P| = 5, d = 80, p = 0.8, q = 0.2
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(d) |V| = 200, |P| = 10, d = 20, p = 0.5, q = 0.05

Figure 1: Synthetic data experiments showing the cumulative regret of Network Lasso Policy as a
function of time-steps compared to other baselines, for different choices of |V|, |P|, d, p
and q.

better than the rest beyond the error margins, covering one standard deviation at ten repetitions. We
provide results for up to |V| = 200 nodes showing the effective transfer of knowledge within the
graph.

7 CONCLUSION AND FUTURE PERSPECTIVES

In this work, we proposed a multi-task bandit framework that solves the case where the task prefer-
ence vectors are piecewise constant over a graph. To this end, we used the Network Lasso policy to
estimate the task parameters, which bypasses explicit clustering procedures. We established a sub-
linear regret bound and proved a novel oracle inequality that relies on the small size of the boundary
and the high value of the topological centrality index of each node within its cluster. Our exper-
imental evaluations highlight the advantage of our method, especially when either the number of
dimensions or nodes increases.

Due to the technical similarity of our problem with the Lasso, a natural extension would be to ex-
tend it to a thresholded approach, in the same vein as (Ariu et al., 2022). Another possible extension
would be to use regularization with higher order total variation terms that impose a piecewise poly-
nomial signal on a graph, as explained for scalar signals in Wang et al. (2016); Ortelli & van de Geer
(2019).

9
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A SOME HELPER RESULTS

Proposition 1 (Bounds on norms of matrix products). Let M ∈ Rm×n and N ∈ Rn×p. Then

∥MN∥q,1 ≤ ∥M∥∞,1∥N∥q,1 ∀q ∈ [1,∞]

∥MN∥F ≤ ∥M∥∥N∥F
∥MN∥F ≤

√
∥M⊤M∥∞,∞∥N∥2,1

∥MN∥2,1 ≤ ∥M∥2,1∥N∥

Proof.

First inequality For any q ∈ [1,∞], we have:

∥∥e⊤i MN
∥∥
q
=

∥∥∥∥∥∥e⊤i M
n∑

j=1

eje
⊤
j N

∥∥∥∥∥∥
q

≤ max
1≤j≤n

∣∣e⊤i Mej
∣∣ n∑
j=1

∥∥e⊤j N∥∥q = max
1≤j≤n

|(M)ij |∥N∥q,1

Second inequality We have

∥MN∥2F =

p∑
j=1

∥MNej∥2 ≤
p∑

j=1

∥M∥∥Nej∥2 = ∥M∥∥N∥2F
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Third inequality We have

∥MN∥2F = Tr(MNN⊤M⊤) ≤
∥∥M⊤M

∥∥
∞,∞

∥∥NN⊤∥∥
1,1

Elements of (i, j) entry of matrix NN⊤ is the inner product
〈
e⊤i N , e⊤j N

〉
. Hence, we have∥∥NN⊤∥∥

1,1
=
∑
i,j

∣∣〈e⊤i N , e⊤j N
〉∣∣ ≤∑

i,j

∥∥e⊤i N∥∥∥∥e⊤j N∥∥ = ∥N∥22,1.

Fourth inequality We have

∥MN∥2,1 =

m∑
i=1

∥eiMN∥ ≤
m∑
i=1

∥eiM∥∥N∥ = ∥M∥2,1∥N∥

Proposition 2 (Decomposition of a signal over a graph). For any C ∈ P

• Let Z ∈ R|V|×d be a graph signal. Let us denote by ZC the signal obtained from Z by
setting rows of vertices outside of C to zeros, and let Z|C ∈ R|C|×d be the signal obtained
from ZC by removing the rows of vertices outside of C. Also, let B|C ∈ R|EC|×|C| be the
matrix obtained by taking BC , and removing rows of edges that link C to its outside, and
the resulting null columns. It is clear that

BCZ = BCZC = B|CZ|C (10)

• Let QC := B†
CBC . Then

I|V| =
∑
C∈P

JC +QC (11)

Q∂Pc :== B†
∂PcB∂Pc =

∑
C∈P

QC (12)

where JC =
1C1

⊤
C

|C| , QC = B†
CBC ∀C ∈ P and Q∂Pc := B†

∂PcB∂Pc .

While
∑

C∈P JC projects each entry of a graph signal onto the mean vector value of its
respective cluster, its residual Q∂Pc can be interpreted as the projection onto the respective
entries deviation from its cluster mean value.

Proof. Since the proof of the first point is trivial, we directly treat the second point. Denoting B†
|C

the pseudo-inverse of B|C it is a well-known linear algebra result that the matrix Q|C := B†
|CB|C is

the projector onto the null space of B|C . Since C is connected, the null space of B|C is unidimen-
sional, and is generated by vector 1|C| ∈ R|C| having only ones as coordinates. Since the projector
into that nullspace is J|C| :=

1|C|1|C|
|C| , we deduce that

Z|C = J|C|Z|C +Q|CZ|C

=⇒ ZC = JCZC +QCZC

= JCZ +QCZ

where in the last line, QC := B†
CBC . Consequently, we have

Z =
∑
C∈P

ZC

=
∑
C∈P

JCZ +QCZ
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To prove the second point, we recall that B∂Pc is the incidence matrix obtained by setting rows
corresponding to edges in ∂P to zero. In other words, B∂Pc is the incidence matrix of the graph
after removing the boundary edges, and having exactly |P| connected components. Hence, B∂Pc

has a null space spanned by the set {1C}C∈P , and the orthogonal projector onto this null space is∑
C∈P JC . Combining this fact with the fact that Q∂Pc is the projector onto the orthogonal of the

null space of B∂Pc , we arrive at the second point.

Proposition 3 (On the minimum topological centrality index of a graph vertex). Let G be a con-
nected graph with incidence matrix B and vertex set size N , and let L := B⊤B. Let c(G) denote
the minimum value of inverses of diagonal element of L†, called its minimum topological centrality
index. Also let a(G) be its algebraic connectivity, defined as the minimum non null eigenvalue of L.
Then

• c(G) = ∥L∥−1
∞,∞.

• c(G) ≥ a(G).

• If G is weightless, then c(G) ≤ N2

N−1 .

Proof. Since L is PSD, L† is PSD and hence
∥∥L†

∥∥
∞,∞ is equal to the maximum diagonal entry of

L†. Taking the inverse proves the first point. Also, this implies that

c(G) =
∥∥L†∥∥−1

∞,∞ ≥
∥∥L†∥∥−1

= a(G), (13)

where we used the fact that ∥·∥∞,∞ ≤ ∥·∥ for matrices. This proves the second point of the propo-
sition.

For the last point, assume G is weightless, let Lcomp be the Laplaciane of complete graph built on
the vertices of G. Then we have Lcomp = N(IN −JN ), where J is the square matrix of dimension
N having 1/N as entries. From Fontan & Altafini (2021, Lemma 4), we have

L†
comp = (Lcomp +NJN )−1 − 1

N
JN =

IN
N

− 1

N
JN (14)

which has diagonal elements 1
N − 1

N2 .

On the other hand, L ≼ Lcomp Hence, by Fontan & Altafini (2021, lemma 4) we have for any u ̸= 0

L† = (L+ aJN )−1 − JN/a ≽ (Lcomp + aJN )−1 − JN/a = L†
comp

This implies that the maximum diagonal entry of L† is at least equal to that of L†
comp, i.e.to 1

N − 1
N2 .

Taking the inverse of that entry finishes the proof.

B PROOFS OF THE DIFFERENT CLAIMS

B.1 ADDITIONAL NOTATION

The regularization term can be written more compactly using the incidence matrix of the graph
B ∈ R|E|×|V| corresponding to an arbitrary orientation under the following form∑

1≤m<n≤|V|

wmn∥θm − θn∥ = ∥BΘ∥2,1 = ∥Θ∥E (15)

where the ∥·∥2,1 norm denotes the sum of the L2 norms o the rows of a matrix.1 We provide
notations that we use in the proofs of the different statements, in order to reduce the clutter. We
define E := Θ̂−Θ as the error signal, and its rows by {ϵm}|V|

m=1.

1It is possible that the notation ∥·∥2,1 denotes the sum of 2−norms of columns in the literature.
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While
∑C

k=1 JC projects each entry of a graph signal onto the mean vector value of its respective
cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation
from its cluster mean value.

Let ηm be a vector, vertically concatenated by noise terms of rewards received by node m, then we
define K ∈ R|V|×d as the matrix of vertically concatenated row vectors η⊤

mXm.

Notation Meaning
Indpendent of time t

V set of graph vertices
E set of graph edges
BI ∈ R|E|×|V|, I ⊆ E Graph incidence Matrix obtained by setting rows of edges outside I to zeros
BC ∈ R|E|×|V| cf. Definition 1
L ∈ R|V|×|V| B⊤B
θm ∈ Rd true preference vector of user/bandit m
Θ ∈ R|V|×d matrix of true vertically concatenated row preferences vectors
∂P ⊆ E Boundary of P: set of edges connecting nodes from different clusters
cG(C) Minimum topological centrality index of a node of C restricted to the graph having nodes C
w(∂P) Total weight of ∂P , i.e. sum of weights of edges in P
∥·∥ Euclidean norm for vectors, largest singular value for matrices
∥·∥A Semi-norm defined by PSD matrix A: ∥x∥2A := x⊤Ax
∥·∥F matrix Frobenius norm
∥·∥p,q q-norm of the vector with coordinates equal to the p−norm of rows
∥·∥I , I ⊆ E Total variation norm of signal over edges of I
A† Moore-Penrose pseudo-inverse of matrix A
vec vectorization operator consisting in concatenating the columns vertically
⊗ Kronecker product
1C ∈ R|V| Vector having elements equal to 1 at coordinates corresponding to vertices in C and 0 elsewhere
JC ∈ R|V|×|V| equal to 1C1

⊤
C

|C|
QC ∈ R|V|×|V| equal to B†

CBC
QI ∈ R|V|×|V|, I ⊆ E equal to B†

IBI

ek elementary vectors of dimension depending on the context
σ Subgaussianity constant / variance proxy

Dependent on time t

Tm(t) set of time steps user m has been encountered before time t

θ̂m ∈ Rd estimated preference vector of user/bandit m
ϵm ∈ Rd estimation error for user/bandit m : θ̂m − θm
E ∈ R|V|×d vertical concatenation of row vectors ϵm
ηm ∈ R|Tm(t)| vector of subgaussian noise of user m
x(t) ∈ Rd context vector received at time t
m(t) ∈ N user at time t
Xm ∈ R|Tm(t)|×d data matrix of user m
X ∈ Rt×d data matrix of context vectors of all users
Am ∈ Rd×d X⊤

mXm (potentially associated to time t)
AV ∈ Rd|V|×d|V| diag(A1, · · · ,Am)
K ∈ R|V|×d matrix of vertically concatenated row vectors η⊤

mXm

Table 1: Notation table.

N.B. Except for the results concerning the regret bound, we consider the case κ ≥ 0 rather than
κ ≥ 1 in our proofs.
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B.2 ORACLE INEQUALITY

In this section, we present all intermediary theoretical results leading to Theorem 5 stating the oracle
inequality. To reduce the clutter, we omit the dependence on t of several quantities. For instance,
we write α and Θ̂ instead of α(t) and Θ̂(t).

Definition 3 (Restricted Eigenvalue (RE) condition and norm, generalization of Definition 2). Let
{Mi}|V|

i=1 ⊂ Rd×d be a set of positive semi-definite matrices. We say that the matrix MV :=
diag(M1, · · · ,M|V|) verifies the restricted eigenvalue condition with constants κ ≥ 0 and ϕ > 0 if

ϕ2∥Z∥2RE ≤
∑
i∈V

∥zi∥2Mi
∀Z ∈ S with rows {zi}i∈V ,

where S is the cone defined by:

S := {Z ∈ R|V|×d; a1(G,Θ)∥Z∥∂Pc ≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥Z∥∂P},

a1(G,Θ) := 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

, a2(G,Θ) :=
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C),

and the RE semi-norm is defined by ∥Z∥RE :=
∥∥ZP

∥∥
F
∨ (1− κ)+

∥∥∥B†
∂PB∂PZ

∥∥∥.
Lemma 1 (A first deterministic inequality). Let t be a time step. We have

1

2tα

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc ≤ 1

tα
⟨K,E⟩+ ∥E∥∂P (16)

Proof. By optimality of Θ̂, we have

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 + α∥Θ∥E ≤ 1

2t

∑
m∈V

∥Xmθm − ym∥2 + α∥Θ∥E (17)

where the second line holds by definition of the observed rewards.

On the one hand, given a user index m ∈ V , and since by definition of the observed rewards we have
we have for the least squared terms∥∥∥Xmθ̂m − ym

∥∥∥2 =
∥∥∥Xmθ̂m −Xmθm − ηm

∥∥∥2
= ∥Xmϵm − ηm∥2

= ∥Xmϵm∥2 + ∥Xmθm − ym∥2 − η⊤
mXmϵm

where we used the fact that ym = Xmθm+ηm, which holds by definition of the observed rewards.
Summing over the users, and using the definition of K, we have

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 − 1

2t

∑
m∈V

∥Xmθm − ym∥2 =
1

2t

∑
m∈V

∥Xmϵm∥2 − 1

t
⟨K,E⟩ (18)

On the other hand, we have for the estimated preference vectors

∥Θ∥E =
∑

(m,n)∈E

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=

∑
(m,n)∈∂P

wmn

∥∥∥θ̂m − θ̂n

∥∥∥+ ∑
(m,n)∈∂Pc

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=
∥∥∥Θ̂∥∥∥

∂P
+
∥∥∥Θ̂∥∥∥

∂Pc
,
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For the true ones, and for any C ∈ P , let EC denote the edges linking the nodes of set of nodes C. It
is clear that ∂Pc =

⋃
C∈P EC as a disjoint union, hence

∥Θ∥E =
∑

(m,n)∈E

wmn∥θm − θn∥

=
∑

(m,n)∈∂P

wmn∥θm − θn∥+
∑

(m,n)∈∂Pc

wmn∥θm − θn∥

= ∥Θ∥∂P +
∑
C∈P

∑
(m,n)∈EC

wmn∥θm − θn∥

= ∥Θ∥∂P

where the last equality holds due to the cluster assumption.

Hence, we have

∥Θ∥E − ∥Θ∥E = ∥Θ∥∂P −
∥∥∥Θ̂∥∥∥

∂P
−
∥∥∥Θ̂∥∥∥

∂Pc

≤ ∥E∥∂P −
∥∥∥Θ̂∥∥∥

∂Pc
, (19)

where the first inequality holds due to the triangle inequality, and the last one since ∥Θ∥∂Pc = 0.
Combining Equations (17) to (19), we obtain the result of the statement.

In the proof for the oracle inequality, we utilize projection operators on the graph signal, which we
define as follows:

While
∑C

k=1 JC projects each entry of a graph signal onto the mean vector value of its respective
cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation
from its cluster mean value.

Lemma 2 (Bounding the error restricted to the boundary). The total variation of E restricted to the
boundary verifies

∥E∥∂P ≤ w(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

 (20)

Proof. The proof relies on a decomposition of the ∥E∥∂P term from Proposition 2. We have

∥E∥∂P =

∥∥∥∥∥∑
C∈P

JCE +QCE

∥∥∥∥∥
∂P

=
∥∥∥EP +B†

∂PcB∂PcE
∥∥∥
∂P

≤
∥∥EP

∥∥
∂P +

∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

(21)

where EP is obtained by setting the error signal on every cluster to its mean.

For the first term on the right-hand side, let us denote by ϵC the value of any row of EP belonging
to cluster C, which is equal to the mean of errors E over that cluster. Also, we denote by (EP)∂P
the signal obtained from EP by setting its rows corresponding to nodes that are not adjacent to any
edge in the boundary ∂P to zeros. Also, let ∂vC denote the inner boundary of set of nodes C,i.e.
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nodes of C that connect it to its complementary. Then it holds that:∥∥EP
∥∥
∂P =

∥∥B∂PEP
∥∥
2,1

=
∥∥B∂P(EP)∂P

∥∥
2,1

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥ (by Proposition 1)

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥
F

= ∥B∂P∥2,1
√∑

C∈P
|∂vC|∥ϵC∥2

= ∥B∂P∥2,1

√∑
C∈P

|∂vC|
|C|

|C|∥ϵC∥2

≤ ∥B∂P∥2,1 max
C∈P

√
ιG(C)

√∑
C∈P

|C|∥ϵC∥2

=
√
2w(∂P)max

C∈P

√
ιGC
∥∥EP

∥∥
F

(22)

For the second term, we have∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

=
∥∥∥B∂PB

†
∂PcB∂PcE

∥∥∥
2,1

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
∞,1

∥E∥∂Pc

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
F
∥E∥∂Pc

≤
∥∥∥(B†

∂Pc)⊤B⊤
∂P

∥∥∥
F
∥E∥∂Pc

≤
∥∥B⊤

∂P
∥∥
2,1

√∥∥∥B†
∂Pc(B

†
∂Pc)⊤

∥∥∥
∞,∞

∥E∥∂Pc (by Proposition 1)

=

∥∥B⊤
∂P
∥∥
1,1

min
C∈P

√
cG(C)

∥E∥∂Pc .

= 2
w(∂P)

min
C∈P

√
cG(C)

∥E∥∂Pc . (23)

The result is obtained by combining Equations (21) to (23).

Theorem 4 (Theorem 2.1 of Hsu et al. (2012)). At time step t, let A ∈ Rb×t where b ∈ N∗, and let
v ∈ Rt be a random vector such that for some σ ≥ 0, we have

E [exp(⟨u,v⟩)] ≤ exp

(
∥u∥2σ

2

2

)
∀u ∈ Rt.

Then for any δ ∈ (0, 1), we have with a probability at least 1− δ:

∥Av∥2 ≤ σ2

(
∥A∥2F + 2

∥∥A⊤A
∥∥
F

√
log

1

δ
+ 2∥A∥2 log 1

δ

)
.

Lemma 3 (Empirical process bound). Let Xm ∈ R|Tm|×d denotes the matrix of collected context
vectors for task m ∈ V , then, given collected context matrices {Xm}m∈V , for any δ ∈ (0, 1) we
have with probability of at least 1− δ:

∥K∥F ≤ αδ(t)

α0
t,
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where

αδ(t) :=
α0σ

t

√√√√t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ
, (24)

Proof. We recall that K ∈ Rt×d is the matrix obtained by stacking the row vectors η⊤
mXm verti-

cally. On the one hand, we have

∥K∥2F =
∑
m∈V

∥∥X⊤
mηm

∥∥2 =
∥∥X⊤

V η
∥∥2, (25)

where XV := diag(X1, · · · ,X|V|) ∈ Rt×d|V| .

On the other one, for any u = (u1, · · · , ut) ∈ Rt, denoting P (t) := exp
(∑t

τ=1 uτητ

)
, we have

E [P (t)] = E [E [exp{utηt}P (t− 1)|Ft−1]] (by the law of total expectation)

= E [P (t− 1)E [exp(utηt)|Ft−1]] (because {ηs}t−1
s=1 are Ft−1 measurable.)

≤ exp

(
1

2
σ2u2

t

)
E [P (t− 1)] (by the conditional subgaussianity assumption)

≤
t∏

s=1

exp

(
1

2
σ2u2

s

)
(by induction)

= exp

(
1

2
σ2∥u∥2

)
. (26)

From Equations (25) and (26), we can apply Theorem 4 to matrix XV and random vector η, which
implies that with a probability at least 1− δ, we have

∥XVη∥ ≤ σ

√√√√Tr

(∑
m∈V

Am

)
+ 2

√∑
m∈V

∥Am∥2F log
1

δ
+ 2max

m∈V
∥Am∥ log 1

δ
,

where we used the equalities ∥XV∥F =
∑

m∈V Tr(Am), ∥XV∥2 = max
m∈V

∥Am∥ and∥∥XVX
⊤
V
∥∥2
F

=
∥∥X⊤

V XV
∥∥2
F

=
∑

m∈V ∥Am∥2F . To arrive the the statement of the theorem, we
use the fact that the context vectors have Euclidean norms of at most 1.

Proposition 4 (Probabilistic inequality). With a probabability at least 1− δ, we have

1

2tα

∑
m∈V

∥Xmϵm∥2 + a1(G,Θ)∥E∥∂Pc ≤ a2(G,Θ)
∥∥EP

∥∥
F
+ (1− κ)∥E∥∂P , (27)

where 0 ≤ κ <
min
C∈P

√
cG(C)

2w(∂P) , 1
α0

< min
C∈P

√
cG(C)− 2κw(∂P) and

a1(G,Θ) = 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

(28)

a2(G,Θ) =
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C). (29)
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Proof. The proof is a combination of the results of Lemmas 1 to 3. We have
1

2tαδ

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc

≤ 1

tαδ
⟨K,E⟩+ ∥E∥∂P (by Lemma 1)

≤ 1

α0
∥E∥F + κ∥E∥∂P + (1− κ)∥E∥∂P (by Lemma 3)

≤
∥∥EP

∥∥
F

α0
+

∥E∥∂Pc

α0 min
C∈P

√
cG(C)

+ κw(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

+ (1− κ)∥E∥∂P ,

where the last line is an application of Lemma 2. Grouping the terms by the type of norm applied to
E finishes the proof.

Theorem 5 (Oracle inequality, generalization of Theorem 1). Assume that the RE assumption holds

for the empirical multi-task Gram matrix with constants κ ∈
[
0, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0.

Suppose that maxm∈V |Tm(t)| ≤ bt for some b > 0. Then, with a probability at least 1 − δ(t), we
have ∥∥∥Θ− Θ̂(t)

∥∥∥
F
≤ 2

σ

ϕ2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where

f(G,Θ) := α0

(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

Proof. Using the previously established results, we obtain
1

2t

∑
m∈V

∥Xmϵm∥2 + α∥E∥∂Pc

≤αδa2(Θ,G)∥EP∥F + αδ(1− κ)+∥E∥∂P (by Proposition 4)

=αδa2(Θ,G)∥EP∥F + αδ(1− κ)+
∥∥∥B∂PB

†
∂PB∂PE

∥∥∥
2,1

(by properties of the pseudo-inverse)

≤αδa2(Θ,G)∥EP∥F + αδ∥B∂P∥2,11≤1(κ)(1− κ)+
∥∥∥B†

∂PB∂PE
∥∥∥ (by Proposition 1)

≤αδ(a2(Θ,G) + 1≤1(κ)
√
2w(∂P))∥E∥RE (by definition of the ∥∥RE norm)

≤α
a2(Θ,G) + 1≤1(κ)

√
2w(∂P)

ϕ
√
t

√∑
m∈V

∥ϵm∥2Am
(using the RE assumption)

≤
βα2

δ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

2ϕ2
+

1

2βt

∑
m∈V

∥Xmϵm∥2, (30)

where the last inequality holds for any β > 0, and is a consequence of the property that uv ≤
u2 + v2

2
for any u, v ∈ R.

As a result, we can bound the norm of Q∂PcE as follows:

∥Q∂PcE∥F =
∥∥∥B†

∂PcB∂PcE
∥∥∥
F

≤
√∥∥∥L†

∂Pc

∥∥∥
∞,∞

∥E∥∂Pc

≤
2αδ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

ϕ2a1(Θ,G)min
C∈P

√
cG(C)

(Equation (30) with β = 1). (31)
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We can also bound the norm of EP as follows:∥∥EP
∥∥2
F

≤ 1

tϕ2

∑
m∈V

∥Xmϵm∥2 (by RE assumption on empirical multi-task Gram matrix)

≤
4α2

δ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

ϕ4
(by Equation (30) with β = 2). (32)

The result is then obtained by combining Equations (31) and (32) along with using the fact that
E = EP +Q∂PcE and the expressions of a1(Θ,G) and a2(Θ,G), and bounding αδ(t) as follows:

αδ(t)
2

α2
0

=
σ2

t2

∑
m∈V

∥Xm∥2F + 2

√∑
m∈V

∥XmX⊤
m∥2F log

1

δ
+ 2max

m∈V
∥Xm∥2 log 1

δ


≤ σ2

t2

t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ


≤ σ2

t2

(
t+ 2t

√
log

1

δ
+ 2t log

1

δ

)

≤ 2
σ2

t

(
1 +

√
log

1

δ

)2

Proposition 5 (Optimal value of α0). Assume κ ≥ 1. Let h1 :=
√
2κw(∂P)maxC∈P

√
ιG(C),

h2 := minC∈P
√

cG(C)− 2κw(∂P) and r := h1

h2
. Choosing

α0 :=
1

h2

(
1 +

√
1 +

h2

h1

)
(33)

minimizes f(Θ,G). In this case, we have f(Θ,G) = O(1 + 2
√
r) as r vanishes.

Proof. Using the definition of f(Θ,G) from Definition 2, it is easy to see that f(Θ,G) = α0(h1 +

h2)
α0h1 + 1

α0h2 − 1
. Deriving with respect to α0 and solving yields the stated optimal value. Injecting this

value into f(Θ,G), we get

min
α0>0

f(Θ,G) = h1 + h2

h2

(
1 +

√
1 +

h2

h1

)
1 + h1

h2

(
1 +

√
1 + h2

h1

)
√

1 + h2

h1

(34)

= (1 + r)

(
1 +

√
1 +

1

r

)
1 + r

(
1 +

√
1 + 1

r

)
√
1 + 1

r

(35)

≤ 1 + r√
r

(
√
r + 1 +

r

2
)
√
r(1 +

√
r(
√
r +

r

2
+ 1)) (36)

= (1 + r)(1 +
√
r +

r

2
)(1 +

√
r + r +

r
√
r

2
) (37)
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B.3 INHERITING THE RE CONDITION FROM THE TRUE TO THE EMPIRICAL DATA GRAM
MATRIX

B.3.1 FROM THE ADAPTED TO THE EMPIRICAL MULTI-TASK GRAM MATRIX

Lemma 4 (Bounding a quadratic form using projections). Let M1, · · · ,Mp ∈ Rd×d be symmetric
matrices, and let J := 1

p11
⊤, and Q = I − J . Then, for any Z ∈ Rp×d with rows {zi}pi=1, we

have:∣∣∣∣∣
p∑

i=1

z⊤
i Mizi

∣∣∣∣∣ ≤ 1

p

∥∥∥∥∥
p∑

i=1

Mi

∥∥∥∥∥∥Z∥2J + 2

√√√√∥∥∥∥∥1p
p∑

i=1

M2
i

∥∥∥∥∥∥Z∥Q∥Z∥J + max
1≤i≤p

∥Mi∥∥Z∥2Q

Proof. We have∣∣∣∣∣
p∑

i=1

z⊤
i Mizi

∣∣∣∣∣ =
∣∣∣∣∣

p∑
i=1

z̄⊤Miz̄ + 2

p∑
i=1

(zi − z̄)⊤Miz̄ +

p∑
i=1

(zi − z̄)⊤Mi(zi − z̄)

∣∣∣∣∣
≤

∣∣∣∣∣z̄⊤
p∑

i=1

Miz̄

∣∣∣∣∣+ 2

∣∣∣∣∣
p∑

i=1

e⊤i QZMiz̄

∣∣∣∣∣+
∣∣∣∣∣

p∑
i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ (38)

where we used the fact that zi − z̄ = Z⊤ei −Z⊤Jei = Z⊤Qei.

Let us now examine every term on the right-hand side of Equation (38). For the first term, we have∣∣∣∣∣z̄⊤
p∑

i=1

Miz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

Mi

∥∥∥∥∥∥z̄∥2 =

∥∥∥∥∥1p
p∑

i=1

Mi

∥∥∥∥∥∥Z∥2J . (39)

For the second term, we have∣∣∣∣∣
p∑

i=1

e⊤i QZMiz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

MiZ
⊤Qei

∥∥∥∥∥∥z̄∥
=

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi) vec(Z
⊤Q)

∥∥∥∥∥∥z̄∥
≤

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥∥vec(Z⊤Q)
∥∥∥z̄∥

=

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥(
p∑

i=1

(e⊤i ⊗Mi))⊤
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ⊗Mi))(ej ⊗Mj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ej ⊗MiMj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥
p∑

i=1

M2
i

∥∥∥∥∥∥QZ∥F ∥z̄∥. (40)
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Finally, for the last term, we have∣∣∣∣∣
p∑

i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ ≤
p∑

i=1

∥Mi∥
∥∥Z⊤Qei

∥∥2
≤ max

1≤i≤p
∥Mi∥

p∑
i=1

∥∥Z⊤Qei
∥∥2

= max
1≤i≤p

∥Mi∥∥QZ∥2F . (41)

Combining Equations (39) to (41) yields the result.

We also define an operator norm that is induced by the ∥∥RE introduced in Definition 3.

Definition 4 ((RE,S)-induced operator norm). Let {Mm}m∈V ⊆ Rd×d be symmetric matrices
associated to the graph nodes V , and let MV := diag

(
M1, · · · ,M|V|

)
∈ Rd|V|×d|V|. For any

cluster C ∈ P , let the cluster mean and mean of squares associated to those matrices be given by

MC :=
1

|C|
∑
m∈C

Mm, M2C :=
1

|C|
∑
m∈C

M2
m.

The RE-induced operator norm of MV is defined as

∥M∥RE,S := max
C∈P

∥∥MC
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥Mm∥. (42)

B.3.2 LINKING THE ADAPTED TO THE EMPIRICAL GRAM

We first start by establishing that given the closeness of two PSD matrices in a certain sense, the RE
condition can be transferred between them.

Proposition 6 (Restricted spectral norm). Let Z ∈ R|V|×d verifying

a1(G,Θ)∥Z∥∂Pc ≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥Z∥∂P

Let {Mm}m∈V ⊆ Rd×d be symmetric matrices associated to the graph nodes V , and let MV :=
diag(M1, · · · ,M|V|) ∈ Rd|V|×d|V|. Then we have:∣∣∣∣∣∑

m∈V
z⊤
mMmzm

∣∣∣∣∣ ≤ ∥M∥2RE,S

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2

∥Z∥2RE. (43)

Proof. For any cluster C, we denote by BC the incidence matrix obtained by setting the rows of B
outside the edges linking nodes in C to null vectors. The latter’s nullspace is the span of the vector
1C having coordinates 1 at nodes in C and zeros elsewhere. Hence, the projector onto the orthogonal
of 1C is QC := B†

CBC .

On the one hand, for any signal Z ∈ R|V|×d we have

∥Z∥∂Pc =
∑
C∈P

∥BCZ∥2,1

≥
∑
C∈P

∥∥∥B†
CBCZ

∥∥∥
F√∥∥∥L†

C

∥∥∥
∞,∞

≥ min
C∈P

√
cG(C)

∑
C∈P

∥Z∥QC
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Hence, by the proposition’s assumptions, Z verifies

min
C∈P

√
cG(C)a1(G,Θ)

∑
C∈P

∥Z∥QC
≤ (a2(G,Θ)

∥∥ZP
∥∥
F
+ (1− κ)∥Z∥∂P)

≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥B∂P∥2,1

∥∥∥B†
∂PB∂PZ

∥∥∥
≤ (a2(G,Θ) + (1− κ)+∥B∥2,1)∥Z∥RE

From Lemma 4, we have∣∣∣∣∣∑
m∈V

z⊤
mMmzm

∣∣∣∣∣
≤
∑
C∈P

∣∣∣∣∣∑
m∈C

z⊤
mMmzm

∣∣∣∣∣
≤
∑
C∈P

∥∥MC
∥∥∥Z∥2JC

+ 2
∑
C∈P

√ ∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

+
∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
, (44)

where we used Equation (10).

This allows us to bound every term in Equation (44). For the second term on the right-hand side, we
have ∑

C∈P

√∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

≤max
C∈P

√∥∥∥M2C

∥∥∥∥∥ZP
∥∥
F

√∑
C∈P

∥Z∥2QC

≤
min
C∈P

cG(C)−
1
2

a1(G,Θ)
max
C∈P

√∥∥∥M2C

∥∥∥(a2(G,Θ) + (1− κ)+∥B∥2,1)∥Z∥2RE (45)

As for the third term, we have

∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
≤ max

m∈V
∥Mm∥

(∑
C∈P

∥Z∥QC

)2

≤ max
m∈V

∥Mm∥
min
C∈P

cG(C)−1

a1(G,Θ)2
(a2(G,Θ) + (1− κ)+∥B∥2,1)

2∥Z∥2RE

(46)

Consequently, denoting v =
a2(G,Θ) + (1− κ)+∥B∥2,1

a1(G,Θ)
, and combining Equations (44) to (46),

we obtain∣∣∣∣∣∑
m∈V

z⊤
mMmzm

∣∣∣∣∣(
max
C∈P

∥∥MC
∥∥+ 2vmax

C∈P

√∥∥∥M2C

∥∥∥+ v2 max
i∈V

∥Mi∥

)
∥Z∥2RE

≤
(
max
C∈P

∥∥MC
∥∥) ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
i∈V

∥Mi∥
)
(1 + v)2∥Z∥2RE,

which finishes the proof.
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Proposition 7 (Inheritance of a RE condition from a close matrix). Assume that the matrix VV

verifies the RE condition with constant ϕ > 0, and that
∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

≤ γϕ2 for some γ ∈(
0,
(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)−2
)

. Then
AV

t
verifies the RE condition with constant

ϕ̂ = ϕ

√√√√1− γ

(
1 +

a2(G,Θ) + (1− κ)+
√
2w(∂P)

a1(G,Θ)

)2

(47)

Proof. From Proposition 4, we know that

1

t
ϵ⊤VAVϵV =

1

|V|
ϵ⊤VVVϵV + ϵ⊤V∆VϵV

≥ 1

|V|
ϵ⊤VVVϵV −

∣∣ϵ⊤V∆VϵV
∣∣

≥

ϕ2 −max
m∈V

∥∆V∥op,RE

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2
 ∥E∥2RE

≥

ϕ2 − γϕ2

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2
 ∥E∥2RE

where the third inequality is an applicaiton of Proposition 6.

Theorem 6 (Matrix Freedman Inequality, Tropp (2011)). Consider a matrix martingale {M(t)}t≥1

with dimension d1×d2. Let {N(t)}t≥1 be the associated difference sequence. Assume that for some
A > 0, we have ∥N(t)∥ ≤ A ∀t ≥ 1 almost surely. Define for any t ≥ 1:

Wcol(t) :=

t∑
τ=1

E
[
N(τ)N(τ)⊤|Fτ−1

]
Wrow(t) :=

t∑
τ=1

E
[
N(τ)⊤N(τ)|Fτ−1

]
.

Then, for any u, v > 0,

P [∃t ≥ 1; ∥M(t)∥ ≥ u and ∥Wcol∥(t) ∨ ∥Wrow(t)∥ ≤ v] ≤ (d1 + d2) exp

(
− 3u2

6v + 2Au

)
Corollary 2. Let {N(τ)}tτ=1 by a sequence of matrices of dimension d1 × d2, adapted to filtration
{Fτ}tτ=1. Let {ti}Ni=1 an increasing sequence with elements in [t] for some N ≤ t. Consider the
sequence {M(n)}Nτ=1 of random matrices defined by

M(n) =

n∑
i=1

N(ti)− E [N(ti)|Fti−1] (48)

Then {M(n)}Nn=1 is a martingale adapted to the filtration {Ftn}Nn=1.

Moreover,if ∥N(τ)∥ ≤ b ∀τ ∈ [t] for some b > 0, then we have

P [∥M(N)∥ ≥ u] ≤ (d1 + d2) exp

(
− 3u2

6Nb2 + 2
√
2bu

)
. (49)

Proof. We denote E [·|Fs] as Es [·] for any s ∈ N. Also, let C(s) := Es−1 [N(s)], which is Fs−1-
measurable by construction. We have for any n ∈ [N ],

Etn−1 [C(tn)] = Etn−1 [Etn−1 [N(tn)]] = Etn−1 [N(tn)] (50)
=⇒ Etn−1

[N(tn)−C(tn)] = 0 (51)
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where the first equality is due to the tower rule since Ftn−1
⊂ Ftn−1. Also, we have for any τ ≥ 1

∥N(τ)−C(τ)∥2 =
∥∥(N(τ)−C(τ))2

∥∥ (52)

≤ Tr
(
(N(τ)−C(τ))2

)
(53)

= Tr
(
(N(τ)−C(τ))2

)
(54)

= ∥N(τ)∥2F − 2Tr(C(τ)N(τ)) + Tr
(
C(τ)2

)
(55)

≤ ∥N(τ)∥2F +Tr
(
C(τ)2

)
≤ 2b2 (56)

Hence N(τ) − C(τ) is integrable for any τ ≥ 1. This shows that M(n) is a sequence of partial
sums of matrix martingale differences, hence it is a matrix martingale.

The second part of the corollary statement is a consequence of Theorem 6. The boundedness of
the sequence of martingale differences has already been established above. To verify the second
requirement of the theorem, let us compute bounds on the norms of Wcol and Wrow from Theorem 6.
Notice that the two matrices are equal since the difference sequence matrices N(ts) are symmetric.
Hence, for any n ∈ [N ], we have

∥Wcol(N)∥ ∨ ∥Wrow(N)∥ ≤ Tr(Wcol(N)) ∨ Tr(Wrow(N)) (57)

= Tr

(
N∑

n=1

Etn−1

[
(N(tn)−C(tn))

2
])

(58)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Etn−1 [2 Tr(C(tn)N(tn))] + Tr

(
C(tn)

2
)

(59)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Tr

(
C(tn)

2
)

(60)

≤
N∑

n=1

Etn−1

[
∥N(tn)∥2F

]
≤ Nb2. (61)

By Theorem 6, we have for any u > 0

2d exp

(
− 3u2

6Nb2 + 2
√
2bu

)
≥ P

[
∃n ≥ 1; ∥M(n)∥ ≥ u and ∥Wcol(n)∥ ≤ Nb2

]
(62)

≥ P
[
∥M(N)∥ ≥ u and ∥Wcol(N)∥ ≤ Nb2

]
(63)

= P [∥M(N)∥ ≥ u] (64)

where the last line holds because we showed that the inequality ∥Wcol(N)∥ ≤ Nb2 holds almost
surely.

Proposition 8 (Concentration of the empirical multi-task Gram matrix around the adapted one). Let
t ≥ 1, b > 0. Then we have:

P

[∥∥∥∥AV(t)

t
− VV

∥∥∥∥
op,RE

> γ
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ d(2|P|e−A1t+(|V|+|P|)e−A2t+2|V|e−A3t),
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where

A1 :=
3γ2 min

C∈P
|C|t

6b+ 2
√
2γ

A2 :=
3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

A3 :=
3γ2 min

C∈P
cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

Proof. For γ > 0, let us define

∆m :=
AV

t
− VV and GGram,γ :=

{
1

t
∥∆V∥RE,S ≤ γ

}
,

where ∆V is block diagonal matrix formed by {∆m}m∈V . We also define ∆C and ∆2C in the same
pattern of Definition 4. We can express the complementary of this event as the disjunction of a finite
number of events as follows:

Gc
Gram,γ (65)

=

{
max
C∈P

∥∥∆C
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥∆2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥∆m∥ > tγ

}
(66)

=
⋃
C∈P

{∥∥∆C
∥∥ > tγ

}
∪
⋃
C∈P

{∥∥∥∆2C

∥∥∥ > t2γ2 min
C∈P

cG(C)
}
∪
⋃

m∈V

{
∥∆m∥ > tγmin

C∈P
cG(C)

}
(67)

The first and third event can be bounded by considering the sequence xx⊤(τ) adapted to the filtra-
tion {Fτ}, verifying

∥∥xx⊤(τ)
∥∥ ≤.

Bounding the probability of the first event Let C ∈ P be a cluster. By definition, we have

|C|∆C(t) =
∑
m∈C

∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

=
∑

τ∈
⋃

m∈C Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

We will apply Corollary 2 for the sequence of time indices in C, i.e.
⋃

m∈V Tm(t). Hence |C|∆C is
a martingale sequence, and we have

P
[∥∥∆C(t)

∥∥ > γt
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

(
−3γ2|C|2t2

6
∑

m∈C |Tm(t)|+ 2
√
2γ|C|t

)

≤ 2d exp

(
−3γ2|C|2t2

6|C|bt+ 2
√
2γ|C|t

)

= 2d exp

(
−3γ2|C|t
6b+ 2

√
2γ

)

≤ 2d exp

−3γ2 min
C∈P

|C|t

6b+ 2
√
2γ

 (68)
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Bounding the probability of the third event Let m ∈ V be a task index. We apply Corollary 2
for the sequence of time steps in Tm(t). We have

∆m(t) =
∑

τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

is a martingale sequence, hence

P
[
∥∆m(t)∥ > γmin

C∈P
cG(C)t

∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6|Tm(t)|+ 2
√
2γmin

C∈P
cG(C)t


≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6bt+ 2
√
2γmin

C∈P
cG(C)t


= 2d exp

 −3γ2 min
C∈P

cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

 . (69)

Bounding the probability of the second event Let C ∈ P be a cluster, and let us denote em the
mth canonical vector of R|C|. We have

∥∥∥∆2C(t)
∥∥∥ =

1

|C|

∥∥∥∥∥∥∥
∑
m∈C

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

2
∥∥∥∥∥∥∥

=
1

|C|

∥∥∥∥∥∥
∑
m∈C

e⊤m ⊗

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ (xx(τ)− E [xx(τ)|Fτ−1])

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ xx(τ)− E
[
em(τ) ⊗ xx(τ)|Fτ−1

]∥∥∥∥∥∥
2

,

where the last equality holds since m(τ) is measurable w.r.t. Fτ−1. We will apply the Corollary 2 to
the set of time steps

⋃
m∈C Tm(t) and the adapted sequence e⊤m(τ) ⊗ xx(τ) of matrices in Rd×d|C|.
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Hence we have

P

[√∥∥∥∆2C(t)
∥∥∥ > γtmin

C∈P

√
cG(C)

∣∣max
m∈V

|Tm(t)| ≤ bt

]

≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t2

6
∑

m∈C |Tm(t)|+ 2
√
2γ
√
|C|min

C∈P
cG(C)t


≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t

6|C|b+ 2
√
2γ
√

|C|min
C∈P

cG(C)



= d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√
min
C∈P

cG(C)
|C|



≤ d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

 (70)

Union bound We conclude the result of the statement via a union bound using Equation (67).

Proposition 9 (Concentration of the empirical multi-task Gram matrix around the adapted one, sim-
plified). propEmpCovConcentrationSimplified Let t ≥ 1, b > 0. Assume that maxm∈V |Tm(t)| ≤
bt. Then we have:

P

[∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

> γ

]
≤ 6d|V| exp

(
−3γ2(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γ

)
,

where c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .

Proof. The proof will rely on simple calculus inequalities. Hence, let u = minC∈P cG(C), v =

minC∈P |C|, f = 3γ2, g = 6b, h = 2
√
2γ, which are all positive. Then, we have

A1 =
fu

f + g
≥ (u ∧ v)f

f + g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + g(1 ∧ u ∧ v)

A2 =
fv

f + g v
u

≥ (v ∧ u)f

f + g v∧u
u

≥ (v ∧ u)f

f + g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + (1 ∧ u ∧ v)g

A3 =
fv2

f + gv
≥ (v ∧ u)2

f + (v ∧ u)g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + (1 ∧ u ∧ v)g

where we used the fact that functions of the form x 7→ x
β1x+β2

for positive β1, β2 are increasing on
R+.

As a final step, we use the inequality
(1 ∧ x)f

f + (1 ∧ x)g
≥

x ∧ 1

f + g
taken for x = u ∧ v, we apply the

exp(− · t) function and we use the result of Proposition 8, we deduce the result.

B.3.3 FROM THE TRUE TO THE ADAPTED GRAM MATRIX

For all of the proofs in this subsection, we follow an approach similar to that of Oh et al. (2021). In
particular, we use their Lemma 10.
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Theorem 7 (Lemma 10 of Oh et al. (2021)). Under Assumption 2 on the context generating distri-
bution, let t ≥ 1. We have for any θ ∈ Rd:

∑
x∈A(t)

E

[
xx⊤

1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}]
≽

1

2νω
Σ (71)

Proposition 10 (RE condition from the true to the adapted Gram matrix). Under Assumption 2, for
any t ≥ 1, the adapted Gram matrix VV(t) verifies the compatibility condition with constants κ and

ϕ
√
2νω

.

Proof. For t ≥ 1, we have

E
[
x(t)x(t)⊤|Ft−1

]
= E

 ∑
x∈A(t)

x(t)x(t)⊤|Ft−1

 (72)

Let m ∈ V . We have

Vm(t) =
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
=

1

t

∑
τ∈Tm(t)

E
[
E
[
x(τ)x(τ)⊤|θm(τ − 1),Fτ−1

]
|Fτ−1

]
(law of total expectation)

=
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|θm(τ − 1)

]
(x(τ) is fully determined by θm(τ − 1))

=
1

t

∑
τ∈Tm(t)

E

 ∑
x∈A(τ)

xx⊤
1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}
|θm(τ − 1)


≽

1

2νω
Σ (by Theorem 7). (73)

Now, let Z ∈ S, where S is defined with constant κ of Assumption 4. Then∑
m∈V

∥z∥Vm(t) ≥
1

2νω

∑
m∈V

∥zm∥Σ by Equation (73)

≥ ϕ2

2νω
∥Z∥2RE (by Assumption 4),

which finishes the proof.

Theorem 8 (RE condition holding for the empirical multi-task Gram matrix, generalization of The-
orem 2). Under assumptions 2 and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4.

Assume that maxm∈V |Tm(t)| ≤ bt. Then, for any γ ∈
(
0,
(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)−2
)

,

the empirical multi-task Gram matrix verifies the RE condition with constants κ and ϕ̂, with

ϕ̂ = ϕ̃

√√√√1− γ

(
1 +

a2(G,Θ) + (1− κ)+
√
2w(∂P)

a1(G,Θ)

)2

, (74)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .
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Proof. For the sake of readability, let ϕ̃ = ϕ√
2νω

the compatibility constant of the adapted Gram
matrix, according to Proposition 10. Then:

1− 6d|V| exp

(
−3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
(75)

≤P

[∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

≤ γϕ̃2

]
(by Proposition 9) (76)

≤P
[
AV

t
satisfies the RE condition with constant κ and ϕ̂

]
(by Proposition 7), (77)

where ϕ̂ = ϕ̃

√
1− γ

(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)2
.

B.4 REGRET BOUND

Lemma 5 (Concentration of the fraction of observations per task). lemma Assume that |V| ≥ 2.
Then for δ ∈ (0, 1), we have with a probability at least 1− δ:

max
m∈V

|Tm(t)|
t

≤ 1

|V|
+ 2

√
1

t|V|
log

|V|
δ

+
4

3t
log

|V|
δ
. (78)

Proof. We have |Tm(t)| :=
∑t

τ=1[m(τ) = m], where ∀t,∀m ∈ V,P [m(t) = m] = 1
|V| , meaning

that the binary variable [m(t) = m] follows a Bernoulli distribution B( 1
V ). Then, the random

variable Xt := [m(t) = m] − 1
|V| has mean 0, variance 1

|V| (1 −
1
|V| ), and verifies |Xt| ≤ 1 − 1

|V|
since |V| ≥ 2. As a result, via the Bernstein inequality, we have for any m ∈ V , and for any w ≥ 0,

P
[
|Tm(t)|

t
≥ 1

|V|
+ w

]
≤ exp

(
− tw2

2(1− 1
|V| )(

1
|V| +

w
3 )

)
≤ exp

(
− tw2

2( 1
|V| +

w
3 )

)

For the right-hand side to hold with a probability at most δ ∈ (0, 1), it is sufficient to have

t
w2

2( 1
|V| +

w
3 )

≥ log
1

δ

⇐=
w2

2
≥

2 1
|V| log

1
δ

t
and

w2

2
≥

2w log 1
δ

3t

⇐= w = 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t

Hence, and via a union bound, we get

P

[
|Tm(t)|

t
≥ 1

|V|
+ 2

√
1

|V|
log

1

δ
+

4

3t
log

1

δ

]
≤ δ

=⇒ P

max
m∈V

|Tm(t)|
t

≥ 1

|V|
+ 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t

 ≤ |V|δ

The result is obtained by adjusting the value of δ.

Theorem 9 (Regret bound, generalization of Theorem 3). Let the mean horizon per node be T =
T
|V| . Under assumptions1 to 4 and κ > 0, the expected regret of the Network Lasso Bandit algorithm
is upper bounded as follows:

R(T ) = O

(
f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

))
+

1

A
log(d|V|) +

√
|V|

)
,
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with A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+ 2
√
2γ

.

Proof. For any time step t, we will define a list of good events under which the Oracle inequality and
the RE condition for the empirical multi-task Gram matrix both hold with high probability. Then,
we will use those bounds to sum up over time steps until horizon T .

Good events We formalize these requirements as three families of time-depending ”good” events.

• Gpro(t) is the event that the mean of the empirical process bounded by α(t) up to a constant c,
which is equivalent to saying that it converges:

Gpro(t) :=

{
1

t
∥K∥F ≤ α(t)

α0

}
(79)

• Gsel(t) is the event that the number of selections of all tasks is bounded by its expected value up
to a small constant ρ(t)

Gsel(t) :=

{
max
m∈V

|Tm(t)|
t

≤ 1

|V|
+

ρ(t)

t

}
(80)

• GRE(t) is the event that the empirical multi-task Gram matrix 1
tAV(t) satisfies the RE condition.

GRE(t) :=

{
1

t
AV(t) verifies the RE condition with constants κ, ϕ̂

}
(81)

Event Gpro(t) is the most straightforward to cover since our bound on the empirical process given in
Lemma 3 holds with a probability of at least 1− δ(t), thus:

P [Gpro(t)
c|Gsel(t)] ≤ δ(t), (82)

where we included the time dependency on δ(t) in contrast to the previous section. This way we
emphasize to adjust δ(t) after each round, to guarantee a sub linear regret bound. The probability of
event Gsel(t) can be determined using Bernstein’s inequality:

From Lemma 5 we can select ρ(t) = 2
√

t
|V| log

|V|
δsel(t)

+ 4
3 log

|V|
δsel(t)

as well as P [Gsel(t)
c] ≤ δsel(t).

B.4.1 INSTANTANEOUS REGRET DECOMPOSITION

Now, given the event probabilities, we condition the instantaneous regret r(t) on the good events at
a time t > t0. We have for its expectation:

E [r(t)] ≤ E [r(t)|Gsel(t)] + 2P [Gsel(t)
c]

≤ E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)]

+ 2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c]) , (83)

where we used the worst case bound r(t) ≤ 2 if any one of the good events does not hold.

Bounding the regret Inserting our results of the event probabilities, the oracle inequality and the
decomposition of the expected instantaneous regret in Equation (83) and bounding the sum over
rounds, yields the final result. Thus, we start by bounding the sum over the first term i.e. the
expected regret in case all good events hold:

T∑
t=1

E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)] ≤
T∑

t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F
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Taking the result of our oracle inequality in Theorem 5, we point out that only α(t) is time dependent
such that the rest of the terms can be pulled outside the sum:

T∑
t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤

T∑
t=1

2
σ

ϕ̂2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)

=
2σ

ϕ̂2
f(G,Θ)

T∑
t=1

√
1

t
+

2b

t

√
2|V| log(t) + 4b

t
log(t)

≤ 2σ

ϕ̂2
f(G,Θ)

∫ T

0

1√
t
+

√
2b

t

(√
2|V| log(T ) + 2 log(T )

)
dt

≤ 2σ

ϕ̂2
f(G,Θ)

(
2
√
T +

(√
8T

|V|
+ 4 4

√
32 log(|V|T )T

|V|
+

√
16

3
log(|V|T ) log(T )

)
(

4
√
2|V| log(T ) +

√
2 log(T )

))
= O

(
f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)))
,

where

f(G,Θ) :=
(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

We upper bounded the sum with an integral i.e.
∑T

t=1 f(t) ≤
∫ T

0
f(t)dt for monotonically decreas-

ing functions f(t) in the last inequality. Also b is the bound on the concentration of the fraction
of observation per task provided by Lemma 5. For t0 =

√
|V| we find by inserting the result to

Lemma 5 for all t > t0:

1

|V|
+ 2

√
1

t|V|
log

|V|
δ

+
4

3t
log

|V|
δ

≤ 1

|V|
+ 2

√√√√2 log
(
|V|
√
|V|
)

√
|V||V|

+
8 log

(
|V|
√
|V|
)

3
√
|V|

=
1

|V|
+

2√
|V|

[√
3√
|V|

log(|V|) + 2 log(|V|)

]

= O

(
log(|V|)√

|V|

)
= b.

Finally we bound the sum over the instantaneous regret term for the bad events:

T∑
t=1

2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c])

By construction, we have max(P [Gpro(t)
c|Gsel(t)] ,P [Gsel(t)

c]) ≤ δ(t) = 1
t2 . Hence,

T∑
t=1

P [Gpro(t)
c|Gsel(t)] + P [Gsel(t)

c] ≤ 2

T∑
t=1

1

t2
≤ 2

(
1 +

∫ T

1

dt

t2

)
≤ 4 (84)
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As for the RE condition event, letting A :=
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6b+ 2
√
2γ

, we have for any t0 ≥ 1

T∑
t=t0

P [GRE(t)
c|Gsel(t)] ≤ 6d|V|

T∑
t=t0

exp(−At) (by Theorem 8)

≤ 6d|V| e−At0

1− e−A
≤ 6d|V|e−At0

(
1 +

1

A

)
≤ 6d|V|e−At0

(
1 +

1

A

)
where in the last line, we used the inequality exp(A) ≥ A+ 1. Hence, for any u > 0, choosing

t0 =
⌈√

|V|
⌉
∨
⌈
1

A
log

(
6d|V|(1 + 1

A )

u

)⌉
implies that

∑T
t=t0

P [GRE(t)
c|Gsel(t)] ≤ u. Now, we simply have to insert all our results into the

sum of instantaneous regrets:

R(T ) ≤ t0 + 2u+ 8 +O

(
f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)))

≤
⌈√

|V|
⌉
+

⌈
1

A
log

(
6d|V|(1 + 1

A )

u

)⌉
+ 2u+ 8

+O

(
f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)))

≤
⌈√

|V|
⌉
+

⌈
1

A
log(12d|V|(1 +A))

⌉
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A
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+O
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(√
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)
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≤
⌈√

|V|
⌉
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⌈
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A
log(12d|V|(1 +A))

⌉
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1

A
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+O

(
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√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|
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= O

(√
|V|+ 1

A
log(d|V|) + f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)))
,

where we set u = 1
2A in the third inequality.

Proof of Corollary 1. For κ > 1 and γ = 1
2

(
1 + a2(G,Θ)

a1(G,Θ)

)−2

we have ϕ̂ = ϕ
2
√
νω

. We find an
appropriate bound on f(G,Θ) by minimizing the expression w.r.t. α0 as done in Proposition 5 such
that:

min
α0>0

f(Θ,G) = O

(
1 +

√
κw(∂P)maxC∈P

√
ιG(C)

minC∈P
√
cG(C)− 2κw(∂P)

)
,

which holds if the expression
√

κw(∂P)maxC∈P
√

ιG(C)
minC∈P

√
cG(C)

is negligible compared to 1, which is guar-

anteed given the assumptions min
C∈P

√
cG(C) ≫ κw(∂P) and that max

C∈P

√
ιG(C) ≤ 1, for which the

expression simplifies to:
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min
α0>0

f(Θ,G) = O

(
1 +

√
κw(∂P)maxC∈P

√
ιG(C)

minC∈P
√
cG(C)

)
.

Inserting everything into our regret bound from Theorem 9 we get:

R(T ) = O
(νω

(
1 +

√
κw(∂P)maxC∈P

√
ιG(C)

minC∈P
√

cG(C)

)
ϕ2√

T

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

))
+

1

A
log(d|V|) +

√
|V|
)

If we assume that |V| ≫ log T and |V| = O(T ), then then we have further

√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)
= O(

√
T )

which yields the result.

C ADDITIONAL RELATED WORK

Homophily and modularity in social networks Given the large number of users on social net-
works, one may be able to learn their preferences more quickly by leveraging the similarities be-
tween them. This idea relies on the notion of homophily in social networks (McPherson et al., 2001;
Easley et al., 2010). In modelling social networks, users’ preferences relationships are encoded in
a graph, where neighboring nodes are users with similar preferences. This graph can be known a
priori or it can be inferred from previously collected feedback (Dong et al., 2019). Exploiting this
information and integrating them into bandit algorithms can lead to a significant increase in perfor-
mance Yang et al. (2020). Indeed, the knowledge of user relations allows the algorithm to tackle the
data sparsity issue that is inherent to bandit settings.

Another fundamental point that can be used to integrate information from social networks is that,
social networks show large modularity measures (Newman, 2006; Borge-Holthoefer et al., 2011).
This implies that we have high density of edges within clusters and low density of edges between
clusters. As a result, users can be clustered based on the graph topology and a preference vector
can be learned for each cluster, substantially reducing the dimensionality of the problem. In other
words, discovering the clustering structure of users can reduce the computational burden of large
social networks. Consequently, there have been attempts in exploiting the clustered structures of
social networks in bandit algorithms (Gentile et al., 2014; Nguyen & Lauw, 2014; Yang & Toni,
2018; Li et al., 2019; Nourani-Koliji et al., 2023; Cheng et al., 2023).

Bandit meta-learning In contrast to the multi-task setting, meta learning deals with sequentially
arriving tasks that have to be learnt and generalizing the gained information to improve performance
for future tasks. Here, as in the multi-task setting, it is assumed that the tasks share some common
structure that is ought to be learnt and exploited. Bilaj et al. (2024) assume that the tasks are sam-
pled from a common distribution and concentrated around an affine subspace learned through PCA
algorithm. The resulting projection matrices could then be exploited to improve learning for new
tasks in an adapted UCB and Thompson sampling approach.
Other lines of work are Cella et al. (2020); Kveton et al. (2021); Basu et al. (2021), which learns
the mean of the distribution under the assumption that the covariance of the prior is known or Peleg
et al. (2022) which generalizes this assumption and attempts to learn the covariance as well.
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D ADDITIONAL EXPERIMENTAL DETAILS

D.1 ABOUT EXPERIMENTS OF THE MAIN PAPER

The experiments have been conducted with an intel i7 CPU with 12 2.6 GHz cores and 32 GB of
RAM. The two experiments with the highest number of tasks (200) and dimension (80) take about
8 hours, parallelized over the 12 cores.

To generate clusters, we generate |P| variables vii∈P from the uniform distribution, then we use
them to construct a categorical distribution with probabilities proportional to evi . These probabili-
ties defines the cluster proportions.
We included the algorithm of (Cella et al., 2023) as a baseline for the experiments to cover the par-
ticular case that the number of clusters is lower than the number of dimensions. Indeed, the cluster
structure of Θ can be mathematically written as Θ =

∑
C∈P 1Cθ

⊤
C , where 1C is the indicator vec-

tor of cluster C (coordinates equal to 1 on the nodes belonging to C and zeros elsewhere) and θC is
the true vector of every node in C. The range of Θ is equal to the span of 1C ;C ∈ P , implying that
its rank is at most equal to min(d, |P|). It will then satisfy the low-rank assumption for |P| < d.

D.2 SOLVING THE NETWORK LASSO PROBLEM

We implement the Primal-Dual algorithm proposed in Jung (2020) to solve the Network Lasso
problem but we do not vectorize the matrices (in the sense of stacking their columns into a vector),
which speeds up computation.

D.3 ALGEBRAIC CONNECTIVITY VS TOPOLOGICAL CENTRALITY INDEX

Given two fully connected graphs weightless G1 and G2 with size 100 each, we progressively link
them by edges, we construct the Laplcian L of the resulting graph G. We measure the minimum
topological centrality index min1≤i∈200(L

†
C)

−1
ii , and the algebraic connectivity, i.e. the minimum

non-null eigenvalue of L.

D.4 EXPERIMENTS WHERE THE NUMBER OF CLUSTERS IS HIGHER THAN THE DIMENSION
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Figure 2: Minimum Topological centrality index vs Algebraic Connectivity, for a graph formed by
connecting two fully connected initial graphs G1,G2 with size 100 each.
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(a) |V| = 200, |P| = 25, d = 10, p = 0.5, q = 0.05
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(b) |V| = 200, |P| = 20, d = 2, p = 0.5, q = 0.1

Figure 3: Synthetic data experiments showing the cumulative regret of Network Lasso Policy as
a function of time-steps compared to other baselines, for the case where the number of
clusters exceeds the dimension
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