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Abstract

We consider the question whether the time evolution of controlled differential equa-
tions on general state spaces can be arbitrarily well approximated by (regularized)
regressions on features generated themselves through randomly chosen dynamical
systems of moderately high dimension. On the one hand this is motivated by
paradigms of reservoir computing, on the other hand by ideas from rough path
theory and compressed sensing. Appropriately interpreted this yields provable
approximation and generalization results for generic dynamical systems by regres-
sions on states of random, otherwise untrained dynamical systems, which usually
are approximated by recurrent or LSTM networks. The results have important
implications for transfer learning and energy efficiency of training.
We apply methods from rough path theory, convenient analysis, non-commutative
algebra and the Johnson-Lindenstrauss Lemma to prove the approximation results.

1 Introduction

In many areas of theoretical or practical interest, the quantitative understanding of dynamics in terms
of initial values, local characteristics and noisy controls is pivotal. Classical approaches provide
numerical algorithms to approximate dynamics given by such characteristics, where the quality of
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approximation depends on the regularity of the local characteristics and on the nature of the noise.
A bottleneck of this approach, which essentially goes back to Isaac Newton is the determination of
characteristics from data. Machine-learning technologies based on universal approximation theorems
follow a different approach to this problem: on a sufficiently rich training data set the map from initial
values and control inputs to observed dynamics is learned directly without building an intermediate
model upon its local characteristics. To learn such input-output maps one often applies recurrent
neural networks, LSTMs or neural ODEs, which are flexible enough to approximate all sorts of
dynamics but notoriously difficult to train.

Here the paradigm of reservoir computing, which – in different forms – appears in several areas of
machine learning, enters the stage: split the input-output map into a generic part (the reservoir), which
is not or only in small parts trained, and a readout part, which is accurately trained and often linear.
In many cases, reservoirs can be realized physically, whence additionally ultrafast evaluations are
possible, and learning the readout layer is often a simple (regularized) regression. Even though this
approach seems surprising at first it has many well known instances, even in theoretical considerations,
e.g. rough path theory, where a far reaching analysis of input-output systems is laid down.

Consider a controlled ordinary differential equation (CODE)

dYt =

d∑
i=0

Vi(Yt)du
i
t , Y0 = y ∈ RN

for some smooth vector fields Vi : RN → RN , i = 0, . . . , d and d smooth control curves ui. We
place ourselves in the situation that we observe u and Y , but do not have access to the vector fields
V i. The goal is to learn the dynamics and to simulate from it conditional on the controls u.

Whence we aim to describe the map

(input control u) 7→ (solution trajectory Y ),

which is obviously a complicated, non-linear map of delicate regularity. A non-commutative version
of Taylor’s expansion provides a first step towards reservoirs here: indeed we can split (asymptotically
in time) the map (ut)0≤t≤T 7→ (Yt)0≤t≤T into two parts:

• A linear system in the free algebra with d generators

dSigt =

d∑
i=0

Sigt eiu
i
t , Sig0 = 1.

This is an infinite dimensional system (called, e.g., the signature process) whose solution is
just the collection of all iterated integrals of components of u, and which does not depend
on the specific dynamics (hence this process is the reservoir).

• A linear map Sig 7→W Sig which is actually trained (e.g. a linear regression!) and which
is chosen to explain (Yt)0≤t≤T as good as possible (the readout map). In the present case
we can, given the vector fields driving Y , calculate explicitly the coefficients of the readout
map W (possibly with regularization needed).

This well known split is not fully satisfying from the point of view of reservoir computing, since it is
difficult, for a given control path u, to calculate the precise values of the reservoir Sig. Indeed the
reservoir system is an infinite dimensional dynamical system on a free algebra with all numerical
complications arising in such situations. This is actually in sharp contrast to reservoir computing at
work, where reservoirs are easy to evaluate. At this point we do not apply generic numerical methods
to approximate the reservoir but rather compress the information of signature through a random
projection

π : Ad → Rk ,
whose image can be surprisingly approximated by a dynamical system on Rk, which has random
characteristics. This is due to the fact that the characteristics of the signature process have a nilpotent
structure, whence its random projections look by the central limit theorems almost like random
matrices. The random projections are of course chosen according to the Johnson-Lindenstrauss
lemma.

Therefore we can split (asymptotically in time), now fully in line with reservoir computing, the map
(ut)0≤t≤T 7→ (Yt)0≤t≤T into two parts:
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• A locally linear system on Rk

dXt =

d∑
i=0

σ(AiXt + bi) ◦ dBit , Y0 ∈ Rk ,

where σ is a componentwise applied activation function σ : R→ R (notice that we explicitly
allow the identity as a possible choice here) and Ai, bi are appropriately chosen random
matrices or vectors (often just by independently sampling from N(0, 1)). This is a finite
dimensional system (the reservoir), which we call randomized signature process and which,
again, does not depend on the specific dynamics.

• A linear map X 7→ WX which is actually trained (e.g. a linear regression) to explain
(Yt)0≤t≤T as good as possible (the readout map).

Still we are able to prove generalization bounds for this approximation and we can observe them in
an impressive way.

This also yields a fresh view on describing dynamics driven by, e.g., smooth controls u: one can
either describe a dynamics by providing its local characteristics, i.e. the vector fields V1, . . . , Vd, or,
in view of the above sketch, one can describe a dynamics by providing a reservoir, e.g. randomized
signature, and the regression coefficients W . It is impressive that it is a linear task to learn W from
the (high-frequency) observation of one trajectory Y together with the control u. This actually leads
to a fascinating econometric approach which will be investigated in subsequent work.

2 Controlled ordinary differential equations on convenient vector spaces

Let E be a convenient space, e.g. E = RN (see Appendix A). Consider a controlled ordinary
differential equation (CODE), i.e.

Xt = x+

d∑
i=1

∫ t

s

Vi(Xr)du
i(r), (1)

where Vi : E → E are some smooth vector fields on E. The control u : R → Rd is considered a
smooth curve with values in Rd. We refer to Section B for details on solutions to (1).

In order to understand algebra, analysis and geometry of iterated integrals, we have to consider
the Hopf algebra Ad constructed by considering formal series generated by d non-commutative
indeterminates e1, . . . , ed. A typical element a ∈ Ad is therefore written as

a =

∞∑
k=0

d∑
i1,...,ik=1

ai1...ikei1 · · · eik .

We refer to Section B for details regarding the Hopf algebra structure of Ad. For i = 1, . . . , d we
define on Ad smooth vector fields

a 7→ aei.

Theorem 2.1. Let u be a smooth control, then the controlled differential equation

dSigs,t(a) =

d∑
i=1

Sigs,t(a)eidu
i(t) , Sigs,s(a) = a (2)

has a unique smooth evolution operator, called signature of u and denoted by Sig, given by

Sigs,t(a) = a

∞∑
k=0

d∑
i1,...,ik=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik(tk) ei1 · · · eik . (3)

Remark 2.2. Signature has many interesting properties which are encoded in the Hopf algebra Ad.
In particular signature is the solution of a time-homogenous dynamical system Ad, which is crucial
when it comes to applications in reservoir computing.
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Denote by AMd the free nilpotent algebra with d generators in which products of length more than M
vanish. The following splitting theorem is the precise link to reservoir computing and holds in this
very general context of convenient vector spaces.

Theorem 2.3. Let Evol be a smooth evolution operator on a convenient vector space E which
satisfies (where the time derivative is taken with respect to the forward variable t) a CODE (1)

dEvols,t(x) =

d∑
i=1

Vi(Evols,t(x))dui(t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there is a time-homogenous
linear W = W (V1, . . . , Vd, f,M, x) from AMd to the real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM (Sigs,t(1))

)
+O

(
(t− s)M+1

)
for s ≤ t, where πM : Ad → AMd is the canonical projection.

Remark 2.4. In more literal terms: every controlled dynamics Evol can be split in a linear (readout)
map W and a (projection of) universal Sig dynamics.

3 The Johnson-Lindenstrauss lemma and randomly projected universal
signature dynamics

It is the assertion of the Johnson-Lindenstrauss (JL) Lemma that for every 0 < ε < 1 an N point set
Q in some arbitrary (scalar product) space H , can be embedded into a space Rk, where k = 24 logN

3ε2−2ε3

in an almost isometric manner, i.e. there is a linear map f : H → Rk such that

(1− ε)‖v1 − v2‖2 ≤ ‖f(v1)− f(v2)‖2 ≤ (1 + ε)‖v1 − v2‖2

for all v1, v2 ∈ Q. It is remarkable that f can be chosen randomly from a set of linear projection
maps and the choice satisfies the desired requirements with high probability. The result is due to
concentration of measure results in high dimensional spaces and has been discovered in the eighties.

We shall apply this remarkable result to obtain versions of signature in lower dimensional spaces
which are possibly easier to evaluate. The geometry which we aim to preserve is the geometry of the
defining controlled equation of signature: we therefore look for JL maps on AMd which preserve its
geometry encoded in some set of directions Q.

In order to make this program work, we need a definition:

Definition 3.1. Let Q be any (finite or infinite) set of elements of norm one in AMd with Q = −Q.
For v ∈ AMd we define the function

‖v‖Q := inf
{∑

j

|λj |
∣∣ ∑

j

λjvj = v and vj ∈ Q
}
.

We use the convention inf ∅ = +∞ since the function is only finite on span(Q). Actually the function
‖.‖Q behaves precisely like a norm on the span. Additionally ‖v‖Q1

≥ ‖v‖Q2
for Q1 ⊂ Q2 and

‖v‖Q ≥ ‖v‖ for all sets Q of elements of norm one.

Proposition 3.2. Fix M ≥ 1, ε > 0 and consider the free nilpotent algebra AMd . Let Q be any N
point set of vectors with norm one, then there is linear map f : AMd → Rk (k being the above JL
constant with N ), such that ∣∣〈v1, v2 − (f∗ ◦ f)(v2)〉

∣∣ ≤ ε ,
for all v1, v2 ∈ Q, where f∗ : Rk → AMd denotes the adjoint map of f with respect to the standard
inner product on Rk. In particular∣∣〈v1, v2 − (f∗ ◦ f)(v2))〉

∣∣ ≤ ε‖v1‖Q‖v2‖Q ,
for v1, v2 ∈ AMd .

4



By means of this special JL map associated to a point set Q, which we consider chosen relevant for
the geometry, we can now project the vector fields in question without loosing too much information,
we can solve the projected, reconstructed system and obtain – up to some time – a solution which is
ε-close to signature. By abuse of notation we shall write Sig in the sequel even though we mean the
truncated version πM

(
Sig
)
(1) in AMd .

The following theorem underlines the fact that randomized signature, as defined below, is as expressive
as signature:

Theorem 3.3. Let u be a smooth control and f the previously constructed JL map from AMd to Rk.
We denote by r-Sig the smooth evolution of

dYt =

d∑
i=1

( 1√
n
f(f∗(Yt)ei) + (1− 1√

n
)f(Sigs,r(1)ei)

)
dui(t) , Y0 ∈ Rk ,

which is a controlled differential equation on Rk. The natural number n denotes the dimension of
AMd . Then

〈w,Sigs,t(1)− f∗(r-Sigs,t(Y0))〉

≤
∣∣〈w,Evols,t(1− f∗(Y0))〉

∣∣+ Cε

d∑
i=1

∫ t

s

‖Evol∗s,r w‖Q‖ Sigs,r ei‖Q dr ,

with constant C = sups≤r≤t, i

∣∣∣dui(r)
dr

∣∣∣, and for each w ∈ AMd .

It is fascinating that we can actually calculate approximately the vector fields which determine the
dynamics of r-Sig by generic random elements.

Theorem 3.4. For M →∞ the linear vector fields

y 7→ 1√
n
f(f∗(y)ei)

for i = 1, . . . , d, are asymptotically normally distributed with independent entries. The time depen-
dent bias terms

(1− 1√
n

)f(Sigs,r(1)ei) .

are as well asymptotically normally distributed with independent entries.
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A Convenient Calculus

We resume the basic notions of convenient calculus (see [5] for all necessary details): a convenient
vector space E is a locally convex vector space such that all Mackey-Cauchy sequences converge. In
particular all sequentially complete locally convex vector spaces are convenient. We denote by E′
the space of bounded linear functionals on E. On convenient vector spaces smooth curves, which
are defined as usual, coincide with weakly smooth curves, i.e. c : R→ E is smooth if and only if
l ◦ c ∈ C∞(R,R) for all l ∈ E′. We define a new (in general finer) topology on E to overcome
the difficulty that there are obviously well behaved candidates for smooth mappings, which are not
continuous: The c∞-topology is the final topology with respect to all smooth curves, so U ⊂ E is
open if the inverse image under any smooth curve to E is open. A mapping f : U ⊂ E → F is
called smooth if for all c ∈ C∞(R, E) the composition f ◦ c is a smooth curve to the convenient
space F . This is the foundation of a consistent extension of classical analysis to the huge class of
convenient vector spaces. Even on R2 it is not obvious that this definition of smoothness coincides
with the classical one (see [5] for details on the history of convenient calculus). The main results are
collected in the following theorem (for the proof see [5]).
Theorem A.1. Let E,F,G be convenient vector spaces, U ⊂ E, V ⊂ F c∞-open, then we obtain:

1. Multilinear mappings are smooth if and only if they are bounded.

2. If f : U → F is smooth, then d̂f : U × E → F and df : U → L(E,F ) are smooth, where

df(x)(v) :=
d

dt
|t=0f(x+ tv).

3. The chain rule holds.

4. The vector space C∞(U,F ) of smooth mappings f : U → F is again a convenient vector
space (inheritance property) with the following initial topology:

C∞(U,F )→
∏

c∈C∞(R,U)

C∞(R, F )→
∏

c∈C∞(R,U), λ∈F ′

C∞(R,R).

5. The exponential law holds, i.e.

i : C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. Usually we write i(f) = f̂ and
i−1(f) = f̌ .

6. The smooth uniform boundedness principle is valid: A linear mapping f : E → C∞(V,G)
is smooth (bounded) if and only if evv ◦ f : E → G is smooth for v ∈ V , where evv :
C∞(V,G)→ G denotes the evaluation at the point v ∈ V .

7. The smooth detection principle is valid: f : U → L(F,G) is smooth if and only if
evx ◦ f : U → G is smooth for x ∈ F (This is a reformulation of the smooth uniform
boundedness principle by cartesian closedness).

8. Taylor’s formula is true, if one defines by applying cartesian closedness and obvious
isomorphisms the multilinear-mapping-valued higher derivatives dnf : U → Ln(E,F ) of
a smooth function f ∈ C∞(U,F ), more precisely for x ∈ U, y ∈ E so that [x, x + y] =
{x+ sy|0 ≤ s ≤ 1} ⊂ U we have the formula

f(y) =

n∑
i=0

1

i!
dif(x)y(i) +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty) (y(n+1))dt

for all n ∈ N.

If not otherwise stated, E and F denote convenient spaces and B a Banach space in what follows.
We are looking for global solutions of ordinary differential equation with vector field V : E → E, i.e.
curves x : R→ E such that

dx(t) = V (x(t))dt , x(0) ∈ E ,
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where we pack – as usual – all sorts of time- or parameter dependence into E. Concerning differential
equations, there are of course possible counterexamples on non-normable Fréchet spaces in all
directions, which causes some problems in the foundations of differential geometry (see [5] for
details). Nevertheless a useful generalization of the existence theorem for differential equations on
Banach spaces is given by the following Banach map principle (see [3] for details, compare also [5],
32.14 for weaker results in a more general situation).

We shall, however, formulate one basic global existence and uniqueness result which is sufficient for
the purposes of this article:
Definition A.2. Given a convenient vector space E, a smooth map V : E → E is called a tempered
Banach map if there are smooth (not necessarily linear) maps R : E → B and Q : B → E such that
V = Q ◦R

E
P //

R   

E

B

Q

??

where B is a Banach space.

The space of Banach map vector fields B(E) is a C∞(E,R)-submodule of all vector fields X(E).
The following theorem is well known in the category of Fréchet spaces and due to Richard Hamilton.
Theorem A.3 (Banach map principle). Let V : E → E be a Banach map, then V admits a local
flow on E.

Proof. For the proof of the local version see [3], Theorem 5.6.3. The global statement follows from
below.

We are particularly interested in Banach maps perturbed by time-dependent and parameter-dependent
linear generators of smooth semi-groups. Let A(t, θ) : E → E be a bounded map on E smoothly
depending on ’time’ t and a one dimensional ’parameter’ θ. We assume that there is a smooth
evolution (depending smoothly on all entries) of bounded linear operators Ss,t = Sθs,t ∈ L(E,E),
for s ≤ t, such that

lim
t↓s

Sθs,t − id
t− s

= A(s, θ)

which is a local solution operator for the time-dependent and parameter-dependent linear vector field
x 7→ A(t, theta)x.

Given a Banach map V : E × R × R → E, we want to investigate the solutions of the perturbed
initial value problem

d

dt
x(t) = Aθ(t)x(t) + V θ(t, x(t)), x(0) = x0.

Theorem A.4. Let E be a convenient vector space and let the smooth curve (t, θ) 7→ Aθ(t) be
the time-dependent and parameter-dependent linear generator of a smooth evolution of linear
maps Ss,t ∈ L(E) of bounded linear operators on E depending smoothly on all entries. Let
V : E × R× R→ E be a smoothly time-dependent and parameter-dependent Banach map. Then
there is a unique smooth global evolution of solutions of the above initial value problem, in particular
we have smooth dependence on the initial value and on the parameter θ.

Proof. See [2] and the references therein.

B Controlled ordinary differential equations on convenient vector spaces

Let E be a convenient space, see Section A for all details. Consider a controlled ordinary differential
equation (CODE), i.e.

Xt = x+

d∑
i=1

∫ t

s

Vi(Xr)du
i(r), (4)
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where Vi : E → E are some smooth vector fields on E The control u : R → Rd is considered a
smooth curve with values in Rd.

For our purposes we shall only need local solvability in forward time direction, since then Theorem
B.8 already holds. For classes of vector fields, where we have solutions for all times, see [2] and the
references therein. We shall formulate a basic existence theorem:
Theorem B.1. Let E be a convenient vector space, A a bounded linear generators of a smooth
semi-group, V1, . . . , Vd smooth Banach vector fields, and u : R→ Rd+1 a smooth control with u0
increasing in time, then

Xt = x+

∫ t

s

AXr du
0(r) +

d∑
i=1

∫ t

s

Vi(Xr) du
i(r) (5)

has a unique solution on [0, ε[ for any initial value. Additionally the solution map

(s, t, x, u) 7→ Evolus,t(x) = Evols,t(x)

(for convenience we shall only denote the dependence on u if necessary) satisfies the evolution
property

Evolus,t ◦Evolur,s = Evolur,t (6)
and Evolus,s(x) = x for all r, s, t and x ∈ E where ever it is defined.

Proof. Choose a curve of control θ 7→ uθ ∈ C∞(R,Rd) and consider the differential equation

d

dt
Xt = AXt

d

dt
u0θ(t) +

d∑
i=1

Vi(Xt)
d

dt
uiθ(t) , X0 = x .

We consider now θ as parameter and apply smooth dependence results of evolutions if vector fields
are smooth. Since the operators A generates a smooth semi-group,

t 7→ A
d

dt
u0θ(t)

generates a smooth evolution of bounded linear operators, see Section A, namely

Ss,t(x) = Flt−s(x, s) = exp
(
A1(u0θ(t)− u0θ(s))

)
for the respective initial value x at time s. Then the perturbed equation, perturbed time-dependent
and parameter-dependent vector fields,

(x, t, θ) 7→
d∑
i=1

Vi(x)
d

dt
uiθ(t)

has a unique solution smooth with respect to the initial values by Theorem A.4. By convenient
analysis, Section A, it is clear that smoothness in u is equivalent to showing smoothness in θ for all
smooth curves of controls, whence the result follows. The evolution property follows from uniqueness
and is part of the assertions of Theorem A.4.

Definition B.2. Let V : E → E be a smooth vector field, and let f : E → R be a smooth function,
then we call

V f(x) = df(x) • V (x)

the transport operator associated to V , which maps smooth functions to smooth functions and
determines V uniquely.

Let Evol be a smooth evolution operator on c∞-closed subset A of a convenient vector space E
(or on a convenient manifold M modeled on E), i.e. in particular the space C∞(A;R) (C∞(M ;R)
respectively) is well defined and determines the smooth curves into A or M .
Definition B.3. Let Evol be a smooth evolution on A or M , then

T-Evols,t : f 7→ f ◦ Evolt,s

defines a linear evolution on the respective spaces of smooth functions, called the associated transport
evolution. Indeed

T-Evols,t ◦T-Evolr,s(f) = f ◦ Evols,r ◦Evolt,s = f ◦ Evolt,r = T-Evolr,t(f) .
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Theorem B.4. The smooth evolution operator Evol satisfies (the time derivative is taken with respect
to the forward variable t) a controlled ordinary differential equation (4)

dEvols,t(x) =

d∑
i=1

Vi(Evols,t(x))dui(t)

with initial value Evols,s(x) = x ∈ E. Then the transport evolution satisfies

dT-Evols,t(f) =

d∑
i=1

Vi T-Evols,t(f)dui(t) .

Proof. By the chain rule and the evolution property we obtain

dEvols,t(x) •
( d∑
i=1

Vi(x)
d

ds
ui(s)

)
=

d∑
i=1

Vi
(

Evols,t(x)
) d
ds
ui(s)

for all smooth evolution operators and for all real s, t. Indeed,

−
d∑
i=1

Vi(x)
d

ds
ui(s) =

d

dε
|ε=0

(
Evols−ε,s(x)

)
=

d

dε
|ε=0

(
Evolt,s ◦Evols−ε,t

)
(x)

= dEvolt,s(Evols,t) •
(
−

d∑
i=1

Vi
(

Evols,t(x)
) d
ds
ui(s)

)
yields the result for t ≥ s where ever it is defined.

Remark B.5. For further details on derivatives of evolution operators see [2] and [5].

The following examples demonstrate how general the concept of a smooth evolution actually is:
Example B.6. The Laplace operator on an n dimensional torus is a generator of a smooth semi-group
on E = C∞(Tn). More generally, any strongly continuous semi-group on a Banach space X defines
a smooth semi-group on dom(A∞).
Example B.7. Vector fields of a shallow neural network type are Banach maps: let l1, . . . , ln : E → R
be bounded linear maps, let φ : R→ R be a smooth map and α1, . . . , αn ∈ E be vectors, then

V (x) =

n∑
i=1

αiφ
(
li(x) + βi

)
for some numbers βi ∈ R, x ∈ E, is a Banach map. Whence arbitrary neural network type
perturbations of generators of strongly continuous semi-groups admit local solutions due to Theorem
B.1.

Of utmost importance in our context is the following expansion theorem which allows in our smooth
setting to expand solutions in terms of iterated integrals of the controls. The statements are well-
known in control theory or rough path theory, still it is worth spelling it out in our convenient
context.
Theorem B.8. Let Evol be a smooth evolution operator on a convenient vector space E which
satisfies (again the time derivative is taken with respect to the forward variable t) a controlled
ordinary differential equation (4)

dEvols,t(x) =

d∑
i=1

Vi(Evols,t(x))dui(t)

then for any smooth function f : E → R

f
(

Evols,t(x)
)

=

M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vikf(x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik(tk)+ (7)

+RM (s, t, f) (8)
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with remainder term

RM (s, t, x, f) =

d∑
i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vikf
(

Evols,t0(x)
)
dui0(t0) · · · duik(tM )

(9)

holds true for all times s ≤ t and every natural number M ≥ 0.

Remark B.9. By convention the iterated integral over the empty set, which corresponds to the factor
of f is defined to be 1.

Proof. The proof is of an extraordinary simplicity and just consists iterating the defining integral
equation along smooth functions: indeed take equation (4) and apply the chain rule for a function f ,
then

f
(

Evols,t(x)
)

= f(x) +

∫ t

s

d∑
i=1

Vif
(

Evols,t0(x)
)
dui(t0) ,

which is just the asserted equation for M = 0. The equation describes what happens if Evol is
inserted into a smooth function f , which is precisely what is needed inside the integral. Performing
this step leads to the formula for M = 1. Notice that this is not what is done for Banach fixed point
iteration.

The rest is done by induction.

Remark B.10. The formula holds verbatim (as long as integrals are defined) for continuous semi-
martingales as well as for rough paths.
Remark B.11. In case d = 1, V1(x) = v for all x ∈ E, u1(t) = t, the evolution is simply given by

Evols,t(x) = x+ v(t− s)

and the formula of Theorem B.8 is precisely Taylor’s formula.

Corollary B.12. In the assumptions of Theorem B.8 it holds that

∣∣RM (s, t, x, f)
∣∣ ≤ sup

s≤t0≤t

∣∣Vi0 · · ·Vikf(Evols,t0(x))
∣∣ sup
s≤r≤t, i

∣∣∣dui(r)
dr

∣∣∣M+1
(t− s)M+1

(M + 1)!
,

for all functions f : E → R and for all s ≤ t.

In order to understand algebra, analysis and geometry of iterated integrals, we have to consider the
following Hopf algebra, which can be easily topologized within the category of convenient vector
spaces (proving again the practical aspect of this theory):

Definition B.13. Consider the free algebra Ad of formal series generated by d non-commutative
indeterminates e1, . . . , ed. A typical element a ∈ Ad is therefore written as

a =

∞∑
k=0

d∑
i1,...,ik=1

ai1...ikei1 · · · eik ,

sums and products are defined in the natural way. We consider the complete locally convex topology
making all projections a 7→ ai1...ik continuous on Ad, hence a convenient vector space. We denote
by a0 the coefficient of 1 and by a≥1 the coefficients of products of length k ≥ 1.

We can of course consider certain entire functions on Ad:

exp(a0 + a≥1) = exp(a0)

∞∑
i=0

1

i!
ai≥1

where the second series is understood as formal power series.

The co-product ∆ is given by the unique algebra homomorphism with the property

∆(ei) = 1⊗ ei + ei ⊗ 1

10



for i = 1, . . . , d. The group like elements G are precisely the exponential image of the Lie algebra g
generated by e1, . . . , ed.

The antipodal map is given by extension of ei 7→ −ei, which all together makes Ad Hopf algebra.

By abstract theory of Hopf algebras this means that the dual space, the free vector space on words in d
letters, is indeed again a Hopf algebra with the shuffle product and the concatenation co-product (and
a respective antipodal map), in particular the space of linear maps restricted to the group G is a point
separating algebra. Whence any polynomial on G can be written as a restriction to G of a linear map.
We shall see that elements from G can actually be parametrized by iterated integrals, so polynomials
of iterated integrals can be written as linear combinations of iterated integrals. This remarkable fact
explains why the collection of iterated integrals actually universally linearizes dynamics driven by a
control u.
Definition B.14. We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d.
Theorem B.15. Let u be a smooth control, then the controlled differential equation

dSigs,t(a) =

d∑
i=1

Sigs,t(a)eidu
i(t) , Sigs,s(a) = a (10)

has a unique smooth evolution operator, called signature of u and denoted by Sig, given by

Sigs,t(a) = a

∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik(tk) ei1 · · · eik . (11)

Additionally Sigs,t(1) ∈ G for all times s, t and every g ∈ G can be reached on any interval [s, t] for
s < t by choosing an appropriate control u.

Proof. A linear map is smooth if it maps smooth curves to smooth curves, hence the linear vector
fields

a 7→ aei

are smooth, since smoothness of a curve just means that the coordinate projections are smooth. Hence
we have a well defined controlled differential equation on the convenient vector space Ad.

We can identify the scale of ideals IM in Ad of series whose expansion starts at k = M + 1. The
factor algebra AMd is the free nilpotent algebra with d generators, and of course finite dimensional
since products of length more thanM vanish. We denote the canonical projection, which is an algebra
homomorphism, by πM : Ad → AMd .

A curve t 7→ a(t) ∈ Ad is smooth if and only if all its projections t 7→ πMa(t) ∈ AMd are smooth,
for M ≥ 0. We can now consider the projected differential equation, which is then a linear finite
dimensional controlled differential equation, and solve it uniquely by applying πM to Formula (11).
This in turn also proves that Sig is the unique smooth evolution operator solving Equation (10).

For the second statement we refer to [2] and the references therein: it is a consequence of the
Chow-Rashevskii theorem of sub-riemannian geometry.

Remark B.16. Signature has many interesting properties which are encoded in the Hopf algebra Ad.
In particular signature is the solution of a time-homogenous dynamical system Ad, which is crucial
when it comes to applications in reservoir computing.

We conclude this section by the following splitting theorem, which is the precise link to reservoir
computing and holds in this very general context of convenient vector spaces.
Theorem B.17. Let Evol be a smooth evolution operator on a convenient vector space E which
satisfies (again the time derivative is taken with respect to the forward variable t) a controlled
ordinary differential equation (4)

dEvols,t(x) =

d∑
i=1

Vi(Evols,t(x))dui(t) .
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Then for any smooth (test) function f : E → R and for every M ≥ 0 there is a time-homogenous
linear W = W (V1, . . . , Vd, f,M, x) from AMd to the real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM (Sigs,t(1))

)
+O

(
(t− s)M+1

)
for s ≤ t.
Remark B.18. In more literal terms: every controlled dynamics Evol can be split a linear (readout)
map W and a (projection of) a universal dynamics Sig.

Proof. For the proof combine the assertion of Theorem B.8, of Theorem B.15 and we define the
linear map W : AMd → R via

W (ei1 · · · eik) := Vi1 · · ·Vikf(x) ,

which is depending on the stated data and does not dependent on time.

Corollary B.19. In case the remainder term in Theorem B.8 goes to zero as M → ∞ the above
expansion holds precisely, i.e. due to continuity

f
(

Evols,t(x)
)

= W
(
(Sigs,t(1))

)
.

This is true in case of real analytic vector fields V1, . . . , Vd and a real analytic function f for times
s ≤ t small enough.

C Proofs

C.1 Proof of Proposition 3.2

Proof. Consider H = AMd of dimension m. Then a JL map f exists which almost preserves the
distances of elements from Q in Rk. The JL lemma is due to the following estimate: take a matrix
k ×m matrix A of independent standard normal random variables, then

P
[
(1− ε)‖x‖2 ≤

∥∥ 1√
k
Ax
∥∥2 ≤ (1 + ε)‖x‖2

]
≤ 1− 2 exp

(
− k ε

2 − ε3

4

)
for every x ∈ Rm, 0 < ε < 1, and every k,m ≥ 1. By taking unions for x = v1 − v2 over sets
where the above bounds fail, for v1, v2 ∈ Q, one obtains a probability strictly less than one if k, N
and ε are properly chosen, e.g. with positive probability the bound holds. By polarization one obtains
(notice that the length of elements in Q is one)

P
[∣∣〈v1, v2〉 − 〈 1√

k
Av1,

1√
k
Av2〉

∣∣ ≥ ε] ≤ 4 exp
(
− k ε

2 − ε3

4

)
.

Again by the same argument as above the desired assertion is obtained for v1, v2 ∈ Q.

C.2 Proof of Theorem 3.3

Proof. Consider the controlled differential equation for signature, i.e.

dSigs,t(1) =

d∑
i=1

Sigs,t eidu
i(t) , Sigs,s(1) = 1

and look additionally at the controlled equation for randomized signature on Rk

dYt = (1− 1√
n

)

d∑
i=1

f(Sigs,r(1)ei) du
i(t) +

d∑
i=1

1√
n
f(f∗(Yt)ei)du

i(t) ,
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then we can consider the difference

Sigs,t(1)− f∗(Yt)

= 1− f∗(Y0) +

d∑
i=1

∫ t

s

(
Sigs,r(1)ei −

1√
n
f∗(f(f∗(Yr)ei))

)
dui(r)−

−
∫ t

s

(1− 1√
n

)

d∑
i=1

f∗(f(Sigs,r(1)ei)) du
i(r)

= 1− f∗(Y0) +

d∑
i=1

∫ t

s

1√
n

(f∗ ◦ f)
(

Sigs,r(1)ei − f∗(Yr)ei
)
dui(r)+

+

d∑
i=1

∫ t

s

(
Sigs,r(1)ei − (f∗ ◦ f)

(
Sigs,r(1)ei

)
dui(r) .

This can be solved by variation of constants, hence for every w ∈ AMd it holds by Proposition 3.2∣∣〈w,Sigs,t(1)− f∗Yt〉
∣∣ ≤ ∣∣〈w,Evols,t(1− f∗(Y0))〉

∣∣
+C

d∑
i=1

∫ t

s

∣∣〈Evol∗s,r w,Sigs,r(1)ei − (f∗ ◦ f)
(

Sigs,r(1)ei
)
〉
∣∣dr

≤
∣∣〈w,Evols,t(1− f∗(Y0))〉

∣∣+ Cε

d∑
i=1

∫ t

s

‖Evol∗s,r w‖Q‖ Sigs,r ei‖Q dr .

C.3 Proof of Theorem 3.4

Proof. For the proof see Theorem 3.7 in [1].
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