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Abstract

We investigate the mechanisms behind three puzzling phenomena observed in1

transformer-based large language models (LLMs): attention sinks, value-state2

drains, and residual-state peaks, collectively referred to the extreme-token phenom-3

ena. First, we demonstrate that these phenomena also arise in simpler architec-4

tures—transformers with one to three layers—trained on a toy model, the Bigram-5

Backcopy (BB) task. In this setting, we identify an active-dormant mechanism that6

causes attention heads to become attention sinks for certain domain-specific inputs7

while remaining non-sinks for others. We further develop a precise theoretical8

characterization of the training dynamics that lead to these phenomena, revealing9

that they are driven by a mutual reinforcement mechanism. By small interventions,10

we demonstrate ways to avoid extreme-token phenomena during pre-training. Next,11

we extend our analysis to pre-trained LLMs, including Llama and OLMo, revealing12

that many attention heads are governed by a similar active-dormant mechanism as13

in the BB task. We further show that the same mutual reinforcement mechanism14

drives the emergence of extreme-token phenomena during LLM pre-training. Our15

results study the mechanisms behind extreme-token phenomena in both synthetic16

and real settings and offer potential mitigation strategies.17

1 Introduction18

Recent analyses of transformer-based open-source large language models (LLMs), such as GPT-219

[33], Llama-2 [41], Llama-3 [12], Mixtral [25], Pythia [4], and OLMo [18], have revealed several20

intriguing phenomena:21

• Attention sinks [45]: In many attention heads, the initial token consistently attracts a large22

proportion of attention weights. In certain LLMs, other special tokens, such as the delimiter23

token, also draw significant attention. We refer to these as sink tokens.24

• Value state drains [20]: The value states of sink tokens are consistently much smaller than25

those of other tokens.26

• Residual state peaks [37]: The intermediate representations of sink tokens, excluding those27

from the first and last layers, exhibit a significantly larger norm than other tokens.28

These phenomena often appear simultaneously, and we collectively refer to them as the extreme-29

token phenomena. Figure 1 illustrates these phenomena using a fixed prompt: “<bos> Summer30

is warm. Winter is cold.” in Llama-3.1-8B-Base, where the first token, <bos>, the beginning-of-31

sentence token, serves as the sink token. We note that the first token does not have to be <bos> to32

function as a sink token, as in GPT-2, where other tokens, being the initial token, can also serve this33
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(a) Attention weights at L24. (b) Norms of residual states. (c) Norms of value states.

Figure 1: Extreme-token phenomena in Llama 3.1-8B-Base. We evaluate the sentence “<bos> Summer is
warm. Winter is cold.” on the Llama 3.1-8B-Base model. Left (a): The value of the attention weights across
multiple heads at Layer 24. We demonstrate that there are attention sinks: the key state associated with the
<bos> token attracts the most attention from query states in these (and most) heads. Middle (b): The norm
of the (residual stream) hidden states, measured at the output of each layer. We observe a residual state peak
phenomenon: the <bos> token’s residual states have significantly larger norms than those of other tokens from
layers 1 to 30. Right (c): The distribution of the norms of value states corresponding to each token at all layers
and all heads. We observe the value state drain phenomenon: across many attention heads, the value state of the
<bos> token is much smaller than those of other tokens on average.

role. Furthermore, in models like Llama-2, a delimiter token can also act as the sink token. Despite34

the consistency of these observations, no prior work has provided a satisfying explanation for the35

mechanisms behind these phenomena. As a tentative explanation, Xiao et al. [45] suggested that36

models tend to dump unnecessary attention values to specific tokens.37

This work aims to demystify the extreme-token phenomena in LLMs. We show that the extreme-token38

phenomena are manifestations of the active-dormant mechanism of attention heads. We support39

this claim through studies on simplified transformer architectures and tasks, a dynamical theory of40

simplified models, and experiments on pre-trained LLMs. Our contributions are as follows:41

1. In Section 2, we train one-to-three-layer transformers on the Bigram-Backcopy (BB) task, which42

also exhibits extreme-token phenomena similar to those observed in LLMs. We show that43

attention sinks and value-state drains are driven by the active-dormant mechanism mechanism.44

Both theoretically and empirically, we demonstrate that the mutual reinforcement dynamics45

underpin the extreme-token phenomena: attention sinks and value-state drains reinforce each46

other, leading to a stable phase where all query tokens produce identical attention logits for the47

keys of extreme tokens. Empirical evidence further shows that residual state peaks result from48

the interaction between this mutual reinforcement mechanism and Adam.49

2. In Section 3, we demonstrate the active-dormant mechanism mechanism in LLMs by identifying50

an interpretable active-dormant head (Layer 16, Head 25 in Llama 2-7B-Base [41]), confirmed51

through causal intervention analyses. We also discover circuits in LLMs related to extreme52

tokens that partially align with models trained on the BB task. Examining the dynamics of53

OLMo-7B-0424 [18], we observe the same mutual reinforcement mechanism and stable phase,54

consistent with predictions from the BB task.55

3. Through causal interventions, we isolate the extreme-token phenomena to architecture and56

optimization strategy. Specifically, we show that replacing SoftMax with ReLU activations57

in attention heads can eliminate extreme-token phenomena in the BB task, and switching58

from Adam to SGD removes the residual-state peak phenomenon in the BB task. Our work59

demonstrates potential classes of modifications to mitigate extreme-token phenomena in LLMs.60

1.1 Notation61

We denote the SoftMax attention layer with a causal mask as attn, the MLP layer as mlp, and the62

transformer block as TF. The query, key, value states, and residuals of a token v are represented as63

Qryv , Keyv , Valv , and Resv , respectively, with the specific layer and head indicated in context. We64

use <bos> to refer to the "Beginning of Sequence" (bos) token. Throughout the paper, we employ65
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): We illustrate the data generation procedure
for the Bigram-Backcopy task, where we fix ’t’, ’e’, and the space character (’ ’) as trigger tokens. The BB task
samples bigram transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): We present
the attention weight heat map of a given prompt, with trigger tokens marked in red. Non-trigger tokens act as
attention sinks. Right (c): We plot the value state norms for the prompt, where the <bos> token has a tiny norm.

zero-indexing (i.e., attention head and layer indices start from 0 rather than 1) for consistency between66

code and writing.67

2 The Bigram-Backcopy Task68

The Bigram-Backcopy task consists of two sub-tasks: Bigram-transition and Backcopy. Each input69

sequence begins with a <bos> token, followed by tokens sampled according to a pre-determined70

bigram transition probability P. When some special trigger tokens are encountered, instead of71

sampling, the preceding token is copied to the next position. Following Bietti et al. [5], we select the72

transition P and the vocabulary V with |V| = V = 64 based on the estimated character-level bigram73

distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens T is fixed74

and consists of the |T | = 3 most frequent tokens in the unigram distribution. Thus, the non-trigger75

token set, V \ T , comprises 61 tokens.76

2.1 One-layer transformer shows attention sinks and value-state drains.77

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with only one softmax78

attn head and one mlp layer. Unless otherwise specified, the model is trained with Adam for 10, 00079

steps. We relegate the training details in Appendix C. Figure 2b shows that the trained transformer80

also exhibits the attention sink phenomenon, where the <bos> token captures a significant proportion81

of the attention weights. More importantly, the attention weights reveal interpretable patterns: all82

non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated on83

their preceding positions. Furthermore, Figure 2c reveals a value state drain phenomenon similar84

to LLMs, indicating that on non-trigger tokens, the attn head adds a minimal value to the residual85

stream.86

The active-dormant mechanism of the attention head: Inspired by the observed interpretable87

attention weight patterns, we propose the active-dormant mechanism. For any given token, an88

attention head is considered active if it contributes significantly to the residual state, and dormant if89

its contribution is minimal. As illustrated in Figure 2b, trained on the BB task, the attention head is90

active on trigger tokens and dormant on non-trigger tokens.91

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head92

takes care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains signifi-93

cantly better than a random guess, but the bigram loss degrades to near-random levels. Conversely,94

when the attn layer is zeroed out, the backcopy loss becomes worse than a random guess, while the95

bigram loss remains unaffected. This suggests that on trigger tokens, the attn head is active and96

handles the backcopy task, whereas on non-trigger tokens, the attn head is dormant, allowing the97

mlp layer to handle the Bigram task. We summarize the active-dormant mechanism of the attn head98

in Claim 1.99

Claim 1. In the BB task, the attn head demonstrates active-dormant mechanism, alternating100

between two phases:101
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(a) Excess risk after interventions
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Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
We display the excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various
interventions. Right (b): We plot the excess risks, attention weights, attention logits, and value state norms
for the <bos> token along the training dynamics. Each curve is rescaled to fall within a 0 to 1 range, though
the trends remain consistent without rescaling. On the right side of (b), the horizontal axis is logarithmically
scaled. The logit<bos> curve denotes the mean of attention logits from all given non-trigger query tokens v on
the <bos> token, normalized by the mean of attention logits on other tokens. The shaded area gives the 90%
confidence interval on the distribution over all non-trigger tokens.
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Figure 4: The simplified transformer architecture with one mlp-layer and one attn head in parallel. The
predicted probability is the softmax of the output. Assume that the trainable variables are (α,β) ∈ RV × RV ,
which stands for the attention logits and value states of the <bos> tokens.

• Dormant phase: On non-trigger tokens, the attn head puts dominant weights to the <bos> to-102

ken, adding minimal value to the residual stream, having little impact on the model’s output.103

• Active phase: On trigger tokens, the attn head puts dominant weights to the relevant context104

tokens, adding substantial value states to the residual stream, resulting in a significant impact105

on the model’s output.106

The growth of attention logits on the <bos> token and the decrease in the norm of its value107

state. Figure 3b displays the training dynamics of excess risks, attention weights, attention logits,108

and value state norms for the <bos> token. All values are rescaled to highlight the trends. The109

backcopy excess risk and the bigram excess risk both drop to zero within the first 1000 steps. As the110

backcopy risk decreases, the attention weights on the <bos> token increase, suggesting a relationship111

between the formation of attention sinks and the functional development of the attention heads. For112

each token vn at position n in the prompt, we compute logit<bos> = meann[⟨Qryvn , Key<bos>⟩ −113

meani(⟨Qryvn , Keyvi)⟩], which serves as a progress measure for attention sinks. Even after the114

attention weights on the <bos> token is nearly 1, logit<bos> continues to increase. Simultaneously,115

the norm of the value state of the <bos> token continues to decrease to a small value.116

2.2 Analysis of a minimally-sufficient transformer architecture117

In this section, we analyze the training dynamics on the BB task by simplifying the architecture118

while preserving the attention sinks and value state drains phenomena. Let V denote the set of all119

tokens except the <bos> token, and T denote the set of all trigger tokens. Given any v ∈ V , we120

denote pvk = P(k|v) to be the next token Markov transition probability, and pv = [pv1, . . . , pvV ]121
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be the row vector in the simplex. We assume that the tokens are embedded into V -dimensional122

space using one-hot encoding, and for notation simplicity, we abuse v to stand for its one-hot123

encoding vector ev ∈ RV which is a row vector. The predicted probability of the n + 1 token is124

given by SoftMax(TF([<bos>; v1:n−1; v])n), where transformer architecture is given by TF(·) =125

attn(·) + mlp(·). Here attn(·) = SoftMax(mask(Qry(·)Key(·)⊤))Val(·) and (Qry, Key, Val) are126

linear maps from RV → RV . Since the mlp layer could handle the Bigram task, we assume that mlp127

outputs the Markov transition probabilities pv on non-trigger tokens v and zero on trigger tokens. For128

the attn head, we assume that the attention logits on the <bos> key-token are (αv1 ; . . . ;αvn), the129

attention logits on any trigger query-token are (0, . . . , λ, 0) where the second last coordinate is λ, and130

assume other logits are zero. Assume that the value state of <bos> is β ∈ RV , and the value state of131

each non-trigger token v is a one-hot encoding vector ev multiplied by ξv ≥ 0. Figure 4 illustrates this132

simplified transformer architecture. These assumptions are summarized in the following equations.133

mlp(v) = logpv · 1{v ̸∈ T } for v ∈ V,
⟨Qry(v), Key(<bos>)⟩ = αv · 1{v ̸∈ T } for v ∈ V,
⟨Qry(v), Key(v′)⟩ = λ · 1{v ∈ T , v′ is the former token of v} for v, v′ ∈ V,
Val(v) = ξvev with ξv = 0 for v ∈ T , and ξv ≥ 0 for v ∈ V \ T .

(1)

Theorem 2 demonstrates the existence of a transformer structure that is equivalent to the simplified134

version. We relegate the proof in Section B.135

Theorem 2. For any parameters (α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈ R), there is a one-layer136

transformer (mlp, Qry, Key, Val) such that Eq. (1) holds. The transformer gives ground truth137

transition of the BB model if minv∈V αv → ∞, minv∈V ξv → ∞, λ → ∞, and β = 0.138

Throughout we adopt Eq. (1) as our assumption. We further define Wk =
∑n

i=1 1{vi = k},139

W = (W1, . . . ,WV ), and W =
∑

k∈V Wk = n. Then for a non-trigger token v, the output of140

attention layer with input sequence [<bos>; v1:n−1; v] gives (denoting ξk = 0 for k ∈ T )141

TF([<bos>; v1:n−1; v])n = logpv +
eαv

eαv +W
β +

V∑
k=1

Wkξk
eαv +W

· ek.

Therefore, on the non-trigger token v, the cross-entropy loss between the true Markov transition pv142

and predicted transition SoftMax(TF([v1:n−1; v])n) is given by143

lossv(αv,β) =

V∑
k=1

pvk

{
log
[ V∑

i=1

pvi exp
(eαvβi +Wiξi

eαv +W

)]
− eαvβk +Wkξk

eαv +W
− log pvk

}
.

For simplicity, we neglect the loss on trigger tokens and assume that ({Wi}i∈[V ],W ) are fixed144

across different positions in the input sequences1, and consider the total loss to be the losses on each145

non-trigger token averaged with its proportion in the stable distribution {πv}v∈V , given by146

loss(α,β) =
∑

v∈V\T

πv lossv(αv,β).

Theorem 3. Consider the gradient flow of the loss function loss(α,β). Assume ξv ≥ 0 for any v,147

and {Wi · ξi}i∈V are not all equal.148

• (Attention logits grow logarithmically reinforced by small value states) Fix β = β · 1 for a149

constant β, and consider the gradient flow over α. With any initial value α(0), there exists r(t)150

with norm uniformly bounded in time such that151

α(t) =
1

2
log t · 1+ r(t).

• (Value state shrinks to a small constant vector reinforced by large attention logits) Fix α = α · 1152

for a constant α, and define β(0) = V −1[
∑

v βv(0)]. Consider the gradient flow over β. As153

t → ∞, we have154

β(t) → β⋆ = β(0) · 1− e−α ·W ◦ ξ.
1We note that [34] makes similar simplification in analyzing induction heads.
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• (Stable phase: identical attention logits) Consider the gradient flow over variables (α,β). Any155

vector of the following form156

α = α · 1, β = c · 1− e−α ·W ◦ ξ, α, c ∈ R

is a stationary point. These are all global minimizers of loss(α,β).157

The proof of Theorem 3 is provided in Appendix B.2. We give three key remarks: (1) As αv → ∞, a158

Taylor expansion of the gradient ∂loss/∂αv suggests that dαv/dt ∝ exp(−2αv), which leads to the159

logarithmic growth of αv. Similar logarithmic growth exists in the literature under different setups160

[39, 22]. (2) For a fixed α = α1, under additional assumptions on the initial value β(0), we can161

prove a linear convergence for β. (3) The stable phase described in Theorem 3 seems to imply that162

the system could be stable without attention sinks, as it does not require α to be large. However, in163

practice, models trained on the BB task tend to converge to a stable phase where α is relatively large.164

The Formation of Attention Sinks and Value State Drains. When β = 0, the attention logits on165

the <bos> token increase monotonically. This demonstrates that the presence of a small value state166

of the <bos> token reinforces the formation of attention sinks. When α = α · 1, with α sufficiently167

large, β(t) → β(0)1. Given the random Gaussian initialization, ∥β(0)1∥2 ≈ ∥β(0)∥2/
√
d, where168

d is the hidden dimension. This demonstrates that the presence of attention sinks reinforces the169

formation of value states drains.170

Experimental verification. Revisiting Figure 3b, which shows the dynamics of a full transformer171

model trained with Adam, we observe that both logit<bos> and ∥Val<bos>∥2 exhibit growth rates172

consistent with Theorem 3. The logit<bos> is equivalent to α in this context, as all other attention173

logits are assumed to be zero under the setup of Theorem 3. When plotted on a logarithmic scale, the174

logit<bos> curve grows approximately linearly between 1,000 and 10,000 steps, then accelerates before175

stabilizing around 100,000 steps. Meanwhile, the norm of the value state decreases monotonically.176

The simultaneous increase in attention weights and decrease in value-state norms suggest that these177

phases occur together during the training process. To further validate Theorem 3, we construct a178

simplified model that aligns with Equ. (1), and train the parameters (α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈179

R) with Adam. The resulting training curves are similar to those of a one-layer transformer, also180

exhibiting the mutual reinforcement mechanism.181

Combining theoretical insights and experimental evidence, we summarize the formation of attention182

sinks and value state drains as a mutual reinforcement mechanism.183

Claim 4 (Mutual reinforcement mechanism). For any attention head given a specific prompt, if184

the model can accurately predict the next token without the attention head, but adding any value185

state from previous tokens worsens the prediction, the attention head becomes dormant, forming an186

attention sink, leading to the mutual reinforcement of attention sinks and value state drains:187

1. The SoftMax mechanism pushes the attention weights to the value state drains, reinforcing188

attention sinks.189

2. The attention sinks on the value state drains further pushes down the value state, reinforcing190

value state drains.191

The mutual reinforcement stabilizes at the phase when all tokens have identical large attention192

logits on the value state drains. Finally, due to the causal mask, the training dynamics favor the193

<bos> token to become an extreme token.194

We expect that the formation of extreme tokens in LLMs follows a similar mutual reinforcement195

mechanism. Indeed, although Theorem 3 focuses on a specific BB task with a simplified architecture196

and loss function, the same principles can be applied to more general scenarios. Specifically, for197

an attention head attn, we assume that (LLM \ attn)(v) = log pv, meaning that the LLM, even198

if we zeroed out attn, can still output an accurate next token prediction. Furthermore, we assume199

Val(v) = ξvev, indicating that adding the value state from any previous tokens performs a specific200

function. Under these assumptions, we expect the same theoretical results to apply to LLMs. In201

Section 3, we will explore the formation of attention sinks and value state drains along the training202

dynamics of LLMs, where we find empirical evidence that aligns with the theory.203
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Figure 5: Experiments on massive norms with multi-layer transformers trained on the Bigram-Backcopy
task. Left (a): We present the training dynamics of the ReLU attention for the first 1,000 steps. Middle (b):
We plot the intervention results on the attn+mlp+attn+mlp+mlp structure. Right (c): We plot the evolution
of massive norms in a three-layer transformer trained with Adam, SGD, and using a ReLU attention structure.
Notably, only the three-layer model with softmax attention trained using Adam results in the emergence of
residual state peaks.

Replacing SoftMax by ReLU attention removes extreme-token phenomena. As an implication204

of our theory, we predict that training with ReLU attention instead of SoftMax attention will eliminate205

the extreme-token phenomena. Without the SoftMax, the dynamics no longer push the attention206

weights on the <bos> token, which remains zero along the training dynamics. Without attention sink,207

the dynamics no longer push down the value state norm, and the mutual reinforcement mechanism208

breaks. Figure 5a illustrates the training experiment on the BB task replacing SoftMax with ReLU,209

showing that both the Bigram and Backcopy risk match the Bayes risk after 200 training steps, but the210

attention logits of <bos> do not grow, and the value state does not shrink, confirming the prediction.211

2.3 The emergence of residual state peaks212

The residual state peaks require a three-layer structure. No residual state peaks appear in a213

one-layer transformer trained on the BB task. We train various models on the BB task and track the214

<bos> token’s residual state norms after layer 0. We relegate the experimental results to Appendix215

C. We find that a three-layer transformer is enough to produce residual state peaks. If we allow to216

skip some mlp or attn layers, the “attn+mlp+attn+mlp+mlp” combination becomes the simplest217

model that produces residual state peaks (Figure 10). Circuit analysis also reveals that LLMs typically218

add a large vector in the first layer and cancel it in the last layer. We propose that the add-then-cancel219

mechanism is essential for residual state peaks and requires at least three layers.220

Residual state peak reinforces attention sinks and value state drains in trained models. Figure221

5b presents the intervention results on the “‘attn+mlp+attn+mlp+mlp” model. We recenter the222

∥Res<bos>∥2 by subtracting the average norm of other tokens from the <bos> token norm. The223

logit<bos> and ∥Val<bos>∥ are computed in layer 1 following the same ways as in Figure 3b. When224

layer 0 is zeroed out, the residual norm returns to normal, attention logits decrease, and the value225

state norm rises. It verifies that the residual state peak contributes to the attention sink and value state226

drain phenomenon in the trained transformer.227

Replacing Adam by SGD removes the linear growth of residual state norm. Figure 5c shows228

the <bos>’s residual state norms at the output of layer 0 of three-layer transformers with different229

configurations. Adam leads to a linear increase in residual norms. In contrast, with SGD, attention230

sinks persist, but residual state peaks vanish. The ReLU attention, which lacks the active-dormant231

mechanism, shows no residual state peaks.232

3 Extending Predictions of the BB Model to LLMs233

In this section, we examine extreme-token phenomena in open-source pre-trained LLMs. In Sec-234

tion 3.1, we analyze the static behavior of these phenomena in Llama 2-7B-Base [41], confirming235

that certain attention heads in LLMs exhibit both active and dormant phases. Notably, we identify236

a specific head that is active on GitHub samples but dormant on Wikipedia samples, illustrating237
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the active-dormant mechanism. In Section 3.2, we explore the dynamic behavior of extreme-token238

phenomena during the pre-training process of OLMo-7B [18]. We show that the attention logits,239

value state norms, and residual state norms of the sink token(s) in OLMo mirror their behavior in the240

simpler BB model. Specifically, the simultaneous formation of attention sinks and value state drains241

gives evidence for the mutual reinforcement mechanism.242

3.1 Active-Dormant Mechanism in LLMs243

Our study of the BB model leads to the following prediction about the extreme-token phenomena,244

which we hypothesize also applies to LLMs:245

Attention heads are controlled by an active-dormant mechanism. Attention sinks and value state246

drains indicate that an attention head is in dormant phase.247

This hypothesis suggests that in LLMs, attention heads become sinks or not depending on the248

context: the value vector can be totally non-informative towards picking likely next tokens for token249

distributions (e.g., tasks) in a particular context but not in others. This is a concrete instantiation250

vis-a-vis large-scale LLMs of the active-dormant dichotomy in Section 2, where this phenomenon251

was shown to occur in the context of small next-token predictors and the BB task.252

Accordingly, we strive to find instances of heads in pretrained LLMs which satisfy this principle, i.e.,253

which are dormant on some domains and active on others. In Figure 6, we show a particular attention254

head – Layer 16 Head 25 of Llama 2-7B-Base [41] — which has an extremely clear active-dormant255

distinction across two distinct contexts (e.g., tokens from RedPajama [8] drawn from the GitHub256

subset versus the Wikipedia subset). While there are many such attention heads which are context-257

dependent — we provide some in Appendix D — we demonstrate this one because the conditions258

under which it is active are simple and interpretable, while others have more involved or complex259

criteria to become active. We observe that this attention head is dormant (i.e., an attention sink) on260

samples from Wikipedia, which more closely resemble prose, and active (i.e., not an attention sink)261

on samples from Github, which more closely resemble code. We also observe that this attention262

head, in general, contributes significantly to the performance of the model on code sequences, but has263

negligible impact on the performance of the model on prose sequences (Figure 6b). This is a further264

justification, from a practical perspective, of why this head is sometimes dormant and sometimes265

active — in some contexts we can ablate it from the model entirely with no effect, but in other266

contexts ablating the head leads to huge performance drops. We include more detail in Appendix E,267

where we extract a circuit for extreme-token phenomena in order to analyze the dormant-active268

mechanism and its interaction with the semantics of the input tokens.269

3.2 Training Dynamics of Extreme-Token Phenomena in LLMs270

Our study of the BB model leads to the following prediction about the dynamical behavior of the271

extreme-token phenomena, which we hypothesize also applies to LLMs:272

The attention heads go through a attention-increasing and value-state-shrinking phase. They then go273

into a stable phase, with identical attention logits on the <bos> token. Meanwhile, the residual state274

norm of the <bos> token linearly increases during pre-training.275

We confirm these predictions below. To observe the training dynamics of a large-scale LLM, we use276

the setup of OLMo-7B-0424 [18] (henceforth just referred to as OLMo), who have open-sourced277

weights at several steps during their training run. For our analysis, we inspect OLMo at a variety of278

training steps: every 500 steps throughout the first 10,000 steps, then 25,000 steps, then 50,000 steps,279

then every 50,000 steps until 449,000 steps (which is roughly the end of their training). Again, we280

use the input “Summer is warm. Winter is cold.”.2 Notice that in this prompt, token 3, namely “.”,281

is not very semantically meaningful; it becomes a sink token along with token 0 (c.f. Section 3.1,282

Appendix E, Appendix F.2).283

In Figure 7, we confirm that attention heads go through an attention-increasing and value-state-284

shrinking phase, and that the residual state norm of the <bos> token increases linearly during285

2Note that OLMo does not have a <bos> token, but attention sinks still form in the majority of heads. In
particular, the first token behaves similarly to an attention sink. We discuss this in Appendix F.2.
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(a) Attention weights for GitHub/Wikipedia data. (b) Zero-out-head intervention outcomes.
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Figure 6: Attention heads in LLMs are active on some domains and dormant on others. For example, on
Llama 2-7B-Base, we identify that Layer 16 Head 25 is active when the context contains many tokens related to
programming, and dormant in other contexts such as prose. We use RedPajama-1T [8] Wikipedia and Github
subsets for our data in this figure, truncating all samples to 64 tokens for demonstration purposes. Left: Sample
weights from four randomly selected samples from each domain. Right: Result of an intervention study, i.e.,
change in cross-entropy of the input sequence when the attention head’s output (concretely, the value states for
this head) is manually set to zero, across sequences in both domains. We observe that the model’s performance,
measured by cross-entropy, strongly depends on the output of the attention head on coding data.

pre-training. We show that, at Layer 24 of OLMo, the average attention on extreme tokens (token286

0 and token 3) increases rapidly at the beginning of training and converges to a constant, while the287

value state norms of extreme tokens decrease rapidly. Also, the residual states of extreme tokens288

also increase linearly, while the rest quickly converge. In Figure 8 we show that attention heads289

converge to a stable phase, and that all logits corresponding to the first token’s value states (i.e., all290

tokens’ value of logit0, except possibly the value of logit0 corresponding to token 0 itself) have291

similar distributions. These confirm our dynamics insights from the BB model (c.f. Figure 3).292

(a) Attention sink dynamics (L24). (b) Value state dynamics (L24). (c) Residual state dynamics (L24).

Figure 7: Attention-increasing and value state-decreasing phase, and residual state norms. Left (a): We
plot the total attention mass on extreme tokens 0 and 3 at Layer 24 and averaged over all attention heads, during
OLMo training. We observe that it increases rapidly and then maintains its value in [0.9, 1] for the rest of
training, which is in line with our predictions. Middle (b): We plot the norm of each token’s value state at Layer
24 during training, averaged over all heads. We observe that the value states of all tokens shrink initially and
then converge, while the value states of the extreme tokens shrink to much lower than all other tokens. Right (c):
We plot the norm of each token’s residual state at Layer 24 during training. We observe that the residual state of
token 0 increases linearly in magnitude during training.

4 Conclusion293

In this work, we investigated the extreme-token phenomena, namely attention sinks, value state drains,294

and residual state peaks. We analyzed a simple evocative model called the Bigram-Backcopy task,295

and theoretically and empirically showed that it exhibited the same extreme-token phenomena as in296
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(a) Logit dynamics (L24). (b) Logit statics (L24).

Figure 8: Stable phase. Left (a): We plot the normalized attention logits of all tokens’ query states against token
0’s key state during training. We observe that the logits of all non-extreme tokens’ query states against token 0’s
key state in OLMo’s Layer 24 are stable for a large fraction of the training run, after an initialization period.
This echoes the stable phase prediction made in the BB model in Section 2. Note that this prediction makes no
guarantees about the logit corresponding to the zeroth query token and zeroth key token, which will be set to
1 by the softmax and so its behavior is irrelevant for prediction. Also note that we use normalization, similar
to Section 2, to make all terms comparable; namely we have logiti = ⟨Qryi, Key0⟩ − meanj(⟨Qryi, Keyj⟩).
Right (b): For this experiment, we generate 128 randomly sampled test tokens with IDs from 100 to 50000 in
the OLMo tokenizer. We append each token separately to the test phrase “Summer is warm. Winter is cold.”,
creating 128 different samples, which we feed to the LLM to record the model behavior. We plot the distribution
of (un-normalized) dot products ⟨Qrytest, Keyj⟩ across all heads at Layer 24 and all test tokens. We observe that
logits of all regular tokens have very similar distributions, and the distributions of the logits corresponding to
extreme tokens 0 and 3 are also similar. This confirms the hypothesis that at the end of training, attention heads
converge to the stable phase, with similar logits on extreme tokens.

LLMs. Based on the Bigram-Backcopy task, we made several detailed predictions about the behavior297

of extreme-token phenomena in LLMs. In particular, we identified the active-dormant mechanism for298

attention heads in both the BB model and LLMs, of which attention sinks and value state drains are299

indicators, and a mutual reinforcement mechanism by which these phenomena are induced during300

pretraining. Using intuition about these mechanisms, we applied minor interventions to the model301

architecture and optimization procedure which disabled extreme-token phenomena within the BB302

model. Overall, our work uncovers the causes of extreme-token phenomena and points to possible303

pathways to eliminate them during LLM training.304

We believe the most compelling direction for future work in this area is as follows. Specifically,305

one could build more performant and scalable interventions which would eliminate extreme-token306

phenomena and observe the effect on training dynamics and the finished model. This would make it307

easier to understand whether extreme token phenomena are necessary to build a powerful transformer-308

based LLM, whether they are merely helpful, or whether they are completely incidental to the309

particular architecture and optimization algorithms used by the community.310
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A Related works420

Several studies independently identified the “attention sink” phenomenon in language models and421

vision transformers, where attention weights were found to be concentrated on a few tokens [45,422

9, 22, 47, 13, 11]. Recent research has provided more detailed characterizations of this attention423

pattern and the attention sink phenomenon [16, 37]. Sun et al. [37] attributed the attention sink to424

the massive activation of the hidden representations of the corresponding tokens. Both Sun et al.425

[37] and Zhai et al. [47] discussed methods for mitigating the attention sink by modifying the model426

and training recipes. Additionally, recent studies have leveraged the attention sink phenomenon to427

develop improved quantization and more efficient inference algorithms [27, 7, 46, 36].428

The dynamics of transformers are studied under various simplifications, including linear attention429

structures [48, 2], reparametrizations [38], NTK [10], often in the setting of in-context linear430

regressions [1, 44, 49] and structured sequence [5, 31, 39]. Notably, Zhang, Frei, and Bartlett [48]431

proves that a one-layer linear attention head trained with gradient descent converges to a model that432

implements the in-context linear regression algorithm. [24, 26] extend this to non-linear settings. [5]433

shows the fast learning of bigram memorization and the slow development of in-context abilities.434

[39] shows the scan and snap dynamics in reparametrized one-layer transformers. [34] simplifies the435

structure of the induction head, showing the connection between the sharp transitions of in-context436

learning dynamics and the nested nonlinearities of multi-layer operations.437

Mechanistic interpretability is a growing field focused on understanding the internal mechanisms of438

language models in solving specific tasks [14, 17, 29, 30, 32, 5, 43, 15, 40]. This includes mechanisms439

like the induction head and function vector for in-context learning [14, 32, 40, 5], the binding ID440

mechanism for binding tasks [15], association-storage mechanisms for factual identification tasks441

[29], and a complete circuit for indirect object identification tasks [43]. The task addressed in this442

paper is closely related to [5], which explored synthetic tasks where tokens are generated from either443

global or context-specific bigram distributions. Several other studies have also used synthetic tasks to444

investigate neural network mechanisms [6, 28, 30, 3, 51, 19, 50].445

We note that Gurnee et al. [21] proposed Attention Deactivation Neurons, a concept similar to446

Dormant Attention Heads. Gurnee et al. [21] hypothesized that when such a head attends to the first447

token, it indicates that the head is deactivated and has minimal effect.448

B Proofs449

Since we drop the trigger tokens in the loss function, we neglect T throughout the proof for notational450

convenience, assuming that V consists of only non-trigger tokens. We provide new notations which451

are frequently used in the proofs. Define the full bigram transition probability.452

P =

p11 . . . p1V
...

. . .
...

pV 1 . . . pV V

 =

p⊤
1
...

p⊤
V

 . (2)

Given token v, define the predicted probability, which is the logit output passed through the softmax453

activation454

qv = SoftMax(TF([<bos>; v1:n−1; v])n). (3)
Similarly, define the full output probability matrix.455

Q =

q11 . . . q1V
...

. . .
...

qV 1 . . . qV V

 =

q⊤
1
...

q⊤
V

 . (4)

Given any vector u = [u1; . . . ;ud], define the corresponding diagonal matrix as456

diag(u) =


u1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 ud

 .
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Define457

GQ
v = diag(qv)− qvq

⊤
v GQ

v = diag(pv)− pvp
⊤
v .

Denote z = W · β −W ◦ ξ. We present a technical lemma.458

Lemma 5. The matrices GP
v and GQ

v are positive semi-definite for any v.459

Proof. Since we have that
∑V

k=1 pvk = 1 and
∑V

k=1 qvk = 1 for any v,460

(GP
v )ii = pi − p2i = pi(

∑
k ̸=i

pk) ≥
∑
k ̸=i

|(GP
v )ik|

(GQ
v )ii = qi − q2i = qi(

∑
k ̸=i

qk) ≥
∑
k ̸=i

|(GQ
v )ik|.

This shows that both GP
v and GQ

v are diagonally dominant matrices. By Corollary 6.2.27 in Horn461

and Johnson [23], they are positive semi-definite.462

B.1 Proof of Theorem 2463

We denote the hidden dimension as d and the sequence length as N . We begin with the assumption464

regarding the transformer’s positional embedding:465

Assumption A. For any token v and position i, assume that the encoding combined with the positional466

embedding ensures that {ebd(vi)} is linearly independent.467

Assumption A requires that d ≥ V N . Given the fact that there are O(exp(d)) approximately linearly468

independent vectors for large d [42], it is possible to apply approximation theory to avoid Assumption469

A. However, since Assumption A pertains only to the construction of λ for trigger tokens and is470

unrelated to Theorem 3, we adopt it to simplify the proof of Theorem 2.471

Proof. Consider vectors ui ∈ Rd, i ∈ [N ] such that u⊤
i uj = 0, i ̸= j, and u⊤

i ebd(vj) for any472

v ∈ V and i, j ∈ [N ]. Adopting Assumption A, there exists a matrix Qry such that473

Qry(ebd(vi)) = λui−1 for vi ∈ T , i > 1,

Qry(ebd(vi)) = αviu0 for vi ∈ V \ T , i > 0.
(5)

Define the corresponding key matrix.474

Key(ebd(vi)) = ui for vi ∈ V, i > 0,

Key(ebd(<bos>)) = u0.
(6)

There exists a value matrix Val such that475

Val(ebd(vi)) = 0 for vi ∈ T , i > 1,

Val(ebd(vi)) = ξviui for vi ∈ V \ T , i > 0,

Val(ebd(<bos>)) = β.

(7)

Further define the matrix M that satisfies476

M(ebd(vi)) = logpvi · 1{vi ̸∈ T } for vi ∈ V, i ∈ [N ],

M(ui) = ei for i ∈ [N ].
(8)

Setting mlp(·) = ReLU(M(·)), we can then verify that the residual connection gives that477

TF([<bos>; v1:n−1; vn]) = mlp(ebd(vn) + attn(ebd(vn))), which is equivalent to the simplified478

model.479

When minv∈V αv → ∞, minv∈V ξv → ∞, λ → ∞, and β = 0, if vn ∈ T ,480

SoftMax[TF([<bos>; v1:n−1; vn])] = δvn−1 . If vn ∈ V \ T , SoftMax[TF([<bos>; v1:n−1; vn])] =481

pvn . All next-token probabilities match those in the data-generating procedure, aligning with the482

oracle algorithm.483
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B.2 The stable phase in Theorem 3484

Lemma 6 computes the gradient of Q.485

Lemma 6. We have486

∂qik
∂αv

=
1{i = v}qikeαi

(eαi +W )2

[
Wβk −Wkξk −

V∑
j=1

qij(Wβj −Wjξj)
]
,

∂qik
∂βv

=
eαi

eαi +W
[qik1{k = v} − qikqiv].

Furthermore,487
V∑

v=1

∂qik
∂αv

= 0,

V∑
v=1

∂qik
∂βv

= 0.

Proof. We repeatedly use the following two facts:488

∂
{
exp

[
Wkξk+eαiβk

eαi+W

]}
∂αv

=
eαv (Wαk −Wkξk)

(eαi +W )2
exp

[Wkξk + eαiβk

eαi +W

]
,

∂
{
exp

[
Wkξk+eαiβk

eαi+W

]}
∂βv

=
1{i = v}eαi

eαi +W
exp

[Wkξk + eαiβk

eαi +W

]
.

When i ̸= v, qik does not include αv , making the gradients as zero. When i = v, we have489

∂qvk
∂αv

= qvke
αv

[Wβk −Wkξk
(eαv +W )2

]
−

qvk
∑V

i=1 pvie
αv

[
Wβi−Wiξi
(eαv+W )2

]
exp

[
Wiξi+eαvβi

eαv+W

]
∑V

i=1 pvi exp
[
Wiξi+eαvβi

eαv+W

]
=

eαv

(eαv +W )2

{
qvk[Wβk −Wkξk]− qvk

V∑
j=1

q⊤vj(Wαj −Wjξj)
}
,

and490

∂qik
∂βv

=
[ eαi

eαi +W

]
qik1{k = v} −

[
eαi

eαi+W

]
piv exp

[
Wvξv+eαiβv

eαi+W

]
piv exp

[
Wkξk+eαiβk

eαi+W

]
(∑V

j=1 pjvj exp
[
Wjξj+eαiβj

eαi+W

])2
=
[ eαi

eαi +W

]
[qik1{k = v} − qikqiv].

We can verify that491

V∑
v=1

∂qik
∂αv

=
eαv

(eαv +W )2

V∑
v=1

{
qvk[Wβk −Wkξk]− qvk

V∑
j=1

q⊤vj(Wαj −Wjξj)
}

=
eαv

(eαv +W )2

{ V∑
v=1

qvk[Wβk −Wkξk]−
V∑

j=1

q⊤vj(Wαj −Wjξj)
}

= 0,

and492

V∑
v=1

∂qik
∂βv

=
[ eαi

eαi +W

] V∑
v=1

[qik1{k = v} − qikqiv]

=
[ eαi

eαi +W

]
[qiv − qiv]

= 0.

This finishes the proof of Lemma 6.493
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Proposition 7 computes the gradient of loss with respect to α and β, giving the gradient flow.494

Proposition 7. The gradient flow of optimizing loss(α,β) is given by495

α̇v(t) =
πve

αv

(eαv +W )2

V∑
i=1

(pvi − qvi)(Wβi −Wiξi),

β̇v(t) =

V∑
k=1

{πke
αk [pkv − qkv]

eαk+W

}
.

Proof. The gradient flow gives that496

α̇v(t) = −∂loss(α,β)

∂αv
, and β̇v(t) = −∂loss(α,β)

∂βv
.

Taking the derivative of loss(α,β) gives that497

∂loss(α,β)

∂αv
= πv

V∑
k=1

pvk · −1

qvi
· ∂qvi
∂αv

=
πve

αv

(eαv +W )2

{ V∑
i=1

qvi[Wβi −Wiξi]−
V∑

k=1

pvk[Wβk −Wkξk]
}

=
πve

αv

(eαv +W )2

V∑
k=1

{
[qvk − pvk][Wβk −Wkξk]

}
.

Similarly, we have that498

∂loss(α,β)

∂βv
=

V∑
j=1

πj

V∑
k=1

pjk

{ eαjqjv
eαj +W

− eαj1{k = v}
eαj +W

}

=

V∑
j=1

{πje
αj [qjv − pjv]

eαj +W

}
.

This proves Proposition 7.499

Theorem 8 (Restatement the stable phase part in Theorem 3). Consider the gradient flow of optimizing500

loss(α,β). The gradient flow has sink stationary points501

α⋆ = α1, β⋆ = c · 1− e−α ·W ◦ ξ.

Proof. When α = α⋆ and β = β⋆,502

qvi =
pvi exp

[
Wiξi+eαβi

eα+W

]
∑V

k=1 pvk exp
[
Wkξk+eαβk

eα+W

]
=

pvi exp
[

c
eα+W

]
∑V

k=1 pvk exp
[

c
eα+W

]
= pvi.

Take qvi’s into ∂loss(α,β)/∂α and ∂loss(α,β)/∂β.503

∂loss(α,β)

∂αv

∣∣∣
α⋆,β⋆

=
πve

αv

(eαv +W )2

V∑
k=1

{
(qvk − pvk)[Wβk −Wkξk]

}
= 0,

∂loss(α,β)

∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{πke
αk [qkv − pkv]

eαk +W

}
= 0.
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This shows that the given points are stationary points. We further compute the second-order derivative504

using Lemma 6.505

∂2loss(α,β)

∂αi∂αv

∣∣∣
α⋆,β⋆

= 1{v = i} · πve
α

(eα +W )2

V∑
k=1

{∂qik
∂αv

[Wβk −Wkξk]
}

= 1{v = i} · −πve
2α

(eα +W )4

{ V∑
k=1

qik(e
−αW +Wk)

2ξ2k −
[ V∑
k=1

qik(e
−αW +Wk)ξk

]2}
,

= 1{v = i} · −πve
2α

(eα +W )4

{ V∑
k=1

pik(e
−αW +Wk)

2ξ2k −
[ V∑
k=1

pik(e
−αW +Wk)ξk

]2}
.

where in the second line, we take β⋆
k = c− e−αξk and use that

∑V
k=1 ∂qik/∂αv = 0. In the last line,506

we take Q = P. Similarly, we compute the gradients with respect to αi and βv .507

∂2loss(α,β)

∂αi∂βv

∣∣∣
α⋆,β⋆

=
πie

α

(eα +W )2

V∑
k=1

{∂qik
∂βv

[Wβk −Wkξk]
}

=
pivπie

2α

(eα +W )3

{
− (e−αW +Wk)ξk +

V∑
k=1

pik(e
−αW +Wk)ξk

}
.

With the same manner, we compute the gradients with respect to βi and βv .508

∂2loss(α,β)

∂βi∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{∂qki
∂βv

πke
α

eα +W

}
=

e2α

(eα +W )2

V∑
k=1

[1{v = i}pkv − pkipkv].

Define z = [z1; . . . ; zV ] so that zk = −(e−αW +Wk)ξk. Combining above computations gives that509

Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) ∇α∇β loss(α,β)
∇β∇αloss(α,β) ∇2

αloss(α,β)

)
,

with510

∇2
αloss(α,β) =

e2α

(eα +W )4
diag

{
π ◦ [z⊤GP

1 z; . . . ;G
P
V z]
}
,

∇α∇β loss(α,β) =
e2α

(eα +W )3
diag

{
π
}
[z⊤GP

1 ; . . . ; z
⊤GP

V ],

∇2
β loss(α,β) =

e2α

(eα +W )2

V∑
k=1

πkG
P
k .

At last, we diagonalize the Hessian matrix and get that511

Diag-Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) 0

0 e2α

(eα+W )2H

)
,

where the H is given by512

H =

V∑
k=1

πk

(
GP

k − (z⊤GP
k z)

−1GP
k zz

⊤GP
k

)
.

To prove that H is positive semi-definite, consider any vector η with ∥η∥2 = 1.513

η⊤Hη =

V∑
k=1

πk

(
η⊤GP

k η − η⊤GP
k zz

⊤GP
k η

z⊤GP
k z

)
.
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Since GP
k ’s are positive semi-definite, the Cauchy inequality gives that514

z⊤GP
k η ≤

√
z⊤GP

k zη
⊤GP

k η.

As a result, we have that515

η⊤Hη ≥
V∑

k=1

πk

(
η⊤GP

k η − z⊤GP
k zη

⊤GP
k η

z⊤GP
k z

)
= 0.

This shows that H is positive semi-definte. Therefore, Hessian(loss(α⋆,β⋆)) is positive semi-definte.516

This proves Theorem 8.517

We prove Theorem 8 through direct computation. Due to the non-linearity, it’s unclear whether518

other stationary points exist. However, we observe that all of our simulations converge to the given519

stationary points.520

B.3 Attention sinks in Theorem 3521

Theorem 9 (Restatement of the attention sink part in Theorem 3). Fixing β = c · 1, with any initial522

value, there exists r(t) with bounded norm such that523

α(t) =
1

2
log t · 1+ r(t).

Proof. We separately analyze each entry of α. Focusing on αv , to simplify the notation, we introduce524

a random variable φ such that P(φ = Wkξk) = pvk. Define525

u = eαv .

Therefore, using Lemma 7, we get that526

du

dt
=

πve
2αv

(eαv +W )2

V∑
i=1

(qvi − pvi)(Wβi −Wiξi).

We take in β = c and expand the expression of du/dt. This gives us527

du

dt
=

πvu
2

(u+W )2

∑V
k=1 pvke

Wkξk/(u+W )Wkξk −
∑V

k=1 pvke
Wkξk/(u+W )

∑V
k=1 Wkξk∑V

k=1 pvke
Wkξk/(u+W )

=
πvu

2

(u+W )2
Cov(e

φ
u+W , φ)

Ee
φ

u+W

.

Since both ex/(u+W ) and x are monotonically increasing with respect to x, u is monotonically528

increasing. This means that529

u(t)2

[u(t) +W ]2
≥ u(0)2

[u(0) +W ]2
, Ee

φ
u(t)+W ≤ Ee

φ
u(0)+W .

Meanwhile, if we consider the first and second order approximation of eφ/(u+W ),530

e
φ

u+W = 1 +
θ1(φ)φ

u+W
, e

φ
u+W = 1 +

φ

u+W
+ θ2(φ)

[ φ

u+W

]2
.

Both θ1(φ) and θ2(φ) are monotonically increasing functions of φ. We also have the bound531

θ(φ) ≤ e
maxφ

u(0)+W − 1
maxφ

u(0)+W − 1
= Cθ.

Therefore, we get two more inequalities532

Cov(θ1(φ)φ,φ) ≤ Cθ Var(φ), Cov(θ2(φ)φ
2, φ) ≥ 0.
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With all the preparatory works down, we give upper and lower bounds for du/dt. We first upper-533

bound du/dt.534

du

dt
≤ πvCov(e

φ
u+W , φ)

= πvCov(1 +
θ1(φ)φ

u+W
,φ)

≤ πvCθ Var(φ)

u
.

By solving the corresponding ODE, we get that535

1

2
u2 ≤

√
Cθ Var(φ)t+ C.

To give a lower bound, we have that536

du

dt
≥ u(0)2

[u(0) +W ]2
πvCov(e

φ
u+W , φ)

Ee
φ

u(0)+W

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

Cov(1 +
φ

u+W
+ θ2(φ)

[ φ

u+W

]2
, φ)

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

Var(φ)

u+W

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

· u(0)

u(0) +W
· Var(φ)

u

= C̃θ
1

u
.

Therefore, u ≥
√
C̃θt+ C̃. In conclusion,537

yv = log u =
1

2
log t+ rv,

with rv bounded.538

B.4 Value state drains in Theorem 3539

Theorem 10 (Restatement of Theorem 3). Fixing α = y1, β = c1− e−αW ◦ ξ with c ∈ R. Define540

β(t) = V −1
∑V

i=1 βi(t). Then the gradient flow of β(t) converges:541

β(t) → β⋆ = β(0)1− e−αW ◦ ξ.

Proof. Theorem 8 has already verified that β = c1− e−αW ◦ ξ are stationary points of loss. In the542

proof of Theorem 8, we have derived ∇2
β loss(α,β).543

∇2
β loss(α,β) =

V∑
k=1

πkG
Q
k .

Lemma 5 indicates that it is positive semi-definite. Therefore, all stationary points attain the minimum544

of loss(α,β). Suppose β⋆ is a stationary point, we therefore get that qvk = pvk for any v, k. This545

implies that eyβ⋆
k +Wkξk are constants across k. We can solve β⋆ and get that β⋆ = c1−e−αW ◦ξ.546

The convexity of the loss(α,β) guarantees that β always converges to a stationary point β⋆.547

To find the value of c in β⋆, note that
∑V

v=1 β̇v(t) = 0. We get that β
⋆
= β(0). Therefore,548

β⋆ = β⋆ = β(0)1− e−αW ◦ ξ.549

Remark 11. If we assume that pvk > 0 for any v, k and suppose that the initial value β(0) is close550

enough to β⋆, it is possible to prove the fast convergence of β(t) to β⋆.551

∥β(t)− β⋆∥22 ≤ δe−µt.

19



(a) Sequence 0

<s>, t , \n T H t H E t E N o ? t

<s>
,
t
,

\n
T
H
t

H
E
t
E
N
o
?
t 0

1
(b) Sequence 1

<s>f u t u s . \n\n H a d y , t ,

<s>
f
u
t
u
s
.

\n
\n
H
a
d
y
,
t
, 0

1
(c) Sequence 2

<s>i s t s ? t ? t ? \n T I V I f

<s>
i
s
t
s
?
t
?
t
?

\n
T
I

V
I
f 0

1

Figure 9: Attention plots of the one-layer transformer trained on the Bigram-Backcopy task.
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Figure 10: Minimal structures to elicit residual state peaks. We use A + B + C to indicate the model with
structure A, B, C in layers 0, 1, and 2, respectively.

C Ablations552

Experimental details. We train transformers with positional embedding, pre-layer norm, SoftMax553

activation in attn, and ReLU activation in mlp. We use Adam with constant learning rate 0.0003,554

β1 = 0.9, β2 = 0.99, ε = 10−8, and a weight decay of 0.01. We choose a learning rate of 0.03 for555

the SGD. In each training step, we resample from the BB task with a batch size of B = 512 and556

sequence length N = 256. Unless otherwise specified, the model is trained for 10, 000 steps. Results557

are consistent across different random seeds.558

More attention plots : Figure 9 presents more attention-weight heat maps of the one-layer trans-559

former model trained on the BB task. All attention maps show the attention sink phenomenon.560

Interestingly, the trigger tokens serve as attention sinks in some inputs.561

C.1 Ablations of different model structures trained on the Bigram-Backcopy task.562

Exploring the minimal structure for massive norms. Figure 10 presents the difference of residual563

norms between the <bos> token and others (∥Res<bos>∥ − Ev ̸=<bos>[∥Resv∥]), with different combi-564

nations of model structures. The 3×TF and 2×TF+ mlp are two outliers, showing clear evidence565

of residual state peaks.566

Attention plots, value state norms, and residual norms for a three-layer transformer trained on567

BB task. Figures 11, 12, and 13 show the extreme token phenomena in a three-layer transformer.568

The residual state peaks show different phenomena from those in LLMs, with the last layer output569

increasing the residual norms of non-<bos> tokens. Figure 1 demonstrates that the residual state570

norms of <bos> drop match the magnitudes of other tokens at the last layer.571

Statics and dynamics of the simplified model in Theorem 3. With the simplified model structure572

in Figure 4, we pre-train the model using Adam with learning rate 0.03. Figure 14 and 15 show573

results that match both the theory and the observations of the one-layer transformer.574
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Figure 11: Value state norms of three-layer transformer trained on the BB task
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Figure 12: Value state norms of three-layer transformer trained on the BB task

C.2 Variations of the Bigram-Backcopy task575

Bigram-Backcopy task without the <bos> token. We train a one-layer transformer on the BB576

task without the <bos> token. Figure 16 shows that the <bos> token is perhaps not the extreme token.577

Instead, trigger tokens and delimiter tokens seem to become extreme tokens. The results indicate578

that initial tokens may not be the only candidates for the extreme token, partially explaining why579

delimiter tokens could also be extreme tokens in LLMs.580

The Bigram-Skip-one (BS) task. We make slight modifications to the Bigram-Backcopy task.581

On trigger tokens, instead of copying the preceding token, we sample from the bigram-probability582

of the preceding token P(· | Second-to-last token). We train a one-layer transformer on it using the583

same configuration as the BB task. Figure 17 shows that extreme token phenomena are mitigated.584

The reason is that trained under BS, both the value states Valv and the token embedding ebdv give585

the logit of the bigram transition probability. Therefore, other than having attention sink on the586

<bos> token, self-attention becomes a new possibility to achieve the active-dormant mechanism.587

D More Attention Heads in Dormant and Active Phase588

In this section, we present two more dormant- and active- phase heads in Llama 2-7B-Base, in589

Figures 18 and 19, which are more difficult to interpret than Layer 16 Head 25, but go dormant on590

some inputs and active on others.591

E Fine-Grained Static Mechanisms for Extreme-Token Phenomena592

In this section, we will identify more fine-grained static mechanisms for extreme-token phenomena593

in Llama 3.1-8B-Base. To do this, we identify circuits for the origin of attention sinks and small594

value states. Then, using ablation studies, we study the origin of massive norms. Again, we use the595

generic test phrase “<bos> Summer is warm. Winter is cold.”596

Attention sinks and global contextual semantics. There are many attention sinks at layer 0, and597

the <bos> token is always the sink token (see Figure 20). From now on until the end of this section,598

we restrict our attention to Head 31 of Layer 0, which is an attention sink. These attention sinks are599

caused by two linear-algebraic factors, demonstrated in Figure 21.600
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Figure 13: Residual state norms of three-layer transformer trained on the BB task
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Figure 14: The simplified model structure trained on the BB task.

1. The key state of the <bos> token has small dot product with all other tokens.601

2. The query states of all tokens are nearly orthogonal to the key states of all tokens except the602

<bos> token.603

These two facts combine to ensure that the key state of the <bos> token is picked out by each query604

state, causing the attention sink. Since these query and key states are produced without any cross-605

token interaction, the alignment of different states is caused purely by the token’s global importance606

or meaning imparted via pretraining. The <bos> token has no semantic meaning in the context of607

prose tokens, so its key state is not aligned with key states of meaningful prose tokens. Also, delimiter608

tokens, oft considered secondary attention sinks (c.f. Appendix F.2), have the most aligned key states609

to the key state of the <bos> token, and are also the tokens with the least semantic meaning in the610

prose context. Thus, we identify that, at least in this restricted example, query state and key state611

alignment depends heavily on the contextual semantics of the token.612

Value state drains. The value states of the <bos> token at Layer 0 Head 31 are already near zero,613

as demonstrated in Figure 22. While the delimiter tokens, which are less semantically meaningful in614

the prose context, have smaller value states than the rest, they are not as small as the value state of the615

<bos> token which is guaranteed to not have any semantics.616

Residual state peaks. Residual state peaks are caused by the first two layers’ MLPs. In particular,617

we perform several ablations, comparing between the residual state norms in a later layer (24) of an618

un-edited forward pass versus forward passes where we force the output of either multiple layers,619

a single layer, an attention block, or an MLP to be zero (and hence remove its contribution from620

the residual stream). This intervention showed that ablating either Layer 0’s or Layer 1’s MLP is621

sufficient to remove the residual state peak. In particular, the second-largest token at Layer 24 in each622

ablation (including the original setup) has norm between 29 and 38, so the interventions ensure that623

all tokens have similar size.624

F Assorted Caveats625

F.1 Multiple Attention Sinks vs. One Attention Sink626

As we have seen, attention heads in the BB task (Section 2), Llama 2-7B-Base (Section 3.1), and627

OLMo (Section 3.2) exhibit multiple attention sinks. That is, when heads in these models are628
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Figure 15: The dynamics of the simplified model structure trained on the BB task. Left (a): The training curves
match the one-layer transformer. Right (b): The logit curve is close to the logarithmic growth predicted in
Theorem 3.
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Figure 16: Attention weights and value state norms of a one-layer transformer trained on the BB task without
the <bos> token.

dormant, they tend to have two attention sinks. For the LLMs in this group, at least on prose data, the629

<bos> token as well as the first delimiter token (e.g., representing . or ;) are sink tokens. Meanwhile,630

Llama-3.1-8B-Base (Section 3) only ever has one attention sink on prose data, and the <bos> token631

is always the sink token. Here, we offer a possible explanation of this phenomenon. For the BB632

task, multiple sink tokens are necessary to solve the task. For LLMs, we believe this distinction may633

be explained by the relative proportion of coding data, in which delimiters have a greater semantic634

meaning than prose, within the training set. For instance, OLMo was trained on DOLMA [35], which635

has around 411B coding tokens. Meanwhile, Llama 2 used at most (2T × 0.08 =) 0.16T coding636

tokens. Finally, Llama 3.1 used around (15.6T × 0.17 =) 2.6T coding tokens [12]. On top of the raw637

count being larger, coding tokens are a larger proportion of the whole pre-training dataset for Llama638

3.1 compared to other model families. Thus, during training, the presence of delimiters would not be639

considered unhelpful towards next-token prediction, since such delimiters carry plenty of semantics640

in a wide variety of cases. Our earlier hypothesis in Section 3.1 proposes that only tokens which lack641

semantics in almost all cases are made to be sink tokens. This could be a reason for the distinction.642

F.2 The Role of a Fixed <bos> Token in the Active-Dormant Mechanism643

Some models, such as OLMo, are not trained with a <bos> token. Despite this, the first token of644

the input still frequently develops into a sink token. We can study the effect of positional encoding645

of the tokens on the attention sink phenomenon by shuffling the tokens before inputting them into646

the transformer, and observing how and why attention sinks form. If we do this with the phrase647

“Summer is warm. Winter is cold.” with OLMo, we observe that at Layer 24, there are many attention648

sink heads where the first token and first delimiter token share attention mass, even if the sentence649

is jumbled up and makes no grammatical sense. This points towards the observation that without650

a <bos> token, the attention sink formation uses both positional data and, to a greater degree, the651

semantic data of each token. We leave studying this effect in greater detail to future work.652
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Figure 17: Experiments on the Bigram-Skip-one task. All phenomena are close to those in the BB task, but
with diagonal attention sinks and relatively larger ∥Val<bos>∥ compared with Figure 2.
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Figure 18: Layer 16 Head 20 of Llama 2-7B-Base.
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Figure 19: Layer 16 Head 28 of Llama 2-7B-Base.
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Figure 20: A visualization of attention heads at Layer 0 of Llama 3.1-8B-Base. Notice that many heads
have the attention sink property, even at Layer 0 without any cross-token interaction. As usual, the test phrase is
“Summer is warm. Winter is cold.” The most clear attention sink is Head 31.

(a) Alignment of query states and key states (L0H31). (b) Alignment of key states and key states (L0H31).

Figure 21: Alignment between query states and key states at Layer 0 Head 31 of Llama 3.1-8B-Base. We
observe that the key state of <bos> is orthogonal to all other key states, and heavily aligned with all query states.
Meanwhile, all semantically meaningful (i.e., not delimiter) tokens have aligned key states.
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Figure 22: Value state drains at Layer 0 Head 31 of Llama 3.1-8B-Base. We observe that the value state
associated with <bos> is already much smaller than every other semantically meaningful token, and still smaller
than the delimiter tokens in the same sentence.

Figure 23: Ablation study on the cause of the residual state peak in Llama 3.1-8B-Base. We perform a
series of ablations to understand which components of the network promote the residual state peaks. We find
that ablating either the zeroth or first layer’s MLP is sufficient to remove the residual state peak phenomenon,
while no other layer-level ablation can do it.
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Figure 24: Attention sinks with shuffled input in Layer 24 of OLMo. In order to understand the impact of
positional encodings when there is no <bos> token, we shuffle the input of the test string “Summer is warm.
Winter is cold.” in OLMo. We observe that there is still an attention sink on token 0, despite it being a random
token that does not usually start sentences or phrases (since it is uncapitalized). This shows that the positional
embedding, say via RoPE, has a large impact on the formation of attention sinks — when the semantics of each
token have switched positions, the attention sink still forms on the zeroth token.
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